
A Runtime Environment for Contract Automata

Davide Basile� and Maurice H. ter Beek

Formal Methods and Tools Lab
ISTI–CNR, Pisa, Italy

Abstract. Realising contract-based applications from formal specifica-
tions with formal guarantees requires to show the adherence of a spec-
ification, the contract, to its implementation. Contract automata have
been introduced for specifying contract-based applications and synthesis-
ing their orchestrations as finite state automata. This paper introduces
CARE, a newly developed library for implementing applications specified
via contract automata, providing a runtime environment to coordinate
services implementing contracts.

1 Introduction

Contract-based applications enforce a separation of concerns between the spec-
ification of the interactions (i.e., the contract) and their implementation. From
a recent survey in the transport domain [18] it has emerged that the majority
of studies on formal methods propose specification languages, models and their
verification, whereas fewer focus on how to derive the finalised software from the
verified specification. The authors of [22] state that these interaction specifica-
tions “are not yet a feature of standard mainstream programming languages, so
software developers are not able to benefit from them”. In particular, realising
contract-based applications from specifications with formal guarantees requires
to show the adherence of an implementation to its specification, the contract.

Contract automata are a dialect of finite state automata used to formalise
the behaviour of services in terms of offers and requests [10]. A composition of
contracts is in agreement when all requests are matched by corresponding offers
of other contracts. A composition can be refined to one in agreement using the
orchestration synthesis algorithm [8,9], a variation of the synthesis algorithm
from supervisory control theory [25]. Contract automata abstract from the way
in which an orchestration is realised, and until now no examples of concrete
implementations were provided. Previously, in [7], a library called CATLib [13]
implementing the operations on contract automata (e.g., composition, synthesis)
was presented. A front-end of CATLib for graphically editing and operating on
contracts is also available [14], called CAT App.

Whilst CATLib and CAT App are used to specify applications as contract au-
tomata, this paper presents CARE [11], a newly developed library for implementing
applications specified via contract automata. CARE provides a runtime environ-
ment to coordinate the CARE services that are implementing the contracts of
the synthesised orchestration. Thus, CARE is the missing piece between specifi-
cations through contract automata and their implementations, to make explicit
the low-level interactions realising the prescribed actions.

ar
X

iv
:2

20
3.

14
12

2v
1 

 [
cs

.S
E

] 
 2

6 
M

ar
 2

02
2

http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367


Related work. Other approaches to connect implementations with behavioural
types (e.g., behavioural contracts, session types) are surveyed in [2,21]. Our
approach is closer to [22,28], where behavioural types are expressed as finite state
automata of Mungo, called typestates [27]. The toolchain of Mungo and StMungo

is proposed to implement behavioural types specifications. Similarly to CARE,
in Mungo finite state automata are used as behaviour assigned to Java classes
(one automaton per class), where transition labels correspond to methods of the
classes. A tool similar to Mungo is JaTyC (Java Typestate Checker) [24].

An Eclipse plugin called Diogenes [4] allows to write specifications of services
as behavioural contracts using a domain specific language, verify them and gen-
erate skeletal Java programs to be refined using the Java RESTful Web service
middleware for contract-oriented computing presented in [6]. Both Diogenes and
StMungo generate skeletal Java programs from contract compositions or multi-
party session types, respectively, whereas CARE allows to adapt already existing
components to realise a new application in a bottom-up approach, fostering
adaptability and reusability of services.

CARE adopts a correct-by-design approach to implement a specification with
formal guarantees. The complementary approach infers a behavioural type from
an implementation, where guarantees hold if the typing succeeds. An algorithm
to infer a form of behavioural types from programs with assertions is discussed
in [29], where programs are written in Mool (Mini object-oriented language),
a simple Java-like language incorporating behavioural types. The inference of
behavioural types from Go programs is studied in [23]. Go is a language supporting
synchronisations on channels inspired by process algebra formalisms like CSP
and CCS [15]. The inference of behavioural types is thus facilitated by the chosen
languages, whilst extracting them from unconstrained Java programs is still a
challenge [26]. CATLib supports compositions of communicating machines, the
formalism of behavioural types used in [23], thus it could be used to suggest
amendments to the original Go programs by exploiting its synthesis algorithms.

Finally, the methodology proposed by CARE shares aspects with the synthe-
sis of monitors for runtime enforcement [1,19], and is similar to the automated
composition problem studied in [3,5,16,17], to which CARE and CATLib offer both
a runtime engine and tailored novel synthesis algorithms.

2 Contract-based Applications with CARE

We start by discussing the responsibilities of the business actors involved in the
overall realisation of contract-based applications using CARE.

Two main elements of CARE are the classes RunnableOrchestratedContract
and RunnableOrchestration. This last one is a special service that reads the
synthesised orchestration and orchestrates the RunnableOrchestratedContract
to realise the overall application. Each RunnableOrchestratedContract is a ser-
vice wrapper responsible for pairing the specification of a service (the contract)
with its implementation. This service is always listening and forks a parallel
process when entering an orchestration. During an orchestration, it receives ac-



tion commands from the orchestrator or other services, and invokes the cor-
responding action method. In case the invocation is not allowed by the con-
tract or if the contract is not fulfilled (e.g., by reaching an accepting state), a
ContractViolationException is raised registering the remote host that vio-
lates the contract. This guarantees both the adherence of the implementation to
the specification and the accountability in case of a contract violation.

Contract automata abstract from the way in which an orchestration is re-
alised. Crucially, offers and requests of contracts abstract from low-level messages
sent between services to realise them. CARE exploits the abstractions provided by
Java to allow its specialisation according to different implementation choices, us-
ing abstractions of object-oriented design. Some aspects to implement are choices
and termination. Currently a “dictatorial” choice (i.e., an internal choice of the
orchestrator, external for the services) and a “majoritarian” choice (services vote
and the majority wins) are two implemented options. CARE also provides default
implementations for the low-level message exchanges. Currently, two available
options are CentralisedAction, where the orchestrator acts as a proxy, and
DistributedAction, where two services matching their actions directly inter-
act with each other once the orchestrator has made them aware of a matching
partner and its address/port (see Sect. 2). The first actor is the provider of the
runtime environment, obtained by specialising CARE.

The second kind of actors are the service providers, which publish their
contracts, implemented by remote (non-disclosed) Java classes, and use a
RunnableOrchestratedContract to make their contract publicly accessible by
using CARE, whilst hiding implementation details. Service providers may choose
among different realisations of their RunnableOrchestratedContract, provided
by the first actor above. Notably, implementing each atomic action of a service
and designing the interaction behaviour through contract automata are two dif-
ferent concerns. The designer specifying interactions as contract is not required
to be an expert in the underlying implementation technology (e.g., Java sockets),
whilst the developer implementing actions and selecting the CARE configuration is
not required to be trained in the theory of contract automata. The specification
and implementation of a service can thus be seamlessly integrated using the fa-
cilities provided by CARE. Most importantly, when implementing the service, the
developer need not worry about the underlying low-level interactions between
services, potential deadlocks and other communications issues. This error-prone
implementation activity is already resolved by CARE. This separation also solves
the problem of “muddling the main program logic with auxiliary logic related to
error handling” (i.e., handling the Java communication exceptions) [20].

The third actor is the designer of the application. This is a user of both
the second and the first actor. The designer is responsible for specifying the
requirements of the application, and to find a suitable set of remote services
whose synthesised orchestration satisfies the desired requirements. Once the
contracts are discovered, the orchestration enforcing the requirements is au-
tomatically synthesised as a new contract. The application designer exploits
CARE, choosing a specific implementation of RunnableOrchestratedContract,



[0]

[Drink]

[InsDollar]

[InsEuro]

[?tea]

[?coffee]

[!euro]

[!dollar]

[InsEuro]

[InsDollar]

[0]

[Stop]

[?euro]

[!tea]

[!coffee]

[?dollar]

[Drink, Stop]

[0, 0]

[InsEuro, InsEuro]

[!euro, ?euro]

[?coffee, !coffee]

Fig. 1. From left to right, the contracts of Alice and Bob, and their orchestration
enforcing the given requirement.

passing as arguments the addresses of the services, as well as the synthesised
orchestration. Formal results from contract automata theory guarantee that no
ContractViolationException will ever be raised at runtime. Finally, note that
one individual could take the roles of more actors if needed (e.g., designing a
global requirement, implementing a new choice and publishing a target contract).

Usage. We discuss the usage of CARE using a simple yet illustrative example
(its source code and a video tutorial are available from [12]). CATLib allows to
either import an automaton describing the requirement, or to implement it. The
requirement req specifies that an action coffee is observed after an action euro.

Consider now Fig. 1 (the automata have been constructed using CAT App).
The leftmost automaton is the contract of Alice and specifies that Alice offers
either a !euro or a !dollar to her partner. Then Alice requires ?coffee or
?tea, depending on which offer has been accepted. Such a contract can be inter-
preted as describing the interaction pattern of Alice, whilst abstracting away
from the actual implementation of each action. To declare the signature of each
contract action, CARE uses Java Interfaces, as shown below.

1 public interface AliceInterface {
2 public Integer coffee(String arg); public Integer tea(String arg);
3 public Integer euro(String arg); public Integer dollar(String arg); }

In the interpretation of contracts provided by CARE, each contract action is im-
plemented by a method of an interface, whose names are in correspondence. By
implementing the corresponding interface it is possible to pair the interaction
logic described in Fig. 1 (left) with an actual implementation, as shown below.

1 MSCA ca = new DataConverter().importMSCA(dir+"Alice.data");
2 RunnableOrchestratedContract alice = new DictatorialChoiceRunnableOrchestratedContract(ca,8080,
3 new Alice(),new CentralisedOrchestratedAction());

In line 1, the leftmost contract in Fig. 1 is imported (Alice.data) in one of
the formats supported by CATLib. The class Alice implements AliceInterface.
This implementation is paired with the corresponding contract in lines 2–3:
the service listens to port 8080 and CentralisedOrchestratedAction is the
chosen implementation of the low level interactions (see below). Notably,
RunnableOrchestratedContract will take care of the low-level communications,
abstracted away in Alice.java. In AliceInterface, each action requires an



argument (of type String) and returns a value (of type Integer). During ini-
tialisation, each label of the contract is extended with the information on the
types of parameters and returned values from the interface, as provided by the
class TypedCALabel extending a CALabel. This class also overrides the matching
between requests and offers to also take into account their types: the returned
value of the request must be of a super class of the parameter class of the offer
and vice versa. This guarantees that no ClassCastException will ever be raised
when invoking the actions. Note that the signature of each action declared by
the interface is not fixed, so other types can be used (e.g., JSon values). The
contract of Bob is the central automaton in Fig. 1.

The class RunnableOrchestration can be instantiated as follows:

1 RunnableOrchestration ror = new DictatorialChoiceRunnableOrchestration(req,new Agreement(),
2 Arrays.asList(alice.getContract(),bob.getContract()),Arrays.asList(null,null),
3 Arrays.asList(alice.getPort(),bob.getPort()),new CentralisedOrchestratorAction());

DictatorialChoiceRunnableOrchestration provides an implementation of
the branch/termination selection where the orchestrator autonomously selects
a branch. It is instantiated by passing as parameters the requirement req to
be enforced, the predicate on interactions among contracts (i.e., the property
of agreement), the list of contracts to compose, addresses and ports of the
RunnableOrchestratedContract of Alice and Bob, and an object of class
CentralisedOrchestratorAction implementing an OrchestratorAction. In
this example, services are run locally on the same host as the orchestrator. The
constructor of RunnableOrchestration uses CATLib functionalities to synthetise
the safe orchestration with the following instructions:

1 MSCA comp = new CompositionFunction(contracts).apply(pred.negate(),bound);
2 MSCA orc = new OrchestrationSynthesisOperator(pred,req).apply(comp);

Line 1 computes the composition of the retrieved contracts. The other two ar-
guments are optimisations to reduce the size of the composition. The parameter
pred is the agreement property. Transitions violating agreement (i.e., satisfying
pred.negate()) are not explored when computing the composition, and bound

is the bound to the depth of the computed automaton. In line 2, the synthesis
of the orchestration enforcing agreement (parameter pred) and the requirement
(parameter req) is applied. In this example, the contract of Bob is in agree-
ment with that of Alice (each request is matched by a corresponding offer).
The orchestration orc is the rightmost automaton in Fig. 1. After ror has been
instantiated, its method isEmptyOrchestration() is used to check if an agree-
ment among contracts exists, i.e., if the synthesised orchestration is non-empty.
During instantiation, RunnableOrchestration also interacts with all services
(using Java TCP sockets) to ensure that all share the same configuration, which
in this example is a dictatorial choice with centralised action. If this is not the
case an exception is thrown. Upon successful instantiation, ror can be executed.

We discuss the possible implementations of a match action in CARE, e.g.
[?coffee,!coffee], in which Alice is requesting a coffee and Bob is offering
a coffee. The sequence of service invocations of both the CentralisedAction

and DistributedAction implementations of CARE are displayed below.



ror

ror

alice

alice

bob

bob

coffee

v1=alice.coffee(null)

coffee, v1

v2=bob.coffee(v1)

v2

alice.coffee(v2)

In both implementations, the method coffee of
Alice is invoked twice: firstly passing no argument, it
generates an Integer value (e.g., the amount of sugar)
that is passed as argument to the method coffee of
Bob, which in turn produces a String value that is
eventually passed as argument to the method coffee

of Alice, thus fulfilling the coffee request.

r o r

r o r

bob

bob

alice

alice

coffee

coffee

type=match

opens a fresh port

port

address and port of bob

v1=alice.coffee(null)

v2=bob.coffee(v1)

alice.coffee(v2)

ack

ack

In the DistributedAction implementation,
the orchestrator communicates the chosen action
to both matching services, and the offerer is also
notified of a match (rather than an offer) action,
so that it can open a fresh port to interact with
the requester, which is notified of the address and
port of the offerer. Upon successful termination
of the interactions, each RunnableOrchestrated-
Contract updates its contract status, and the
orchestrator proceeds with the next invocation
according to the overall orchestration contract,
whose status is also updated. Of course, other im-
plementations are possible. CARE allows to tailor
the runtime environment to specific needs.

3 Conclusion

We have presented CARE, the first library for the realisation of applications from
contract automata specifications. The benefits of the methodology introduced
by CARE are listed. First, the separation of concerns between different actors,
providers and users that together cooperate to realise contract-based applica-
tions, with a customisable environment provided by CARE. Moreover, a separation
of concerns between formal methods experts specifying the expected behaviour
using automata, and developers implementing the actions while abstracting away
from low-level communications provided by CARE. Furthermore, the automatic
synthesis of the orchestration automaton satisfying the given requirements and
carrying formal guarantees on properties such as absence of deadlocks, reachabil-
ity of final states, absence of ContractViolationException. Finally, modularity
of an application composed by different services that are reusable in different ap-
plications and that can be adapted to satisfy different requirements through the
synthesis of a well-behaving orchestration.

Future work. CATLib already implements the synthesis of choreographies [9],
which CARE will support in the future. Although CARE has been developed in the
framework of contract automata, we plan to investigate the integration of this
technology with other behavioural types languages and tools (e.g., typestates).



References

1. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: Comparing controlled sys-
tem synthesis and suppression enforcement. Int. J. Softw. Tools Technol. Transf.
23(4), 601–614 (2021). https://doi.org/10.1007/s10009-021-00624-0

2. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P., Gay,
S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi, V.,
Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida, N.:
Behavioral types in programming languages. Found. Trends Program. Lang. 3(2-
3), 95–230 (2016). https://doi.org/10.1561/2500000031

3. Atampore, F., Dingel, J., Rudie, K.: A controller synthesis framework for au-
tomated service composition. Discret. Event Dyn. Syst. 29(3), 297–365 (2019).
https://doi.org/10.1007/s10626-019-00282-0

4. Atzei, N., Bartoletti, M.: Developing honest Java programs with Diogenes.
In: Albert, E., Lanese, I. (eds.) Proceedings of the 36th IFIP WG 6.1 In-
ternational Conference on Formal Techniques for Distributed Objects, Compo-
nents, and Systems (FORTE’16). LNCS, vol. 9688, pp. 52–61. Springer (2016).
https://doi.org/10.1007/978-3-319-39570-8 4

5. Barati, M., St-Denis, R.: Behavior composition meets supervisory control. In: Pro-
ceedings of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC’15). pp. 115–120. IEEE (2015). https://doi.org/10.1109/SMC.2015.33

6. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) Proceedings of the 12th
International Conference on Formal Aspects of Component Software (FACS’15).
LNCS, vol. 9539, pp. 86–104. Springer (2015). https://doi.org/10.1007/978-3-319-
28934-2 5

7. Basile, D., ter Beek, M.H.: A clean and efficient implementation of choreography
synthesis for behavioural contracts. In: Damiani, F., Dardha, O. (eds.) Proceed-
ings of the 23rd IFIP WG 6.1 International Conference on Coordination Models
and Languages (COORDINATION’21). LNCS, vol. 12717, pp. 225–238. Springer
(2021). https://doi.org/10.1007/978-3-030-78142-2 14

8. Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

9. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and
choreographies: Bridging the gap between supervisory control and coor-
dination of services. Log. Methods Comput. Sci. 16(2), 9:1–9:29 (2020).
https://doi.org/10.23638/LMCS-16(2:9)2020

10. Basile, D., Degano, P., Ferrari, G.L.: Automata for Specifying and Orches-
trating Service Contracts. Log. Meth. Comp. Sci. 12(4), 6:1–6:51 (2016).
https://doi.org/10.2168/LMCS-12(4:6)2016

11. https://github.com/ContractAutomataProject/CARE/tree/
60032cdd1a8c70667c66273ada7e95f3a42eb8b7, February 2022

12. https://github.com/ContractAutomataProject/CARE Example/tree/
ee938f97549d02f34a202585be9a3dacf3c3403e, including a video tutorial re-
producing the example, February 2022

13. https://github.com/ContractAutomataProject/ContractAutomataLib
14. https://github.com/ContractAutomataProject/ContractAutomataApp
15. Dilley, N., Lange, J.: An empirical study of messaging passing concurrency in Go

projects. In: Proceedings of the 26th IEEE International Conference on Software

https://doi.org/10.1007/s10009-021-00624-0
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/s10626-019-00282-0
https://doi.org/10.1007/978-3-319-39570-8_4
https://doi.org/10.1109/SMC.2015.33
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.2168/LMCS-12(4:6)2016
https://github.com/ContractAutomataProject/CARE/tree/60032cdd1a8c70667c66273ada7e95f3a42eb8b7
https://github.com/ContractAutomataProject/CARE/tree/60032cdd1a8c70667c66273ada7e95f3a42eb8b7
https://github.com/ContractAutomataProject/CARE_Example/tree/ee938f97549d02f34a202585be9a3dacf3c3403e
https://github.com/ContractAutomataProject/CARE_Example/tree/ee938f97549d02f34a202585be9a3dacf3c3403e
https://github.com/ContractAutomataProject/ContractAutomataLib
https://github.com/ContractAutomataProject/ContractAutomataApp


Analysis, Evolution and Reengineering (SANER’19). pp. 377–387. IEEE (2019).
https://doi.org/10.1109/SANER.2019.8668036

16. Farhat, H.: Web service composition via supervisory control theory. IEEE Access
6, 59779–59789 (2018). https://doi.org/10.1109/ACCESS.2018.2874564

17. Felli, P., Yadav, N., Sardina, S.: Supervisory control for behavior
composition. IEEE Trans. Autom. Control 62(2), 986–991 (2017).
https://doi.org/10.1109/TAC.2016.2570748

18. Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping
study. CoRR abs/2107.05413 (2021), https://arxiv.org/abs/2107.05413

19. Francalanza, A.: A theory of monitors. Inf. Comput. 281, 104704 (2021).
https://doi.org/10.1016/j.ic.2021.104704

20. Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based mon-
itoring. In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) Re-
versible Computation: Extending Horizons of Computing - Selected Results of
the COST Action IC1405, LNCS, vol. 12070, pp. 128–150. Springer (2020).
https://doi.org/10.1007/978-3-030-47361-7 6

21. Gay, S., Ravara, A. (eds.): Behavioural Types: from Theory to Tools. River (2017).
https://doi.org/10.13052/rp-9788793519817

22. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: A session type toolchain for Java. Sci. Comput. Program.
155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

23. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for mes-
sage passing in Go using behavioural types. In: Proceedings of the 40th ACM/IEEE
International Conference on Software Engineering (ICSE’18). pp. 1137–1148. ACM
(2018). https://doi.org/10.1145/3180155.3180157

24. Mota, J., Giunti, M., Ravara, A.: Java typestate checker. In: Damiani, F., Dardha,
O. (eds.) Proceedings of the 23rd IFIP WG 6.1 International Conference on Co-
ordination Models and Languages (COORDINATION’21). LNCS, vol. 12717, pp.
121–133. Springer (2021). https://doi.org/10.1007/978-3-030-78142-2 8

25. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of dis-
crete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987).
https://doi.org/10.1137/0325013

26. Rubbens, R., Lathouwers, S., Huisman, M.: Modular transformation of Java ex-
ceptions modulo errors. In: Lluch Lafuente, A., Mavridou, A. (eds.) Proceed-
ings of the 26th International Conference on Formal Methods for Industrial
Critical Systems (FMICS’21). LNCS, vol. 12863, pp. 67–84. Springer (2021).
https://doi.org/10.1007/978-3-030-85248-1 5

27. Strom, R.E., Yemini, S.: Typestate: A programming language concept for en-
hancing software reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986).
https://doi.org/10.1109/TSE.1986.6312929

28. Trindade, A., Mota, J., Ravara, A.: Typestates to automata and back: a tool.
In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings of the 13th
Interaction and Concurrency Experience (ICE’20). EPTCS, vol. 324, pp. 25–42
(2020). https://doi.org/10.4204/EPTCS.324.4

29. Vasconcelos, C., Ravara, A.: From object-oriented code with asser-
tions to behavioural types. In: Proceedings of the 32nd ACM Sympo-
sium on Applied Computing (SAC’17). pp. 1492–1497. ACM (2017).
https://doi.org/10.1145/3019612.3019733

https://doi.org/10.1109/SANER.2019.8668036
https://doi.org/10.1109/ACCESS.2018.2874564
https://doi.org/10.1109/TAC.2016.2570748
https://arxiv.org/abs/2107.05413
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1137/0325013
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.4204/EPTCS.324.4
https://doi.org/10.1145/3019612.3019733

	 A Runtime Environment for Contract Automata 

