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Abstract

In this work we report the activities of the Artificial
Intelligence for Media and Humanities (AIMH)
laboratory of the ISTI-CNR related to Healthcare
and Wellbeing. By exploiting the advances of re-
cent machine learning methods and the compute
power of desktop and mobile platforms, we will
show how artificial intelligence tools can be used
to improve healthcare systems in various parts of
disease treatment. In particular we will see how
deep neural networks can assist doctors from diag-
nosis (e.g., cell counting, pupil and brain analysis)
to communication to patients with Augmented Re-
ality.

1 Introduction

With the advent of the first impressive results coming from
Deep Learning methodologies and tools, the possibility
to embrace AI technologies in real life scenarios started
to become a practical opportunity for both research and
industrial communities. That was the first point in which
AI-enabled applications appeared in nowadays work and
entertaining life events, like smart recommendation systems
or image editing smartphone apps. At the same time, we
witnessed dramatic improvements in both software and
embedded system-on-a-chip (SoC) hardware components,
allowing powerful computer graphics capabilities as well as
object tracking on mobile devices. In general, advancements
were so impressive that even complex decision-making
frameworks as in a healthcare systems could benefit from
machine-generated solutions. More in particular, the op-
portunity to analyze microscopic biological images, make
diagnosis on several diseases based on magnetic resonance
data, or macroscopic phenotypes visual inspection, are
now reaching the medical community and considered to be
integrated into standard wellbeing processes.

Given the above, what follows is a gentle introduction to
our efforts to let AI help us in a research and industry-ready
healthcare connection.

2 Research for Wellbeing
Computer-assisted healthcare and wellbeing are part of our
main interest since the AIMH lab was created. Apart from
curiosity-driven initiatives, several governative projects have
been involved, including:

• AI4EU: A European AI On Demand Platform and
Ecosystem. Project activities include the design of
a European AI on-demand platform to support this
ecosystem and share AI resources produced in European
projects.

• AI4Media: A Centre of Excellence delivering next gen-
eration AI research and training at the service of Media,
Society and Democracy.

• AI-MAP: ALS-related pathologies and Precision
Medicine register.

Our practical commitments have included several topics,
among which the most important are shown in the following.

2.1 Cell Counting in Microscopy Images
Exploiting well-labeled training sets has led deep learning
models to astonishing results for counting biological struc-
tures in microscopy images [Balakrishnan e Thilagavathi,
2013]. However, dealing with weak annotations, i.e., when
multiple human raters disagree due to non-trivial patterns, re-
mains a rather unexplored problem. Stronger labels can be
obtained by aggregating and averaging the decisions given by
several raters to the same data [Arteta et al., 2016], but the
scale of the counting task and the limited budget for labeling
prohibit this. As a result, it is crucial to make the most with
small quantities of multi-rater data. To this end, we propose a
two stage counting strategy in a weakly labeled data scenario
[Ciampi et al., 2021] [Ciampi et al., 2022]. First, we detect
and count the biological structures, and in the second step, we
refine the predictions, increasing the correlation between the
scores assigned to the samples and the agreement of the raters
on the annotations. We assess our methodology on a novel
dataset comprising fluorescence microscopy images of mice
brains containing extracellular matrix aggregates named per-
ineuronal nets. We demonstrate that we significantly enhance
counting performance, improving confidence calibration by
taking advantage of the redundant information characterizing
the small sets of available weak labels.



Figure 1: Counting dataset and pipeline. Top row: a sample from the multi-rater subset (PNN-MR, labeled by 7 raters), the color-encoded
raters and the corresponding Jaccard Index between the PNN sets found by each rater. Bottom row: we model the task as a two-stage process.
In the first one, we detect the objects exploiting a localization model fθ , previously trained on a large collection of dot-annotated images
that may have weak labels. In the second stage, we employ a scorer model gθ that assigns to the objects localized in the previous step an
“objectness” score, which we correlate with the pattern uncertainty quantified by the agreement’s level. Image Courtesy of [Ciampi et al.,
2021].

2.2 Detect Frontotemporal Dementia
Behavioral variant frontotemporal dementia (bvFTD) is a
neurodegenerative syndrome whose clinical diagnosis re-
mains a challenging task especially in the early stage of the
disease. Currently, the presence of frontal and anterior tem-
poral lobe atrophies on magnetic resonance imaging (MRI)
is part of the diagnostic criteria for bvFTD. However, MRI
data processing is usually dependent on the acquisition de-
vice and mostly require human-assisted crafting of feature
extraction [McCarthy et al., 2018] [Möller et al., 2016]. Fol-
lowing the impressive improvements of deep architectures, in
[Di Benedetto et al., 2021] we report on bvFTD identification
using various classes of artificial neural networks (see Figure
2), and present the results we achieved on classification accu-
racy and obliviousness on acquisition devices using extensive
hyperparameter search. In particular, we will demonstrate the
stability and generalization of different deep networks based
on the attention mechanism, where data intra-mixing confers
models the ability to identify the disorder even on MRI data
in inter-device settings, i.e., on data produced by different ac-
quisition devices and without model fine tuning, as shown
from the very encouraging performance evaluations that dra-
matically reach and overcome the 91.0% value on the AuROC
and balanced accuracy metrics.

2.3 Diagnose by Pupil Analysis
Pupil dynamics alterations have been found in patients af-
fected by a variety of neuropsychiatric conditions, including
autism [Nyström et al., 2018]. Studies in mouse models have
used pupillometry for phenotypic assessment and as a proxy
for arousal [Artoni et al., 2019]. Both in mice and humans,
pupillometry is noninvasive and allows for longitudinal ex-
periments supporting temporal specificity; however, its mea-

sure requires dedicated setups. In [Mazziotti et al., 2021],
we introduce a convolutional neural network that performs
online pupillometry in both mice and humans in a web app
format (see Figure 3). This solution dramatically simplifies
the usage of the tool for the nonspecialist and nontechnical
operators. Because a modern web browser is the only soft-
ware requirement, this choice is of great interest given its
easy deployment and setup time reduction. The tested model
performances indicate that the tool is sensitive enough to de-
tect both locomotor-induced and stimulus-evoked pupillary
changes, and its output is comparable to state-of-the-art com-
mercial devices.

2.4 Human Body Tracking
We know that a good communication from our own doctor
to us is crucial in understanding a particular illness that is af-
fecting the patient. For most localized diseases it is important
to identify the part of the body that is involved and, with the
help of medical imaging, picture out the lesion itself. This is
relatively simple with 2D images like X-rays (e.g., bone in-
jury), but it became very complicated whenever 3D parts have
been acquired: 2D slices of the volume are shown, making it
difficult for the patient to understand the whole figure.
In this context, we believe that showing the whole recon-
structed 3D model (e.g., bones or internal organs) can help
people understand their condition. We push the experience
by visualizing the model anchored to patient’s body that is
tracked in real time: by using Augmented Reality in both
desktop or mobile devices, patients can then explore their
body condition and directly look at the disease, even during
its evolution in time. In addition, we exploit recent browser
capabilities to run neural network computations to empower
both doctors and patients to execute complex analysis on



Figure 2: Architectures of the evaluated networks for bvFTD identification. Starting from the simple Logistic Regressor (a), we explored
various neural models, considering the Multi-Layer Perceptron (b), 3D Convolution (c), and the more recent Visual Transformer (d), MLP-
mixer (e), and gMLP (f). In each case, the input 3D medical image is flattened or tokenized before entering the actual network. For
region-based classification, each network is replicated (with an independent set of weights) after region extraction, and their output is then
linearly processed for the final classification label (g). Image Courtesy of [Di Benedetto et al., 2021].

Figure 3: Pupillometry dataset, CNN architecture, and perfor-
mances. A, Examples of images taken from the dataset. The first
image depicts a head-fixed mouse with dark pupils, the second
one is a head-fixed mouse with a bright pupil, during two-photon
microscope sessions. The last image is a human eye taken dur-
ing experiments wearing virtual reality goggles. B, The 64 exam-
ples of data augmentation fed to CNN. The images are randomly
rotated, cropped, flipped (horizontally or vertically), and changed
in brightness/contrast/sharpness. C, CNN architecture with an en-
coder–decoder “hourglass” shape. The encoder part comprises a se-
quence of convolutional layers. Starting from the last encoder out-
put, the decoder part iteratively upsamples and fuses feature maps
with corresponding encoder maps to produce the output pixel map.
The pixel probability map and eye/blink probabilities are computed
by applying the sigmoid activation to the network outputs in an
element-wise manner. Image Courtesy of [Mazziotti et al., 2021].

medical images (see Numel.AI in the following Section).

3 Applications towards Industry and Society
We concentrated our efforts in providing practical usages of
our research results by providing open-source projects, as de-
scribed in the following. To our hope, these frameworks will
involve both research and industry communities to cooperate
in a shared playground.

MEYE
Alteration of pupil dynamics is an important biomarker that
can be measured noninvasively and across different species.
MEYE (https://www.pupillometry.it) is an open-source web
app that, through deep learning, can perform real-time pupil
size measurements in both humans and mice, with accuracy
similar to commercial-grade eye trackers. The tool requires
no installation, and pupil images can be captured using in-
frared webcams, opening the possibility of performing pupil-
lometry widely, cost-effectively, and in a high-throughput
manner.

Numel.AI - Communicate with Care
We built a web application called Numel.AI (https://numel.ai)
[Di Benedetto, 2021] that, at the time of writing, performs
face tracking and volumetric rendering to visualize head
scans. The app uses a dedicated neural network to iden-
tify brain lesions and show them to the user (see Figure 4).
Given its browser-only compute functionalities and its REST
API flexibility, the framework exhibit low-cost maintenance
and can be locally installed to personal websites or cloud
providers.

https://www.pupillometry.it
https://numel.ai/


Figure 4: Augmented Reality and AI for Medical Imaging. Numel.AI is a web app that uses Augmented Reality to track human faces
and overlays medical imaging over the patient’s body. By using a dedicated neural network, the REST API-enabled framework allows for
in-browser computation on 3D data. Image Courtesy of https://numel.ai

4 Our Technology-Transfer Perspective
We plan to extend our counting framework by providing a sin-
gle model, still trained in two separate stages, to deliver the
same counting performance while reducing the overall com-
putation by sharing the parameters. We would like to improve
and expand our systems further to support and evaluate novel
telemedicine protocols. Our hope is to create a community
that refines and consolidates pupillometric performances to
produce a tool that can be applied easily in different envi-
ronments. Also, we target to integrate hands tracking and
add bone fracture augmented reality plugin to our web apps.
As a new venture, we will try to integrate our Reinforcement
Learning framework to work with diagnose plan prediction.
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