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RTSS, Radiation Therapy Structure Sets 

SD, Stable Disease 

SR, SOPHiA Radiomics 

SRS, Stereotactic Radiosurgery 

T1-w, T1-weighted 

Abstract 

Background and purpose. Radiomics enables the mining of quantitative features 

from medical images. The influence of the radiomic feature extraction software on the 

final performance of models is still a poorly understood topic. This study aimed to 

investigate the ability of radiomic features extracted by two different radiomic 

platforms to predict clinical outcomes in patients treated with radiosurgery for brain 

metastases from non-small cell lung cancer. We developed models integrating pre-

treatment magnetic resonance imaging (MRI)-derived radiomic features and clinical 

data. 

Materials and Methods. Pre-radiotherapy gadolinium enhanced axial T1-weighted 

MRI scans were used. MRI images were re-sampled, intensity-shifted, and histogram-

matched before radiomic extraction by means of two different platforms (PyRadiomics 

and SOPHiA Radiomics). We adopted LASSO Cox regression models for multivariable 

analyses by creating radiomic, clinical, and combined models using three survival 

clinical endpoints (local control, distant progression, and overall survival). The 

statistical analysis was repeated 50 times with different random seeds and the median 

concordance index was used as performance metric of the models. 

Results. We analysed 276 metastases from 148 patients. The use of the two platforms 

resulted in differences in both the quality and the number of extractable features. That 

led to mismatches in terms of end-to-end performance, statistical significance of 

radiomic scores, and clinical covariates found significant in combined models. 

Conclusion. This study shed new light on how extracting radiomic features from the 

same images using two different platforms could yield several discrepancies. That may 

lead to acute consequences on drawing conclusions, comparing results across the 

literature, and translating radiomics into clinical practice. 
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1. Introduction 

In the attempt to seek novel non-invasive strategies to characterise solid tumours and 

their response to treatment, radiomics has been gaining interest due to the growing 

availability of high-performance computing capabilities [1]. It consists in the extraction 

of hundreds to thousands quantitative imaging features from medical images, usually 

beyond human perception. Using advanced statistical methods, subsets of such features 

can be used to generate mathematical models representing distinctive signatures 

related to the underlying tumour biology, potentially helpful for the assessment of 

prognosis or treatment response from a precision-medicine viewpoint. 

In recent years, potential obstacles to the translation of radiomics into clinical practice 

have been documented.  Remarkable examples show that computed values of radiomic 

features can be severely biased by the acquisition and reconstruction settings of the 

scanner [2] [3] [4], or by inter-operator variability in lesion segmentation [5] [6].  

In the radiotherapy (RT) setting, radiomics has been applied to predict treatment 

outcomes of several districts, including brain tumours, prostate cancer, oesophageal 

cancer, lung cancer, sarcoma, and rectal cancer [7] [8] [9] [10] [11]. 

Regarding brain metastases (BMs), radiomics is mainly based on the analysis of 

structural MRI data. The application of radiomics in BMs has encompassed several 

outcomes, resulting useful to differentiate treatment-related changes from BMs after 

RT [12] [13], to predict BMs origin [14] [15], to differentiate BMs from other 

malignancies [16], and to assess treatment response [17]. Particularly, an increasing 

number of works regarding radiomics on BMs from non-small cell lung cancer 

(NSCLC) is being reported in the literature [18] [19] [20]. 

A central component of the radiomic workflow, not fully explored yet, is the selection of 

the software platform for features calculation. In fact, several platforms with different 

characteristics (Imaging Biomarker Standardization Initiative (IBSI) compliance [21], 

open-source nature, documented mathematical equations, cost, etc.) have been 

developed over the last 7 years, each coming with similarities with others but also with 

ad-hoc peculiarities that might impact performance and prevent results comparison. A 

growing number of evidence in literature reports features’ values variability across 

different packages, on either patient datasets [22] [23] [24], or phantoms [25]. 

The aim of this study is to investigate the ability of radiomic features extracted from 

two different radiomic platforms to predict clinical outcomes in patients treated with 
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stereotactic radiosurgery (SRS) for BMs from NSCLC, by developing models integrating 

pre-treatment MRI-derived radiomic features and clinical data. 

2. Materials and Methods 

2.1. Patients 

The study population was retrospectively selected from a database of patients with 

synchronous and metachronous BMs from NSCLC treated with SRS by CyberKnife® 

(Accuray Inc., Sunnyvale, CA) and concomitant pre- or post-systemic therapy at the 

European Institute of Oncology IRCCS, Milan, Italy (IEO). 

Eligibility criteria for SRS included: age ≥18 years, histologically proven NSCLC and 

mutational burden status, Karnofsky Performance Status (KPS) > 60, radiologically 

proven BMs with pre-treatment images, not previous RT or surgical treatment for BMs 

before the first SRS and written informed consent for research and training purposes. 

The approval for the use of medical data in the study was provided by the institutional 

review board. 

Clinical, mutational status (presence/absence of epidermal growth factor receptor 

(EGFR) mutation and/or anaplastic lymphoma kinase (ALK)-rearrange) and dosimetry 

data were collected for each patient. In particular, the considered records were: 

primary tumour data (date of diagnosis, T and N stage, histology, treatment strategy, 

mutational status), local outcome data (maximum volumetric response to RT, date of 

maximum response, progressive disease, therapy of progressive disease) and radiation 

treatments parameters, such as number of fractions, dose per fraction, total dose, 

biologically effective dose (BED), and equivalent dose in 2 Gy fractions (EQD2). 

Further details are provided in Supplementary S.1. A summary of the patient 

characteristics is presented in Table 1. 
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Variable Level 
Overall 

(N=148) 

Age at start of RT (median, min-max)  65 (28-87) 

Sex 
F 

M 

62 (41.9%) 

86 (58.1%) 

KPS (median, min-max)  90 (60-100) 

Histology 

Adenocarcinoma 

Squamous cell carcinoma 

Sarcomatous carcinoma 

Neuroendocrine carcinoma 

Not otherwise specified (NOS) 

128 (86.5%) 

12 (8.1%) 

3 (2.0%) 

3 (2.0%) 

2 (1.4%) 

Mutations 

No (no EGFR mut. nor ALK-

rearrange) 

Yes (EGFR mut. and/or ALK-

rearrange) 

105 (71%) 

43 (29%) 

Stage at diagnosis 
I-III 

IV 

69 (46.6%) 

79 (53.4%) 

BMs at the onset 
No (metachronous) 

Yes (synchronous) 

93 (62.8%) 

55 (37.2%) 

Surgery on the primary 
No 

Yes 

91 (61.5%) 

57 (38.5%) 

RT on the primary 
No 

Yes 

119 (80.4%) 

29 (19.6%) 

Extracranial metastases at the onset 
No 

Yes 

96 (64.9%) 

52 (35.1%) 

Number of lesions (median, min-max)  1 (1-6) 

Number of lesions 

1 

2 

3 

4 

6 

77 (52.0%) 

36 (24.3%) 

20 (13.5%) 

13 (8.8%) 

2 (1.4%) 

Total intracranial tumour volume cm3 

(median, min-max) 
 

0.95 (0.03-

26.9) 

Prescription BED Gy (median, min-

max) 
 53 (29-82) 

 

Table 1. Patient characteristics. RT=radiotherapy, KPS=Karnofsky Performance 

Status, EGFR=epidermal growth factor receptor, ALK=anaplastic lymphoma kinase, 

BMs=brain metastases, BED=Biologically Effective Dose 

 

2.2. Images acquisition and pre-processing 

This study was conducted on pre-RT gadolinium enhanced axial T1-weighted (T1-w) 

MRI scans, registered to the simulation computed tomography (CT) for volume 

delineation. MRI scans and radiation therapy structure sets (RTSS) were collected for 
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each patient from the treatment plans on Precision™ Treatment Planning System 

workstations (Accuray Inc., Sunnyvale, CA). 

Prior to features extraction, the following pre-processing steps were implemented to 

ensure an accurate quantitative analysis (Supplementary S.2): 

• Voxel re-sampling to correct for differences in pixel spacing and slice 

thicknesses 

• Intensity shifting to have all images’ minimum value equal to zero 

• Intensity normalization to correct for scanner-dependent variations using 

the histogram matching normalization with (0th-50th-99th) percentiles of the 

intensities. 

2.3. Radiomic feature extraction 

The extraction of radiomic features was performed on the gross tumour volume of each 

BM of all patients using two platforms, PyRadiomics (PyR) [26] and SOPHiA 

Radiomics (SR) [27]. While PyR is a free, open-access package, SR is a commercial 

software whose licence was obtained under scientific agreements between IEO and the 

company. 

To foster reproducibility and comparison, default extraction settings with PyR were 

utilised. In addition to the original images, Laplacian of Gaussian (LoG)–filtered 

images and Wavelet-transformed images were also used. The LoG filter with sigma 

values of 0.5, 2.75 and 5.0 mm, representing fine, medium, and coarse patterns, 

respectively, was used for image filtration. Wavelet-based texture features were 

generated exploiting Wavelet filtering, which yields eight decompositions per level, 

which are all the possible three-dimensional combinations of applying either a High or 

a Low pass filter. Only one level was selected. Features from all the available classes 

were extracted. 

The following feature classes were enabled for the calculation of features in SR: gray 

level co-occurence matrix (GLCM), gray level distance zone matrix (GLDZM), gray level 

run length matrix (GLRLM), gray level size zone matrix (GLSZM), General, Intensity 

histogram, Local intensity, Morphological, neighborhood gray level dependence matrix 

(NGLDM), neighbouring gray tone difference matrix (NGTDM), Statistical (IBSI), 

Statistical (Original Data), Volume-Intensity Histogram. 

2.4. Statistical analysis 

All primary and secondary clinical endpoints are reported in Table 2.  
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Clinical Endpoint Definition 
Event 

definition 
Time-to-event 

Local Control 

Maximum response of BMs 

to SRS. Complete response 

(CR), partial response (PR), 

stable disease (SD), 

progression disease (PD) 

1: CR 

0: PR, SD, or 

PD 

Months from the 

start of SRS to date 

of maximum 

response, 

determined on 

follow-up MRI 

Distant Progression 

Any new BM developed 

outside the previous target 

volume 

1: DP 

0: no DP 

Months from the 

start of SRS to the 

date of DP or last 

follow-up, whichever 

occurred first, 

determined on 

follow-up MRI 

Overall Survival 

Length of time from the start 

of treatment for BMs that 

patients are still alive 

1: dead 

0: alive 

Months from the 

start of SRS to the 

date of death or last 

follow-up, whichever 

occurred first 

 

Table 2. Clinical endpoints. BM = brain metastasis, SRS = stereotactic radiosurgery, 

MRI = magnetic resonance imaging 

The curves of cumulative proportion of lesions with complete response (CR) and those 

with distant progression (DP), and the patients’ overall survival (OS) curve were 

computed using the Kaplan-Meier (KM) [28] estimator. For OS prediction, a 

representative lesion for each multiple-lesion patient was considered. The lesion with 

worst maximum response was selected unless several of the patient’s lesions had the 

same worst response. In this case the lesion whose volume was as close as possible to 

the median volume over all lesions was selected. 

Three kinds of prognostic models were designed: radiomic, clinical and combined 

models. Radiomic models leveraged radiomic features extracted from pre-RT MRI 

scans to predict response to treatment or patients’ survival. Clinical models 

investigated the same outcomes and were based on clinical, mutational and dosimetry 

features. Combined models were developed considering both kinds of features. Five 

different models were developed for each endpoint (Figure S.5): two radiomic (PyR, 

SR), one clinical, and two combined (PyR + clinical, SR + clinical). For all the models, 
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estimated coefficients of their covariates were considered significant with a p-value < 

0.05 and performance was evaluated with the resulting concordance index (C-index) 

[29]. To assess how the C-index results varied by assignment to the initial dataset, the 

analysis was independently repeated 50 times by using different random seeds in the 

data splitting process detailed below. 

A common workflow was designed to develop radiomic models (Figure 1).  

 

Figure 1. Development pipeline for radiomic models. m = number of train set 

observation, abs() = absolute value, n = number of selected train set features, C-index = 

concordance index,  RS = radiomic score. 
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Initially, available lesions were shuffled and then split into train and test sets in a 

proportion of 2/3 and 1/3, respectively. The split was done in a stratified way so that, 

for each of the endpoints, the same proportion of events was maintained in train and 

test sets, and lesions from the same image (subject) belonged to the same subset. 

Subsequent operations were performed on the train set. Raw feature scores were 

converted in standard scores on the same scale; their pairwise correlation matrix was 

calculated, and from that the Euclidean pairwise distance matrix was obtained. 

Dimensionality reduction was pursued through feature clustering and elimination of 

highly correlated ones. A hierarchical clustering over the determined distance matrix 

was performed with Euclidean distance and Ward’s method [30]. A hierarchical tree 

cut-height optimization process was carried out and a single feature per cluster was 

selected. To additionally reduce the number of features for prediction, the Least 

Absolute Shrinkage and Selection Operator (LASSO) [31] was integrated into the Cox’s 

proportional hazard model [32], resulting in a penalised survival regression model. 

Several LASSO penalty values were tested during an optimization process 

(Supplementary S.4). The model was then fitted on train-set lesions, and every feature 

was reported along with the estimated coefficient, the exponential of that coefficient, 

i.e., the hazard ratio (HR), and the p-value of the estimate. The radiomic signature, as a 

list of coefficients estimated for each covariate, was then extracted. A Radiomic Score 

(RS), defined as the weighted sum of feature standardised values where the coefficients 

in the signature represented weights, was built both for train and test observations. A 

univariate Cox analysis was performed between the RS and the outcome on test-set 

observations. In addition, to evaluate prognostic significance of the RS, KM analysis 

was performed. Observations were divided into low-RS and high-RS groups, where the 

threshold was the median of RS values across all the train-set observations. The curves 

of low-RS and high-RS groups were considered significantly separated with a log-rank 

test p-value < 0.05. 

To build the clinical models, a common workflow was followed (Figure S.11). A different 

set of clinical features was considered for LC/DP (lesion-based analyses) and OS 

(patient-based analysis); see Tables S.2 and S.3, respectively. For multivariable 

analysis, an unpenalised Cox model was fitted on train lesions considering the clinical 

features conditioned to the endpoint. 

In the combined models, following the same workflow of the clinical ones (Figure S.12), 

the radiomic information is added as a score, RS, to all other features of the clinical 
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models. Only significant features in the respective clinical model were included in the 

combined one. 

In the end, for each model we computed the median, interquartile range (IQR), and 

notched boxplot of C-index values with 95% confidence interval (CI) calculated with 50 

different random seeds. All models were developed in Python 3.8.5 environment; see 

Table S.1 for details. 

2.4. Side Analyses 

We carried out additional side analyses in this work. On the one hand, we repeated all 

the analyses by excluding LoG- and Wavelet-based features from the building of the 

models. This was done to prevent the inclusion of possible bias in results, since 

standards for such filters are still being developed [33]. On the other hand, we built 

models with the subset of features that are shared between both platforms. This was 

done to investigate whether possible differences would persist in this scenario. Even if 

features might present different naming conventions across the platforms, we 

identified and used 98 common features (see Supplementary S.4.g). We ran 50 

executions of these analyses by using the same random seeds used in the primary 

analysis. 

3. Results 
Data of 198 patients with BMs from NSCLC treated between February 2012 and August 

2018 with CyberKnife at IEO were retrospectively collected. Only data regarding the 

first treatment were considered. Fifty patients were excluded from the analysis due to a 

lack of a pre-RT T1-w MRI scan. We analysed 276 BMs from the resulting 148 patients 

who matched all the inclusion criteria. 

Amongst the patients’ MRI scans, 113 (76.4%) were acquired at IEO on a Siemens 

scanner, while 24 (16.2%) on a General Electric scanner, and 11 (7.4%) were acquired 

externally on various other scanners. After voxel re-sampling, all images shared 

common pixel spacing of 0.98x0.98 mm2 and slice thickness of 1.25 mm. Images were 

histogram-matched to the triad (1, 64, 813) representative of the (0th-50th-99th) 

percentiles of the intensities of the entire dataset. 

For each endpoint, the number of events and median time-to-event estimated from KM 

curves are reported in Table 3.  
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Endpoint Number of events 
Median time-to-event 

(months) 

Local Control 53/276 (19.2%) 17.8 

Distant Progression 143/276 (51.8%) 13.3 

Overall Survival 71/148 (48.0%) 20.2 

Table 3. Number of events and median time-to-event for each endpoint. 

Among the main findings from the clinical and combined models, older patients at start 

of SRS and patients who undergo concomitant therapy were independently more likely 

to achieve CR. In addition, patients with stage IV cancer at the onset and, patients with 

BM at the onset resulted independently more prone to DP. Instead, concomitant 

therapy was a protective factor for DP compared to no therapy at all. Furthermore, 

patients with higher KPS and patients prescribed with higher BED were independently 

associated with extended OS. Conversely, a high total intracranial tumour volume was 

recognised as a risk factor for OS. 

In Table 4 we present a summary of the distribution of C-index values on test set for 

each model across the 50 executions for the three different analyses: (i) different 

feature set, (ii) without LoG and Wavelet features, and (iii) common features only.  

 

Table 4. Summary of the models’ results for each endpoint and feature-set 

scenario. Q1=first-quartile or 25th percentile, Q3=third-quartile or 75th percentile, 

LoG=Laplacian of Gaussian, SR=SOPHiA Radiomics, PyR=PyRadiomics. 

Endpoint Model 

Median C-index (Q1-Q3) 

Different feature 
sets 

Different feature 
sets with no LoG 

nor Wavelet 
features 

Common feature 
sets 

Local Control 

SR radiomic 0.70 (0.65-0.72) 0.70 (0.65-0.72) 0.69 (0.65-0.72) 

PyR radiomic 0.63 (0.60-0.66) 0.62 (0.60-0.65) 0.63 (0.60-0.66) 

Clinical 0.57 (0.52-0.62) 0.57 (0.52-0.62) 0.57 (0.52-0.62) 

SR combined 0.62 (0.56-0.67) 0.62 (0.56-0.67) 0.63 (0.57-0.71) 

PyR combined 0.60 (0.54-0.65) 0.59 (0.52-0.61) 0.57 (0.52-0.61) 

 
Distant 

Progression 

SR radiomic 0.58 (0.56-0.60) 0.58 (0.56-0.60) 0.58 (0.57-0.61) 

PyR radiomic 0.55 (0.52-0.58) 0.57 (0.54-0.59) 0.57 (0.54-0.59) 

Clinical 0.51 (0.47-0.55) 0.51 (0.47-0.55) 0.51 (0.47-0.55) 

SR combined 0.56 (0.53-0.59) 0.56 (0.53-0.59) 0.56 (0.53-0.59) 

PyR combined 0.50 (0.46-0.54) 0.51 (0.48-0.56) 0.50 (0.47-0.56) 

 
Overall 
Survival 

SR radiomic 0.64 (0.61-0.67) 0.64 (0.61-0.67) 0.61 (0.57-0.64) 

PyR radiomic 0.63 (0.60-0.65) 0.54 (0.51-0.57) 0.54 (0.52-0.57) 

Clinical 0.59 (0.56-0.62) 0.59 (0.56-0.62) 0.59 (0.56-0.62) 

SR combined 0.65 (0.62-0-67) 0.65 (0.62-0-67) 0.62 (0.59-0.65) 

PyR combined 0.63 (0.60-0.66) 0.57 (0.53-0.60) 0.57 (0.54-0.60) 
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The corresponding notched boxplots for the 15 models are shown in Figure 2 a, b, and 

c. 

 

 

  

a) 

b) 

c) 
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Figure 2. Boxplots reporting the C-index performance of the 15 developed 

models using: (a) all the features extracted by the two platforms, (b) all the 

features excluding the LoG- and Wavelet-based features, (c) only the 

common features among the two platforms. SR = SOPHiA Radiomics, PyR = 

PyRadiomics, C-index = concordance index. 

 

The use of different platforms resulted in several mismatches, from three main 

viewpoints. 

• End-to-end performance. In the case of different feature sets, the main gap 

was registered in radiomic models for LC prediction, where the SR model 

(median C-index=0.70) outperformed the PyR one (median C-index=0.63). 

This difference can be recognised as significant from the non-overlapping 

notches of the respective boxplots in Figure 2. That was true also for radiomic 

and combined models for DP. For the other models, inconsistencies were mild 

or not significant. From the side analyses, the exclusion of filter-based features 

did not mitigate the observed differences for LC prediction, attenuated the gap 

between radiomic models for DP, and led SR and PyR models to perform 

significantly different for OS. Training the models on the subset of common 

features enlarged the gap between LC combined models and between SR and 

PyR models for OS. 

• Statistical significance of RS. From the radiomic models built with different 

feature sets, the two platforms largely disagreed on the statistical significance of 

RS (Table S.5). Both the exclusion of filter-based features and the usage of 

common features had almost no effect on the agreement of RS statistical 

significance for LC and DP, while increased the agreement for OS.  

• Significant clinical covariates in combined models. The employment of 

different platforms led to a disagreement on the clinical covariates found 

significant in combined models developed upon the same clinical models (Table 

S.6). The major disagreement was recorded for OS models when using different 

feature sets, where no clinical feature in the SR combined model was deemed 

significant also in the PyR one, for the corresponding dataset split. 

Nevertheless, excluding filter-based features or using the common ones led to 

an alleviation of such differences, and that was true also for DP. Conversely, 

models for LC prediction exhibited poor concordance in all the three analyses. 
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4. Discussion 

Assessment of performance fluctuations across different platforms poses serious 

implications for radiomic-based modelling. In fact, to spread trustworthiness among 

medical practitioners, these methods should behave accordingly when deployed at 

different institutions with possibly different extraction platforms. 

In the present study, models integrating pre-RT T1-w MRI radiomic features and 

clinical data were developed for the prediction of LC, DP, and OS in patients treated 

with SRS for BMs from NSCLC. We assessed the variability in the performance of 

prognostic models when radiomic features are extracted from two platforms. By doing 

so, we compared three scenarios: (i) different feature sets are extracted from the 

platforms, simulating the case of different research hospitals carrying out independent 

analyses; (ii) similar to the former, but Log- and Wavelet- based features are excluded; 

and (iii) only the subset of features that are shared by the platforms are used. 

Results of this study shed new light on how the extraction of radiomic features from the 

same images and segmentations by means of different platforms could, indeed, yield 

several discrepancies. The two platforms had different type and number of extracted 

features. Data revealed that such variations could be detrimental for C-index values of 

the final models, the most obvious example of which was the gap between C-indices 

across the two radiomic models for LC prediction. Furthermore, the main differences 

between the two platforms regarding the features’ extraction parameters are reported 

in supplementary S7. The parameters used in SR, not known at the time of the principal 

analysis, became available upon our specific request to the developers of the software. 

Among the set of different parameters, those which might have influenced mostly the 

features extraction were resampling and normalization. For the others (such as -bin 

width, pre-crop and resegmentation range) a negligible impact on the numerical value 

of the features could be estimated. While the main aim of the present study was to 

evaluate the end to end performances of two different radiomic platforms, one open-

source and customizable and the other one commercial and closed, the critical analysis 

of the impact of different parameters setting on features extraction and consequently 

on the final model should promote further studies to standardize the features 

extraction parameters allowing reproducible radiomic studies. 

This work also disclosed that models built upon radiomic signatures coming from 

different platforms could strongly disagree on the statistical significance of RS. 

Furthermore, clinical features selected from clinical models could be deemed 
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significant in the combined models to different extent of agreement based on whether 

the RS came from one platform or the other. Interestingly, the exclusion of filter-based 

features and/or the usage of common ones might not alleviate the observed differences, 

and several discrepancies were still found. 

We proved that models’ findings may change dramatically based on the platform used. 

It seems reasonable to assume that this may lead to acute consequences on drawing 

conclusions and comparing results across the literature. 

Overall, across the 15 developed models in each of the three scenarios, the radiomic 

models based on SR features for LC resulted always the best performing ones 

(maximum median C-index = 0.70). Instead, DP analyses revealed that no specific 

model outperformed the others, and DP resulted the least predictable endpoint of the 

three for our dataset.  

In addition, to the confirmation of poor robustness of predictive performance across 

different platforms [24], our study reveals a higher number of radiomic features does 

not necessarily imply better performance. In fact, in the scenario of different feature 

sets, the number of features extracted with PyR was almost six-fold w.r.t. SR. 

Knowledge in modelling and statistics suggests that a trade-off must be met in this 

case. Large, complex models composed of thousands of covariates are statistically more 

likely to discover unknown predictive factors, but at the same time are more prone to 

bias, overfitting, and computational demand. On the other hand, in compact and 

simple models deploying few hundreds of features, relevant factors may be missed, but 

computations are faster. This was true also in our case, where several consecutive 

clustering iterations were necessary to prune and deploy PyR features, whilst only one 

iteration was used for SR features.  

Overall, our results are in line with previous works. Ji Zhang et al. [20] investigated the 

feasibility of a radiomics-based nomogram to predict OS from 195 NSCLC patients with 

BM treated with whole-brain RT. Features were extracted from pre-treatment CT 

images and selected with LASSO. By integrating radiomics and clinical features, 

authors reported a C-index of 0.66. Kothari et al. [34] claimed that radiomic models for 

OS prediction in NSCLC treated with curative RT have exhibited moderate prognostic 

capabilities so far (C-index random effects estimate was 0.57), and that standardised 

radiomics features should be considered. 

Similar to our study, previous works attempted to conduct radiomic analyses about 

robustness and reliability of prognostic factors across different platforms. Foy et al. 
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[22] compared two in-house radiomics packages to two freely available packages using 

clinical images of various anatomic regions and imaging modalities and to determine 

sources of variations. The study demonstrated dramatic differences in computed 

radiomic features values across packages. These sources of variation included 

differences in image importation and pre-processing, algorithm implementation, as 

well as GLCM and feature-specific parameters. Fornacon-Wood et al. [24] investigated 

the effects of IBSI compliance, harmonization of calculation settings and platform 

version on the statistical reliability of radiomic features, and their corresponding ability 

to predict clinical outcomes. By leveraging three clinical datasets (108 head and neck 

cancer, 37 small-cell lung cancer, 47 NSCLC) they showed how the features identified 

as having significant relationship to survival varied between platforms, as did the 

direction of correlation. This issue was reported in our study too. 

Our work remarked that radiomics practitioners should pay attention when drawing 

conclusions and provide a clear summary of software characteristics to foster results 

comparison across different centres. In addition, standardization initiatives to increase 

the generalizability and broaden the clinical applicability of radiomic models should be 

promoted. 

This study presents some limitations. First, its retrospective nature, which opens the 

possibility of unforeseen variables and confounding biases, such as patient 

characteristics, imaging parameters, and treatment regimens for the primary NSCLC. 

Second, the small sample size, despite comparable to prior works, might have limited 

our ability to build more robust models. Third, a single feature reduction and selection 

methodology was followed, preventing possible comparison with other machine 

learning techniques available in the literature. Fourth, the source code for SR 

(commercial software) was not available, making it difficult to investigate the 

underlying mechanism and isolating the components such as pre-processing and 

algorithms; in addition, as SR is a closed commercial software, it is not possible to 

customise features extraction or to harmonise feature settings. Lastly, the selection of 

the worst responding lesion for the OS endpoint precludes any use of the model prior to 

treatment delivery. Both platforms claim to be compliant with the IBSI standard, but 

differences in their radiomics calculation approach may exist. Some claim that the 

default version of PyR is not completely compliant due to an issue on the 

implementation of the fixed bin size discretisation method [35]. Although to 

independently verify the IBSI compliance and to fix the related issues was outside of 
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the scope of the present study, it may represent a suggestion for future work to assess 

whether differences are maintained. 

The present study highlights how the choice of radiomic platform could impact the final 

performance of the models. This issue may be applicable to many imaging domains 

besides RT. Future paths of work would include the exploration of different methods 

for features reduction and classification, the harmonization of parameters across 

different platforms for features extraction, and the validation of our results with 

patients from external cohorts to evaluate generalizability. 
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