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A B S T R A C T

In many working and recreational activities, there are scenarios where both individual and collective safety
have to be constantly checked and properly signaled, as occurring in dangerous workplaces or during pandemic
events like the recent COVID-19 disease. From wearing personal protective equipment to filling physical
spaces with an adequate number of people, it is clear that a possibly automatic solution would help to
check compliance with the established rules. Based on an off-the-shelf compact and low-cost hardware, we
present a deployed real use-case embedded system capable of perceiving people’s behavior and aggregations
and supervising the appliance of a set of rules relying on a configurable plug-in framework. Working on indoor
and outdoor environments, we show that our implementation of counting people aggregations, measuring their
reciprocal physical distances, and checking the proper usage of protective equipment is an effective yet open
framework for monitoring human activities in critical conditions.
1. Introduction

As occurs during a severe health emergency event, there exist
scenarios in which ensuring compliance to a set of guidelines becomes
crucial to secure a safe living environment in which human activities
can be conducted. As evidenced during the recent COVID-19 pandemic,
wearing medical masks, avoiding the creation of large gatherings in
confined places, and keeping a certain physical distance among peo-
ple were the most common rules every government applied in their
jurisdiction territories. However, human supervision could not always
guarantee this task, especially in crowded scenes where checking usage
of personal protection equipment or enforcing strict social behavior has
to be continuously assessed to preserve global health.

In the past decades, Computer Vision applications have shown
astonishing results in several daily life tasks. Automatic image analysis
aimed at classifying, locating, and counting objects, as well as esti-
mating the distance between different instances of objects, are typical
examples of applications of Computer Vision technology, which can be
a valuable tool to automatically monitor human activities in critical
environments through images captured by networked cameras.

This work presents an embedded modular Computer Vision-based
and AI-assisted system that can carry out several tasks to help monitor
individual and collective human safety rules. We strive for a real-time
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but low-cost system, thus complying with the compute- and storage-
limited resources availability typical of off-the-shelves embedded de-
vices, where images are captured and processed directly onboard. Our
solution consists of multiple modules relying on well-researched neural
network components, each responsible for specific functionalities that
the user can easily enable and configure. In particular, by exploiting
one of these modules or combining some of them, our framework makes
available many capabilities. They range from the ability to estimate the
so-called social distance (i.e., the physical distance among pedestrians)
to the estimation of the number of people present in the monitored
scene, as well as the possibility to localize and classify personal protec-
tive equipment (PPE) worn by people (such as helmets, high-visibility
clothing, and face masks) that the World Health Organizations has
recommended as one of the primary tools to curb the spread of the
disease, like, for example, the recent COVID-19 pandemic.

To validate our solution, we test all the functionalities that our
framework makes available, exploiting two novel datasets that we
collected and annotated on purpose and representing another contribu-
tion of our work. Specifically, we gathered the first dataset of images
captured by a smart camera located in a public square in the city of
Pisa, Italy, that represents a typical scenario for which it is crucial to
check compliance with the safety rules, such as the maintaining of the
social distance or the monitoring of the occupancy area. Moreover, we
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collected and annotated a second dataset comprising images containing
pedestrians with and without PPE, such as helmets, high-visibility vests,
and face masks. The peculiarity of this dataset is that part of the
images are gathered from the GTA V video game and automatically
annotated by the graphical engine. Experiments show that our system
can effectively carry out all the functionalities that the user can set
up, providing a valuable asset to monitor compliance with safety rules
automatically.

To summarize, the main contributions of this work are the follow-
ing:

• We introduce an expandable and flexible Computer Vision-based
and AI-assisted embedded system, deployed in a real use-case
scenario, capable of automatically monitoring human activities
in critical environments, where individual and collective safety
must be constantly checked. We base our solution on modules
responsible for specific tasks that the user can easily configure
and add to the whole system, providing many functionalities such
as estimating the number of pedestrians present in the scene,
measuring the social distances among people, and detecting PPE
worn by individuals.

• We collect and annotate two novel datasets that we exploit to
validate our framework. The first one, named CrowdVisorPisa, is
gathered from a camera in a public square of the city of Pisa, Italy,
and represents a typical scenario for which it can be essential to
monitor compliance with the safety rules, such as the observation
of social distance. The second is instead a collection of images,
partially synthetic, representing pedestrians with and without
wearable PPE.

• We conduct experiments evaluating all the modules and the func-
tionalities, which our framework makes available in an embedded
and deployed off-the-shelf device, showing that our solution may be
a valid aid to monitor and handle critical environments drastically
reducing human supervision.

We organize the rest of this paper as follows. We review similar
orks in Section 2, and we introduce our modular framework and its
lug-ins in Section 3. In Section 4, we describe the exploited datasets
long with the adopted training procedures. In Section 5, we show our
xperiments, also discussing and analyzing the obtained results. Finally,
e conclude the paper with Section 6, suggesting some insights on

uture directions.

. Related work

Due to the COVID-19 pandemic, many Computer Vision-based
orks have been recently published to help monitor human activities
nalyzing images, especially on the specific task of evaluating the social
istance between people. For example, the Inter-Homines framework,
resented in Fabbri et al. (2020), evaluates in real-time the contagion
isk in a monitored area by analyzing video streams. The system
ncludes occlusion correction, homography transformation, and people
nonymization. People are located in the space exploiting the Center-
et (Zhou et al., 2019) object detector, and interpersonal distances are

hen calculated. Results are evaluated on the JTA dataset (Fabbri et al.,
018) (i.e., in a virtual world). In Saponara et al. (2021), the YOLO9000
etector (Redmon & Farhadi, 2017) has been exploited to detect people;
entroids of the found bounding boxes are then computed to evaluate
he distance between them. Similarly, in Ahmed, Ahmad, Rodrigues,
t al. (2021), a platform for social distance tracking in top perspective
ideo frames based on YOLOv3 (Redmon & Farhadi, 2018) was pre-
ented. Here too, centroids of the bounding boxes are used to estimate
istances. A subset of the same authors also presented in Ahmed,
hmad, and Jeon (2021) a social distance framework based on the
aster-RCNN detector (Ren et al., 2017). On the other hand, the authors
n Punn et al. (2020) exploited YOLOv3 (Redmon & Farhadi, 2018)
2

o detect humans and Deepsort (Wojke et al., 2017) to track people. c
They conducted experiments on the Oxford town center surveillance
footages (Benfold & Reid, 2011). The usage of Faster R-CNN (Ren et al.,
2017) and YOLOv4 (Bochkovskiy et al., 2020) to detect pedestrians
are discussed in Yang et al. (2021) to monitor social distancing and
density. Monitoring of workers to detect social distancing violation that
uses Mobilenet-V2 (Sandler et al., 2018) to detect people is introduced
in Khandelwal et al. (2020).

Another task recently tackled in literature, again related to the
COVID-19 pandemic, is face mask detection. For example, the au-
thors in Kong et al. (2021) presented an edge computing-based mask
identification framework (ECMask). It consists of three main stages:
video restoration, face detection (inspired by FaceBoxes (Zhang, Zhu,
et al., 2017)), and mask identification (based on Mobilenet-V2 (Sandler
et al., 2018)). Deep learning models were trained and evaluated on
the Bus Drive Monitoring Dataset, which unfortunately is not publicly
available. Authors in Eyiokur et al. (2021) developed a deep learning-
based computer vision system able to perform face mask detection
but also face-hand interaction detection. A more comprehensive litera-
ture review of applications of artificial intelligence in battling against
COVID-19 is given in N. (2021) including social distancing and face
mask detection.

Differently from most other works, in this paper, we present a
modular and expandable Computer Vision-based embedded system that
can fulfill multiple tasks to help monitor compliance of individual and
collective human safety rules in critical scenarios, like the one caused
by the COVID-19 pandemic. The main peculiarities are that it runs
directly on a low-cost computing device. The user can easily enable
and configure the available functionalities ranging from computing
social distances, estimating the number of people present in the scene,
or detecting PPEs, by combining more modules and building more
complex tasks.

3. Modular framework

The general purpose of our monitoring system is to be embeddable
on low-cost devices and, above all, to be expandable to different
features in demanding situations. To this end, we designed a framework
able to orchestrate a set of internal and user-defined plugins, each
edicated to a single task. Specifying inputs and outputs makes it
ossible to create a dependency graph. Each sub-module represents
node, and each pair of matching input–output represents an edge.

n this way, given the desired output, a topological sort is executed
o minimize and linearize the sequential execution of computations.
lthough an easier solution may exist in the context of the plugins,
ur methodology is relatively simple to implement and allows low-cost
ystems to execute any complex compute graphs in a sequential and
emantically-correct way.

An overview of our modular framework is depicted in Fig. 1.
ideo frames are taken at regular intervals from one or more cameras
nd processed locally. Multiple video streams can be multiplexed and
andled by a single system instance. Current modules include (a)
edestrian Detector, (b) Density-based Pedestrian Counter, (c) Instance-
ased Pedestrian Counter, (d) Pedestrian Tracker, (e) PPE Detector, and
f) Interpersonal Distance Measurer; Fig. 2 exemplifies the results of the
nalyses performed by each module, whereas their detailed description
s reported in the following sections. All the modules are toggleable; the
nstance-based Pedestrian Counter, Pedestrian Tracker, Interpersonal
istance Measurer, and PPE Detector modules depend on the output
f the Pedestrian Detector module and require it to be active. Results
f the active modules are combined and provided in JSON format to be
onsumed by downstream services. Note that video frames are analyzed
nboard and never stored; this enables privacy-aware solutions where

aptured images never leave the edge devices.
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Fig. 1. Overview of our modular framework. Multiple video streams can be multiplexed and handled by a single instance. Results are generated in JSON format and can be
routed to downstream services. Our system is flexible and expandable, as modules can be activated or deactivated depending on the user’s needs, and novel functionalities can be
introduced with additional custom modules.
Fig. 2. Visualization of output examples of the modules currently available in our system. The outputs of each module are the following. Pedestrian Detection & Instance-based
Counting: list of pedestrian bounding boxes and respective count. Pedestrian Tracking: numeric ID assigned to detected pedestrians persisting through frames. Density-Based
Pedestrian Counting: estimated number of pedestrians (and, optionally, the density map). Distance Measurement: IDs of groups of pedestrians violating a predefined distance.
PPE Detection: list of PPE bounding boxes detected per pedestrian.
3.1. Detecting pedestrians

The pedestrian detector is the system’s main component on which
almost all other plug-ins rely. Its primary purpose is to localize and
classify pedestrian instances from input images. These detections con-
stitute the main data that will be exploited, in different ways, by the
other nodes of the system.

We base our pedestrian detector on Faster R-CNN (Ren et al., 2017),
a popular state-of-the-art CNN-based object detection system. It oper-
ates as a two-stage algorithm, exploiting two different modules during
the different phases of its detection pipeline. In the first stage, a CNN
acts as a backbone by extracting input image features. Starting from this
features’ space, the Region Proposal Network (RPN) is responsible for
generating the region proposals that might contain objects, slicing pre-
defined region boxes (called anchors), and ranking them, suggesting
the ones most likely containing objects. The second module is the
Fast R-CNN detector (Girshick, 2015) that classifies and localizes the
objects inside the proposed regions, outputting class scores together
with bounding boxes coordinates.

We preferred a two-stage detector to single-shot detectors, as we
could easily extract features from the region proposal stage and make
them directly available for subsequent processing. We used the ex-
tracted features when tracking pedestrians, and they could be used in
3

other future modules, such as cross-camera pedestrian re-identification.
Moreover, Faster R-CNN is widely adopted and usually guarantees a
state-of-the-art detection performance. However, the modularity of our
system does not limit us to Faster R-CNN, and another object detector
can be easily adopted in the future, just replacing the related module.

We specialize the Faster R-CNN detector to localize pedestrian in-
stances, performing a supervised domain adaption that exploits several
pedestrian datasets. We detail all these strategies in Section 4.

3.2. Tracking pedestrians

Object tracking can be an essential tool to increase the robustness to
spurious detections and achieve temporal consistency in video analysis.
To this end, we implement and apply an object tracker over pedestrian
detection to reidentify people among consecutive video frames. This
step is beneficial for assessing temporal rules, such as raising alarms
after the same pedestrian occupies a forbidden area for more than a
predefined amount of time.

The implementation of the tracker follows the formulation of Deep-
Sort (Wojke et al., 2017). It is based on SORT (Bewley et al., 2016),
a simple causal tracking algorithm for 2D objects in which targets are
represented by the position and area of the bounding box and their
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speed of variation. The state of each target (also known as tracklet)
s updated with available detections using a Kalman filter framework.
eepSort builds upon SORT by adding a matching scheme between
redicted and actual targets based on feature vectors that describe the
ppearance of tracked objects; tracklets can be confirmed if the cosine
core between feature vectors of the predicted and actual target is
bove a programmable threshold. We refer the reader to Wojke et al.
2017) for an evaluation of DeepSORT compared to other tracking
ethods.

Feature vectors in DeepSort must be provided by extracting rep-
esentations from detected regions with an additional pre-trained net-
ork. In our implementation, we avoid this step by reusing the feature
ectors of detected regions that the object detection network has al-
eady extracted; in particular, we perform a Region of Interest (RoI)
verage pooling of the features extracted by the CNN backbone using
nly the regions provided by the pedestrian detection module.

.3. Crowd counting

In some scenarios where individual and collective safety has to
e constantly monitored, like people aggregations during the recent
OVID-19 pandemic, estimating the number of people present in a re-
ion of interest is crucial to monitor the area occupancy. By measuring
nd limiting the number of people who can visit a location at any one
ime, it is possible to drastically reduce the likelihood of setting up peo-
le gatherings and, consequently, minimize human virus transmission.
ur solution relies on a dedicated plug-in that can work in two different
odalities that the user can conveniently pick out, depending on the

onsidered scenario. The first one, named Counting by Instances, is better
uited for not particularly crowded environments and relies on the
bject detector described in Section 3.1. The second, named Counting by
ensity Estimation, is instead a more holistic approach most appropriate

or highly crowded scenarios; it aims at computing a mapping between
he features of the captured image and its pedestrian density maps,
kipping the detection of the single instances. The estimated number
f people present in the controlled area can then be obtained by
ntegrating this density map. In the following paragraphs, we describe
n detail both modalities.

ounting by Instances. This counting modality depends entirely on
he pedestrian detector. Specifically, the pedestrian detection module
rovides the input, i.e., the localized pedestrian instances. The counting
y instances plug-in is only responsible for counting them. As already
entioned, this approach has some limitations in highly crowded sce-
arios since, in this case, people instances are heavily occluded and not
asily identifiable.

ounting by Density Estimation. This modality tackles the counting task
s a supervised regression problem from the image features to an associ-
ted density map, following the seminal work (Lempitsky & Zisserman,
010), avoiding the detection of individual object instances. As men-
ioned above, this approach is desirable in highly congested scenarios,
here the instances of the objects are not completely visible due to
cclusions. The input of this module consists directly of the captured
mage, so this node does not depend on the pedestrian detector module.

In this scenario, the most widely used labels needed for the super-
ised training are the dotted annotations, obtained by putting a single
ot on each object instance in each image. Formally, we assume to
ave a set of 𝑁 training images 𝐼1, 𝐼2,… , 𝐼𝑁 . We also assume that each
mage 𝐼𝑖 is labeled with a set of 2D points 𝐏𝑖 = 𝑃1,… , 𝑃𝐾(𝑖), where 𝐾(𝑖)
s the total number of annotated objects (in our case pedestrians). For
training image 𝐼𝑖, we define the ground truth density map as

𝑝 ∈ 𝐼𝑖, 𝐻𝑖(𝑝) =
∑

𝛿(𝑝 − 𝑃 ). (1)
4

𝑃∈𝐏𝑖
ere, 𝑝 denotes a pixel, while a point identifying a pedestrian is
epresented as a delta function. Converting it into a continuous density
unction with Gaussian kernel 𝐺𝜎 we obtain

𝑝 ∈ 𝐼𝑖, 𝐹𝑖(𝑝) =
∑

𝑃∈𝐏𝑖

𝛿(𝑝 − 𝑃 ) ∗ 𝐺𝜎 . (2)

The sum of the density map is equivalent to the total number of
pedestrians. It is worth noting that the Gaussian spread parameter 𝜎
depends on the size of each pedestrian in the image, considering the
perspective transformation. However, it is almost impossible to obtain
the occluded object’s size manually in a high-density environment.
So this parameter is a dataset-specific quantity empirically estimated.
Then, given a set of training images together with their ground truth
densities, we aim to learn a transformation of the feature representation
of the image that approximates the density function at each pixel to
minimize the sum of the mismatches between the ground truth and the
estimated density functions (the loss function).

We build our density map estimator upon the Congested Scene
Recognition Network (CSRNet) (Li et al., 2018), a CNN-based algorithm
that can understand highly congested scenes and that has been suc-
cessfully adopted in many crowded scenarios. It comprises two major
components. For the image features extraction, it exploits a modified
version of the well-known VGG-16 network (Simonyan & Zisserman,
2015), where the final classification part, i.e., the final fully-connected
layers, is removed. The output size of this front-end network is 1∕8 of
the original input size. Following other works (Chen et al., 2018, 2017;
Yu & Koltun, 2016), a back-end composed of dilated convolutional
layers are stacked upon this front-end to extract deeper information
of saliency and, at the same time, maintain the output resolution.
Using dilated convolutions, we can deliver larger reception fields while
replacing pooling operations (e.g., the max pool operation) that are
often responsible for losing quality in the density generation procedure.
We refer the reader to Li et al. (2018) for a detailed comparison of
CSRNet against other state-of-the-art methods.

3.4. Measuring social distances

A critical condition that must be kept under control in dynamic
environments where an infection is ongoing is represented by the
physical distance among individuals. In the case of air-borne diseases,
it is thus very common to issue rules to avoid people gatherings in
confined places and keep a specific reciprocal separation to contrast
the spread of pathogen agents. Although crowd counting is effective in
monitoring aggregations, measuring distances among people becomes
critical during pandemic events. Assuming that individuals mostly hang
out on the same planar floor, we decided to measure their actual dis-
tance by applying a simple pre-calibrating step to the fixed monitoring
camera, using a proper geometrical transformation that places detected
items on a common system of reference. Our solution is to pre-compute
a mapping between real points in the scene whose relative position is
known and their projection on the acquired frame image. This process
is well known in Computer Vision and consists of finding a homography,
i.e., a perspective transformation that projects on two different points
of view a set of 3D points lying on the same plane.

More in detail, a 𝑑-dimensional homography represents the linear
operation

𝑥′ = 𝐻𝑥 𝑥, 𝑥′ ∈ R𝑑 ,

and is expanded in homogeneous 3D coordinates as an approximation
of the projection operation of a pinhole camera, represented by a 4 × 4
matrix with the translation and projective components added. In the
case of coplanar points, we can consider the input 𝑧 component as a
constant and thus eliminate it from the above formulation:

⎡

⎢

⎢

𝑥′

𝑦′
′

⎤

⎥

⎥

=
⎡

⎢

⎢

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23

⎤

⎥

⎥

⎡

⎢

⎢

𝑥
𝑦
⎤

⎥

⎥

.

⎣𝑤 ⎦ ⎣ℎ31 ℎ32 ℎ33⎦ ⎣1⎦
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Fig. 3. An example of homography. A set of four points in the acquired image is mapped through homography to its projection on a Euclidean metric space laying on a virtual
planar surface.
Thus, the eight ℎ𝑖𝑗 unknown can be found if we can relate two sets
of four 2D points through homography. To calculate its elements, we
minimize the matching error of the two sets after perspective projection
(i.e., dividing by the homogeneous component to take point distance to
the camera into account, see Parent (2012)) to bring coordinates from
homogeneous to euclidean space:

𝑤′ = ℎ31𝑥 + ℎ32𝑦 + ℎ33,

𝑥′ =
ℎ11𝑥 + ℎ12𝑦 + ℎ13

𝑤′ ,

𝑦′ =
ℎ21𝑥 + ℎ22𝑦 + ℎ23

𝑤′ .

We can set up the projected image of four coplanar (but not collinear)
points to a virtual flat surface and then use the found transformation
matrix to approximate the relative location of any point laying on
the same plane, as shown in Fig. 3. This calibration step is kept as
straightforward as possible for an untrained operator, as it is easy to
select four points of a known-sized quadrangle (e.g., a standardized
manhole). As perturbations may occur with point selection, we also
allow to select more than four coplanar points whose relative position
is known and then use a random sample consensus (RANSAC (Fischler
& Bolles, 1987)) algorithm to iterate through a random selection of
four points for a first approximation of the plane equation, which is
eventually refitted to minimize the error.

3.5. Detecting Personal Protective Equipment

A simple intervention for protecting health and well-being is wear-
ing Personal Protective Equipment (PPE). It is particularly true in
dangerous working environments, such as wearing harnesses and hel-
mets on construction sites. Still, it also became evident in light of the
recent COVID-19 pandemic, where wearing face masks can prevent
infections. Therefore, we implement a module dedicated to detecting
worn PPE, essential for ensuring compliance with regulations that
imply personal protection.

Our solution for PPE detection follows the same methodology al-
ready adopted for pedestrian detection: specifically, we adopt the
same detector architecture based on Faster-RCNN (see Section 3.1 for
5

details). The PPE detector network, differently from the pedestrian
detector, takes a rather small image depicting a pedestrian as input.
It is trained to distinguish and detect several classes of worn PPE,
i.e., surgical/face masks, helmets, and high-visibility vests. The pedes-
trian detector module provides the input of this module: once detected,
the patch of the video frame depicting a pedestrian is given as input to
the PPE detector that provides bounding boxes of PPE if the pedestrian
wears them.

Conceptually, the detection of PPE could be tackled by the pedes-
trian detector module by adding the PPE classes to the base detection
model. However, we empirically noticed that merging the PPE de-
tection with the pedestrian detection module leads to performance
degradation in both tasks. Using separate modules provides a more flex-
ible solution in which the input image resolution of both detectors can
be adjusted separately and better adapted to the monitored scenario.
For example, when wide areas are monitored, PPE detection is invoked
several times, depending on how many pedestrians are detected, on
small patches of pedestrians. In this case, the PPE detection network
can be configured to work on lower resolution inputs to maintain an
affordable computational cost.

4. Datasets and architecture adaptions

A key point in producing a verification system that can generalize
on a broad spectrum of working conditions is to generate a training set
based on an adequately large amount of environmental conditions. In
our case, this means accessing a massive amount of images involving
people under different scenarios. Manually annotating new images
collections is expensive and requires a notable human effort. Instead, a
recently promising approach is to gather data from virtual world envi-
ronments that resemble the characteristics of the real-world scenarios
and where the labels can be acquired with an automated process. Thus,
in this work, we build vast training datasets, considering both real-
world and synthetic images from public datasets when available, and
collecting others when needed, covering a multitude of different sce-
narios and contexts. Hereafter, we describe these data, dividing them
according to the module for which they are employed. Furthermore, we
describe the exploited training procedures, highlighting the changes we

made to the architectures to adapt them to our specific scenarios.
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4.1. Datasets for object detection

We use many popular publicly available pedestrian detection dataset
to train the pedestrian detector module. Furthermore, we introduce
a novel datasets, named CrowdVisorPisa, that we also employ for
evaluating our solution. In the following, we detail all the exploited
datasets.

Virtual Pedestrian Dataset (ViPeD) (Amato et al., 2019; Ciampi et al.,
2020). The Virtual Pedestrian Dataset is a synthetic collection of im-
ages generated exploiting the highly photo-realistic graphical engine
of the video game Grand Theft Auto V (GTA V) by Rockstar North. It
comprises about 500K images belonging to 512 different urban environ-
ments (256 for training and 256 for testing) characterized by various
weather conditions, illumination, perspectives, viewpoints, and density
of people. Labels are automatically provided by the game engine and
consist of bounding boxes precisely localizing the pedestrians present
in the scenes. More details on the generation of ViPeD can be found
in Amato et al. (2019), Ciampi et al. (2020).

MOT17Det (Milan et al., 2016) and MOT20Det (Dendorfer et al., 2019).
The MOT17Det and MOT20Det datasets are two collections of images
(5,316 and 8,931, respectively), annotated with bounding boxes, taken
from multiple sequences describing crowded scenarios having differ-
ent characteristics, like viewpoints, weather conditions, and camera
motions. The authors provided training and test subsets, but they re-
leased only the ground-truth labels for the former. The main difference
between MOT20Det and MOT17Det is that the first contains more
crowded scenarios.

CityPersons (Zhang, Benenson, & Schiele, 2017). The CityPersons
dataset consists of a set of stereo video sequences recorded from a
moving car in streets from different cities in Germany and neighboring
countries. In particular, the authors provide 5,000 frames from 27
cities labeled with bounding boxes and split across train/validation/test
subsets.

CrowdHuman (Shao et al., 2018). CrowdHuman is a benchmark dataset
for pedestrian detection. It comprises 15,000, 4,370, and 5,000 images
for training, validation, and testing, respectively, describing diverse,
crowded scenarios, with an average number of persons in an image
of 22.6. The authors annotated each human instance with a head
bounding box, a human visible-region bounding box, and a full-body
bounding box.

PRW (Zheng et al., 2017). The PRW dataset contains 11,816 frames
where 932 different pedestrian identities are annotated with their
bounding boxes. The authors provide the training and the test splits.

CUHK-SYSU (Xiao et al., 2017). The CUHK-SYSU is a large-scale bench-
mark dataset containing 18,184 images, 8,432 different identities, and
96,143 pedestrian bounding boxes. It is divided into training and test
subsets.

CrowdVisorPisa (ours). The CrowdVisorPisa dataset2 is a novel collec-
tion of images that we collected and annotated on purpose for this
work. In particular, we stored 15 different sequences gathered from a
webcam located in a public square of the city of Pisa, Italy, each of
which comprises ten images captured with a time interval of 1 s. We
manually labeled all frames, localizing the pedestrian instances with
bounding boxes. Furthermore, we also annotated each sequence taking
track of the different pedestrian entities entering or exiting the scene.
We divided the dataset into train and test splits, considering 10 and 5
different sequences, respectively. The former split is exploited to train
the pedestrian detector module, while the latter is used to evaluate the
performance of some modules of our framework. It is worth noting

2 We provide the CrowdVisorPisa and CrowdVisorPPE datasets upon
equest.
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Table 1
Details of the CrowdVisorPPE dataset. V = virtual/synthetic data; R =
real/photographic data.
Train split # img # PPE instances

Helmet HVV Mask

GTA V (V) 28,078 9,575 21,374 0
Web (R) 21,820 10,673 10,686 1,630

Test split

Web (R) 4,119 2,163 2,017 271

that, due to camera positioning not modifiable for local restrictions,
this dataset represents a particularly challenging scenario as people
instances are small and sometimes difficult to localize. A sample of the
dataset is shown in Fig. 4.

4.2. Datasets for PPE detection

CrowdVisorPPE (Ours). We collect and annotate a novel dataset
(named CrowdVisorPPE2) to train and evaluate our PPE detection
module. It comprises 54,017 images representing pedestrians with and
without wearable PPE. Roughly half of the dataset comprises synthetic
images procedurally generated using the GTA V video game engine
as in Di Benedetto et al. (2020), whereas the other half comprises
real-world photographic images taken from the Web and manually
annotated. The PPE classes of interest, i.e., helmets, high-visibility vests
(HVVs), and face masks, are annotated with bounding boxes. The real-
world subset is the only source of face mask instances since they are not
available for rendering in GTA V. We hold out a subset of real images
as the test split, whereas synthetic images and the remaining real ones
form the training split. We show the dataset details in Table 1 and some
samples in Fig. 5.

4.3. Datasets for crowd counting by density estimation

To train the module responsible for crowd counting by density
estimation, we exploit many publicly available datasets, detailed in the
following.

GTA5 Crowd Counting (GCC) (Wang et al., 2019). The GCC dataset is a
large-scale and diverse synthetic crowd counting dataset, gathered from
the video-game Grand Theft Auto V (GTA5) and automatically anno-
tated. It consists of 15,212 images, with a resolution of 1080 × 1920,
containing 7,625,843 persons in 400 different scenarios with various
locations, weather conditions, and crowd densities. Compared with the
existing datasets, GCC is a more large-scale crowd counting dataset in
both the number of images and persons.

ShanghaiTech (Zhang et al., 2016). The ShanghaiTech dataset is a large-
scale crowd dataset of nearly 1,200 manually dot-annotated images
with a total of 330,165 people with centers of their heads. This dataset
consists of two parts: part A, containing 482 images crawled randomly
from the Internet, and part B, composed of 716 images taken from
the busy streets of metropolitan areas in Shanghai. The crowd density
varies significantly between the two subsets, making this dataset more
challenging. The two parts are divided into training and testing subsets:
300 images of part A are used for training, and the remaining 182
images for testing, while 400 images of part B are for training and 316
for testing.

UCF-QNRF (Idrees et al., 2018). The UCF-QNRF dataset is a collection
of images gathered from three sources: Flickr, Web Search, and the
Hajj footage. The authors performed the entire annotation process
in two stages, the first one for the labeling and the second one for
the verification, for a total of 2,000 human-hours spent through to
its completion. This dataset comprises 1,535 images with more than
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Fig. 4. A sample from our novel CrowdVisorPisa dataset, together with bounding box annotations localizing pedestrians.
Fig. 5. Samples from our novel CrowdVisorPPE dataset. PPE classes are color coded: helmet , high-visibility vest , face mask .
1 million dot-annotations on the centers of the pedestrian’s heads,
divided into training and test subsets.

NWPU-Crowd (Wang et al., 2021). The NWPU dataset is a large-scale
congested crowd counting and localization dataset consisting of 5,109
images, in a total of 2,133,375 annotated heads with points and boxes.
Compared with other real-world datasets, it has the most extensive den-
sity range. Another peculiarity of this dataset is that it also comprises
some negative samples like high-density crowd images to assess the
robustness of models.

4.4. Adaptation for pedestrian detection

To make the pedestrian detector able to run efficiently directly
on computational- and resource-limited devices, we employ, as the
7

backbone of Faster R-CNN, the ResNet50 architecture, a lighter version
of the popular ResNet101 (He et al., 2016). We start considering the
detector pre-trained on the COCO dataset (Lin et al., 2014), a large
collection of images depicting complex everyday scenes of ordinary
objects in their natural context, categorized into 80 different classes. In
our case, we have to localize and identify objects belonging to just one
class (i.e., pedestrian). To this end, we further simplify the model by
reducing the number of the final fully convolutional layers responsible
for classifying the detected objects, making our detector lighter. We
call Light this modified version of the pedestrian detector module to
distinguish it from the Full original one, having instead the ResNet101
backbone and a larger number of fully connected layers.

Intending to specialize the detector in finding the specific pedestrian
object category, we adopt a supervised domain adaptation strategy,
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exploiting the datasets described in Section 4.1 and fine-tuning the
network to this specific task. Following (Ciampi et al., 2020), we
employ the Balanced Gradient Contribution (BGC) (Ros, Sellart, et al.,
016; Ros, Stent, et al., 2016) strategy, where, during the training
hase, we mix the synthetic data, taken from ViPeD, and the real-world
mages gathered from the remaining datasets. In this way, as already
emonstrated in Ciampi et al. (2020), we boost the performance of the
etector compared to a model relying only on real-world data, taking
dvantage of the great variability and size of ViPeD, and, at the same
ime, mitigating the existing domain shift between these synthetic data
nd the real-world ones. In particular, during the training phase, we
xploit batches composed of 2∕3 of synthetic images and 1∕3 of real-
orld data, thus considering statistics from both domains throughout

he entire procedure and where the real-world data acts as a regular-
zation term over the synthetic data training loss. We refer the reader
o Ciampi et al. (2020) for details performance comparisons against
ther state-of-the-art methods.

.5. Adaptation for PPE detection

As in the pedestrian detector, we adopt the Faster R-CNN model
ith the ResNet50 backbone as the PPE detector architecture. The
ethodology used to obtain the trained PPE detector follows (Di
enedetto et al., 2020) and reaches a comparable detection perfor-
ance: we start from a detector pre-trained on COCO with a new
etection head that matches the number of the PPE classes, and then
e use a mixture of synthetic and real images of pedestrians with PPE
hen training the model, to finally testing it on real data only. We refer

he reader to Di Benedetto et al. (2020) for comparisons against other
etection models and the model trained only on real-world data. The
nly difference concerning the object detector and Di Benedetto et al.
2020) is that we perform PPE detection only on pre-segmented patches
ontaining a single pedestrian instead of searching for PPE in the entire
ideo frame. This simplifies the task for the model and enables us to
ave computational budget by processing smaller images.

.6. Adaptation for crowd counting by density estimation

To train the density-based pedestrian counter module, we adopt
supervised domain adaptation strategy consisting of training the

etwork with the synthetic data and then fine-tuning it exploiting
he real-world images, that has already been proved to be effective
n Amato et al. (2019) and Ciampi et al. (2020), providing a perfor-
ance boost compared to models trained only on real-world data. In
articular, we set the initial weights of the network layers with values
oming from a Gaussian distribution with 0.01 standard deviation.
hen, we train the network exploiting the GCC dataset, and, finally,
e fine-tune it using the real-world data.

. Experiments and results

We evaluate all the modules making up our framework, considering
ifferent scenarios and exploiting appropriate metrics depending on the
ask. For all the experiments, we consider the Light version of our object
etector module since it has shown similar performance compared
ith the Full version, and it is more appropriate in combination with

ow-cost and computational-limited hardware.
Being our target a deployable monitoring system, we selected the

VIDIA Jetson TX2 embedded device as the hardware host. It com-
rises two 64-bit CPUs with two and four cores each, an NVIDIA Pascal
PU with 256 CUDA cores, 8 GB of RAM shared between the system
nd the graphics accelerator, and a 32 GB solid-state storage volume.
he operating system is NVIDIA’s Linux4Tegra (L4T) distribution based
n Ubuntu. At the time of writing, the cost of the device was less
han USD 500. We installed Python 3.8 with OpenCV 4.5 and the deep
earning framework PyTorch 1.8. As detailed in Table 2, memory usage
s kept within 5 GB of both system and GPU RAM. An external USB
amera completes the whole installation.
8

Table 2
System and GPU memory usage in GB. OD = object detector model type; DC = whether
he density counter module is active; PPE = whether the PPE detector module is active.
he modular framework is assumed to always use the object detector in its Light or Full

models, along with the enabled distance measure plug-in that consumes a fixed and
negligible (less than 1 MB) amount of memory. Video stream size is 1173 × 880 RGB
pixels. System memory is calculated with /usr/bin/time -f "%M", GPU memory
with torch.cuda.max_memory_allocated().

OD DC PPE SysRAM GpuRAM

Light

✗ ✗ 2.36 0.55
✓ ✗ 2.44 0.86
✗ ✓ 2.35 2.10
✓ ✓ 2.44 2.20

Full

✗ ✗ 2.51 0.62
✓ ✗ 2.52 0.94
✗ ✓ 2.51 2.20
✓ ✓ 2.51 2.30

5.1. Counting by instances

In this setting, we test and evaluate the counting by instance func-
tionality. We consider our CrowdVisorPisa dataset and, in particular, the
five sequences belonging to the test subset, performing two different
sets of experiments over it; the first one involves only the pedestrian
detector module, and the second instead takes also into account the
tracker module. More in detail, in the first case, we evaluate the effec-
tiveness of our framework to estimate the number of people present in
the single frames. On the other hand, in the second scenario, we also
consider the temporal relation existing between consecutive images,
tracking the found pedestrian instances over time.

We report in Fig. 6 the obtained results concerning the first scenario.
Each row of the figure represents a different sequence. The first column
shows the number of people that our detector module can localize for
each frame comprising a sequence, varying the detection threshold. On
the other hand, in the second column, we illustrate the errors in terms
of counting. We also report, for each sequence, the best Mean Absolute
Error (MAE), i.e., the mean of the sum of the absolute errors, obtained
with a specific threshold. As can be seen, we get a MAE close to 1 or 2,
depending on the considered scenario, demonstrating that the module
provides a reliable estimation of the number of pedestrians present in
the monitored scene. The optimal threshold may vary depending on
the scenario and the desired behavior, e.g., the user may prefer under-
or over-estimation in case of errors. Due to the empirical nature of
its choice, in our system, we provide the dynamical configuration of
several parameters, including detection thresholds.

On the other hand, in Fig. 7, we show the results concerning the
second scenario. Each row of the figure corresponds to a different
sequence. We report the results about the single frames making up a
sequence for three different detection thresholds, one for each column.
In particular, we indicate the pedestrians that enter and exit from the
scene at each frame, exploiting the tracklets provided by the tracker
module that represents the recognized identities of the people instances
over time. Solid lines represent the actual number of people present
in a frame over time, and green/red candles represent the number
of people entering/exiting the scene. Similarly, dashed lines represent
the number of people predicted by our system, and yellow/blue can-
dles represent the estimated number of people entering/exiting the
scene as predicted by the tracker module. We notice that with a
low (resp. high) threshold value, our system tends to overestimate
(resp. underestimate) the total number of people present in a sequence,
thus finding its optimal threshold values in the 0.5–0.6 range. We
also note that false-positive detections tend to create spurious peaks
in the people count. However, they often recovered in the immediate

following frame.
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Fig. 6. Evaluation of counting by instances functionality of our framework, considering the single still frames of the five test sequences of our CrowdVisorPisa dataset. In the first
column, we report the number of people located by our detector, varying the detection thresholds. The black line (GT) indicates the actual number of pedestrians in the frame.
The second column shows the counting errors and the best MAE obtained with a specific detection threshold.
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Table 3
Evaluation metrics of the Object Detection (OD), Density Counter (DC), and PPE
Detector modules, measured on the corresponding test sets. The mean Average Precision
(mAP) measures the average precision of the detection when varying the score threshold
in detection-based modules (OD, PPE). For DC, MAE and RMSE measure the counting
error, while SSIM measures the quality of the predicted density map.

OD PPE DC

mAP ↑ mAP ↑ MAE ↓ RMSE ↓ SSIM ↑

0.836 0.606 92.28 365.4 0.79

5.2. Counting by density estimation

Given that the annotation procedure for labeling datasets having
these characteristics is highly costly in terms of manual human effort,
we exploited the test subsets of the already publicly available datasets
described in Section 4.

We report in Table 3 the obtained results in terms of Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). It is worth noting
that, as a result of the squaring operation, RMSE effectively penalizes
large errors more heavily than small ones, thus more suitable when
outliers are particularly undesirable. Furthermore, we also compute
the Structural Similarity Index Measure (SSIM) (Wang et al., 2004) to
measure the density map quality, which measures images’ similarities
under three aspects: brightness, contrast, and structure. The value of
SSIM is in the [0, 1] range: the larger it is, the less distortion of the
image is measured. Finally, in Fig. 8 we show some examples of the
considered images, together with the ground truth and the predicted
density maps.
9
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5.3. Detecting pedestrians and personal protection equipment

We validate pedestrian and worn PPE detection, performed respec-
tively by the Pedestrian Detector and the Personal Protection Equip-
ment Detector modules. For the former, we focus on the five test
sequences of our CrowdVisorPisa dataset, whereas for the latter, we
onsider the CrowdVisorPPE test subset.

As a performance metric, we adopt the mean Average Precision
mAP) with an IoU value >= 0.5, a popular metric in measuring
he accuracy of object detectors that computes the average precision
alue for recall values spanning 0 to 1. We prefer the mAP over other
hreshold-dependent metrics, such as True Positive Rate, False Positive
ate, or F1-score. Indeed, threshold-dependent metrics are scenario-
nd application-specific; end-users may accept different levels of false
ositive or negative rates and may decide to tune thresholds differently
epending on their needs. On the other hand, mAP provides a unique
etric summarizing the performance at multiple operational points.
e report the obtained results in Table 3, showing that our modules

an reach a mAP of 0.836 and 0.606 for the pedestrian detection and
he PPE detection tasks, respectively. Fig. 9 shows some predictions of
PE detections on the CrowdVisorPPE test set.

.4. Measuring social distances

To establish a correspondence between the acquired image and a
lanar metric surface onto which objects (i.e., pedestrians) positions
an be evaluated, we used a known-sized manhole in the monitored
cene to calculate the homography. The computed matrix is exploited to
nwarp pixel position into real-world relative locations. The homogra-
hy reprojection is a closed-form mathematical process, so no previous
raining is needed.

Our measuring results can be seen in Fig. 10: in the examples shown,
he precision of measurements is relative to both the initial calibration
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Fig. 7. Evaluation of the counting by instances functionality of our framework, taking into account also the tracker module. We considered the five test sequences of our
CrowdVisorPisa dataset reported one for each row. Columns represent the results obtained for three different detection thresholds. For each plot, we show the pedestrians that
enter and exit from the scene, relying on the tracklets describing the recognized identities of the people instances over time.
(i.e., manhole real size mapped to its projection on the input image)
and the accuracy of the pedestrian bounding boxes (i.e., rectangles)
predicted by the object detector. We measured the manhole with an
upper bound precision of 1 cm and a pixel area error of about 3 cm,
thus confining the overall measurements below the 10 cm error. For
pedestrian positions, we used the midpoint of the lower edge of its
predicted bounding box. As can be seen from the gridded unprojection
of the examples, results are consistent within the above error gap.

6. Conclusion

In this work, we presented a modular framework based on Computer
Vision and AI technologies, deployed in a real use-case scenario on
a low-cost off-the-shelf embedded platform and aimed at monitoring
human activities in critical conditions. Our goal was to provide a system
having the peculiarity to be expandable in the future, simply adding
new modules in charge of performing new functionalities that the user
can easily enable (or disable) according to their needs. In this way, our
framework turns out to be flexible since the tasks to be accomplished
10
can change in time, and it is always possible to insert a new module re-
sponsible for performing it. As an effective setup, we implemented a set
of visual-based modules for pedestrian detection, tracking, aggregation
counting based on instances and density maps, social distancing cal-
culations, and personal protection environment detection. Specifically,
we trained artificial neural models with publicly available and, for
the purpose of the physical device installation, custom datasets; at the
same time, we applied a transfer learning approach to expand detection
capabilities by using computer-generated training imagery. To test the
effectiveness of our solution, we monitored a known place in Italy
during the restrictions imposed from the COVID-19 pandemic, proving
satisfactory accuracy in terms of detection, counting, and physical
distance measurements.

6.1. Future work

In the next iteration of this project, we plan to develop an algorithm
that can automatically select the best counting modality between in-
stancing and density map, which is currently chosen manually by the
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Fig. 8. Some samples of the test subsets exploited for the evaluation of our counting by density estimation functionality, together with the ground truth and the predicted density
maps. Integrating these density maps, i.e., summing up the pixel values, we can estimate the number of people present in the image.
Fig. 9. Examples of predictions of the PPE Detection module on our CrowdVisorPPE test set. PPE classes are color coded ( helmet , high-visibility vest , face mask ), and the
detection score is reported in parenthesis.
user. At the same time, we will try to integrate and expand modules
with further visual analyses, like gesture/posture recognition and the
assessment of appropriate PPE wearing. Finally, we will attempt to
apply a transfer learning approach to predict physical distances among
people by using an automatically labeled computer-generated training
set based on a rendering engine simulation.
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Fig. 10. Examples of detections and distance warnings under different lighting conditions. Each of the eight images represents, on its left side, pedestrians detected and tracked
in the example scenario, while showing on its right side their 2D projection on a virtual planar surface obtained through homography, with a reference 1-meter-spacing overlay
grid. The green color means a safe placement, and the red indicates violations of the 1-meter physical distance rule. Some failure examples are outlined in white and zoomed.
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