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Abstract

In many fields of human working and recreational activities, there exist scenarios where both individual
and collective safety have to be constantly checked and properly signaled, as occurring in dangerous working
places or during pandemic events like the recent COVID-19 disease. From wearing personal protective
equipment to filling physical spaces with an adequate number of people, it is clear that a possibly automatic
solution would help to check compliance with the established rules. Based on an off-the-shelf compact and
low-cost hardware, we present a deployed real use-case embedded system capable of perceiving people’s
behavior and aggregations, and able to supervise the appliance of a set of rules relying on a configurable
plug-in framework. Working on indoor and outdoor environments, we show that our implementation of
counting people aggregations, measuring their reciprocal physical distances, and checking the proper usage of
protective equipment is an effective yet open framework for monitoring human activities in critical conditions.

Keywords: Deep Learning, Computer Vision, Machine Learning, Personal Protective Equipment,
Counting, Homography, Embedded System

1. Introduction w0 life tasks. Automatic image analysis aimed at clas-
sifying, locating and counting objects, as well as
As occurs during a severe health emergency estimating the distance between different instances
event, there exist scenarios in which ensuring com- of objects, are typical examples of applications of
pliance to a set of guidelines becomes crucial to se- Computer Vision technology, which can be a valu-
cure a safe living environment in which human ac- 2 able tool to automatically monitor human activities
tivities can be conducted. In fact, as evidenced dur- in critical environments through images captured
ing the recent COVID-19 pandemic, wearing med- by networked cameras.

ical masks, avoiding the creation of large gather-
ings in confined places, and keeping a certain phys-
ical distance among people were the most common
rules every government applied in their jurisdiction
territories. However, this task could not always
be guaranteed by human supervision, especially in

crowded scenes where checking usage of personal . . ) ;
protection equipment or enforcing a strict social be- tion consists of multiple modules, each responsible

havior has to be continuously assessed to preserve * for a specific functionality that the user can eas-
global health ily enable and configure. In particular, exploiting

one of these modules, or combining some of them,
our framework makes available many capabilities.
These range from the ability to estimate the so-
« called social distance (i.e., the physical distance
*Corresponding author among pedestrians) to the skill of estimating the
I Authors contribute equally. number of people present in the monitored scene,

In this work, we present an embedded modu-

lar Computer Vision-based and Al-assisted system

s that can carry out several tasks to help monitor
individual and collective human safety rules, pro-
cessing the captured images directly on an off-the-
shelf commercial and low-cost device. Our solu-

In the past decades, Computer Vision applica-
tions have shown astonishing results in several daily
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as well as the possibility to localize and classify per-
sonal protective equipment (PPE) worn by people
(such as helmets, high-visibility clothing, and face
masks) that the World Health Organizations has
recommended as one of the primary tools able to
contrast the spread of the disease, like, for exam-
ple, the recent COVID-19 pandemic.

To validate our solution, we test all the function-
alities that our framework, deployed on an embed-
ded device, makes available, exploiting two novel
datasets that we collected and annotated on pur-
pose and that represent another contribution of our
work. Specifically, we gathered a first dataset com-
prising images captured by a smart camera located
in a public square in the city of Pisa, Italy, that rep-
resents a typical scenario for which it is crucial to
check compliance with the safety rules, such as the
maintaining of the social distance or the monitoring
of the area occupancy. Moreover, we collected and
annotated a second dataset comprising images con-
taining pedestrians with and without PPE, such as
helmets, high-visibility vests, and face masks. The
peculiarity of this dataset is that part of the im-
ages are gathered from the GTA V video game and
automatically annotated by the graphical engine.
Experiments show that our system can effectively
carry out all the functionalities that the user can
set up, providing to be a valuable asset to auto-
matically monitor compliance with safety rules.

To summarize, the main contributions of this
work are the following:

e We introduce an expandable and flexible Com-
puter Vision-based and Al-assisted embedded
system, deployed in a real use-case scenario, ca-
pable of automatically monitoring human ac-
tivities in critical environments, where individ-
ual and collective safety must be constantly
checked. We base our solution on modules re-
sponsible for specific tasks that the user can
easily configure and add to the whole system,
making many available functionalities such as
the capability of estimating the number of
pedestrians present in the scene, measuring the
social distances among people, and detecting
PPE worn by the individuals.

e We collect and annotate two novel datasets
that we exploit to validate our framework. The
first one, named CrowdVisorPisa, is gathered
from a camera in a public square of the city of
Pisa, Italy, and represents a typical scenario for
which it can be essential to monitor compliance
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with the safety rules, such as the respect of
social distance. The second is instead a collec-
tion of images, partially synthetic, representing
pedestrians with and without wearable PPE.

e We conduct experiments evaluating all the
modules and the functionalities, which our
framework makes available in an embedded and
deployed off-the-shelf device, showing that our
solution may be a valid aid to monitor and han-
dle critical environments drastically reducing
human supervision.

We organize the rest of this paper as follows. We
review similar works in Section 2, and we introduce
our modular framework and its plug-ins in Section
3. In Section 4, we describe the exploited datasets
along with the adopted training procedures. In Sec-
tion 5, we show our experiments, also discussing
and analyzing the obtained results. Finally, we con-
clude the paper with Section 6, suggesting some in-
sights on future directions.

2. Related Work

Due to the COVID-19 pandemic, many Com-
puter Vision-based works have been recently pub-
lished to help monitor human activities analyzing
images, especially on the specific task of evaluating
the social distance between people. For example,
the Inter-Homines system, presented in [13], evalu-
ates in real-time the contagion risk in a monitored
area by analyzing video streams. The system in-
cludes occlusion correction, homography transfor-
mation, and people anonymization. People are lo-
cated in the space exploiting the CenterNet [46]
object detector, and interpersonal distances are
then calculated. Results are evaluated on the JTA
dataset [12] (i.e., in a virtual world). In [31], the
YOLO9000 detector [25] has been exploited to de-
tect people, and centroids of the found bounding
boxes are computed to evaluate the distance be-
tween them. Similarly, in [2], a platform for social
distance tracking in top perspective video frames
based on YOLOv3 [26] was presented. Here too,
centroids of the bounding boxes are used to es-
timate distances. A subset of the authors of [2]
also presented in [1] a social distance framework
based on the Faster-RCNN detector [27]. Instead,
YOLOV3 [26] to detect humans and Deepsort [38] to
track people are exploited in [24]. Experiments are
conducted on the Oxford town center surveillance
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footages [4]. The usage of Faster R-CNN [27] and
YOLOvV4 [6] to detect pedestrians are discussed in
[40] to monitor social distancing and density. Mon-
itoring of workers to detect social distancing viola-
tion that uses Mobilenet-V2 [30] to detect people is
introduced in [18].

Another task recently tackled in literature, again
related to the COVID-19 pandemic, is face mask
detection. For example, authors [19] present an
edge computing-based mask identification frame-
work (ECMask). It consists of three main stages:
video restoration, face detection (inspired by Face-
Boxes [43]), and mask identification (based on
Mobilenet-V2 [30]). Deep learning models were
trained and evaluated on the Bus Drive Monitoring
Dataset, which unfortunately is not publicly avail-
able. Authors in [11] developed a deep learning-
based computer vision system able to perform face
mask detection but also face-hand interaction de-
tection. A more comprehensive literature review
of applications of artificial intelligence in battling
against COVID-19 is given in [34] including social
distancing and face mask detection.

Differently from most other works, in this paper,
we present a modular and ezpandable Computer
Vision-based embedded system that can fulfill mul-
tiple tasks to help monitor compliance of individual
and collective human safety rules in critical scenar-
ios, like the one caused by the COVID-19 pandemic.
The main peculiarities are that it runs directly on
a low-cost computing device and that the user can
easily enable and configure the available functional-
ities, ranging from computing social distances, esti-
mating the number of people present in the scene,
or detecting PPEs, combining more modules and
building more complex tasks.

3. Modular Framework

The general purpose of our monitoring system is
to be embeddable on low-cost devices and, above
all, to be expandable to different features on de-
manding situations. To this end, we designed a
framework able to orchestrate a set of internal and
user-defined plug-ins, each dedicated to a single
task. By specifying inputs and outputs, it is possi-
ble to create a dependency graph where each sub-
module represents a node, and each pair of match-
ing input-output represents an edge. In this way,
given the desired output, a topological sort is exe-
cuted to minimize and linearize the sequential ex-
ecution of computations. Although an easier solu-
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tion may exist in the context of the plugins we de-
veloped and hereafter describe, this methodology is
rather simple to implement and, moreover, allows
for sequencing complex compute graphs with addi-
tional sub-modules.

3.1. Detecting Objects

The object detector is the system’s main com-
ponent on which almost all other plug-ins rely on.
Its primary purpose is to localize and classify pedes-
trian instances from input images. These detections
constitute the main data that will be exploited, in
different ways, by the other nodes of the system.

We base our object detector on Faster R-CNN
[27], a popular state-of-the-art CNN-based object
detection system. It operates as a two-stage algo-
rithm, exploiting two different modules during the
different phases of its detection pipeline. In the
first stage, a CNN acts as a backbone by extract-
ing input image features. Starting from this fea-
tures’ space, the Region Proposal Network (RPN)
is responsible for generating the region proposals
that might contain objects, slicing pre-defined re-
gion boxes (called anchors), and ranking them, sug-
gesting the ones most likely containing objects. The
second module is the Fast R-CNN detector [15] that
uses the proposed regions, and it is in charge of
classifying and localizing the objects inside them,
outputting class scores and bounding boxes coordi-
nates.

We modify this detection system to meet our
needs, making it lighter and more suitable for run-
ning on computational- and resource-limited de-
vices. Moreover, we specialize it in detecting people
instances, performing a supervised domain adap-
tion that exploits several pedestrian datasets. We
detail all these strategies in Section 4.

3.2. Tracking

Object tracking can be an essential tool to in-
crease the robustness to spurious detections and
achieve temporal consistency in video analysis.
To this end, we implement and apply an object
tracker over pedestrian detection to reidentify peo-
ple among consecutive video frames. This step
is particularly useful for assessing temporal rules,
such as raising an alarm after the same pedestrian
occupies a forbidden area for more than a prede-
fined amount of time.

The implementation of the tracker follows the for-
mulation of DeepSort [38]; it is based on SORT [5],
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a simple causal tracking algorithm for 2D objects
in which targets are represented by the position
and area of the bounding box and their speed of
variation. The state of each target (also known as
tracklet) is updated with available detections us-
ing a Kalman filter framework. DeepSort builds
upon SORT by adding a matching scheme between
predicted and actual targets based on feature vec-
tors that describe the appearance of tracked ob-
jects; tracklets can be confirmed if the cosine score
between feature vectors of the predicted and actual
target is above a programmable threshold. Feature
vectors in DeepSort must be provided by extracting
representations from detected regions with an addi-
tional pretrained network. In our implementation,
we avoid this step by reusing the feature vectors of
detected regions that the object detection network
has already extracted; in particular, we perform a
Region of Interest (Rol) average pooling of the fea-
tures extracted by the CNN backbone using only
the regions provided by the pedestrian detection
module.

3.8. Crowd Counting

In some scenarios where individual and collec-
tive safety has to be constantly monitored, like peo-
ple aggregations during the recent COVID-19 pan-
demic, estimating the number of people present in
a region of interest is crucial to monitor the area
occupancy. By measuring, and limiting, the num-
ber of people who can visit a location at any one
time, it is possible to drastically reduce the like-
lihood of setting up people gatherings and, conse-
quently, minimizing human virus transmission. Our
solution relies on a dedicated plug-in that can work
in two different modalities that the user can conve-
niently pick out, depending on the considered sce-
nario. The first one, named Counting by Instances,
is better suited for not particularly crowded en-
vironments and relies on the object detector de-
scribed in Section 3.1. The second, named Count-
ing by Density Fstimation, is instead a more holis-
tic approach most appropriate for highly crowded
scenarios; it aims to compute a mapping between
the features of the captured image and its pedes-
trian density maps, skipping the detection of the
single instances. The estimated number of people
present in the controlled area can then be obtained
by integrating this density map. In the following
paragraphs we describe in detail both modalities.
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Counting by Instances. This counting modality de-
pends entirely on the pedestrian detector. The
pedestrian detection module provides the module’s
input, consisting of the localized pedestrian in-
stances. The counting plug-in, when this modality
is enabled, is only responsible for counting them.
As already mentioned, this approach has some lim-
itations in highly crowded scenarios since, in this
case, people instances are heavily occluded and not
easily identifiable.

Counting by Density Estimation. This modality
tackles the counting task as a supervised regression
problem from the image features to an associated
density map, following the seminal work [20], avoid-
ing the detection of individual object instances. As
mentioned above, this approach is particularly at-
tractive in highly congested scenarios, where the
instances of the objects are not completely visible
due to the occlusions. The module’s input consists
directly of the captured image, so this node, when
this modality is enabled, did not depend on the ob-
ject detector module.

In this scenario, the most widely used labels
needed for the supervised training are the dot-
ted annotations, obtained by putting a single dot
on each object instance in each image. Formally,
we assume to have a set of N training images
I, 15, ..., 1. We also assume that each image I; is
labeled with a set of 2D points P; = Pi, ..., Pk (),
where K (1) is the total number of annotated objects
(in our case pedestrians). For a training image I;,
we define the ground truth density map as

Vpel, Hip)= > 6(p—P).
PeP;

(1)

Here, p denotes a pixel, while a point identifying a
pedestrian is represented as a delta function. Con-
verting it into a continuous density function with
Gaussian kernel G, we obtain

Vpel, Filp)= ) 6(p-P)*xG, (2)
PeP;

The sum of the density map is equivalent to the to-
tal number of pedestrians. It is worth noting that
the Gaussian spread parameter o depends on the
size of each pedestrian in the image, considering
the perspective transformation. However, it is al-
most impossible to obtain the occluded object’s size
manually in a high-density environment. So this
parameter is a dataset-specific quantity empirically
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estimated. Then, given a set of training images to-
gether with their ground truth densities, we aim
to learn a transformation of the feature represen-
tation of the image that approximates the density
function at each pixel so that it minimizes the sum
of the mismatches between the ground truth and
the estimated density functions (the loss function).

We build our density map estimator upon the
Congested Scene Recognition Network (CSRNet)
[21], a CNN-based algorithm that can understand
highly congested scenes and perform accurate den-
sity estimation. It comprises two major compo-
nents. For the image features extraction, it exploits
a modified version of the well-known VGG-16 net-
work [33], where the final classification part, i.e.,
the final fully-connected layers, is removed. The
output size of this front-end network is 1/8 of the
original input size. Following other works [41, 7, 8],
a back-end composed of dilated convolutional layers
are stacked upon this front-end to extract deeper in-
formation of saliency and, at the same time, main-
taining the output resolution. Using dilated convo-
lutions, we can deliver larger reception fields while
replacing pooling operations (e.g., the max pool op-
eration) that are often responsible for losing quality
in the density generation procedure.

3.4. Measuring Social Distances

A critical condition that must be kept under con-
trol in dynamic environments where an infection
is ongoing is represented by the physical distance
among individuals. In the case of air-borne dis-
eases, it is thus very common to issue rules to avoid
people gatherings in confined places and keep a spe-
cific reciprocal separation to contrast the spread of
pathogen agents. Although crowd counting is ef-
fective in monitoring aggregations, measuring dis-
tances among people becomes critical during pan-
demic events. Assuming that individuals mostly
hang out on the same planar floor, we decided to
measure their actual distance by applying a simple
pre-calibrating step to the fixed monitoring cam-
era, using a proper geometrical transformation that
places detected items on a common system of ref-
erence. Our solution is to pre-compute a mapping
between real points in the scene whose relative posi-
tion is known, and their projection on the acquired
frame image. This process is well known in Com-
puter Vision and consists of finding a homography,
i.e., a perspective transformation that projects on
two different points of view a set of 3D points lying
on the same plane.

375

5

Acquired Image

Virtual Planar Surface

Figure 1: An example of homography. A set of four points
in the acquired image is mapped through homography to its
projection on an euclidean metric space laying on a virtual
planar surface.

More in detail, a d-dimensional homography rep-
resents the linear operation

¥ =Hzx z,2' € R?

and is expanded in homogeneous 3D coordinates as
an approximation of the projection operation of a
pinhole camera, represented by a 4 x 4 matrix with
the translation and projective components added.
In the case of coplanar points, we can consider the
input z component as a constant and thus eliminate
it from the above formulation:

& hii hia hiz| [z
y' | = |har hae hos| |y
w’ h31 h32 1 1

Thus, the eight h;; unknown can be found if we
can relate two sets of four 2D points through ho-
mography. To calculate its elements, we minimize
the matching error of the two sets after perspective
division (i.e., dividing by the homogeneous com-
ponent) to bring coordinates from homogeneous to
euclidean space:

w' = h31x + hasy + has
o hi1x + hioy + hi3

/

w
i = ho1x + haoy + has

/

w

We can set up the projected image of four coplanar
(but not collinear) points to a virtual flat surface
and then use the found transformation matrix to
approximate the relative location of any point lay-
ing on the same plane, as shown in Figure 1. This
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calibration step is kept as straightforward as pos-
sible for an untrained operator, as it is easy to se-
lect four points of a known-sized quadrangle (e.g., a
standardized manhole). As perturbations may oc-
cur with point selection, we also allow to select more
than four coplanar points whose relative position
is known, and then use a random sample consen-
sus (RANSAC [14]) algorithm to iterate through a
random selection of four points for a first approx-
imation of the plane equation, which is eventually
refitted to minimize the error.

3.5. Detecting Personal Protective Equipment

A simple intervention for protecting health and
well-being is wearing Personal Protective Equip-
ment (PPE). This is particularly true in dangerous
working environments, such as wearing harnesses
and helmets on construction sites, but it also be-
came evident in light of the recent COVID-19 pan-
demic, where wearing face masks can prevent infec-
tions. Therefore, we implement a module dedicated
to detecting worn PPE, essential for ensuring com-
pliance with regulations that imply personal pro-
tection.

Our solution for PPE detection follows the same
methodology already adopted for pedestrian detec-
tion: specifically, we adopt the same detector archi-
tecture based on Faster-RCNN (see Section 3.1 for
details). Differently from the pedestrian detector,
the PPE detector network takes as input a rather
small image depicting a pedestrian, and it is trained
to distinguish and detect several classes of worn
PPE, i.e., surgical/face masks, helmets, and high-
visibility vests. The module’s input is provided by
the pedestrian detection module: once detected,
the patch of the video frame depicting a pedes-
trian is given as input to the PPE detector that
provides bounding boxes of PPE if the pedestrian
wears them.

Conceptually, the detection of PPE could be
tackled by the object detector module by adding the
PPE classes to the base detection model. However,
we empirically noticed that merging the PPE detec-
tion with the pedestrian detection module leads to
performance degradation in both tasks. Using sep-
arate modules provides a more flexible solution in
which the input image resolution of both detectors
can be adjusted separately and better adapted to
the monitored scenario. For example, when wide
areas are monitored, PPE detection can be per-
formed several times at each processed video frame
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depending on how many pedestrians have been de-
tected, while the PPE detection network can be
configured to operate on smaller input sizes, main-
taining an affordable computational cost.

4. Datasets and Architecture Adaptions

A key point in producing a verification system
that can generalize on a broad spectrum of work-
ing conditions is to generate a training set based
on an adequately large amount of environmental
conditions. In our case, this means being able to
access a massive amount of images involving peo-
ple under different environmental scenarios. Since
manually annotating new collections of images is
expensive and requires a notable human effort, a
recently promising approach is to gather data from
virtual world environments that resemble the char-
acteristics of the real-world scenarios and where the
labels can be acquired with an automated process.
Thus, in this work, we build vast training datasets,
considering both real-world and synthetic images
from public datasets when available, and collecting
others when needed, covering a multitude of differ-
ent scenarios and contexts. Hereafter, we describe
these data, dividing them according to the module
for which they are employed. Furthermore, we de-
scribe the exploited training procedures, highlight-
ing the changes we made to the architectures to
adapt them to our specific scenarios.

4.1. Datasets for Object Detection

To train the object detector module, we use
many popular publicly available pedestrian detec-
tion datasets. Furthermore, we introduce a novel
dataset, named CrowdVisorPisa, that we also em-
ploy for evaluating our solution. In the following,
we detail all the exploited datasets.

Virtual Pedestrian Dataset (ViPeD) [3, 9]. The
Virtual Pedestrian Dataset is a synthetic collection
of images generated exploiting the highly photo-
realistic graphical engine of the video game Grand
Theft Auto V (GTA V) by Rockstar North. It com-
prises about 500K images belonging to 512 differ-
ent urban environments (256 for training and 256
for testing) characterized by various weather con-
ditions, illumination, perspectives, viewpoints, and
density of people. Labels are automatically gener-
ated and consist of bounding boxes precisely local-
izing the pedestrians present in the scenes.
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MOT17Det [23] and MOT20Det [23]. The
MOT17Det and MOT20Det datasets are two col-
lections of images (5,316 and 8,931, respectively),
annotated with bounding boxes, taken from
multiple sequences describing crowded scenarios
having different characteristics, like viewpoints,
weather conditions, and camera motions. The
authors provided training and test subsets, but
they released only the ground-truth labels for the
former. The main difference between MOT20Det
compared to MOT17Det is that the first contains
more crowded scenarios.

CityPersons [42]. The CityPersons dataset con-
sists of a set of stereo video sequences recorded
from a moving car in streets from different cities
in Germany and neighboring countries. In par-
ticular, the authors provide 5,000 frames from 27
cities labeled with bounding boxes and split across
train/validation/test subsets.

CrowdHuman [32]. CrowdHuman is a benchmark
dataset for pedestrian detection. It comprises
15,000, 4,370, and 5,000 images for training, vali-
dation, and testing, respectively, describing diverse,
crowded scenarios, with an average number of per-
sons in an image of 22.6. The authors annotated
each human instance with a head bounding box, a
human visible-region bounding box, and a full-body
bounding box.

PRW [45]. The PRW dataset contains 11,816
frames where 932 different pedestrian identities are
annotated with their bounding boxes. The authors
provide the training and the test splits.

CUHK-SYSU [39]. The CUHK-SYSU is a large-
scale benchmark dataset containing 18,184 images,
8,432 different identities, and 96,143 pedestrian
bounding boxes. It is divided into training and test
subsets.

CrowdVisorPisa  (ours). The CrowdVisorPisa
dataset is a novel collection of images that we
collected and annotated on purpose for this work.
In particular, we stored 15 different sequences
gathered from a webcam located in a public square
of the city of Pisa, Italy, each of which comprises
ten images captured with a time interval of 1
second. We manually labeled all frames, localizing
the pedestrian instances with bounding boxes.
Furthermore, we also annotated each sequence
taking track of the different pedestrian entities
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Figure 2: A sample from our novel CrowdVisorPisa dataset,
together with bounding box annotations localizing pedestri-
ans.

entering or exiting the scene. We divided the
dataset into train and test splits, considering
10 and 5 different sequences, respectively. The
former split is exploited to train the object de-
tector module, while the latter to evaluate the
performance of some modules of our framework.
It is worth noting that, due to camera positioning
not modifiable for local restrictions, this dataset
represents a particularly challenging scenario as
people instances are small and sometimes difficult
to localize. A sample of the dataset is shown in
Figure 2.

4.2. Datasets for PPE Detection

CrowdVisorPPE (ours). We collect and annotate
a novel dataset (named CrowdVisorPPE) to train
and evaluate our PPE detection module. It com-
prises 54,017 images representing pedestrians with
and without wearable PPE. Roughly half of the
dataset comprises synthetic images procedurally
generated using the GTA V video game engine as
in [10], whereas the other half comprises photo-
graphic real-world images taken from the Web and
manually annotated. The PPE classes of interest,
i.e., helmets, high-visibility vests (HVVs), and face
masks, are annotated with bounding boxes. The
real-world subset is the only source of face mask
instances since they are not available for rendering
in GTA V. We hold out a subset of real images as
the test split, whereas synthetic images and the re-
maining real ones form the training split. We show
the dataset details in Table 1 and some samples in
Figure 3.



555

560

565

# PPE instances

Train Split  # img Helmet HVV Mask
GTA V (V) 28,078 9,575 21,374 0
Web (R) 21,820 10,673 10,686 1,630
Test Split
Web (R) 4,119 2,163 2,017 271
Table 1: Details of the CrowdVisorPPE dataset. V = vir-

tual/synthetic data; R = real/photographic data.

(a) GTA V (Virtual)

(b) Web (Real)

Figure 3: Samples from our novel CrowdVisorPPE dataset.

PPE classes are color coded:

4 4

4.3. Datasets for Crowd Counting by Density FEsti-
mation

To train the module responsible for crowd count-
ing by density estimation, we exploit many popular
publicly available datasets, detailed in the follow-
ing.

GTA5 Crowd Counting (GCC) [36]. The GCC
dataset is a large-scale and diverse synthetic crowd
counting dataset, gathered from the video-game
Grand Theft Auto V (GTA5) and automatically
annotated. It consists of 15,212 images, with a res-
olution of 1080 x 1920, containing 7,625,843 persons
in 400 different scenarios with various locations,
weather conditions, and crowd densities. Compared
with the existing datasets, GCC is a more large-
scale crowd counting dataset in both the number of
images and persons.
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ShanghaiTech [44]. The ShanghaiTech dataset is a
large-scale crowd dataset of nearly 1,200 manually
dot-annotated images with a total of 330,165 peo-
ple with centers of their heads. This dataset con-
sists of two parts: part A, containing 482 images
crawled randomly from the Internet, and part B,
composed of 716 images taken from the busy streets
of metropolitan areas in Shanghai. The crowd den-
sity varies significantly between the two subsets,
making this dataset more challenging. The two
parts are divided into training and testing subsets:
300 images of part A are used for training, and the
remaining 182 images for testing, while 400 images
of part B are for training and 316 for testing.

UCF-QNRF [17]. The UCF-QNRF dataset is a
collection of images gathered from three sources:
Flickr, Web Search, and the Hajj footage. The au-
thors performed the entire annotation process in
two stages, the first one for the labeling and the
second one for the verification, for a total of 2,000
human-hours spent through to its completion. This
dataset comprises 1,535 images with more than 1
million dot-annotations on the centers of the pedes-
trian’s heads, divided into training and test subsets.

NWPU-Crowd [35]. The NWPU dataset is a large-
scale congested crowd counting and localization
dataset consisting of 5,109 images, in a total of
2,133,375 annotated heads with points and boxes.
Compared with other real-world datasets, it has the
most extensive density range. Another peculiarity
of this dataset is that it also comprises some nega-
tive samples like high-density crowd images to as-
sess the robustness of models.

4.4. Adaptation for Object Detection

To make the object detector able to run efficiently
directly on computational- and resource-limited de-
vices, we employ, as the backbone of Faster R-CNN,
the ResNet50 architecture, a lighter version of the
popular ResNet101 [16]. We start considering the
detector pre-trained on the COCO dataset [22], a
large collection of images depicting complex every-
day scenes of ordinary objects in their natural con-
text, categorized into 80 different classes. In our
case, we have to localize and identify objects be-
longing to just one class (i.e., pedestrian). To this
end, we further simplify the model by reducing the
number of the final fully convolutional layers re-
sponsible for classifying the detected objects, mak-
ing our detector lighter. We call Light this modified
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version of the object detector module to distinguish
it from the Full original one, having instead the
ResNet101 backbone and a larger number of fully
connected layers.

Intending to specialize the detector in finding the
specific pedestrian object category, we adopt a su-
pervised domain adaptation strategy, exploiting the
datasets described in Section 4.1 and fine-tuning
the network to this specific task. Following Ciampi
et al. approach [9], we employ the Balanced Gradi-
ent Contribution (BGC) [28, 29] strategy, where,
during the training phase, we mix the synthetic
data, taken from ViPeD, and the real-world images
gathered from the remaining datasets. In this way,
we take advantage of the great variability and size
of ViPeD, and at the same time, we mitigate the
existing domain shift between these synthetic data
and the real-world ones. In particular, during the
training phase, we exploit batches composed of 2/3
of synthetic images and 1/3 of real-world data, thus
considering statistics from both domains through-
out the entire procedure and where the real-world
data acts as a regularization term over the synthetic
data training loss.

4.5. Adaptation for PPE Detection

As in the object detector, we adopt the Faster
R-CNN model with the ResNet50 backbone as
the PPE detector architecture. The methodology
used to obtain the trained PPE detector follows Di
Benedetto et al. approach [10] and reaches a com-
parable detection performance: we start from a de-
tector pre-trained on COCO with a new detection
head that matches the number of the PPE classes,
and then we use a mixture of synthetic and real
images of pedestrians with PPE when training the
model, to finally testing it on real data only. The
only difference concerning the object detector and
[10] is that we perform PPE detection only on pre-
segmented patches containing a single pedestrian
instead of searching for PPE in the full-frame. This
simplifies the task for the model and enables us to
save computational budget by processing smaller
images.

4.6. Adaptation for Crowd Counting by Density Es-
timation

To train the crowd counter by density estimation
module, we adopt a supervised domain adaptation
strategy consisting of training the network with the
synthetic data and then fine-tuning it exploiting the

670

675

680

685

690

695

700

705

710

715

real-world images, as explained in [9]. In particu-
lar, we set the initial weights of the network layers
with values coming from a Gaussian distribution
with 0.01 standard deviation. Then, we train the
network exploiting the GCC dataset, and, finally,
we fine-tune it using the real-world data.

5. Experiments and Results

We evaluate all the modules making up our
framework, considering different scenarios and ex-
ploiting appropriate metrics depending on the relat-
ing task. For all the experiments, we consider the
Light version of our object detector module since it
has shown similar performance compared with the
Full version, and it is more appropriate to be used
in combination with low-cost and computational-
limited hardware.

Being our target a deployable monitoring system,
we selected the NVIDIA Jetson TX2 embedded de-
vice as the hardware host. It is composed of two 64
bit CPUs with two and four cores each, an NVIDIA
Pascal GPU with 256 CUDA cores, 8 GB of RAM
shared between the system and the graphics ac-
celerator, and a 32 GB solid-state storage volume.
The operating system is the NVIDIA’s Linux4Tegra
(L4T) distribution based on Ubuntu. We installed
Python 3.8 with OpenCV 4.5 and the deep learn-
ing framework PyTorch 1.8. As detailed in Table
2, memory usage is kept within 5 GB of both sys-
tem and GPU RAM. An external USB camera com-
pletes the whole installation.

5.1. Counting by Instances

In this setting, we test and evaluate the counting
by instance functionality. We consider our Crowd-
VisorPisa dataset and, in particular, the five se-
quences belonging to the test subset, performing
two different sets of experiments over it: the first
one that involves only the object detector module
and the second that instead takes also into account
the tracker module. More in detail, in the first case,
we evaluate the effectiveness of our framework to
estimate the number of people present in the sin-
gle frames, while in the second scenario we also
consider the temporal relation that exists between
consecutive images, tracking the found pedestrian
instances over time.

We report in Figure 4 the obtained results con-
cerning the first scenario. Each row of the figure
represents a different sequence. In the first column
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Table 2: System and GPU Memory Usage in GB. OD = ob-
ject detector model type; DC = whether the density counter
module is active; PPE = whether the PPE detector module
is active. The modular framework is assumed to always use
the object detector in its Light or Full models, along with
the enabled distance measure plug-in that consumes a fixed
and negligible (less than 1 MB) amount of memory. Video
stream size is 1173 x 880 RGB pixels. System memory is
calculated with /usr/bin/time -f "%M", GPU memory with
torch.cuda.max-memory_-allocated().

oD DC PPE SysRAM GpuRAM
X X 2.36 0.55
. X 9.44 0.86
Light - o 2.35 2.10
W 2.44 2.20
X X 2.51 0.62
SooX 2.52 0.94
Y 2.51 2.20
Z 2.51 2.30

we show the number of people that our detector
module can localize for each frame making up a
sequence, varying the detection threshold. In the
second column we instead illustrate the errors in
terms of counting for each frame, changing again
the detection threshold. We also report, for each
sequence, the best Mean Absolute Error (MAE),
i.e., the mean of the sum of the absolute errors, ob-
tained with a specific threshold. As can be seen,
we obtain a MAE close to 1 or 2, depending on the
considered scenario, demonstrating that the mod-
ule provides a reliable estimation of the number of
pedestrians present in the monitored scene.

On the other hand, in Figure 5 we show the re-
sults concerning the second scenario. Each row of
the figure corresponds to a different sequence. We
report the results about the single frames making
up a sequence for three different detection thresh-
olds, one for each column. In particular, we indicate
the pedestrians that enter and exit from the scene
at each frame, exploiting the tracklets provided by
the tracker module that represents the recognized
identities of the people instances over time. We no-
tice that with a low (resp. high) threshold value our
system tends to overestimate (resp. underestimate)
the total number of people present in a sequence,
finding thus its optimal threshold values in the 0.5
- 0.6 range. We also note that false positives de-
tections tend to create spurious peaks in the people
count that are however often recovered in the im-
mediate/next following prediction/frame.
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Table 3: Evaluation metrics of the Object Detection (OD),
Density Counter (DC), and PPE Detector modules, mea-
sured on the corresponding test sets. The mean Average
Precision (mAP) measures the average precision of the de-
tection when varying the score threshold in detection-based
modules (OD, PPE). For DC, MAE and RMSE measure
the counting error, while SSIM measures the quality of the
predicted density map.

OD PPE DC
mAP 1+ mAP{1 MAE] RMSE]| SSIM 1

0.836 0.606 92.28 365.4 0.79

5.2. Counting by Density Estimation

Given that the annotation procedure for label-
ing datasets having these characteristics is highly
costly in terms of manual human effort, we ex-
ploited the test subsets of the already publicly avail-
able datasets described in Section 4.

We report in Table 3 the obtained results in terms
of Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). It is worth noting that, as
a result of the squaring operation, RMSE effectively
penalizes large errors more heavily than small ones,
thus more suitable when outliers are particularly
undesirable. Furthermore, we also compute the
Structural Similarity Index Measure (SSIM) [37] to
measure the density map quality, which measures
images’ similarities under three aspects: brightness,
contrast, and structure. The value of SSIM is in the
[0, 1] range: the larger it is, the less distortion of the
image is measured. Finally, in Figure 6 we show
some examples of the considered images, together
with the ground truth and the predicted density
maps.

5.8. Detecting Pedestrians and Personal Protection
Equipment

We validate the detection of pedestrian and worn
PPE, performed respectively by the Object Detec-
tor and the Personal Protection Equipment De-
tector modules. For the former, we focus on the
five test sequences of our Crowd VisorPisa dataset,
whereas for the latter, we consider the CrowdVi-
sorPPE test subset.

We evaluate the two modules using the mean Av-
erage Precision (mAP), a popular metric in measur-
ing the accuracy of object detectors that computes
the average precision value for recall values span-
ning 0 to 1. We set an Intersection over Union
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Figure 4: Evaluation of counting by instances functionality of our framework, considering the single still frames of the five
test sequences of our CrowdVisorPisa dataset. In the first column we report the number of people located by our detector,
varying the detection thresholds. In the second column we show the counting errors and the best MAE obtained with a specific

detection threshold.
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Figure 5: Evaluation of the counting by instances functionality of our framework, taking into account also the tracker module.
We consider the five test sequences of our CrowdVisorPisa dataset, reported one for each row. Columns represent the results
obtained for three different detection thresholds. For each plot, we show the pedestrians that enter and exit from the scene,
relying on the tracklets describing the recognized identities of the people instances over time.
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Figure 6: Some samples of the test subsets exploited for the evaluation of our counting by density estimation functionality,
together with the ground truth and the predicted density maps. Integrating these density maps, i.e., summing up the pixel
values, we can obtain an estimation of the people present in the image.

(IoU) threshold of 0.5 to assess whether a predic-
tion is a true positive or a false positive. We report
the obtained results in Table 3, showing that our
modules can reach a mAP of 0.836 and 0.606 for the
pedestrian detection and the PPE detection tasks,
respectively. Figure 7 shows some predictions of
PPE detections on the CrowdVisorPPE test set.

5.4. Measuring Social Distances

To establish a correspondence between the ac-
quired image and a planar metric surface onto
which objects (i.e., pedestrians) positions can be
evaluated, we used a known-sized manhole in the
monitored scene to calculate the homography ex-
ploited to unwarp pixel position into real-world rel-
ative locations. The homography reprojection is a
closed-form mathematical process, so no previous
training is needed.

Our measuring results can be seen in Figure 8:
in the examples shown, the precision of measure-
ments is relative to both the initial calibration (i.e.,
manhole real size mapped to its projection on the
input image) and the accuracy of the pedestrian
bounding boxes (i.e, rectangles) predicted by the
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object detector. We measured the manhole with
an upper bound precision of 1 cm and a pixel area
error of about 3 cm, thus confining the overall mea-
surements below the 10 cm error. For pedestrian
positions, we used the midpoint of the lower edge
of its predicted bounding box. As can be seen from
the gridded unprojection of the examples, results
are consistent within the above error gap.

6. Conclusion

In this work, we presented a modular framework
based on Computer Vision and Al technologies, de-
ployed in a real use-case scenario on a low-cost off-
the-shelf embedded platform and aimed at moni-
toring human activities in critical conditions. As
an effective setup, we implemented a set of visual-
based modules for pedestrian detection, tracking,
aggregation counting based on instances and den-
sity maps, social distancing calculations, and per-
sonal protection environment detection. Specifi-
cally, we trained artificial neural models with pub-
licly available and, for the purpose of the physical
device installation, custom datasets; at the same



Figure 7: Examples of predictions of the PPE Detection module on our CrowdVisorPPE test set. PPE classes are color coded
(-, —, _), and the detection score is reported in parenthesis.

Figure 8: Examples of detections and distance warnings under different lighting conditions. Each of the eight images represents,
in its left side, pedestrians detected and tracked in the example scenario, while showing on its right side their 2D projection
on a virtual planar surface obtained through homography, with a reference 1-meter-spacing overlay grid. Green color means a
safe placement, red color indicates violations of the 1-meter physical distance rule.
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time, we applied a transfer learning approach to
expand detection capabilities by using computer-
generated training imagery. To test the effective-
ness of our solution, we monitored a known place
in Italy during the restrictions imposed from the
COVID-19 pandemic, proving satisfactory accuracy
in terms of detection, counting, and physical dis-
tance measurements. In addition, the modularity
of our framework allows us to embed enhanced or
more target-specific plug-ins in novel system install-
ments.

0.1. Future Work

We plan in the next iteration of this project to
develop an algorithm that can automatically select
the best counting modality between instancing and
density map, which is currently chosen manually
by the user. At the same time, we will try to inte-
grate and expand modules with further visual anal-
yses, like gesture/posture recognition, and the as-
sessment of appropriate PPE wearing. Finally, we
will attempt to apply a transfer learning approach
to predict physical distances among people by using
an automatically labeled computer-generated train-
ing set based on a rendering engine simulation.
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