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Abstract Recent studies on maritime traffic model the interplay between ves-
sels and ports as a graph, which is often built using automatic identification
system (AIS) data. However, only a few works explicitly study the evolution
of such graphs and, when they do, generally consider coarse-grained time in-
tervals. Our goal is to fill this gap by providing a conceptual framework for
the fine-grained systematic study of maritime graphs evolution. To this end,
this paper presents the month-by-month analysis of world-wide graphs built
using a 3-years AIS dataset. The analysis focuses on the evolution of several
topological graph features, as well as their stationarity and statistical corre-
lation. Results have revealed some interesting seasonal and trending patterns
that can provide insights in the world-wide maritime context and be used as
building blocks toward the prediction of graphs topology.
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1 Introduction

Maritime transportation represents 90% of international trade volume and
plays a paramount role in today’s economy, in terms of cargo shipping, passen-
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ger transportation, leisure navigation, and fishing operation [36]. Globalization
and multiple modal transportation of goods in the shipping industry resulted
in a massive extension of the maritime vessel route network. The study of
vessel movements is a well-established source of information to understand
the role of maritime routes and ports in economic, social, and environmental
contexts. These studies include maritime traffic control and prediction [30], hu-
man migration flows [16], bioinvasion [20] and maritime piracy [35]. However,
such a role cannot be adequately unraveled by looking at ports and routes in
isolation; instead, they must be put in relation to one another. This allows the
study of the interplay of all the components in the complex maritime network,
and it is even more important for understanding the evolution over time of
those interactions.

A central concept for the analytical study of vessel routes is the Global
Shipping Network (GSN), in which nodes are ports and edges are the routes
between ports of cargo ships (Figure 1). Since the automatic identification
system (AIS) for vessels was made mandatory in 2004 [13], there has been a
surge of studies on the GSN and other maritime networks that use such data.
Many works have studied GSN-like network according to graph theory [37,34,
33], but only a few of them analyzed the network in terms of its evolution
over the years [26,28]. Also, those works which studied the network evolution
used private data and performed exciting but high-level and coarse-grained
analysis, such as in [12].

Fig. 1: World wide cargo routes in 2019 extrapolated from the dataset used in
the paper. The nodes represent ports and the edges are voyages between two
ports
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The main goal of the analysis in this paper is to provide a systematic study
of the evolutionary aspects of GSN-like networks, with the purpose of identi-
fying recurrent patterns in their evolution. The analysis is based on a dataset
provided by an agreement with ExactEarth [15] and with a defined and well-
documented data model. This aspect is fundamental for the reproducibility of
our analysis and its expansion and updating of results when new data arrives.
Also, it considers the two necessary dimensions of time and layers (i.e., the
evolution of the network can be observed for multiple types of vessels, such as
cargo and passengers).

Such an ambitious objective has some inherent challenges that must be
tackled. First, the size of AIS datasets is usually large. For example, Ex-
actEarth alone claims to consistently track 165,000 vessels and over 7,000,000
AIS messages daily1. Analyzing such data over a long period of time typi-
cally requires large storage spaces and high processing capabilities. Second,
the purpose of any network analysis is to abstract the complexity of a system
in order to extract meaningful information that is not directly available when
the individual components are examined separately. Therefore, the definition
of a network that encompasses time information is a complex task. Suitable
approaches need to be carefully selected to study the evolving network.

The contributions of this work can be outlined as the following:

– We propose an approach that uses AIS data to extract connections between
ports derived from the vessels’ movements. From these connections (or
voyages), we build GSN-like networks in which the vertices correspond
to the ports, whereas the edges or links correspond to the vessel voyage
between two different ports. In addition, each edge has a semantic defined
by the vessel types.

– We applied the aforementioned approach to a dataset containing 3 years
of world-wide AIS data provided by ExactEarth [15];

– We study several topological properties of the temporal graphs generated
from vessels’ movements and how these features evolve over time. Specifi-
cally, we investigate features relative to graphs dimension, ability to form
clusters, and geographical spatiality.

– We investigate the aspect of stationarity of the time series of the topological
properties of the vessels’ voyage networks over the time and discuss the
obtained insights.

– We perform a correlation analysis of the topological properties extracted
from the graphs generated by the different vessel types (e.g., cargo, passen-
ger, fishing, tanker) routes. This study allows the identification of graph-
based properties that are correlated among the different vessel type routes.

In our previous work [5], we analyzed an open source AIS dataset pro-
vided by MarineCadastre.gov and we focused on presenting the graph model-
ing and building process. This work extends the analysis by using a much larger
database containing world-wide AIS messages and provides a deeper analysis

1 https://www.exactearth.com/products/exactais
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of the graph topological features, including their potential stationarity and
correlation. The rest of the paper is organized as follows. Section 2 discusses
related works. Section 3 defines some concepts used through the paper and
describes our approach for deriving time-series of topological properties from
graphs based on vessels’ visits to ports.

We perform the analysis of the graphs time-series in Section 4 and their
stationarity and correlation in Section 5. Section 6 draws conclusions and
discusses future works.

2 Related Works

The work done in [22] is one of the first to study the concept of GSN as a
complex network. They use AIS information about the itineraries of 16363
ships of three types (bulk dry carriers, container ships, and oil tankers) during
2007 to build a network of links between ports. The work of [22] shows that the
three categories of ships differ in their mobility patterns and networks. Their
results show that container ships follow regularly repeating paths, whereas
bulk dry carriers and oil tankers move less predictably between ports. They
also show that the network of all ship movements possesses a heavy-tailed
distribution for the connectivity of ports and the loads transported on the
links with systematic differences between ship types [22].

The work of [26] also uses a sample of the Lloyds database with the world
container ship fleet movements from Chinese ports from the years of 2008 to
2010. Their work aims to look at changes in the maritime network before and
after the financial crisis (2008-2010) and analyze the extent to which large
ports have seen their position within the network change. The authors show
how the global and local importance of a port can be measured using graph
theory concepts. They also show that the goods transportation network was
contracted concerning port throughput, but no contraction in the main hub
ports’ distribution capacity was found [26]. Finally, the authors show that
there are new port regions in the entrance and exit of the Panama Canal, and
there are several significant business opportunities in that region.

A study of topological changes in the maritime trade network is shown
in [25]. The authors propose two new measures of network navigability called
random walk discovery and escape difficulty. Their results show that the mar-
itime network evolves by increasing its navigability while doubling the number
of active ports. The authors suggest that unlike in other real-world evolving
networks studied in the literature up to date, the maritime network does not
densify over time, and its effective diameter remains constant [25].

In [12], the author investigates the degree of overlap among the different
layers of circulation composing global maritime flows. His work uses several
methods from complex network analysis to understand the dynamics affecting
the evolution of ports and shipping. The results show a strong and path-
dependent influence of multiplexity on traffic volume, range of interaction, and
centrality from various perspectives (e.g., matrices correlations, homophily,
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assortativity, and single linkage analysis) [12]. When growing the network and
concentrating the analysis around large hubs over time, results show that the
traffic distribution is place-dependent due to the reinforced position of already
established nodes [12].

The work of [37] builds a GSN using the 2015 AIS data of the world with
multiple spatial levels. Their process mainly consists of five steps, where the
first three generate the network nodes, and the last two create the network
links. The work of [37] applies the Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) to detect where ships stop and cross this
information with terminal candidates of ports. A directed GSN is generated
with the trip statistics between two nodes as the edges. Their work evaluates
features such as average degree and betweenness centrality of each node, av-
erage shortest path length between any two nodes, and community clusters of
the GSNs.

Following a similar idea of building GSNs, but with focus on anomaly de-
tection, the work of [34] provides a mechanism that classifies vessel behavior
in normal and abnormal, using historical information about similar vessels
that operate in a particular area. In [34], the authors identify waypoints (i.e.,
a region of interest for a given application) that characterizes the operations
and the sort of movement patterns that they follow (i.e., the nodes). As edges,
the work of [34] uses the subtrajectories that link two waypoints, using the
extracted features of those subtrajectories for analysis. They identified each
edge by the subtrajectory that links two ways points. Features of each edge
are generated using a trajectory mining library introduced by [14]. Their anal-
ysis tries to detect outliers from the subtrajectory features (e.g., course over
ground, speed over ground, etc.) and using transition probabilities as the edges
of the network. In a similar way, [10] presented an approach to learn automat-
ically and represent compactly commercial maritime traffic in form of a graph,
whose nodes represent clusters of waypoints, which are connected together by
a network of navigational edges. The main objective of the work in [10] is
representing the traffic motion using graphs and evaluating how graphs could
be utilised for motion prediction.

In the work [39], the authors present a novel approach to extract maritime
routes from AIS data automatically. Their method simplifies single AIS trajec-
tory data using the Douglas-Peucker algorithm to compress redundant infor-
mation and find graph nodes where vessels perform relevant direction changes.
In a further step, their algorithm determines the connectivity of nodes using
the vessel trajectories, linking nodes to form a coherent chain modeled as a di-
rected graph. Their results show a study case in the Qiongzhou Strait (China),
where the raw and the simplified strategies are compared. The simplified ver-
sion of the trajectories extracts the most relevant direction change actions and
declutters the view of the traffic in the Qiongzhou Strait. The method pre-
sented in [38] also proposes a maritime route extraction method based on AIS
data. Their method transforms the vessel’s trajectory into a ship trip seman-
tic object (STSO). The STSO is further integrated into the nodes and edges
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of a directed maritime traffic graph to understand the shipping routes. Their
evaluation analysis is restricted to a local region of the globe.

From a computational perspective, recent works propose to use big data
and streaming analytics frameworks (such as Spark and Flink) to find routes
[40], extract high-level representations and evaluate local maritime traffic [17],
and integrate AIS with other environmental data [31,32]. For example, [40]
proposes a novel algorithm named ROTA that uses historical AIS positional
data and port geometries to obtain maritime “patterns of life” at a global
scale. In [17], the authors propose a parallelized method for the automatic
reconstruction of a network reflecting the maritime traffic using AIS data that
can be used in vessel routing and voyage planning. The framework named
SPARTAN is described in [31] with the objective of performing real-time se-
mantic integration of big mobility data with other data sources. SPARTAN’s
main goal is to provide enriched trajectories in the RDF (Resource Descrip-
tion Framework) format that can be exploited by higher-level analysis tasks,
such as link discovery between the data sources. In a similar way, the platform
called CRISIS shows an agile data architecture for real-time data represen-
tation, integration, and querying situations over heterogeneous data streams
using RDF. Its goal is to improve knowledge interoperability and they apply
the framework to the maritime ship traffic domain to discover real-time traf-
fic alerts by querying and reasoning across multiple streams. Differently from
SPARTAN, CRISIS does not use parallel processing frameworks to query RDF
data. These approaches yield huge advancement in terms of the processed
amount of data and performance of on-line and streaming with respect to tra-
ditional data management techniques. However, the scope of this paper is to
statically analyse trends and patterns in a series of snapshots generated from
historical data. Therefore, we have used in-memory computation techniques
to simplify the implementation of the processing pipeline and focus on the
analysis of the results.

In summary, the related works can be categorized into four aspects re-
garding the use of graph theory for the analysis of vessel movement patterns.
The first aspect considers the data source provider. All works found either use
Lloyd’s database or AIS data. The second aspect lists the focus of the paper.
We also identified whether the works evaluated the graph evolution over time.
Finally, the data scope (local or global data) of the data used was listed. Table
1 summarizes how state of the art in the graph analysis with vessel data.

Differently from [22,26,25,12], our work use AIS data to determine ves-
sel routes. Differently from [37], which uses stop points as nodes to evaluate
centrality, shortest-path, and communities like, or using waypoints as nodes
and being focused on anomaly detection, like [34], we use the ports as nodes,
and we evaluate the evolution of the network as our primary task. However,
our approach is different from what is done in [10] since their nodes represent
clusters of waypoints and they do not focus in an analysis of the network over
time. We also focus on evaluating edges generated by several trips obtained
using AIS message, instead of creating graphs for single trips as in [39]. The
works [40,17] do not focus in the analysis over time and we focus in global
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Reference
Data
source

Distributed Focus
Analysis
over time

Data
scope

Kaluza et. al, 2010 [22] Lloyd’s 7 Network analysis 7 Global

González Laxe
et al., 2012 [26]

Lloyd’s 7 Network analysis 7 Local

Bartholdi et al., 2016 [2] Not specified 7 Connectivity index 7 Global

Kosowska-Stamirowska
et al., 2016 [25]

Lloyd’s 7 Network analysis 3 Global

Ducruet, 2017 [12] Lloyd’s 7 Network analysis 3 Global

Zhang et al., 2018 [39] AIS 7 Route extraction 7 Local

Coscia et al., 2018 [10] AIS 7 Network Analysis 7 Local

Soares et al., 2019 [31] AIS 7 Data Integration 7 Local

Varlamis et al., 2019 [34] AIS 7 Anomaly detection 7 Local

Wang et al., 2019 [37] AIS 7 Network analysis 7 Global

Zissis et al., 2020 [40] AIS 3 Data Integration and 7 Local
Link prediction

Santipantakis et al., 2020 [31] AIS 3 Data Integration 7 Local

Filipiak et al., 2020 [17] AIS 3 Network Analysis 7 Local

Yan et al., 2020 [38] AIS 7 Route extraction 7 Local

Table 1: A summary of the related works regarding the four evaluated aspects.

instead of local analysis. The objectives of [31,32] is data integration using
RDF, and in the case of [31], using distributed and parallel frameworks, while
ours focus is analysing the evolution of networks of voyages of vessels between
ports. We also do not focus on parallel and distributed processing, although
our methods are parallelizable. To the best of our knowledge, this work is
the first to use AIS and graph evolution analysis to evaluate worldwide vessel
traffic information over time.

3 Definitions and Methodology

Vessels report their location through AIS messages while navigating. A vessel
sends AIS messages with a frequency that varies from a few seconds to a few
minutes, depending on the type of message, the vessel position, and the vessel
activity. When they are underway, they may send AIS messages every 2 to
10 seconds, while when they are at anchor, the time window can increase to
3 minutes [37]. Positional information extracted from AIS messages can be
interpreted as a representation of the spatial-temporal movement of a trav-
elling vessel. We are interested in this spatial information with the intent of
understating when a vessel is visiting a port.

Our methodology is depicted in Figure 2. We build the sequence of vessels’
voyages by merging subsequent vessel visits to ports. From those sequences, we
create multiple non-overlapping snapshot graphs (or networks), each consider-
ing a specific time window (e.g. one month). By extracting several topological
features from each snapshot graph, we create a set of time-series to be able
to study the evolution of the graphs using complex network concepts. Even
if studying the snapshot graphs of the entire dataset has some interest, we
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Fig. 2: Data analysis process: from raw data to graphs

have chosen to create multiple sets of snapshot graphs, one for each most
represented type of vessel. In this way, we can highlight particular trends or
patterns for specific vessel types that instead would be hidden if considering
the entire dataset.

Graphs have some properties useful to unravel interesting information
about the interaction and dynamism between two and more entities. In partic-
ular, in the context of a voyages graph, the topological properties of the graph
can help us identify relevant characteristics within a network that would not
emerge if the individual entities were examined separately [12,25]. Topological
properties can be applied to the network as a whole or to individual nodes
and edges. In particular, for our study, we are interested in global network
properties and their evolution.

Building the set of voyage graph snapshots directly from the original AIS
data would be possible, but also very impractical. AIS data inevitably contains
noise due to many reasons, including malfunctions, errors in transmission, and
malicious use. In our context, such noise and mistakes translate into incorrect
voyages, which requires a phase of data cleaning. Therefore, we applied an
incremental approach to process the data which has the following advantages:
(i) graph building is very fast, as the set of voyages is basically an edge list; (ii)
the costly cleaning process is done only once, and from the clean collection of
voyages it is possible to build multiple graphs; and (iii) it might be interesting
to study visits and voyages without transforming them into a graph. The next
sections explain more in detail our methodology.

3.1 AIS data pre-processing

At first we employ a pre-processing of the AIS messages with the aim of
obtaining those records that have happened inside a port.

Definition 1 (AIS Message): An AIS Message m is a tuple (e, x, y, t, c) that
represents the GPS coordinates (x, y) at a time stamp t assigned to a vessel e
of type c. We define Mais as the set of all original AIS messages.

In Definition 1, we consider the Maritime Mobile Service Identity (MMSI)
as the vessel identifier e. However, AIS datasets usually have a lot of noise and



Understanding Evolution of Maritime Networks from AIS Data 9

much information is redundant. Therefore, from the original set Mais we create
a new set Mclean from which we remove duplicates, incomplete and incorrect
messages. Incorrect messages are those syntactically valid but with invalid
semantics in relevant fields (typically position or vessel type). For example,
several incorrect entries had a vessel identifier whose value is composed only by
zeroes, which may indicate a placeholder for missing MMSI and thus prevent
a correct identification of the vessel.

Definition 2 (Port): Given P as the set of all worldwide ports, a sea port
p ∈ P is represented as a tuple (id, x, y), where x and y are the latitude
and longitude coordinates of its geographical center, and id is the code that
identifies the port. We also define the spatial function buffer(p, r) that defines
a circular area of radius r centered on the coordinates of port p.

Depending on r, there could be overlapping port areas such that the same
AIS record results transmitted inside multiple ports. In these cases, we dis-
criminate by clustering the ports whose regions overlap and assign this cluster
an unique port identifier.

Messages in Mclean are then spatial filtered with the clustered ports re-
gions, in order to create a new set Mport that contains only those messages
transmitted inside the port areas defined by buffer(p, r),∀p ∈ P . Also, we
add the indication of the port identifier to each message in Mport.

3.2 Vessel voyages

From Mport we then compute the set of visits V . We assume Mport to be sorted
by time according to the time stamp of the AIS messages.

Definition 3 (Visit): Let Z be the set of all sub-sequences of consecutive
messages ze,p = m1 . . .mk and ze,p ⊂ Mport such that each message m ∈ ze,p
refers to the same vessel identifier e and port p. We then define a visit v ∈
V for each ze,p ∈ Z as the tuple (p, e, tstart, tend) where tstart and tend are
respectively the minimum and maximum timestamp for all messages in ze,p.

From V we extract the set of voyages. The underlying assumption is that
given a sorted set of visits, we record a voyage from po to pt for a vessel e if
the vessel is seen at the port po at time t0 and at the port pf at time t1 (with
t1 > t0) and there were no other visits to other ports in the meantime.

A possible limitation is that we register a visit when a vessel is passing
through the buffer area of a port. Also, we do not put any limit on the time of a
visit. However, the ports clustering, discussed above, mitigates these problems:
if a vessel passes through several nearby ports, it counts as a single visit.

Definition 4 (Voyage): Given R as the set of all vessel voyages, a voyage
r ∈ R is a pair (v1, v2) of consecutive visits in V for the same vessel e.
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The ports of v1 and v2 are called respectively origin and destination ports.
The duration of a voyage is the time of the last visit of e in the origin port and
the time of first visit in the destination port. We set the length of a voyage
by computing the orthodromic distance (the minimum distance between two
points on a sphere) in kilometres between the starting and arrival ports. We
then removed those voyages whose ”virtual” speed exceeds 60 knots (which is
still very high speed, but we left some margin to cope with a possible degree of
approximation in the data). Such invalid voyages are generated when the same
MSSI is registered for different vessels, for instance due to errors in reception
or sending of the signal. We did not remove the slow speed voyages as we
cannot estimate (using the available data) how long would take the actual
maritime route between two ports with respect to the orthodromic distance.

It is important to mention that we do not detect loops (i.e. when a vessel
leaves and returns back to the same port). In fact, we consider a loop as a
(possibly long) visit. We designed the procedure in this way because the time
and computational power needed to detect loops is high and loops detection
would not have brought any relevant insight for our studies. Indeed, loops are
not interesting for our analysis as we focus on the interplay between different
ports and the global movements of vessels around a large geographical area,
whereas loops are relevant for studying local behaviours. Further, as a matter
of fact, detecting loops would mean that also the area outside ports must be
counted as a ‘port’, actually forcing the processing of all AIS messages. Such
a huge task would have increased the processing time dramatically and made
our entire analysis not feasible.

3.3 Time-series creation

From the clean set of voyages we build a graph by considering ports as nodes
and the voyages as edges.

Definition 5 (Voyage Graph): A voyage graph is a graph V G = (N,L) built
according to a set of voyages R′ ⊂ R, in which N contains all the ports in R′

and L contains a single directed edge for each unique pair of ports in R′. With
each edge l ∈ L is associated a positive number w defined as the count of all
unique voyages between the ports of l.

The resulting graph is then a directed graph built by essentially collapsing
a multi-graph into a directed weighted graph. By using the above definitions
it is possible to create different graphs by tuning the content of R′. In this
paper, we create set of graphs for consecutive non-overlapping time windows
and filtered by vessel types.

A time-series is a collection of observations made sequentially over the
time [7]. In this paper we are interested in building time-series of topological
features of voyage graphs created with the methodology above. The idea is to
define a set of consecutive, non-overlapping time intervals to create the list of
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graphs on which to compute topological features, which in turn represents our
time-series.

Definition 6 (Voyage Graph Features Time-series) (VGT)

Let J be a set of topological features that can be applied on a directed
graph, and fj be the function that compute the feature j ∈ J . We discretize
the time into n equal disjoint intervals and create one graph g for each of
such intervals, such to have a set of snapshot graphs S = {g1 . . . gn}. Then,
Tj = { fj(g) | g ∈ S } is the set of timeseries corresponding to the given
feature j. Finally, the set of the voyage graph features time-series is defined
as VGT = {Tj | j ∈ J }.

3.4 Dataset

To build the graph we have used three years (2017-2019) of worldwide AIS
data provided by ExactEarth [15]. The full dataset contains around 2.5 Ter-
abytes of AIS messages and around 20 billions of records stored in a relational
database. Vessels visits (Definition 3) have been extracted from the database,
by running a spatial query. We used Python to develop several in-memory
scripts to compute graphs topological features. Graphs are stored in memory
as edge-lists. Since our focus is not on the performance of the processing, we
have not performed a formal analysis for robustness or scalability. The VGT
have been build with a time interval of a solar month, resulting in a total of 36
VGT for each considered vessel type and each topological feature. To model the
area of the ports we have used the World Port Index dataset [29] that contains
spatial information, including latitude and longitude, of all known seaports in
the world. The radius of the buffer function in Definition 2 has been set to be
3 nautical miles (around 5 km). This value was largely used to define coun-
try’s territorial waters limit [3]. However, regardless of legal implications, our
objective here is to define a reasonable area that could approximate the real
visits of vessels to a given port.

4 World-wide VGT Analysis

This section discusses our empirical analysis of the computed VGT. In the
first subsection, we provide an analysis of the amount of data for each vessel
type (i.e. layers) and its distribution over time. The output of this analysis
serves to limit the amount of vessels type considered in the remainder of the
manuscript. The second subsection discusses the size and the geographical
extension of the VGT. The third and final subsection studies the behaviour of
several topological features of VGTs to assess their connectivity properties.
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vessel type unique vessels count unique voyages count

cargo 37.03% (28.7K) 6.6% (1.87M)
tanker 15.76% (12.2K) 3.36% (951K)
special 9.83% (7.63K) 13.2% (3.74M)
tug tow 9.92% (7.7K) 13.65% (3.86M)
other 6.26% (4.86K) 12.1% (3.42M)
fishing 6.0% (4.66K) 47.93% (13.6M)
passenger 3.84% (2.98K) 3.16% (893K)
sailing 3.74% (2.9K) 0.32% (89.2K)
military 0.99% (765) 0.18% (51.1K)
high-speed 0.83% (641) 0.68% (192K)
dredger 0.65% (504) 0.05% (13.2K)
wing-in-ground 0.5% (389) 0.32% (91.8K)
Total 100% (77.6K) 100% (28.3M)

Table 2: Percentage of unique vessels and voyages by vessel type in all the
dataset. Sorted by unique vessels value

4.1 Network layers

Diverse types of vessels transmit AIS data, and it is natural to assume that
the network of distinct types (layers) of vessels would be different. To identify
the vessel type, we used the type field of the AIS data, and their associated
description has been taken from the marinetraffic.com website2 (with minor
modifications). The statistics on the amount of data available for each vessel
type can be found in Table 2.

Interestingly, for cargo and tanker, a high percentage of unique vessels
corresponds to a lower percentage of total routes, while fishing vessels are
the opposite. Passenger vessels can be observed to have roughly the same
percentage of unique vessels and voyages. Such trends can be explained by the
fact that cargo and tanker vessels perform fewer but longer voyages concerning
fishing and passengers, mostly moving from and to nearby ports.

For the remainder of this study, we have considered only those vessel types
(layers) having a relevant amount of unique vessels and voyages count, namely:
(i) Cargo; (ii) Tanker; (iii) Passenger; and (iv) Fishing. We did not consider
the special or the other types as they contain many different types of vessels;
similarly, we did not consider the tug tow type as they usually perform very
short voyages between nearby ports, and therefore are not interesting in a
global world-wide analysis.

4.2 Network Dimensions

Networks order (number of nodes) and size (number of edges) are stable over
time for both LRVs and SRVs (Figure 4 and 5). It is interesting to notice how
the size and order of SRV networks is comparably smaller than LRV networks,
although they account for almost half of the total unique trips (Table 2). Still,

2 https://help.marinetraffic.com/
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Fig. 4: Order (number of nodes)

this confirms the fact that SRVs tend to perform shorter routes but with a
higher frequency.

Another essential metric for the maritime networks is the extension of their
geographical spatiality, as the distance between ports can be linked with var-
ious cost aspects such as fuel consumption, maintenance rates, and insurance
costs [12]. In addition, such a metric can give insights on whether certain vessel
types are more oriented toward short or long routes. The average orthodromic
distance between all the edges of the graph (Figure 3), as similarly observed in
[12], confirms the above hypothesis: cargo and tanker perform longer voyages
with respect to passenger and fishing vessels. Following these considerations,
in the context of this section, we refer to cargo and tanker vessels as long-
range vessels (LRV) due to their high average distances that variate few over
time. In contrast, we refer to fishing and passenger vessels as short-range ves-
sels (SRV) due to their low average distances that also show some variability.
Such variability is quite evident in passenger vessels, for which in the summer
months, we notice a neat decrease of the average distance.
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4.3 Networks Connectivity

Connectivity properties of a network are commonly used to evaluate a net-
work’s resilience when removing nodes or edges. In terms of vessel networks,
analyzing the connectivity properties and their evolution can help characterise
and compare networks composed of different vessel types and can serve as a
baseline for the accurate modeling of these networks. Our analysis focuses on
the comparison of different network topologies values (rather than their study
in isolation) in terms of different vessel types, by using complex network tools.

A relevant aspect in identifying cohesive subgroups of ports is the identifi-
cation of those ports that share a strong tie in the traffic for a particular vessel
type. The number of Strongly Connected Components (SCCs) is the number
of subgraphs in which any node is reachable by any other nodes, and which is
not connected to another subgraph [21]. Ideally, the number of SCC indicates
how much the graph represents a global scale activity (low SCC number),
rather than composed by a set of not connected and local activities (high SCC
number).

Surprisingly the average number of SCCs for the SRV and LRV networks
in the 3-years period is not so different (cargo: 187; fishing: 178; tanker: 168;
passenger: 161). However, LRV networks are composed of a giant SCC that
accounts for most of the nodes (>80%) on average over time, accompanied
by many small components often composed by just two nodes (see Figure
7). As expected, nodes are more evenly distributed among the SCCs for SRV
networks, in which the largest connected components account for just around
30% of the nodes on average.

From a geographic perspective, the LRV giant component spans world-
wide. Those ports that remain out of the giant component show a seasonal
trend with a clear difference from winter and summer periods (see Figure 6).

The number of bidirectional edges (i.e. given the nodes u and v, there exist
both the edges [u, v] and [v, u]) can be used as an indication about network
connectivity. A large fraction of bidirectional edges in a vessel network means
tight interactions between ports, indicating vessels inter-exchange from most
ports pairs. In LRV networks we notice a lower fraction of bidirectional edges,
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(a) January 2018 (b) July 2018

Fig. 6: Ports in the giant connected components (blue circles) vs ports outside
it (red crosses). During winter periods (left) several north-most areas are cut
out from the giant component, such as in the Greenland or the Great Lakes
of North America, whereas they are present during summer(right)

Feb-2017
Apr-2017

Jun-2017
Aug-2017

Oct-2
017

Dec-2017
Feb-2018

Apr-2018
Jun-2018

Aug-2018
Oct-2

018
Dec-2018

Feb-2019
Apr-2019

Jun-2019
Aug-2019

Oct-2
019

Dec-2019
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

cargo
fishing
tanker
passenger

Fig. 7: Fraction of nodes in the largest strongly connected component

with around 70% of the ports connected only in one direction. By compari-
son, the SRV networks have a large fraction and are more variable (around
40% on average, see Figure 8). It is also interesting to notice how the values
for the passenger networks form valleys during springs and autumns, while it
peaks during summers and winters, indicating a seasonal change in the traffic
patterns. LRV networks show a low fraction of bidirectional edges but a giant
connected component: this suggests that LRVs are likely returning to the same
set of ports but not directly, i.e., visiting other ports beforehand. This sug-
gests that LRV traffic is mostly composed of unidirectional routes organised
in ’circular’ patterns. These findings correspond with the results obtained by
similar research works [22]. By comparison, in SRV networks we observe many
SSCs with an even distribution of vessel, and a higher symmetry, suggesting
clusters of small local networks of predefined routes that are not connected to
each other.

The average shortest path in a graph is the minimum number of edges
to traverse from a node origin to a node destination averaged on all pairs
of nodes. The average shortest path is generally to measure the density and
robustness of networks. In the vessel network, a lower average shortest path
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Fig. 9: Average shortest path. As a matter of comparison, for similar size
random networks, we measured the following average shortest path: 4 for cargo,
2.5 for fishing, 3.7 for tanker, and 3.2 for passenger.

reveals more dense port connections. The average shortest path (computed
on the giant connected component) of LRV networks is around 5 for tankers
and 4 for cargo and is stable over time (see Figure 9). For SRV networks,
the average shortest path is low (around 3) for fishing vessels, and relatively
high and variable for passenger vessels, indicating a low-density graph affected
by seasonal trends. However, the largest component in fishing networks is
generally small compared to the number of nodes, so that such low values can
be a direct consequence of that.

The Average Clustering coefficient, is the average of local clustering co-
efficients of all nodes. The local clustering of each node in the graph is the
fraction of triangles (set of 3 vertices such that any two of them are connected
by an edge) that exist over all possible triangles in its neighborhood [21]. In
other words, this coefficient represents the tendency that two neighbours of a
port are neighbours themselves, and can serve to evaluate how many voyages
happen around the same set of ports. The results of the average clustering
coefficient of the network observed in Figure 10 show that cargo, tanker and
passenger networks create networks of higher density with respect to fishing
networks. The clustering coefficient variability is high for all the type of ves-



Understanding Evolution of Maritime Networks from AIS Data 17

Feb-2017
Apr-2017

Jun-2017
Aug-2017

Oct-2
017

Dec-2017
Feb-2018

Apr-2018
Jun-2018

Aug-2018
Oct-2

018
Dec-2018

Feb-2019
Apr-2019

Jun-2019
Aug-2019

Oct-2
019

Dec-2019

0.175

0.200

0.225

0.250

0.275

0.300

0.325

cargo
fishing
tanker
passenger

Fig. 10: Average clustering. As a matter of comparison, for similar size random
networks, we measured the following average shortest path: 0.01 for cargo, 0.05
for fishing, 0.02 for tanker, and 0.02 for passenger.

sels, but larger for SRV networks, and there is no noticeable pattern. Such
variability indicates that most of the connections are indeed volatile and their
existence can depend on specific local factors.

5 VGT Stationarity and Correlation

In general, time series analysis accounts for the fact that data points taken
over time may have an internal structure, such as auto-correlation, trend or
seasonal variation. In this section, we first study the VGT values focusing
on assessing the presence of stationary or seasonal patterns. Afterwards, we
go further in analyzing relationships between different VGTs exploring their
correlations.

Hereby we describe the experiments to observe potential stationary be-
haviour and correlation of VGT values. We perform such analysis for the types
of vessels considered in Section 4, and for the following topological features:
(i) order : number of nodes; (ii) size: number of edges; (iii) avg. clustering :
the average clustering coefficient; (iv) avg. degree: the average node degree;
(v) avg. shortest path: average shortest path between all pairs of nodes (vi)
avg. distance: the average orthodromic distance between all pair of nodes con-
sidering the center of the associated port. (vii) symmetry : the percentage of
symmetric links in the graph; (viii) #cc: the number of strongly connected
components; (iv) size largest cc: the number of nodes in the larges strongly
connected component.

The experiments conducted aim to answer the following research questions
comprehensively:

RQ1. Are the VGT stationary? A time series is said to be stationary
if its statistical properties do not change over time. In other words, it has
constant mean and variance, and covariance is independent of time. In this
research question, we focus on the analysis of the VGT values’ in what concerns
the presence of characteristics such as stationarity, trending, or seasonality in
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the time-series values. To address this research question, we use a statistical
test designed to comment on whether a time series is stationary explicitly.
Section 5.1 addresses this research question.

RQ2. Within the different spectrum of the vessel’s type, are the
VGT values correlated? The idea is to perform correlation analysis to verify
when two series of the same VGT feature are correlated or inversely correlated.
We use a statistical test to assess the relationship of the two different VGTs.
This research question is discussed in Section 5.2.

5.1 RQ1: Stationary behavior analysis

In this section, we investigate the (non) stationary behavior of the VGTs.
Stationarity is an important concept in the field of time series analysis with
tremendous influence on how the data is perceived and predicted [27]. From a
visual perspective, time series that do not show trends or seasonality can be
considered stationary. A common assumption when forecasting or predicting
the future values in time-series is that each point is independent [18]. The
best indication of this is when the values of past instances are stationary. This
means that there is no seasonal or trending behaviour observed in the data. In
other words, a time series is stationary if they do not have a trend or seasonal
effects. This means that the statistics calculated on the time series, such as the
mean, variance, and auto-correlation of the observations are consistent over
time [4]. Most statistical forecasting methods are based on the assumption
that the time series can be modeled approximately stationary through the
use of mathematical transformations [24]. Stationary time series are easier to
model since they represent a broader family of existing models of reality. Our
objective is to study which VGTs represent a stationary process or show any
trending or seasonal behaviour.

Different methods can be used to verify whether a time series is stationary
or not. In particular, statistical tests can be used to analyze if the requirements
of stationary are met or have been violated. Here, we adopted the Augmented
Dickey-Fuller Test [11,6] (ADF) which is widely used in literature to assess
the stationary property of time-series. The ADF test, also known as the “unit
root test”, uses an autoregressive model and optimizes an information criterion
across multiple different lag values [8]. The augmented Dickey–Fuller (ADF)
statistic, used in the test, is a negative number. The more negative it is, the
stronger the rejection of the hypothesis that there is a unit root at some level
of confidence. A unit root is a stochastic trend in a time series. Therefore, if
a time series has a unit root, it shows a non stationary pattern, having an
unpredictable behaviour.

In the ADF Test, the null hypothesis assumes that the time series has an
unit root (i.e. then not stationary), therefore showing some degree of time
dependency. The alternative hypothesis (rejecting the null hypothesis) is that
the time series is stationary, without time dependency. ADF statistic values
lower than a critical value (such as 1% or 5%) suggest rejecting the null hy-
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ADF crit. 5% p-value ADF crit. 5% p-value

Cargo Tanker
avg. clustering -2.880 -2.949 0.048 -2.886 -2.949 0.047
avg. degree -2.561 -2.949 0.101 -2.387 -2.951 0.146
avg. shortest path -2.451 -2.951 0.128 -6.312 -2.949 0.000
avg. distance -1.261 -2.954 0.647 -7.681 -2.949 0.000
#cc -6.508 -2.949 0.000 -5.423 -2.949 0.000
largest cc -5.280 -2.949 0.000 -2.502 -2.951 0.115
order -3.462 -2.951 0.009 -2.413 -2.949 0.138
symmetry -2.626 -2.949 0.088 -1.451 -2.951 0.558
size -3.936 -2.986 0.002 -2.619 -2.986 0.089

Fishing Passenger
avg. clustering -6.080 -2.949 0.000 -4.820 -2.949 0.000
avg. degree -4.547 -2.951 0.000 -4.012 -2.949 0.001
avg. shortest path -6.461 -2.949 0.000 -0.964 -2.961 0.766
avg. distance -4.705 -2.949 0.000 -1.102 -2.986 0.714
#cc -3.950 -2.951 0.002 -3.904 -2.957 0.002
largest cc -5.755 -2.949 0.000 -1.115 -2.961 0.709
order -2.910 -2.986 0.044 -2.002 -2.986 0.285
symmetry -3.132 -2.954 0.024 -5.871 -2.954 0.000
size -2.619 -2.986 0.089 -1.809 -2.981 0.376

Table 3: Augmented Dickey-Fuller (ADF) Test. Bold values indicate station-
arity

pothesis, i.e., the time-series is stationary. The ADF statistic above the critical
values suggests not rejecting the null hypothesis, meaning that the time-series
is non-stationary.

We report the ADF test results on the VGTs in Table 3. The table reports
the ADF-Statistic, the p-value, and the critical value for each VGT associated
to different vessel types. The bold lines represent the ones with the ADF
statistic lower than the critical value (5%), suggesting then that the time-
series has a stationary behavior. The lower is the ADF statistic and the lower
is the p-value, the more likely we have a stationary time-series.

By looking at the results, we can observe that for all the type of vessels, the
feature #cc seems to have stationary behavior. On the other hand, both the
VGT of size and order show a non-stationary behavior for most of the vessel
types. A trending possibly explains this on the number of active ports and
voyages performed over time. We also notice that for Passenger vessels, both
the VGT of avg. distance and avg. shortest path present very high p-values
demonstrating to have relevant time-dependency, 0.714 and 0.766 respectively.
We recall that when we have a high p-value, we fail to reject the null hypothesis,
the data has a unit root and is then non-stationary. This could indicate the
presence of some trend or seasonality for the avg. distance and avg. shortest
path of the passenger vessels voyages.

We studied these two time-series more in-depth by analyzing the auto-
correlation of these two time-series individually. Auto-correlation analysis is
perhaps one of the most compelling aspects to uncover hidden patterns in
time-series data and represents the similarity between observations as a func-
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Fig. 11: Autocorrelation of the VGT of Avg. distance from Passenger vessels

tion of the time lag between them [19]. Figure 11 shows, within 95% confidence
interval (represented by the solid gray line), the values of the AutoCorrelation
Function (ACF) for the avg. distance time-series with lags ranging from 1
month to 18 months. Interestingly, we can observe a seasonal period of 12
months for this VGT. In turn, for the VGT of avg. shortest path, we applied
a seasonal decomposition using a moving average to identify any presence of
trend in the time-series [9]. Figure 12 shows the components of the decompo-
sition. The first panel shows the observed values of the VGT in question, the
second panel exhibits the trend component, and finally the third panel shows
the seasonal component. From the trend component, we can notice a positive
trending for the VGT of avg. shortest path corroborating its non-stationary
characteristic.

Finally, regarding the stationary behaviour of the VGTs for the different
vessel types (i.e., cargo, fishing , passenger and tanker), our analysis suggests a
quite uniform binomial distribution (stationary/non-stationary). Indeed, this
characteristic regards half of the investigated VGTs (i.e 18 of the cases over
the 36 time-series analysed).

5.2 RQ2: Correlation Analysis

In this section, we tackle our second research question concerning the cor-
relation between the VGT. To this end, we performed a correlation analysis
to gain insights into how the VGT values derived from different vessel types
correlate. For example, we investigate how the networks created by the cargo
vessels are correlated to the ones made by passenger’s vessels. Also, we inves-
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tigate how the topological features of the networks correlates to each other
for networks of different vessel types. From a topological perspective, these
insights can help us understand the correlation between the voyages done by
the different types of vessels over time.

An important consideration for this experiment is that we are dealing here
with time-series data. When exploring relationships between two time series,
we want to observe whether variations in one series are correlated with varia-
tions in another or not. For a proper correlation analysis involving this type
of data, trends should be removed. For this purpose, we use a non-parametric
method called first differences, in which each point of the VGT is subtracted
by its previous point.

Then, after applying the first difference, we represent the time-series as a
vector with N-1 points, where N is the number of points of the time-series.
We used both Pearson and Spearman correlation coefficients to perform the
correlation analysis. Pearson seeks linear relationship [23], while Spearman
benchmarks monotonic relationship [1]. We also recall that both correlation
coefficients have values between -1 and +1, where -1 means an inverse rela-
tionship, +1 (perfectly related), and zero, indicating no correlation at all.

We report the VGTs with significant coefficient values displaying those with
the most positive and most negative correlations. Among the VGTs, the order,
size, and average degree were the ones exhibiting higher positive correlation.
Figure 13 shows the results for these three VGTs. As we can see, for all of them,
the cargo and tanker series are the ones with higher correlations, with Pearson
and Spearman coefficient higher than 0.79. This means that, over the years,
the cargos and tankers’ voyages show a linear and monotonic relationship
for the number of reached ports and the number of unique origin-destination
ports voyages. For the VGT for order and size we can also observe a relevant
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Fig. 13: Pearson (on the top) and Spearman (on the bottom) correlation co-
efficients for the VGT of order, size and avg. degree.

correlation between passenger and tanker vessels’ voyages, exhibiting Pearson,
and Spearman correlation higher than 0.53.

On the other side, when looking for negative coefficients, we did not observe
any high inverse correlation among the VGT values. Figure 14 shows the cor-
relation coefficients for the features #cc and largest cc, these two features were
the ones having lowest coefficient values. The results show a negative Spear-
man coefficient equals to -0,48 for the largest cc obtained from the tankers’
voyages and two other vessel types voyages, cargo, and fishing. This is an in-
teresting finding indicating an inverse relationship between the length of the
largest connected ports network created by tracing these types of vessels.

Figure 15 shows the pair-wise Pearson correlation for the topological fea-
tures (Spearman correlation is not shown as the results are essentially the
same). Most of the results are expected. The size of the larges connected
components negatively correlates with the total number of connected com-
ponents, with lower correlation values for the cargo network. This confirms
that the cargo network, and to a minor extent also the tanker network, rep-
resents worldwide operations, compared to local operations of the passenger
and fishing networks. Interestingly, the number of connected components also
negatively correlates with the average degree, with lower values for the fish-
ing networks. This reflects the poor connectivity properties of such a network,
with vessels that infrequently move between ports.

We can conclude this Research Question by highlighting the statistical cor-
relation between some VGT derived from the different vessels type. Regarding
positive correlation, the features size, order and avg. degree show a relevant



Understanding Evolution of Maritime Networks from AIS Data 23

cargo

fishing

passenger

tanker

1 0.14 0.14 -0

0.14 1 0.31 -0.31

0.14 0.31 1 0.25

-0 -0.31 0.25 1

#cc (Pearson)

1 0.06 0.14 -0.35

0.06 1 0.21 -0.39

0.14 0.21 1 -0.09

-0.35 -0.39 -0.09 1

largest cc (Pearson)

cargo fishing passenger tanker

cargo

fishing

passenger

tanker

1 0.19 0.15 -0.04

0.19 1 0.33 -0.29

0.15 0.33 1 0.19

-0.04 -0.29 0.19 1

#cc (Spearman)

cargo fishing passenger tanker

1 -0.01 0.13 -0.48

-0.01 1 0.21 -0.46

0.13 0.21 1 -0.13

-0.48 -0.46 -0.13 1

largest cc (Spearman)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 14: Pearson (on the top) and Spearman (on the bottom) correlation co-
efficients for the VGT of #cc and largest cc

avg. deg.

larg. cc

#cc

order

size

1 0.05 -0.21 0.53 0.89

0.05 1 -0.79 0.16 0.13

-0.21 -0.79 1 0.09 -0.09

0.53 0.16 0.09 1 0.85

0.89 0.13 -0.09 0.85 1

cargo
1 0.59 -0.44 0.48 0.89

0.59 1 -0.53 0.35 0.55

-0.44 -0.53 1 0.1 -0.23

0.48 0.35 0.1 1 0.82

0.89 0.55 -0.23 0.82 1

tanker

avg. deg.larg. cc #cc order size

avg. deg.

larg. cc

#cc

order

size

1 -0.01 -0.27 0.28 0.8

-0.01 1 -0.29 -0.08 -0.04

-0.27 -0.29 1 0.58 0.2

0.28 -0.08 0.58 1 0.77

0.8 -0.04 0.2 0.77 1

fishing

avg. deg.larg. cc #cc order size

1 0.13 -0.62 -0.21 0.29

0.13 1 -0.22 0.19 0.25

-0.62 -0.22 1 0.42 0.19

-0.21 0.19 0.42 1 0.83

0.29 0.25 0.19 0.83 1

passenger

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 15: Pearson correlation of several topological features for the various vessel
types



24 Emanuele Carlini et al.

similarity between cargos and tankers. While, the VGT values largest cc, for
the same two vessel types, present a slight negative correlation.

6 Conclusion

This paper presented an analysis of the evolution of networks of voyages of ves-
sels between ports, based on several topological features of the network (VGT).
The networks were built in a bottom-up and data-driven fashion, considering
three years of worldwide AIS data provided by ExactEarth. The empirical eval-
uation of the VGT shown that LRVs, such as cargos and tanker vessels, tend to
form well-connected giant strongly connected components that are relatively
stable over time; by comparison, the SRVs behaviour is more variable over
time and the resulting networks are more fragmented, with each component
well-connected even if small. The analysis of stationarity and correlation con-
firms these findings. In particular, among the topological features considered,
we have observed that half VGTs present characteristics of non-stationary,
therefore suggesting the presence of seasonal patterns. For example, we ob-
served that the average distance of the networks formed by passenger vessels
has a seasonal period of one year. Another interesting aspect addressed in this
work refers to the correlation analysis of the VGT values between the different
types of vessels. This study brought some insights into how the network built
by the voyages of different types of vessels present some correlated VGT values
in the years considered.

Several future directions can be considered to improve and expand upon
this work. First, the definition of the spatial area of ports can be improved to
increase the precision in voyages mining, in a way similar to the one performed
in [37], or using other spatial division techniques, such as the one based on
Voronoi partitions. Second, an in depth analysis of per-node graph features,
in contrast with the per-graph features of this paper could provide additional
elements to evaluate and model the evolution of maritime traffic. For example,
an accurate study of nodes centrality and ego networks would extract addi-
tional insights on the role of specific ports in the network. Third, the performed
analysis can guide the implementation of data-driven prediction mechanisms
to forecast the evolution of the networks using the large amount of AIS data
available.
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