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Abstract. Nowadays a plethora of health data is available for clinical
and research usage. Such existing datasets can be augmented through
artificial-intelligence-based methods by automatic, personalised annota-
tions and recommendations. This huge amount of data lends itself to
new usage scenarios outside the boundaries where it was created; just
to give some examples: to aggregate data sources in order to make
research work more relevant; to incorporate a diversity of datasets in
training of Machine Learning algorithms; to support expert decisions in
telemedicine. In such a context, there is a growing need for a paradigm
shift towards means to interrogate medical databases in a semantically
meaningful way, fulfilling privacy and legal requirements, and transpar-
ently with respect to ethical concerns. In the specific domain of Medical
Imaging, in this paper we sketch a research plan devoted to the defi-
nition and implementation of query languages that can unambiguously
express semantically rich queries on possibly multi-dimensional images,
in a human-readable, expert-friendly and concise way. Our approach is
based on querying images using Topological Spatial Logics, building upon
a novel spatial model checker called VoxLogicA, to execute such queries
in a fully automated way.

Keywords: Open health data platforms - Spatial logics - Model
checking

1 Introduction and Related Work

A number of technologies with proven disruptive impact in Computer Science
have revolved around domain-specific data models and query languages. Let

The names of the authors of this paper are listed in alphabetical order.
All co-authors have contributed equally to the work described herein. This work has
been partially supported by the Italian MIUR-PRIN 2017 project IT MaTTerS: Meth-
ods and Tools for Trustworthy Smart Systems” and by the POR FESR 2014-2020
project STINGRAY (SmarT station INtelliGent RAilwaY).

© Springer Nature Switzerland AG 2021

L. Bellatreche et al. (Eds.): MEDI 2021 Workshops, CCIS 1481, pp. 285-301, 2021.
https://doi.org/10.1007/978-3-030-87657-9_22



286 G. Belmonte et al.

us just name a few. The Structured Query Language SQZ [12] revolutionised
data representation and access, and is nowadays one of the pillars of mod-
ern Information Technology. The eXtensibie Markup Language XML and its
query /transformation languages (see e.g. XQuery [1] and siblings), provide solid
grounds to any modern data-centric or document-centrine infrastructure. The
javascript library jQuery® is the de-facto standard for traversing HTML docu-
ments and identifying elements to be transformed using javascript. These tech-
nologies (and many others) have in common the adoption of a concise, unam-
biguous, declarative guery language that domain experts, without any particular
computer programming skill, can use, enabling widespread adoption of a num-
ber of transformative key functionalities. It is not an overstatement to say that
without the invention of such fundamental technologies, most of the modern
applications of Computer Science as we know them would not exist.

In the medical domain, data may be available in several forms, ranging from
diagnostic reports written in natural language to electronic health records, multi-
omics data, and so on. Among these, medical images constitute a large portion of
the data that can be related to patients, or used for research purposes. The rise of
Artificial-Intelligence (AI) based methods has widely augmented these datasets
with computer-generated images (e.g. identifying lesions or regions of interest) or
annotations. With respect to Medical Imaging, we mention a notable research
effort towards querying and information retrieval (see the literature review in
[21] and the citations therein). A major role in this area is currently played by
content-based information retrieval (CBIR) [4,22,33,34,39].

The survey [27] mentions four kev issues for research in the field, among
which two are of interest to this paper: #ie lack of effective representation of
medical content by low-level mathematical features and the absence of appropriate
tools for medical experts to experiment with a CBIR application. In the present
paper, we present a research line that aims at addressing these issues, among
others, by the adoption of a coherent, user-oriented, expert-centric declarative
computation paradigm. In doing so, we would like to emphasize an underlying
problem when managing large, diverse medical imaging datasets: the lack of
a general-purpose query language for images. Such a language should
be able to identify regions of interest either by value, by imaging features (e.g.
statistical texture analysis), and by spatial/topological characteristics (relative
distance, contact, boolean operations, inter-reachability through other regions).
Furthermore, it should make use of a diversity of data sources, ranging from
patients datasets, to manually annotated ground truth, to the output of Machine
Learning methods, and connect the information therein through expert-driven
declarative queries and procedures.

Our proposed approach embraces a classic tenet of Al: that of spatial logics,
that we shall discuss in the remainder of this work, and that constitutes the
core of our initiative. More precisely, our work stems from the so-called Zopo-
logical spatial logics [2], where the object of reasoning are points, not regions

! See https://www.w3.org/XML/.
2 See https://jquery.com.
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(see [16] for an encoding of the region calculus of [36] into an extended topolog-
ical spatial logic). Notably, we propose model checking to automatically identify
sets of points (therefore, ultimately regions) satisfying user-specified properties.
Model-checking (in its “global” variant that we employ) is a fully automated
technique that, taking as input a logical specification and a model of a sys-
tem (in our case such “model” is just a digital image), returns the set of states
(in our case, points) that satisfy the specification. This is similar to how other
fully-automated methods, such as Machine Learning, are used nowadays, and
significantly diverges from deduction, which is the traditional approach of
Symbolic Reasoning in Artificial Intelligence.

Several publications related to spatial model checking, and in particular to
healthcare-related applications, appeared recently. For instance, in [25], spiral
electric waves — a precursor to atrial and ventricular fibrillation — are detected
and specified using a spatial logic and model-checking tools. The formulas of
the logic are learned from the spatial patterns under investigation and the onset
of spiral waves is detected using bounded model checking. In [37] (see also the
references in that paper), the authors describe mereotopological methods to pro-
grammatically correct image segmentation errors, exploiting a spatial logic called
discrete mereotopology to integrate a number of qualitative spatial reasoning and
constraint satisfaction methods into imaging procedures.

The group of authors of this paper have participated in joint publications on
spatial logics and related model-checking approaches. The Spatial Logic of Clo-
sure Spaces (SLCS) has been defined in [14,15], and used in several applications
related to smart cities (see e.g. [13]). Recently, these methods were adapted to
the efficient analysis of medical images based on Expert Knowledge [5,8,9]. The
Free and Open Source spatial model checker VoxLogicA® has been developed to
support an innovative methodology to analyse medical images. Such methodol-
ogy obtained excellent experimental results. More precisely, in [9] the accurate
contouring of brain tumour tissue obtained using VoxLogicA has been compared
to the best performing algorithms (among which many based on deep learning)
on a very relevant public benchmark data set for brain tumours (BraTS 2017
[38]). The obtained results are well in line with the state of the art, both in
terms of accuracy and in terms of computational efficiency (on a related note,
recent efforts have been devoted to running VoxLogicA on GPUs obtaining a
substantial speed-up, see [11]). Furthermore, in [7], VoxLogicA has been used
for nevus segmentation, again obtaining results in line with the state of the art.
It is also worth noting that the logic SLCS has been adopted, and extended, also
in other contexts and by other groups of authors; for instance, for cyber-physical
systems ([40]), or for run-time monitoring [6,35].

The intended applications of VoxLogicA are not only novel autocontour-
ing methods, but also the formalization of inter and intra-site workflows and
collaboration patterns, and monitoring or guality assurance of autocontouring
procedures, by encoding well-established protocols or guidelines. In future work,
we aim at leveraging the spatial model checker VoxLogicA [9] as the distributed

3 See https://github.com /vincenzoml/VoxLogicA.
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execution engine for an Open Platform for collaboration and data management
in novel data-centric healthcare applications.

2 Spatial Logics for Medical Imaging

Our approach to the analysis of medical images is based on the fact that a
digital image can be seen as a 2D or 3D regular grid, i.e. a graph where each
node corresponds to a pixel/voxel and has a fixed number of adjacent nodes.
The exact set of nodes adjacent to any given one depends on the particular
adjacency refation between nodes one chooses. For instance, for 2D images, this
set is composed of the pixel itself plus those other pixels with which it shares
an edge, if the so called orthogonal adjacency relation is chosen, whereas it is
composed of the pixel itself plus those other pixels with which it shares an
edge or a vertex, if the orthodiagonal adjacency relation is considered. As these
examples suggest, any adjacency relation must be a reflexive and symmetric
binary relation over the nodes of the graph. Graphs, in turn, can be seen as a
subclass of closure spaces, a generalisation of topological spaces; whenever the
edge relation of the graph is an adjacency relation, we speak of adjacency spaces*.
Thus, the theoretical foundations of our approach have their roots in topology
and related notions [23]. Tt is convenient to associate each node of any such graph
with some specific information, that can be represented as an afomic predicate,
possibly expressing a property of some aftribute of the node. For instance, in the
case of black & white digital images, the relevant attribute of any voxel is the
intensity, which has typically a value in the range 0-255, whereas predicates of
interest could express the fact that the voxel is in the border of the image, or
that its intensity is lower than a certain threshold.

For the full syntax and semantics of SLCS, we refer the reader to [9,15].
Here we provide an intuitive description of the logical language. SLCS offers
specific operators for reasoning about (points in) closure models, i.e. closure
spaces enriched with atomic predicates. Besides general logical operators like
conjunction (A), digjunction (V) and negation (=), the most basic one for adja-
cency spaces is the reachability operator p; the formula o @, [@] is satisfied by a
voxel 2 in an image A1 if there is a voxel #in Af and a (possibly empty) sequence
of adjacentvoxels a4, ..., x, in Afsuch that z; is adjacent to z, =, is adjacent to
¢ that satisfies &, and all z; satisfy &,. For instance, pred[blue V green| means
that we are interested in those voxels that can reach any red voxel through a
sequence of points that must be blue or green. The near operator (A/) expresses
the fact that any point satisfyving A/ @ satisfies @ or is adjacent to a point sat-
isfying &, in fact, A/@ is equivalent to p@[L]. Similary, the formula @, S&;,
expressing that fact the the relevant point lays in an area the points of which
satisfy @) and this area is surrounded by points satisfying @, is equivalent to
DN Apo(D1 V B)[ D)),

&

1 For the purposes of this paper, the terms “voxel”, “pixel”, “node”, and “point” can

be considered synonyms.
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The /Jinage Query Language (ImgQL) comprises SLCS but is enriched with
several imaging primitives, among which, more prominently, the Euclidean dis-
tance operator 2 and the statistical similarity operator 4. Formula 2/ & is
satisfied by any point z whose Euclidean distance d{z, [&]) from the set [#] of
points satisfying & falls in interval /. Intuitively, a point z satisfies the similarity
operator 2 if a regéion of interest around & correlates with a sample area. More
precisely, given a sample area [#] specified by formula & and a region of interest
defined as the sphere S(z, r) of given radius 7 around z, the cross-correlation”
between the histogram of an attribute a of the points in S(z, ) and the his-
togram of an attribute & of the points in [#] is compared with a given threshold
c (see [5,9] for further details).

3 The Spatial Model Checker VoxLogicA

VoxLogicA is a model checker for ImgQL. The VoxLogicA type system distin-
guishes between bdoolean-valued images, that usually are arguments or results of
the application of SLCS operators, and nwumber-valued images, resulting from
imaging primitives. The underlying execution engine is a global model checker,
that is, the set of all points satisfying a logic formula is computed at once.
The computational complexity of the procedure is linear in the number of sub-
formulas times the number of points of the image [15], whereas efficiency-wise,
in most cases the computation runs in a matter of seconds, on a high-end desk-
top computer [9]. Functionality-wise, VoxLogicA specialises the former proto-
type spatio-temporal model checker topochecker® to the case of spatial analysis
of multi-dimensional images. It interprets a specification using a set of multi-
dimensional images” as models of the spatial logic, and produces as output a set
of multi-dimensional images representing the valuation of user-specified expres-
sions. For logical operators, such images are Boolean-valued, that is, regions of
interest or masks in medical imaging terminology, which may be loaded as over-
lays in medical image viewers. Non-logical operators result in standard, number-
valued images. Additionally, VoxLogicA offers file loading and saving primitives,
and a set of additional operators, specifically aimed at image analysis, that is
destined to grow along with future developments of the tool. The main execution
modality of VoxLogicA is datch execution. A (currently experimental) graphical
user interface is under development. A planned future development is #nferactive
execution, in particular for semi-automated analysis, by letting a domain expert
calibrate numeric parameters in real-time, while secing the intermediate and
final results. Implementation-wise, the tool achieves a two-orders-of-magnitude

5 In ImgQL, the normalised Pearson’s correlation coefficient is used; 1 means perfect
correlation, —1 means perfect anti-correlation, and 0 indicates no correlation.

6 See https://github.com/vincenzoml/topochecker.

7 Besides common bitmap formats, the model loader of VoxLogicA currently supports
the NIfTI (Neuro-imaging Informatics Technology Initiative) format (https://nifti.
nimh.nih.gov/, version 1 and 2). 3D MR-FLAIR. images in this format very often
have a slice size of 256 by 256 pixels, multiplied by 20 to 30 slices.
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speedup with respect to topochecker. Such speedup has permitted the rapid
development of a novel procedures for automatic segmentation that, besides
being competitive with respect to the state-of-the-art in the field (see Sect. 4),
are also easily replicable and ezplainable to humans, and therefore amenable of
improvement by the community of medical imaging practitioners. VoxLogicA is
free software and it is available in binary form for the operating systems Linux,
0SX, and Windows.

4 Applications in Medical Imaging

In this section, we exemplify the expressive power of the logical language used
by VoxLogicA by reporting on two case studies. In both cases, only one image
per case of the dataset is required to carry on the analysis; however, the tool is
also capable of loading multiple images (say, an MRI image and a co-registered
CAT image), resulting in multi-modal imaging capabilities. By these examples,
we aim at demonstrating that the primitives of spatial logics are very close to
the domain of discourse in medical imaging, by the simplicity and conciseness of
the presented analysis procedures, that have reached state-of-the-art accuracy.

4.1 Case Study: Brain Tumour Segmentation

Glioblastoma multiforme (GBM) is the most common brain malignancy and is
almost always lethal [44]. Survival after 2 years is achieved in only about 9%
of patients. Medical images play a crucial role in the characterisation and in
the treatment of the disease. The first-line treatment of Glioblastoma is Surgery
followed by radiotherapy. Crucial for radiotherapy is the accurate contouring of
tissues and organs at risk, employing Magnetic Resonance (MR) and Computed
Tomography (CT) images. Recent research efforts in the field have therefore heen
focused on the introduction of automatic or semi-automatic contouring proce-
dures. More broadly speaking, such procedures can be used to identify partic-
ular kinds of tissues, such as parts of the brain (white matter, grey matter) or
brain tumour related tissues. Such (semi-)automatic procedures would lead to an
increase in accuracy and a considerable reduction in time and costs, compared to
the current practice of manual contouring [41]. Automatic contouring of GBM
is an open and challenging topic, since GBM is an intrinsically heterogeneous
brain tumour, both in appearance, in shape, and in histology. The MICCAI
Conference is organising a yearly challenge for brain tumour segmentation, since
2012, providing a common benchmark of brain lesion images, together with their
ground truth segmentation approved by experienced neuro-radiologists, in the
Brain Tumor Image Segmentation Benchmark (BraTS). One of our specifications
in ImgQL has been validated in [9] using the 2017 BraTS dataset [31] contain-
ing multi-institutional pre-operative MRI scans of 210 patients affected by high
grade gliomas. A priori, 17 cases have been excluded as they present multi-focal
tumours or artifacts in the acquisition that the current procedure is not meant
to deal with. The executable specification of the segmentation procedure con-
sists of a concise, 30 lines long, text-file where the part concerning segmentation
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ImgQL Specification 1: Tumour segmentation method

let pflair = percentiles(flair,brain,0)

let hI = pflair >. 0.95

let vI = pflair >. 0.86

let hyperIntense = f1t(5.0,hI)

let veryIntense = £1t(2.0,vI)

let growTum = grow(hyperIntense,veryIntense)
let tumSim = similarTo(5,growTum,flair)

let tumStatCC = f1t(2.0, (tumSim >. 0.6))

let gtv= grow(growTum,tumStatCC)
let ctv = distlt(25,gtv) & brain

© W N o T W

[
[=]

occupies only 10 lines, as shown in Specification 1, explained by the following
steps:

1. Initial identification of the hyperintense regions (lines 2-5) in the MRI (of
type FLAIR). These are areas with voxel intensity > (.95 centile grown up to
arcas > 0.86 centile (growTum in line 6);

2. Search for voxels with a surrounding histogram similar (cross correlation >
0.6) to the area growTum (tumStatCC in line 8);

3. Identification of Gross Tumor Volume (GTV) by growing growTum up to
the tumStatCC area. The GTV is then enlarged by 2.5cm to simulate the
Clinical Target Volume (CTV) in radiotherapy (line 9) (Fig. 1).

Fig.1. GTV for patient TCIA_471 from the BraT$S 2017 dataset. Leftmost: original
image, where the tumour appears hyper-intense. Middle: ground truth in yellow (manu-
ally annotated by human experts). Rightmost: VoxLogicA segmentation result of Spec-
ification 1 in green (fully automated). (Color figure online)

The segmentation results for the Brats 2017 benchmark are reproduced
from [9] in Table1. The table shows the similarity scores for three commonly
used coefficients, namely Dice, Sensitivity and Specificity, for the GTV and
CTV areas. These scores indicate the similarity between the area segmented
with VoxLogicA Specification 1 compared to the manually annotated images by
human experts (i.e. ground truth images). Considering intra- and inter-experts
variability of 20 # 15% and 28 + 12%, respectively, for manual segmenta-
tions [30], Dice similarity scores above 0.8 are considered as very good, and
above 0.9 as excellent. The 3D images consist of 240 x 240 x 155 voxels (ca.
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Table 1. VoxLogicA evaluation on the BraT§S 2017 data set. Adapted from [9].

Sensitivity = Specificity | Dice Sensitivity | Specificity | Dice
(193 cases) | (193 cases) (193 cases) | (210 cases) | (210 cases) | (210 cases)

GTV | 0.89 (0.10) 1.0 (0.00)  0.85 (0.10) |0.86 (0.16) 1.0 (0.0) | 0.81 (0.18)
CTV | 0.95 (0.07) 0.99 (0.01) 0.90 (0.09) |0.93 (0.14) 0.99 (0.2) | 0.87 (0.15)

9 M voxels) and the evaluation for each patient takes about 5s on a desktop
computer with an Intel Core 17 7700 processor and 16 GB of RAM.

Once a segmentation of the tumour has been obtained, it can also be used to
select images in a dataset, based on some features of interest of the tumour area.
For example, one may be interested in images in which the tumour has a volume
(in terms of number of voxels it covers) that is larger than a certain threshold
(VoxLogicA includes an operator for that). See Sect. 5 for more details.

4.2 Case Study: Nevus Segmentation

Melanoma is the most serious form of skin cancer, the incidence of which has
been increasing for many decades [24,28]. While the disease may be lethal, its
correct and early detection, and its consequent treatment, results in no change
in life expectancy [32]. Disease recognition is performed throngh dermoscopy, a
specialized technique of high-resolution imaging of the skin, allowing specialists
to visualize deeper underlying structures of the skin lesions. This technique has
been proved to have diagnostic accuracy of up to 84% when carried out by
specially trained clinicians [3]. However, one of the main issues is that in many
countries, there is only a limited number of such specialists available. Therefore,
there is a clear need for automated methods that can help to recognise the disease
reliably and at an early stage so that more lives could be saved [19].

The International Skin Imaging Collaboration (ISIC) is a collaboration
between academia and industry to find automatic techniques to detect melanoma
from dermoscopy images. Since 2016 ISIC organizes challenges titled “Skin
Lesion Analysis toward Melanoma Detection” [19]. The first task involved in
the challenges, and more in general in the diagnosis of melanoma, is the skin
lesion segmentation. In [7] we investigated the feasibility of the application of a
procedure implemented in ImgQL for the segmentation of images of nevi from
two datasets released by ISIC for the 2016 challenge: a #raming set and a Zest
set of 900 and 379 images, respectively. Both datasets contain annotated dermo-
scopic images and the corresponding ground truth (i.e. a segmentation performed
manually by experts) for each image. One of the challenges with such datasets,
and, more in general, with dermoscopic images of skin lesions, is their great
inhomogeneity. Nevi may show nonuniform colour ranges, their colour may have
more or less contrast with the colour of skin, may have different sizes, may have
more or less smooth borders, and may be composed of different parts; moreover,
the skin may be more or less regular, with the presence of hairs or sebaceous
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Fig. 2. Examples from the ISIC datasets illustrating the inhomogeneity of nevi.

follicles. Furthermore, images may also show heterogeneity due to the dermo-
scope used: they may be of different size, showing black corners, rings, shadows,
or ultrasound gel drops, showing more or less contrast and intensity. Finally,
images may also show extraneous elements such as patches or ink marks. The
images in Fig. 2 show a few examples of this inhomogeneity.

Due to such great variability in the dermoscopic images datasets, our pro-
cedure starts from two basic assumptions: (at least part of) the nevus is in the
middle of the image; pixels belonging to the skin are close to the border of the
image. Our aim is to distinguish skin tissue from nevus tissue with the help
of the texture analysis and other spatial operators. The executable procedure
consists of less than 30 lines of code and consists essentially of five parts:

1. ldentify a sample of the skin by removing the black borders and then taking
a small region around the centre of the resulting image.

2. Jdentify pivels belonging fo the skin using texture similarity with respect to
the previously identified sample.

3. Preliminary nevus segmenitation via a threshold on the image histogram.

4. Final nevus segmentation expanding the result of the previous step using
texture similarity.

The segmentation obtained (nevSegm) is compared with the ground truth
provided by the ISIC 2016 challenge for both the #razning and Zest sets. For
this comparison common similarity indexes were used: Dice, Jaccard, Accuracy,
Sensitivity (SE), and Specificity (SP). Table 2 shows the mean values for these
indexes. The images in Fig.3 show the resulting images for each step in the
segmentation procedure of image ISIC_0008294.

Also in this case, after relevant features of nevi have been identified using
voxel-based spatial logics, VoxLogicA can be used to query a dataset in order to
find images that have specific features (e.g. irregular contour, or large size). See
also Sect. 5.

Table 2. Average similarity scores of nevSegm for images of the ISIC 2016 Zradning
set (all 900 images) and fes/ set (all 379 images).

Accuracy | Dice |Jaccard | SE | SP
nevSegm: Mean Zrasning set | 0.902 0.818 | 0.726 0.810 | 0.965
nevSegm: Mean Zestset 0.899 0.809 | 0.717 | 0.802 | 0.960
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(g)

Fig. 3. Segmentation of image ISIC_0008294. Figure (a) shows the nevus intensities
(greyscale); (b) shows the border of the image (red); (c) shows the sample of the
skin (blue); (d) shows the similarity score of each pixels w.r.t. the sample of the skin
(variation of the score is shown as the varying intensity of yellow); (e) shows pixels with
a similarity higher than 0.05 w.r.t. the sample of the skin (green); (f) shows the pre
segmentation of the nevus (magenta); (g) shows the final nevus segmentation (cyan);
(h) shows the comparison between the automatic segmentation (cyan) and the ground
truth (blue). (Color figure online)

5 Querying Medical Image Datasets

As of today, the toolkit of a Medical Imaging practitioner mostly consists of tra-
ditional programming languages, such as the ubiquitous py#hon®. Programming
languages are used in conjunction with libraries of imaging primitives®, and with
Machine Learning (ML) libraries, such as Aeras'’.

Although such a setup is quite well-established from a programmer’s per-
spective, it is not meant to be used by non-programmers. Domain experts such
as Medical Doctors (for instance: Radiotherapists), MRI technologists, Medical
Physicists, Healthcare researchers, and even end-users lack a general ability to
interrogate medical imaging databases, for instance, in order to search for spe-
cific features in images, compose results from different methods to explore the
design space of novel analysis techniques, or evaluate the impact of changes in
an imaging workflow.

It is worth noting that, even if ML is nowadays a widespread methodology
in (medical) image analysis, there are a number of interesting problems that, as
of today, are not meant not be addressed using ML alone.

Elrample 1. As a concrete example, consider clinical guidelines (see e.g. [20]).
These usually consist of a series of steps and checks that the Radiotherapist

% See https://www.python.org/.

¥ See, for instance, the /nsight Tbolkit (17K), https://itk.org/, also used under-the-
hood in VoxLogicA, and the Open Source Computer Vision Library (OpenCV),
https://opencv.org/.

19 See https://keras.io/.
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should execute in order to get to an acceptable contouring of a tumour. A hos-
pital may want to perform monitoring and routine checks, and to prepare for
changing such guidelines when new ones are published. Before embracing a new
set of guidelines, in order to evaluate their impact, the Radiotherapy department
might want to investigate how much their standard practice obeys to the new
guideline, and how much in practice the old and new guidelines differ on their
own patients. A language is needed that can express such guidelines in a concise,
human-friendly, expert-oriented way, and that can execute them automatically,
highlighting their interpretation on patient images. ML alone cannot currently
be used for such tasks, as the encoding of guidelines is, more broadly speaking,
a matter of ezpert Anowledge. In [43], a model checker is used for the purpose.

Frample 2. A declarative, unambiguous, executable encoding of specific guide-
lines would also be extremely important for quality assurance of ML-based
methods (e.g., autocontouring for Radiotherapy), enabling those who are respon-
sible for the treatment to monitor and assess the operation of such algorithms
in accordance with selected protocols.

Frample 5. A research-oriented example is that of identifying relevant cases
to test a research hypothesis. Imagine for instance, that a researcher needs
to check a novel hypothesis relating a spatial feature (say: “the proximity of a
brain tumour to the cerebellum”), with an aspect of the treatment (e.g., the sur-
vival rate of patients, or the outcome of radiotherapy). For this, it is necessary
to filter an existing dataset to find all the cases that satisfy the hypothesis. This
is a kind of spatial query on images that cannot be carried on using ML, for the
simple reason that there is no training data for detecting such a specific feature
as “the tumour is very close to the cerebellum”. Traditional programming can
be used to identify such cases. However, writing a full program for each such
query is not only time consuming, but also practically impossible for researchers
who are not expert programmers. Spatial logics instead are very close to the
domain of discourse, and permit rapid specification of properties of interest that
are related to the spatial distribution of imaging features. Also note that it is not
guaranteed that a hand-written program would be efficient enough to analyse
the full dataset under time constraints. A specifically designed, declarative, opti-
mizing query engine such as VoxLogicA is better suited for the task. Techniques
such as memozzation[42], automatic parallel execution (see [9]), on-disk caching,
and graphical processing units (sce [11]), are used to speed up computation.

Frample 4. Similarly to Example 3, but in a different application context.
Healthcare authorities might want to evaluate the potential impact of new
therapies, by identifying the number of patients that may get benefits. Imaging
features could be used to identify such cases; consider e.g. the case of tumours
invading specific organs at risk. For instance, consider the query: “find all the
cases in which a brain tumour invaded the patient’s eye”. Once again, there is no
training data specific to this query, even if it is likely that Machine Learning will
provide in the near future very good methods to identify the simpler concepts of
“brain tumour”, and “patient’s eye’. In this case, a query language would be an
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excellent solution to coordinate different machine learning algorithms in order to
answer more complex, expert-driven questions. More precisely, first, ML-based
annotators would be executed on an imaging data set. Then, a VoxLogicA speci-
fication can be written that loads the ML-based annotations, and combines them
using logical operators.

Frample 5. An easy-to-use query system for healthcare datasets definitely cre-
ates ethical concerns about its usage. But at the same time, the human readabil-
ity of the query language makes it Zransparent with respect to such concerns and
would ease ethical scrutiny when deemed necessary, giving to an ethics com-
mittee the ability to know exactly w/hich questions have been asked to the system,
and what do they mean. Compare and contrast this to a dlack-boz method, such
as ML; or to the complexity of a traditional computer program interfaced to a
database of clinical data.

FErample 6. Remote collaboration in telemedicine could benefit of an auto-
mated system to identify and share regions of interest among several treatment
centres. In this case, the flexibility of a query language would be fundamental
to integrate different queries into a comprehensive personalized Anowledge base
for each patient. Each centre could contribute a portion of a VoxLogicA speci-
fication and practitioners would be entitled to view both the specification and
the results in order to quickly gather as much information as available on each
patient. As an example, consider queries related to tumour size, past growth,
proximity to organs at risk, etc.

6 Outlook: VoxLogicA as a Distributed Query Engine

In the opinion of the authors, the tool VoxLogicA as is, would already con-
stitute a good starting point for querying medical imaging datasets. This is
because ImgQL is endowed with glodal/ operators, e.g. for computing the num-
ber of voxels that evaluate to true, that is the wolume, of a given formula, or
for comparing different regions to check if they are included in one another, or
are overlapped, or are disconnected etc.'’ By this, using VoxLogicA alone, it
is possible to identify in a dataset of medical images those satisfying certain
global properties, based on the segmentation provided by the voxel-based prop-
erties (such as those described in Sect. 4). For a concrete example, consider e.g.
the ability to find all the images of patients where #e brain fumour is larger
than x, or the vedema is larger than the tumour, or the gross tumour volume s
very close to the cerebellum, or, changing the example, where a nevus is divided
into k regions, and so on. For the nevi segmentation case study, also properties
related to the shape and contour of a nevus are very relevant. We also emphasize
that the “lower level” information, e.g. the tumour segmentation, or the skull
segmentation, could also be the output of Machine-Learning based voxel classi-
fiers, but still, reachability, proximity, overlap, volume of the regions obtained

' Such operators come from the classical theory of region calcudi, see [16] for details.



Querying Medical Imaging Datasets Using Spatial Logics 297

via Machine Learning would be the ingredients of complex queries that could
be run using our tool. We note in passing that the current language is textual,
although future work could also consider its ezswa/ counterpart'®. The reader
should keep in mind that VoxLogicA is aimed at a technical audience, namely
that of domain ezperts in medical imaging, who generally speaking are engineers,
physicists, MDs or technicians, with few programming expertise, but quite a lot
of technical competence.

However, a number of research directions could be pursued, in order to turn
the current tool into a fully-fledged query engine. In this section we sketch a
research roadmap, by describing a number of future improvements, to direct our
results more closely to the field of Information Retrieval.

Integration with Clinical Databases. Information systems such as £25-FPACS [26]
are of vital importance for the functioning of modern healthcare. Therein, all
the information available about patients that undergo treatments is archived. In
a clinical setting, therefore, a query language for medical imaging would be way
more useful if enabled to query such information systems directly.

Indezing. In SQL databases, data is indexed in order to speed up queries. In
VoxLogicA, the most expensive queries are related to the computation of distance
maps, to connected components and to statistical texture analysis. Therefore,
the identification of data structures to be computed in advance from medical
images (e.g., when such images are added to a dataset) in order to speed up
such operations, would be a relevant research line. In this respect, a first step
is to observe that mznimization may be used to reduce models up-to logical
equivalence. In [17,18], a minimization algorithm is proposed that minimizes
images up-to proximity (“near”) and reachability queries.

Distributed Erecution. Distributed execution of VoxLogicA queries could be very
relevant for broadly known, widespread datasets, such as those that are com-
monly used for research and benchmarking purposes (see e.g. the BraT§S dataset
[38]). Also for multi-centric studies, in order to respect privacy and intellectual
property concerns, it would be worthwile to implement a fully distributed vari-
ant of VoxLogicA that can be used to interrogate remote medical systems and
draw statistical conclusions, without having to share the whole dataset across
all the participants in a study.

Computational Ffficiency. In order to improve efficiency of queries, the strat-
egy that is currently under investigation is that of GPU computing. The cur-
rent on-GPU implementation of VoxLogicA [11] exploits Graphical Processing
Units to improve the performance of image analysis. As software portability is
a major issue, VoxLogicA GPU is currently implemented using OpenCL'3, an

12 It is out of the scope of this work to discuss the advantages and disadvantages of
visual vs. textual query languages.
13 See https://www.khronos.org/opencl/.
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open standard by A7onos, known to be executable on GPUs from any vendor.
The prototype is currently being improved. A major bottle-neck is the com-
putation of Connected Components of a binary image; this is used to resolve
inter-reachability queries on image regions, and it requires iterative calls to the
GPU and comparisons between images, which is particularly computationally
intensive. However, the speed-up achieved by the propotype is quite substantial,
and may become as high as two orders of magnitude, depending on the size and
type of the evaluated formula.

Human-Computer Interaction. The experience of our group in using VoxLogich
for medical image analysis against a large dataset, is that a major hurdle is
constituted by HCI issues related to the visualization of intermediate results,
the interactive construction of queries, and to comparing and exchanging sev-
eral different versions of the same analysis between a group of interested users.
Furthermore, the target group of users for our project is that of healthcare
practitioners, where user interfaces for image visualization employ some highly
standardised concepts (such as viewing images slice by slice, using azzal coro-
nal and sagittal projections, or using overlays on images to visualize regions of
interest). Such aspects need to be carefully evaluated in order to design a query
system for medical images which is effective (see e.g. the usability study in [29],
and the cognitive load issues investigated in [10]).

7 Concluding Remarks

In this paper we have sketched our research roadmap to turn the spatial model
checker VoxLogicA into a fully-fledged query engine for datasets of medical
images. Some of these directions will already be pursued in the immediate future,
namely the on-GPU implementation, the Human-computer Interaction aspects,
and the minimization procedures. At the horizon, distributed execution, and
integration with clinical databases, could be the last steps needed, in order to
initiate the technological transfer of our results in this direction.
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