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Abstract— This study proposes long wave infrared technology
as a contactless alternative to wearable devices for stress
detection. To this aim, we studied the change in facial thermal
distribution of 17 healthy subjects in response to different
stressors (Stroop Test, Mental Arithmetic Test). During the
experimental sessions the electrodermal activity (EDA) and
the facial thermal response were simultaneously recorded from
each subject. It is well known from the literature that EDA
can be considered a reliable marker for the psychological
state variation, therefore we used it as a reference signal to
validate the thermal results. Statistical analysis was performed
to evaluate significant differences in the thermal features
between stress and non-stress conditions, as well as between
stress and cognitive load. Our results are in line with the
outcomes of previous studies and show significant differences
in the temperature trends over time between stress and resting
conditions. As a new result, we found that the mean temperature
changes of some less studied facial regions, e.g., the right cheek,
are able not only to significantly discriminate between resting
and stressful conditions, but also allow to recognize the typology
of stressors. This outcome not only directs future studies to
consider the thermal patterns of less explored facial regions as
possible correlates of mental states, but more importantly it
suggests that different psychological states could potentially be
discriminated in a contactless manner.

I. INTRODUCTION

There are several sources of stress, such as physical,
psychological, emotional, social, etc. A stressful response
can be driven by either a positive episode or a negative event.
Moreover, the stressful state can be temporary and acute or, if
prolonged over time, can become chronic. The physiological
and psychological reaction to the different sources of stress is
not the same [6], [20], therefore it is important to distinguish
the different kinds of stress triggers to better face them.

In clinical practice, stress is assessed through question-
naires and self-reported scales. The subjective nature of these
tools may pose several limitations since participants may give
socially desirable answers and mask their true psychological
state [1] or they might not be aware of their perceived
stress level. Furthermore, psychometric tests are usually not
stressor-specific.

To overcome this ambiguity, many studies have tried to
use peripheral autonomous nervous system (ANS) corre-
lates to objectively assess the subject’s psychophysiological
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state. In fact, the perception of a stressful stimulus from
different sources modulates the ANS activity. Particularly,
the sympathetic nervous system (SNS) branch dominates
over the parasympathetic one, and triggers a cascade of
body responses providing a rapid adaptation [2]. The overall
effect is an increase in attention and arousal [3], measurable
through specific variations of physiological signs such as the
increase of heart rate, the blood redistribution to muscles and
brain, the deepening of breaths, the pupil dilation, and the
increase of sweat glands activity.

The latest researches focused on the development of mul-
tiparametric monitoring systems based on wearable devices.
Many of these devices are able to monitor the cardiac
and respiratory activity, the electrodermal activity (EDA)
and the movement [4], [5]. The EDA measures changes in
the skin conductance due to the SNS-driven activation of
sweat glands in response to psychological stimuli. The EDA
signal alone has already been shown to be reliable in the
discrimination between stress and non-stress conditions [6]
as well as between stress and cognitive load [7]. Moreover,
EDA signal has been often used as a reference signal to
compare the performance of other signals [8]. However, even
though wearable devices are non-invasive, the application of
sensors and electrodes on the body can still alter the subject’s
natural behavior. Furthermore, some of these devices may be
uncomfortable, e.g. the EDA systems, to acquire high quality
signals, usually requires the use of electrodes attached to the
fingers, making activities of daily living difficult.

In addition to wearable devices, a recent challenge is
the use of contactless devices. Among these, the thermal
camera is an ideal candidate for a multivariate approach
through remote sensing, without getting in physical contact
with the subject or obstructing his movements. Thermal
imaging measures skin temperature, which is determined
by the passage of blood in the subcutaneous vessels and
by sweat secretion [9]. Both of these phenomena are sym-
pathetically driven [10]. For this reason, thermal imaging
is currently taking hold in the psychophysiological field
to monitor emotional engagement [11] and to recognize
emotions [12]. Previous studies have been able to extract
several physiological correlates from thermal signals, such as
breathing rate[13], cardiac pulse [14], and cutaneous blood
perfusion [15]. Nevertheless, thermal patterns have not been
fully understood yet.

Stress elicited by Stroop Task was observed to induce
an enhancement of blood flow in the forehead, supraorbital
and frontal vessels [16]. So far, the most reliable thermal
feature to discriminate between positive and negative valence
states is the nose tip change in temperature, which has been
successfully used in a real-time classification algorithm to
improve social robots interaction with children [11]. How-


https://goodbrother.eu/
https://goodbrother.eu/

ever, to the best of our knowledge, none of the previous
studies have distinguished different sources of stress using
the thermal signal.

This preliminary study aims to propose thermal imaging
technology as a contactless alternative to wearable devices
for stress detection. To this aim, we used thermal imaging to
discriminate mental stress from cognitive load, investigating,
at the same time, which are the most informative facial
regions.

We also analyzed EDA as a gold-standard to evaluate
the effectiveness of stressful protocols and as a term of
comparison for the results obtained through the thermal
camera.

II. MATERIALS AND METHODS

For this study, we recruited 17 healthy volunteers (7
females, mean age = 33, std = 7.25). Each subject signed an
informed consent and filled in the Beck Anxiety Inventory
(BAI) scale, to measure their level of clinical anxiety [17].
The experiment was approved by the local ethics committee.
Subjects suffering from psychiatric or neurological disorders
or currently assuming medicines were excluded from the
study. Moreover, the subjects were asked to avoid the usage
of vasomotor substances (i.e. coffee), moisturizing cream,
and make up.

The experiment was comprised of the following sessions:
Rest (R1), Stroop test (S), Rest (R2), Mental Arithmetic
Task (MA) and Rest (R3) (see Figure [T). All of the resting
sessions lasted 5 minutes, while the tasks lasted 3 minutes.
The whole protocol was driven by an Android application
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Fig. 1. Experimental Timeline

developed ad hoc for the study and installed on a tablet. The
purpose of the App was to minimize the influence of the
experimenter on the subjects and to prevent the effect of the
speech activity on the EDA signal [18]. Before the start of
the experiment, each subject filled in the Perceived Stress
Scale (PSS) questionnaire, to assess the subject’s sensitivity
to stress [19]. The first stressful task was a computerized
and paced Stroop Test, which required quick resolution of
two incongruous stimuli. The subject had two seconds to
press the button corresponding to the tint of the displayed
word, that was inconsistent with the meaning. After any
mistake or missed answer, a buzzer alerted the subject, and a
counter, indicating the number of subsequent right answers,
would turn back to zero as a motivational stressor. The
second task was a Mental Arithmetic Test (MA) designed
to increase the cognitive load of the subject, following the
study reported in [20]. Each volunteer had to subtract 7 in
series starting from 1022 and type the answer on the tablet.
Therefore, the MA required the use of short-term memory
and the computation of mathematical operations. In case of
any mistake, a popup message indicated that he was required
to start over again. During this task, the subject was kept
aware of the remaining time with a progressive bar on top
of the screen. During both tasks, a clock was ticking in

the background to mark the passage of time. Before and
after each task, the subjects reported their level of stress
choosing a value from O (not at all) to 10 (very stressed).
Throughout the whole experiment the EDA and the thermal
response were recorded from all subjects. The EDA was
measured using a shimmer GSR + Unit sensor, with the
two electrodes attached to two fingers of the non-dominant
hand. The thermal responses were measured using a FLIR
A65sc infrared camera with a focal length of 13mm. This
camera has spectral range of 7.5-13um (LWIR), resolution
of 640x512 pixel, thermal sensitivity <0.05°C and streaming
rate 7.5 Hz. In this experiment, a multimodal technology was
used, combining thermal and visible information, to obtain
a more robust detection and tracking of the facial regions of
interest (ROIs). Each participant completed the experiment in
a controlled temperature and humidity room, and was always
at about 60 cm distance from the camera.

A. Thermal Signal Processing

In this study, we selected 14 facial ROIs, as showed in
Figure [2] some of them typically found in the literature and
some less common, such as cheeks, nasal septum and chin.
Forehead and chin were divided in left, right and central
area to achieve a greater degree of spatial detail. The thermal
signal was extracted from each ROI as the mean temperature
of each ROI over time. The centers of the ROIs were
empirically identified through interceptions of straight lines
passing through specific landmarks automatically detected
by the Yuval Nirkin algorithm [21]. In order to refer the
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facial landmarks, detected in the RGB image, to the IR
coordinate system, all of the paired frames were registered
computing the affine-2D transformation matrix matching the
fiducial paired points in the two frames. In order to normalize
through the subjects the dimension of each ROI, the face
of each subject was automatically segmented in the first
thermogram to obtain the size of the face; the ROI sizes
were set proportionally: for example, the size of each cheek
ROI was the 1.5% of the face size. The centers of the ROI
were tracked through each experimental phase, using the
Matlab PointTracker object based on Kanade-Lucas-Tomasi
(KLT), pure translational feature-tracking algorithm [22]. In
this way, we were able to follow the movements of the
subjects. The thermal signals were smoothed by a moving
median filter to remove the high frequency noise before
performing the baseline correction. In order to remove the
outliers, the normalized thermal signals were considered, and
the values exceeding the threshold of 30 were replaced by
the nearest value. Afterwards, we implemented a baseline



correction algorithm in order to adjust the strong thermal
fluctuation due to the automatic non-uniformity correction
(NUC), performed automatically by the camera, which could
hide or modify the sought natural physiological response.
This correction exploited the derivative of each thermal
signal to detect the abrupt changes and update a piecewise
constant correction signal. Thus, the obtained correction
signal was then subtracted from the original signal, obtaining
the corrected final thermal signal. From each thermal signal,
we extracted four features: within each non overlapping time
window of 20 sec we computed the mean and the standard
deviation of both the signal and its derivative.

B. EDA Signal Processing

The EDA signal can be decomposed into a tonic and a
phasic component. The former is a slow-varying component,
with spectrum below 0.05 Hz, which represents the EDA
baseline; the latter is the fast and event related component.
Since our protocol administered long-lasting stimuli, we fo-
cused on the tonic component, because they can be measured
on an ongoing basis over relatively long periods of time [23],
and due to its proven stress correlation [6]. Indeed, we are
not interested in specific responses to discrete stimuli, instead
we intent to monitor the overall alterations in the subject’s
level of arousal due to the ongoing task over the whole
three minute session. Thus, the EDA signal was normalized
applying the z-score and decomposed using the cvxEDA
algorithm into its tonic and phasic components [24]. From
the tonic component, we computed the mean within non-
overlapped time windows of 20sec.

C. Statistical Analysis

The EDA and thermal features extracted within the non-
overlapped 20-s windows were averaged within each session.
For the resting state sessions, we considered only the last
three minutes of signal, when subjects were more relaxed.
We carried out two levels of analysis as follows:

o Stress/Non-Stress analysis: comparison between each

task and their preceding resting state (R1/S, R2/MA);

o Stress/Cognitive Load analysis: comparison between

the two tasks (S/MA).
In both the analyses, we studied the differences in the per-
ceived self-assessed stress scores and the features extracted
from the EDA and thermal signals. The comparisons were
performed by means of a Wilcoxon signed-rank test with
Bonferroni corrections.

III. EXPERIMENTAL RESULTS

BAI questionnaire results showed that none of the re-
cruited subjects presented a pathological state of anxiety
(anxiety levels: 13 minimal, 4 moderate, O severe); PSS scale
showed that the majority of the subjects were incline to
moderately feel stress (6 low, 8 moderate, 3 high).

The self-reported stress levels during the experiment
showed statistically significant difference between both the
MA and S tasks and their preceding resting state (p
value<0.01). However, they were not significant in the
comparison between MA and S.

As we expected, the EDA showed a significant difference
in the mean of its tonic component both in the stress/non-
stress analysis and between stress and cognitive load (p
value<0.01).

TABLE I
RESULTS OF THE STATISTICAL COMPARISONS BY MEANS OF WILCOXON
SIGNED-RANK TESTS - P VALUES

ROI Feature R1/S | R2/MA | S/ MA

Forehead T mean - - -

D mean - - -
T mean - - -
Nasal Septum 15 e —0,0022 T 10,0055 -

N Ti T mean - 0,0011 -
ose 1ip D mean | 0,0007 | 0,0019 -
Chi T mean - - -

mn D mean - 0,0130 E

L Cheek T mean - - 0,0008
D mean - - -

R Cheek T mean | 0,0035 0,0022 0,0222
D mean - - -
L. T mean - - -
L Periorbital D mean - 0.0064 -
. T mean - - -
R Periorbital D mean - 0,019 -
. T mean - - -
L Maxil 5 ean T 0,00019 T 0,004T -

. T mean - -

RMaxil  —pren T 00130 -

T mean - 0,0469 0,0222
L Forehead -y can—0,0469 70,0416 -
R Forehead 1 mean - - -
D mean - - -
L Chin T mean - - -
D mean - - -
. T mean - - -
R Chin D mean - 0,0287 -

Note 1: The symbol “-” in the table means p-value>0.05
Note 2: T mean = mean temperature;
D mean = mean of the derivative of the thermal signal.

Regarding the thermal features, the mean of the derivative
of some specific ROIs discriminated both S and MA from
the resting state but not the two stressful tasks (see Tablel).
Indeed, in agreement with previous studies, the slope of
the thermal signal on the nose tip was positive during the
resting state and negative during the stressful tasks resulting
in a significant p-value (<0.01). Likewise, the nasal septum,
the left side of the forehead, and the left maxillary area
showed the same trend as the above described nose tip
(p value<0.05). Furthermore, the mean of the derivative
resulted significant in the comparison between cognitive
load and the preceding resting state (p value<0.05) in the
following regions: right maxillary, right and left periorbital,
chin and right chin.

On the other hand, the mean temperature resulted signifi-
cant mostly in the comparison between stress and cognitive
load (considering the two cheeks and the left forehead, p
value <0.05), and in the comparison between cognitive load
and preceding resting state (in the right cheek, left side
of forehead and nose tip, p value<0.01). Consequently, the
mean temperature of the right cheek was able to discriminate
all the three experimental conditions.

As concerns the standard deviation of both the thermal
signal and its derivative, we did not find any relevant
significance.

IV. DI1SCUSSIONS AND CONCLUSIONS

In this study, we assessed the discriminative power be-
tween stress and non-stress, and between stress and Cognitive
load of the thermal signals extracted from different facial



regions. We used the EDA signal as a ground-truth for
our study to evaluate the effectiveness of our protocol and
changes in the psychophysiological state of the subjects. As
expected, the EDA tonic activity was able to assess not only
a significant difference between resting sessions and tasks,
but also between tasks. On the other hand, the analysis of the
self-assessed scores of stress perception reinforced the need
of an objective physiologically-based method to differentiate
the responses to distinct stressors. In fact, such scores did not
result significantly different after the two tasks, suggesting
that we may perceive them as equally stressful. However, this
result is in contradiction with the EDA ones, which indicate
a different SNS activity and, consequently, a different of
physiological stress level during the two stressful tasks.

To sum up our findings, the analysis of facial thermal
imaging showed that: (i) the mean of the derivative signal,
is effective to discriminate between stress and non-stress in
specific sites (e.g., nose tip or left maxillary); and there are
no significant differences between different stressors; (ii) the
mean temperature of less-studied regions (i.e. the cheeks and
the left forehead) show significant differences between the
Stroop color and cognitive load tasks.

In more detail, the nose tip confirmed the results of the
current scientific literature, giving us positive feedback on the
robustness and repeatability of our analysis. Furthermore, our
results suggest that the nasal septum can be considered as an
alternative region to the nose tip, as it shows the same dy-
namics but it is easier to localize and track. It is worthwhile
noting that the mean temperature of an unusually considered
region as the right cheek can significantly discriminate all the
three conditions, candidating itself as the most informative
ROI in a stress recognition task. On a speculative level,
given the similarity between the right cheek and the EDA
tonic statistical results, we could hypothesize a temperature
dynamics mostly related to the sweat secretion effect instead
of the vascularization one (contrary to what typically happen
at the nose tip level).

A limit of this finding could be the non-randomization
of the tasks. However, the two tasks were separated by five
minutes of resting state in which we expected the subjects
to recover and reach the same psychological state as the
beginning.

Future works will explore even more facial regions of
smaller sizes, allowing a facial tessellation to reach a higher
spatial resolution of the findings. In doing so, we will
be able to explore also a potential lateralization of the
facial thermal patterns. Moreover, we will test the ability of
thermal technology to discriminate between further stressors
of different nature, physical and psychological, and between
different emotional states.
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