
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Designing and Testing Systems of Systems: From Variability Models to

Test Cases passing through Desirability Assessment†

Francesca Lonetti*1 | Vânia de Oliveira Neves2 | Antonia Bertolino1

1Istituto di Scienza e Tecnologie

dell'Informazione �A. Faedo�, CNR,

Pisa, Italy
2Universidade Federal Fluminense,

Niterói, Brazil

Correspondence

*Francesca Lonetti Email:

francesca.lonetti@isti.cnr.it

Summary

In the early stages of a System of Systems (SoS) conception, several constituent systems

could be available that provide similar functionalities. An SoS design methodology should

provide adequate means to model variability in order to support the opportunistic selec-

tion of the most desirable SoS con�guration. We propose the VANTESS approach that:

i) supports SoS modelling taking into account the variation points implied by the consid-

ered constituent systems; ii) includes a heuristics to weight bene�ts and costs of potential

architectural choices (called as SoS variants) for the selection of the constituent systems;

and �nally iii) also helps test planning for the selected SoS variant by deriving a simulation

model on which test objectives and scenarios can be devised. We illustrate an application

example of VANTESS to the �Educational� SoS and discuss its pros and cons within a

focus group.

KEYWORDS:

System of Systems, Design, Software Product Line, Testing, Variability Model, Test Case

Generation

1 INTRODUCTION

A system of systems (SoS) is obtained by connecting a set of constituent systems (CSs) so that altogether they can achieve a global goal or

mission that is beyond their individual capabilities. Depending on the existence of a central management and on the degree of awareness

and commitment of the CSs to cooperate, four di�erent SoS architectures, progressively more loosely connected, are distinguished, namely

Directed, Acknowledged, Collaborative, and Virtual1.

SoSs are usually dynamic, distributed and complex systems, whose design, maintenance and validation pose several research challenges2.

In fact, by de�nition the CSs retain operational and managerial independence, and may even evolve in unforeseen manner, giving rise to

unpredictable SoS behaviors. Unfortunately, as early observed by DeLaurentis3, �traditional� design methods and tools, even if conceived

for large distributed (but monolithic) systems, may not be applicable to SoSs. The problem is that generally the CSs were not originally

designed to be later merged into the SoS. Indeed, many crucial services to which we are now acquainted in modern society and smart

cities are actually provided by SoSs that were formed and evolved �into place� 3.

An important aspect in SoSs is variability, concerning both time and space4: within an SoS context, variability in time, or evolution,

for an SoS refers to the occurrence of di�erent versions of a CS at di�erent times, whereas variability in space refers to the availability at

the same time of di�erent artifacts for a same CS. The scope of this paper is SoS variability in space.

†This is the pre-peer reviewed version of the following article: [Lonetti F, de Oliveira Neves V, Bertolino A. Designing and testing systems
of systems: From variability models to test cases passing through desirability assessment. J Softw Evol Proc. 2022;e2427. doi:10.1002/smr.2427],
which has been published in �nal form at http://doi.org/10.1002/smr.2427. This article may be used for non-commercial purposes in accordance
with Wiley Terms and Conditions for Use of Self-Archived Versions."

2 F. Lonetti et al.

Di�erent languages and paradigms have been adopted for the modeling of SoS requirements5, and several approaches have been proposed

for the engineering of SoS2. However, the problem of managing SoS variability has not been adequately addressed. We have found few

approaches6,7 supporting the modeling of the SoS architecture at abstract level that can tackle the natural environment evolution, but

many open challenges remain8,9 . In particular, among existing approaches we did not �nd any one allowing for the handling of space

variability already at SoS early design. In this respect, we notice that SoS design is inherently opportunistic, i.e., SoSs are made �from

what's available� 10. Thus, before a concrete SoS architecture has been decided, the SoS engineer may want to choose, among several

existing CSs, those ones that better contribute to achieve the planned mission with acceptable quality and costs.

Clearly, as the available CSs could provide many di�erent functionalities that could be combined in various ways, the SoS engineer is

facing here a space variability problem. To address this problem, instead of �rst designing the SoS architecture and then choosing among

the available CSs the ones that best �t the design, as for example depicted by Cherfa et al.6, we propose here an inverted approach, i.e., the

SoS engineer opportunistically tailors the SoS design (of course relatively to non mandatory requirements) depending on the availability

and cost of the functionalities o�ered by the candidate CSs. To the best of our knowledge, no existing methodology for SoS design works

bottom-up considering the varying functionalities o�ered by the candidate CSs as an input for re�ning SoS architectural decisions.

Handling high-variability has been for years the subject of research in the software product line (SPL) domain4. Hence, rather than

re-inventing from scratch new methods, we propose to look at existing knowledge and tools produced by SPL research, as we already

speculated in a recent work11 with reference to the challenges of SoS testing. In this paper we further develop this idea, and propose to

leverage the variability and asset reuse concepts de�ned in the SPL domain to provide a design and testing approach called VANTESS

(VAriability aware-desigN and TEsting of SoS) for the opportunistic engineering of directed or acknowledged SoSs. To this purpose we

adapt the work by Nebut et al.'s12,13,14 concerning variability modeling and test derivation: using this approach we can identify all

the variation points relative to the available CS functionalities that lead to alternative architectural decisions, or SoS variants. Then, to

support the SoS engineer in the selection of the most desirable SoS variant, we leverage a simpli�ed version of the CBAM (Cost Bene�t

Analysis Method) method15, which is a well-known practical strategy to support architectural decisions.

Summarizing we introduce the VANTESS approach that supports an SoS engineer in:

a. modelling the variation points induced by di�ering candidates CSs;

b. assessing the �desirability� of the resulting SoS variants;

c. deriving a simulation model of the selected solution;

d. generating a set of functional and robustness test cases.

In particular, for both a. and b. this paper provides own solutions, inspired by Nebut et al.13 and Kazman et al.15, respectively, but

revised for the context of SoS design. Instead, for c. and d. we could apply the approach proposed by Nebut et al.12,14 almost as is.

Overall, this is the �rst work explicitly introducing and elaborating the concept of an opportunistic approach to early SoS design.

We demonstrate the approach by walking-through each of the steps over an educational SoS that has been developed and can be found

at the VANTESS GitHub repository, available from https://github.com/edufysos/vantess, as a further contribution of this work. We have

also conducted a focus group evaluation in which bene�ts and issues of the approach have been discussed within a group of six academic

experts.

The paper is structured as follows: in the next section we brie�y introduce SoS basic concepts; then in Section 3 we present some

background material for the techniques we adopt as well as the application example used throughout the work. In Section 4 we present an

overview of VANTESS describing its main phases, while in Section 5 we demonstrate its application. We report about the methodology

and the results of the focus group in Section 6. Finally, we overview more closely related work in Section 7, and draw conclusions, also

discussing limitations and future research directions, in Section 8.

2 BASIC CONCEPTS

In this section we introduce some basic concepts related to SoS architectures and SoS variability management.

2.1 SoS architectures

Even though a common de�nition for SoS does not exist, all authors agree that an SoS can be considered as a collection of pre-existing

and/or independently owned and managed systems that cooperate to o�er a service. The categorization of SoSs from the US Department

https://github.com/edufysos/vantess

F. Lonetti et al. 3

of Defense1 distinguishes four di�erent SoS architectures according to how the CSs are organized to accomplish the SoS mission. These

architectures are:

• Directed SoSs, which are assembled and centrally managed solutions conceived in order to satisfy a speci�ed purpose. In this SoS

architecture, the CSs have the ability to operate independently, but their normal operational mode is subordinated to the centrally

managed purpose.

• Acknowledged SoSs, in which a central system exists that monitors the mission; the CSs retain self-control, but abide by the

provided interaction guidelines to guarantee mission achievement.

• Collaborative SoSs, which are similar to acknowledged ones, with the di�erence that no central entity exists. The set of CSs working

collaboratively needs well-de�ned interaction guidelines and responsibilities.

• Virtual SoSs, which lack a central management authority and an explicit shared purpose among the CSs; the CSs working under

this architecture are o�ering their services without awareness of the mission to which they are participating.

These architectures re�ect the behavior of CSs while accomplishing the joint mission. The same CSs may participate simultaneously

to di�erent SoSs, each one with a di�erent architecture.

According to the guidelines of the U.S. Department of Defense16, the core challenging activities of SoS Systems Engineering include: 1)

translating SoS capabilities and objectives into high level requirements, and ii) understanding the individual systems and their technical

context for identifying viable options to address SoS needs, also considering the impact of these options at system level.

The approach we propose in this paper can help address these challenges in the engineering of directed or acknowledged SoSs. As we

describe in Section 4, VANTESS provides SoS engineers with a requirements model taking into account SoS space variability according

to the functionalities o�ered by the available CSs. Moreover, VANTESS also allows for considering the impact of each solution in terms

of its bene�t and cost.

2.2 Managing variability in SoS

Variability management includes a set of activities for representing variability in software artefacts, and leveraging it for building and

evolving a family of software systems17.As said, SoS variability can occur in terms of both time and space4. Variability in time occurs

with the evolution of SoS. This evolution can take place through the entry, exit or evolution of a CS, and can lead the SoS to expose

di�erent behaviors over time. The variability in time is crucial in SoS management, but it is beyond the scope of this work.

Concerning space variability, the combination of several available CSs and their o�ered functionality can lead to di�erent SoS con�gu-

rations that ful�ll the overall SoS mission in di�erent ways. In other words, more candidate CSs can ful�ll a certain individual mission,

and, in turn, each CSs can accomplish this in di�erent ways through its various features provided. Since an SoS can be composed of several

individual missions that contribute to accomplishing the overall mission, the number of possible con�gurations can grow exponentially.

Therefore, selecting a con�guration that best �ts the pre-established requirements is a challenge in SoS early design.

Handling variability is a key activity in SPL: it refers to the ability of an artifact to be con�gured, customized, or extended in order to

derive di�erent member products. The SPL research community has largely investigated the challenges related to variability management

during the last two decades4,17. We see quite interesting convergences between SoS and SPL domains: both share some common principles,

such as the large-scale reuse of existing artifacts and the abilities of (re)con�guration and dynamic and fast customization. However, there

are also divergences: in SPL the components are customized and integrated into a speci�c product containing the desired features, while in

SoS, the CSs cooperate to accomplish a global mission. Also, an SPL component is used considering di�erent con�gurations and features

in each new product; in SoS, a CS is reused as is, usually without customization, but picking some of its o�ered features, according to

the mission to be accomplished. Another di�erence concerns autonomy. While the fundamentals SoS characteristics are the operational

and managerial independence of the CSs, in SPL, the components are generally provided by a central owner.

As we discussed in our previous workshop paper11, a challenge of SoSs is that of having a system model expressing all variable

functionalities of CSs, ensuring that only the required functionalities are included in the resulting SoS. For addressing this challenge,

di�erent approaches able to express the commonalities and variability of the products in SPL could be adopted. Several di�erent variability

models have been proposed, including feature models, decision models, orthogonal models, use cases models or domain speci�c models18,19.

4 F. Lonetti et al.

In this paper, for expressing SoS requirements variability, we propose a UML use cases-based variability model, which is obtained by

leveraging and adapting an existing approach from the SPL domain13, as we further explain in the next section.

3 BACKGROUND

In this section we provide some background knowledge about: i) the approach we leverage and adapt from the SPL domain, ii) the CBAM

heuristic supporting architectural decisions, iii) the mKAOS language used for the mission description, and �nally iv) the SoS example

we developed in a previous work and use here to show the applicability of our approach.

3.1 Leveraging SPL variability models

In VANTESS we de�ne a UML use cases-based SoS variability model. Speci�cally, we adopt and adapt Nebut et al.'s approach13 for

expressing SoS requirements variability. The main idea of Nebut et al.'s approach13 is to de�ne variability of SPL functional requirements

by using UML use cases enhanced with parameters and contracts. The use cases parameters represent the inputs of the use cases, they

can be actors or main concepts of the application. The contracts are �rst-order logical expressions on predicates. The predicates describe

facts on the system and contain a name, and a (potentially empty) set of typed formal parameters that are a subset of the use cases

parameters. They are either true or false. The operators are the classical boolean logic operators such as conjunction, disjunction, negation,

implication (which is used to specify conditional contracts), and quanti�ers (forall and exists). These contracts are expressed as pre and

post conditions of the use case: the former represent the guards of the use case execution, the latter express the new values of the predicates

after the execution of the use case.

Moreover, Nebut et al.'s approach de�nes UML tagged values for contracts, parameters, and use cases model elements. These UML

tagged values are expressed as: VP{variant_list}, where VP is a variation point name and variant_list is a list of instantiations of the

variation point. Those tags are a way to specify which parts of the requirements depend on a particular variant. If a tag is attached to

a given model element, then this model element is taken into account only for the product selected by this tag, i.e., the product owning

one of the variants speci�ed in the tag, whereas a model element with no tag is taken into account for all the products. We refer to the

original proposal by Nebut et al.13 for a more detailed description and examples of this variability model.

Starting from the functional variation points de�ned at the SPL requirement level, Nebut et al.'s approach13 allows for automatically

deriving the requirements for a speci�c product, expressed as enhanced UML use cases. These product-speci�c enhanced use cases are

then simulated by a use cases transition systems (UCTS) in which each transition is labeled with an instantiated use case. This simulation

model is then used for deriving a set of test objectives, whereby a test objective is a sequence of instantiated use cases, namely a path in

the UCTS. In order to derive an e�ective set of test objectives the following coverage criteria of the UCTS have been de�ned20,12:

• All Edges criterion (AE). Given a use case transition system ucts, this criterion is satis�ed by a set of test objectives TOs i� each

edge in the ucts is exercised by at least one test objective in TOs.

• All Vertices criterion (AV). Given a use case transition system ucts, this criterion is satis�ed by a set of test objectives TOs i�

each vertex v in the ucts is exercised by at least one test objective in TOs.

• All Instantiated Use Cases criterion (AIUC). Given a use case transition system ucts, this criterion is satis�ed by a set of test

objectives TOs i� each instantiated use case of the system is exercised by at least one test objective in TOs.

• All Vertices and All Instantiated Use Cases criterion (AV-AIUC). Given a use case transition system ucts, this criterion is satis�ed

by a set of test objectives TOs i� each instantiated use case of the system and each vertex in the ucts are exercised by at least one

test objective in TOs.

• All Precondition Terms criterion (APT). Given a use case transition system ucts, this criterion is satis�ed by a set of test objectives

TOs i� each use case is exercised in as many di�erent ways as there are predicates combinations to make its precondition true.

For each criterion an algorithm has been de�ned and implemented into a prototype tool that derives a set of test objectives satisfying

it. The �rst two criteria AE and AV are traditional structural coverage criteria, the AIUC criterion aims at covering all the labels of the

labeled transition system, AV-AIUC is a combination of AV and AIUC criteria, whereas APT represents a semantic criterion in which all

the valuations making the precondition true are computed.

Nebut et al.'s approach12 can also derive robustness test objectives aiming to detect robustness weaknesses of the system. For doing

this, the adopted criterion is similar to the APT one, namely for each use case, all the shortest paths leading to each of the possible

valuations that violate its precondition are considered12. Finally, from test objectives, test scenarios in the form of sequence diagrams

F. Lonetti et al. 5

can be derived starting from use case scenarios14. These test scenarios represent the messages sent to the system under test, but they are

yet incomplete tests that cannot be executed with a test driver. The last step of Nebut et al.'s approach12 is to derive from these test

scenarios a set of test cases in the form of Java classes.

In VANTESS we leverage and adapt Nebut et al.'s approach for the modeling of SoS space variability through enhanced use cases. As

we will show in Section 4.3, we de�ne a variability notion tailored for specifying nice-to-have functional requirements in SoSs and derive

from this variability model the requirements of each SoS variant. Starting from the so-speci�ed requirements, a set of test cases for the

selected SoS variant is �nally derived as we will show in Section 4.6.

3.2 Leveraging CBAM for SoS variant selection

When designing an SoS, the SoS engineer has to perform an analysis of costs and bene�ts coming with each considered con�guration, in

order to choose the better SoS variant to implement. This problem is related to software investments decision problem at system design

level, for which many solutions have been proposed in the literature. Among them, we leverage and modify in VANTESS, the CBAM

(Cost Bene�t Analysis Method) method15, which aims at improving the size of the design space supporting the stakeholders in making

a good (not optimal) decision.

The main idea of CBAM is to identify a set of architectural strategies and evaluate their bene�t and cost. The bene�t is represented by

the degree to which the architectural strategies support the di�erent quality attributes of the system (performance, security, availability,

usability, etc.). For instance, adopting a secure communication protocol in the system architecture could bring a relevant contribution to

the overall system security. In CBAM, di�erent stakeholders assign a quality attribute score to each quality attribute, then the bene�t of

each architectural strategy is computed in terms of its contribution to each quality attribute. A desirability metrics is computed as the ratio

between the bene�t and the estimated implementation cost of each architectural strategy, and is then used for ranking the architectural

strategies. Kazman et al.15 assume general cost estimation values (Low, Medium, High) assigned to each architectural scenario according

to general cost factors such as elapsed time, shared use of critical resources, dependencies among implementation e�orts.

The CBAM method has been applied to a large real-world project over several years21 and lesson learned have been used to improve

the method and solve issues mainly related to interpretation and di�ering understanding of the quality attributes among the stakeholders.

Falessi et al.22 characterize existing decision making techniques for software architectural design by highlighting variability and com-

monalities among them; the considered techniques, among which CBAM, have been ranked according to their �level of susceptibility� to

a speci�c set of di�culties that the software architect wants to avoid in the design of the system. The results of this study show that

no decision-making technique is more (or less) susceptible than any other technique to the entire set of considered di�culties, then there

is not a decision-making technique that is always better than any other one. However, the CBAM method that we leverage in our work

showed a low susceptibility level in most of the di�culties that have been considered.

In VANTESS we leverage and adapt the main idea of CBAM for quantifying the costs and bene�ts of the di�erent SoS variants.

As we will discuss in more detail in Section 4.4, one main di�erence is that in VANTESS we do not consider two main sources of

uncertainty present in the original CBAM application that are: i) variation in stakeholders' judgments (in VANTESS only one stakeholder

is considered); and ii) the stakeholder's contribution score: thus, the contribution score of each SoS variant can be automatically computed

as it is not dependent on the stakeholder judgment.

Another important di�erence of VANTESS with respect to CBAM consists in the cost estimation. Whereas in CBAM a general cost

estimation value (Low, Medium, High) is assigned to each architectural scenario according to general cost factors such as elapsed time,

shared use of critical resources, dependencies among implementation e�orts, in VANTESS the cost of an SoS variant is computed in

terms of the cost of the selected concrete CSs and is automatically computed by applying a simple greedy heuristics as we will detail in

Section 4.4.

3.3 mKAOS

mKAOS is a specialization of KAOS (A goal-oriented requirements engineering method) that aims to support SoS mission modelling23.

It considers that a global mission can be successively re�ned into smaller missions until reaching the level of granularity of an individual

mission, which matches the capabilities o�ered by the CSs. Thus, it is possible to assign individual missions to CSs and correlate global

missions to emergent behaviors arising from the interactions between such CSs within the SoS.

The mKAOS language has six di�erent models, the main one of which is the mission model. In this model, missions are structured

as trees, in which leaf nodes represent individual missions, and non-leaf nodes represent global missions. Re�nement links establish a

6 F. Lonetti et al.

re�nement relationship between missions to re�ne a particular mission into other sub-missions. Figure 3 shows an example of an mKAOS

mission model, where the blue rectangles represent the missions, the yellow circles represent the re�nements of those missions, and the

orange diamonds represent the abstract constituent systems. For the sake of space, we refer to Silva et al.23 for further details.

3.4 �Educational� SoS

In a previous work24, we introduced EDUFYSoS, a �factory� of SoSs in the distance learning and educational domain that allows

researchers in SoSs to instantiate di�erent SoSs examples for experimenting their approaches. Accordingly, in this paper we use as an

example an SoS instance belonging to that factory, which we refer to as the �Educational� SoS. Precisely, we develop here an enhanced

version in order to show the applicability and usefulness of VANTESS.

In this section, we brie�y describe the basic concepts of �Educational� SoS, which is used in some examples in Section 4 for facilitating

the approach description and is then walked-through in Section 5.

The goal of �Educational� SoS is to allow university students to attend online courses and manage the classes and their assignments in

an integrated way. Speci�cally, the actors involved in the �Educational� SoS are: i) students who should be able to learn contents related

to a course appropriately; ii) employees belonging to the administrative sta� who are in charge of providing the students with a list of

courses and of facilities that allow them to register to the selected courses; iii) teachers who are responsible for managing their courses,

scheduling the assignments and the online classes.

As depicted in Figure 1, the abstract CSs that have been identi�ed for the �Educational� SoS are:

• Administrative O�ce System (AOS): this system should have the ability to manage information about courses, classes, students,

and teachers at the university. An example of a system having this capability is the secretariat of the university.

• Learning Management System (LMS): this system should deliver online educational courses, handle the management of students

and teachers in an online course, and �nally enable teachers to create homework/assignments, assign them to students, trace

students' activities, and report on their results.

• Calendar System (CS): this represents a time-management system providing the user with the ability to manage appointments,

events, and deadlines.

FIGURE 1 Overview of the �Educational� SoS.

These abstract constituent systems will be instantiated with concrete systems in application example presented in Section 5.

4 OVERVIEW OF THE APPROACH

SoSs can have a very complex architecture since they may be constituted by several CSs that interact with each other. Many CSs may

exist that expose similar functionalities, thus by variously composing such CSs, di�erent SoS con�gurations, or SoS variants, could be

F. Lonetti et al. 7

derived. These SoS variants may present di�erent functionalities, but at an abstract level they expose similar behaviors, namely they are

able to accomplish a same main mission.

To master such potential space variability, an adequate design methodology is required that supports the SoS engineer in the choice of

the CSs and their functionalities. Following such methodology, an approach should be used to assure that the SoS requirements are ful�lled

and the SoS architecture can be easily maintained. The approach we propose, called VANTESS, goes in this direction by providing a

variability-aware-design and testing approach of SoSs: the main novelty of the approach resides in its opportunistic management of space

variability in early SoS design stage, by which the SoS architecture is tailored based on an appraisal of bene�ts and costs of the features

o�ered by the available CSs.

In this section, we give an overview of VANTESS, and describe its main phases that are visualized in Figure 2. VANTESS supports

the SoS engineer all along the SoS design and testing processes. Brie�y, starting from the abstract de�nition of the SoS mission, a list of

high-level functional requirements is derived, considering the functionalities o�ered by the available concrete CSs. These requirements are

marked as must-have requirements, (i.e. necessary for the development of the desired SoS) and nice-to-have requirements (namely those

that are desirable but not necessarily required for accomplishing the main goal of the SoS). From these high-level functional requirements

a more formal variability model, speci�ed through enhanced use cases, is derived. By means of speci�c tagged values this variability model

expresses which are the must-have requirements and the nice-to-have requirements. Leveraging this variability model, di�erent SoS variants

are derived, for instance by means of combinatorial approaches over the di�erent variability attributes of the variability model. Must-have

requirements must be ful�lled by all SoS variants, while the nice-to-have requirements will belong to speci�c variants. Then, VANTESS

allows the SoS engineer to assess the desirability of di�erent SoS variants (trading o� among bene�ts and costs). Finally, for the selected

SoS variant, VANTESS allows to derive a set of executable test cases through SoS model simulation and test objective instantiation.

In the following sections, we describe in detail the phases of VANTESS that are: i) SoS mission de�nition (phase 1 in Figure 2); ii)

CSs recognition (phase 2 in Figure 2); iii) modeling variability of SoS requirements (phase 3 in Figure 2); iv) assessing desirability of SoS

variants (phase 4 in Figure 2); v) simulation of the selected SoS variant (phase 5 in Figure 2); and �nally vi) generation of test cases for the

selected SoS variant (phases 6, 7, and 8 in Figure 2). Moreover, Figure 2 also shows which phases are automatically, semi-automatically

or manually performed.

FIGURE 2 Overview of the VANTESS approach.

8 F. Lonetti et al.

4.1 Overall SoS mission de�nition

In the �rst phase, the overall SoS mission is de�ned. Although at this stage the mission is still abstract, we can reasonably assume that

the SoS engineer (together with the application domain expert) can determine the high-level requirements for the CSs to be involved and

the abstract functions that these systems must provide. With this information, an abstract mission model can be de�ned. This de�nition

can be done using di�ering notations, from informal ones, such as geometric �gures, up to even formal languages. In this work, we chose

to use the mKAOS 23 language, described in Subsection 2.2, as it is one of the pioneering languages to specify SoS missions, and supports

the description of missions and their re�nements until reaching the CSs level.

The model we de�ne in this phase is not constituted by the actual CSs that will cooperate in the SoS but rather by the �types� of

CSs that the SoS needs. Hence, at this stage we refer to abstract CSs rather than to concrete systems. These abstract CSs will be then

instantiated with concrete CSs in the next steps of VANTESS. In the original conception of mKAOS, a high level mission is then re�ned in

sub-missions that are associated with the capabilities that the CSs must have in order to achieve the referred SoS mission. However, using

mKAOS it is not possible to de�ne SoS variability nor to associate more than one CS to a sub-mission, as we aim to do in VANTESS.

4.2 Constituent systems recognition and requirements de�nition

The aim of the CSs recognition phase is that of associating to the abstract CSs de�ned in the previous step a set of concrete existing

CSs that could be available when the SoS is designed. In other words, to enhance re-use we prospect somehow that the design of an SoS

accomplishing a given high-level mission proceeds bottom-up depending on the available CSs. Among the abstract CSs, some could be

�xed due to practical constraints, other could be instantiated by using di�erent concrete systems that provide the searched functionalities.

For instance, referring to the �Educational� SoS, introduced in Section 3.4, we imagine that the AOS is �xed because the university will

adopt the administrative system that is in place; concerning the LMS di�erent concrete instances could be considered, namely Moodle,

FullTeaching, or Google Classroom; �nally examples of two available concrete systems having the capability of Calendar System could be

Google Calendar or Yahoo Calendar.

Moreover, in this phase, considering the functionalities o�ered by the available concrete CSs, a list of high-level functional requirements

for the desired SoS is de�ned. In VANTESS we require that the SoS engineer distinguishes these requirements are into two main categories:

those that are considered necessary for the development of the desired SoS, or must-have requirements, and those that are desirable but

not necessarily required for accomplishing the main goal of the SoS, or nice-to-have requirements.

4.3 SoS requirements modeling based on enhanced use cases

The goal of this phase of VANTESS is to allow the SoS engineer to de�ne a more formal requirements model, starting from the list of

high-level functional requirements de�ned in the previous phase. This model must be able to capture those variability aspects that exist

beyond the SoS conception, so to specify which are the must-have requirements that must be common to all SoS variants and which are

the nice-to-have requirements that belong to particular variants. The task of modelling the possible set of variants appears similar to the

speci�cation of variability in software product lines. Accordingly, to manage the variability aspects in the SoS requirements modeling,

we borrow and adapt Nebut et al.'s approach12,13, based on enhanced use cases, that was originally proposed to de�ne and manage the

requirements for a software product line. Use cases are a well-known and widely used means to express system functional requirements.

Following the proposal of Nebut et al.12,13, in VANTESS we adopt UML 1 use cases enhanced with parameters and contracts on these

parameters. As an example, the following enhanced use case (abbreviated as UC):

UC enroll student into a class (s: student; cl: class)

pre created(s) and created(cl)

post enrolledStudent(s, cl)

represents a functional requirement for the �Educational� SoS, expressing that a student should be able to enroll in a class. This use

case is parameterized by the student who wants to enroll in a class and the class itself. Use case contracts, belonging to pre and post

conditions, are expressed in UC as predicates specifying a name and a set of parameters. For instance, the predicate created(s) in the

precondition is true when the student has been created, false otherwise.

1https://www.omg.org/spec/UML/About-UML/

F. Lonetti et al. 9

By using enhanced use cases modeling, VANTESS allows the SoS engineer to specify commonalities and variability of SoSs, namely to

specify which parts of the requirements are common to di�erent SoS variants and which ones depend on a particular SoS variant. For de�n-

ing variability, as in Nebut et al.13, we use tags (UML tagged values) expressed in the form: VPName{variant_list}, where VPName is a

variation point name and variant_list is a list of instantiations of the variation point, that we call variation point attributes. A variation

point can be associated with one or more UCs. For the purposes of SoS modeling, we simplify the application of Nebut et al.'s approach

considering for each variation point only two possible variation point attributes. Precisely, given a variation point V Pi, expressed in the

enhanced use case model, we de�ne the set of the associated variation point attributes to V Pi, called V PAttri, with i=1,..n, as follows:

V PAttri = {V Pi_True, V Pi_False}

This simpli�cation of the Nebut et al.'s approach does not introduce a limitation in the presented approach since this is enough

to express as variability points the nice-to-have functional requirements of the SoS, namely the functional requirements that could be

present or not in a particular SoS variant. For instance, referring to the �Educational� SoS, in the use case

UC set assignments (t:teacher; cl: class; a:assignment; l:lesson) VPSendNoti�cation(SendNoti�cation_True, SendNoti�cation_ False)

the tag VPSendNoti�cation (SendNoti�cation_True, SendNoti�cation_False) means that a noti�cation could be sent or not to the

students when the teacher sets an assignment related to a lesson. The set of associated variation point attributes to the variation point

VPSendNoti�cation is

V PSendNotificationAttr = {SendNoti�cation_True, SendNoti�cation_False}

Given n variation points in the enhanced use case model, and VPA = ∪V PAttri with i= i..n, we de�ne an SoS variant SoSk in terms

of the set of the true variation point attributes it contains 2, as follows:

SoSk = {vpai ∈ VPA| vpai = V Pi_True ∧ 1 ≤ i ≤ n }

For instance, from the enhanced use case �UC set assignments (t:teacher; cl: class; a:assignment; l:lesson)� described above, we can spec-

ify, according to the variation point VPSendNoti�cation, an SoS variant containing the variation point attribute SendNoti�cation_True

that represents the nice-to-have functional requirement that allows to send a noti�cation when an assignment is set.

For brevity, we leave out of the scope of this paper to investigate a procedure to parse all the variation points of the enhanced use case

model for deriving all the possible SoS variants in terms of their variation point attributes. Rather we are interested into a method to

select among them one variant that is the most �desirable�, as we describe in the next phase.

4.4 Assessing the desirability of SoS variants

The goal of this phase is to assess the di�erent SoS variants in terms of their desirability metrics, computed as the ratio between the bene�t

and the cost of each SoS variant. Since each SoS variant is expressed in terms of its variation point attributes, this desirability metric will

support the SoS engineers in the choice of the right set of variation point attributes, corresponding to the set of nice-to-have functional

requirements of the SoS to be implemented. We presented in Section 3 the main steps of CBAM. Here, we want to show how VANTESS

adapts the main idea of CBAM for quantifying the costs and bene�ts of the di�erent SoS variants, and then assign a desirability value to

each SoS variant.

The SoS variants derived in the previous phase of VANTESS implement di�erent variation point attributes. Each variation point

attribute may bring some bene�ts to the desired SoS, but on the other hand its implementation could also undergo some risks and costs. If

the number of variation point attributes expressed in the use cases model grows, the SoS engineer might have to analyze an overwhelming

number of SoS variants. By applying the CBAM method, we can automatically calculate the desirability metric for each SoS variant.

Speci�cally, this is done in two steps:

2We are interested in de�ning an SoS variant in terms of the true variation point attributes it contains, corresponding to the nice-to-have
functional requirements it implements assuming that by construction each SoS variant will also implement the must-have functional requirements
de�ned in the enhanced use case model.

10 F. Lonetti et al.

i) compute the bene�t of each SoS variant, representing the SoS variant capacity to o�er some nice-to-have functional requirements

rather than others. The bene�t of an SoS variant SoSi is de�ned as:

Benefit(SoSi) =
∑
j

(Contij ∗ V PAScore(j)), j : 1...#V PA (1)

where:

V PAScore(j) is a score assigned by the SoS engineer3 to the variation point attribute V PAj ∈ VPA, representing the relative

value of importance of having this variation point attribute in the desired SoS. The SoS engineer assigns the scores to all the

variation point attributes of an SoS variant so that they sum up to 100.

Contij is the contribution of SoS variant i to the variation point attribute V PAj de�ned as:

Contij =

 1, if SoSi contains V PAj

0, otherwise
(2)

We use the bene�t function as expressed in Equation 1 since we simply want to model the bene�t of an SoS variant in terms of

nice-to-have functional requirements it o�ers and then in terms of the variation point attributes it contains. Each variation point

attribute counts 1 (if the variation point attribute belongs to the SoS variant) or 0 (if the variation point attribute does not belong

to the SoS variant) and has a score representing its relative importance with respect to the other variation point attributes de�ned

in the SoS model.

Note that, contrariwise to CBAM15 where the stakeholders have to manually assign a contribution score to each architectural

decision, in VANTESS the de�nition of the contribution score of each SoS variant is very simple (1 or 0) and less re�ned than in

CBAM but it can be automatically derived applying the above formula (2) avoiding the manual assignment from the stakeholders.

The main limitation of VANTESS with respect to the original CBAM decision-making technique is the number of the involved

stakeholders. In VANTESS, for aim of simplicity we consider only one stakeholder, but the approach could be extended to consider

more than one stakeholder. Moreover, another limitation of VANTESS with respect to CBAM method is that VANTESS does not

consider dependencies among SoS variants, since we can con�dently assume that each one is independent from the other ones.

Finally, a restriction of the bene�t function adopted in VANTESS is that of considering, as in CBAM, the variation point attribute

scores as single values into a de�ned range (for instance a score such that the sum of the scores is 100). More complex measures for

the variation point attributes could be de�ned depending for instance on the application scenarios, or using utility level associated

to the variation point attributes as in Moore et al.21.

To illustrate the application of VANTESS to compute the bene�t of an SoS variant, let us consider the following dummy example:

i) #VPA is 10; ii) the VPAScore(s) associated to V PA1, V PA2, V PA3, V PA4, V PA5, V PA6, V PA7, V PA8, V PA9, V PA10

are 10, 5, 10, 5, 5, 10, 20, 10, 10, 15, respectively; this means V PA7 corresponds to the most important nice-to-have functional

requirement to consider in the SoS. Let us consider the following SoS variant: SoSex = {V PA1, V PA3, V PA5, V PA7, V PA9},

containing the variation point attributes: V PA1, V PA3, V PA5, V PA7, V PA9. According to Equation 1, then we have that

Benefit(SoSex) = 55.

ii) compute the expected cost associated to the implementation of each SoS variant. In VANTESS the cost of an SoS variant is

computed in terms of the cost of the selected concrete CSs that could implement all variation point attributes contained in an SoS

variant. Given an SoS variant SoSi, this cost is de�ned as:

Cost(SoSi) =
∑
k

Cost(CSk), k = 1...m, (3)

where {CS1, ...CSm} is a set of concrete selected CS instances implementing the variation point attributes of SoSi.

Contrariwise to CBAM15 where the stakeholders have to manually assign a cost to each architectural decision, in VANTESS the

assignment of the cost to each SoS variant is derived automatically by applying a simple heuristics. Precisely, we adopt an additional

3Note that in CBAM, di�erent stakeholders assign a quality attribute score to each quality attribute, the average of these scores representing
the relative importance of each quality attribute. In VANTESS, for aim of simplicity we consider only one stakeholder, but the approach could be
extended to consider more than one stakeholder.

F. Lonetti et al. 11

greedy ordering heuristics25 4 showed in Algorithm 1 to automatically select the set of CS instances implementing all the variation

points attributes of a given SoS variant.

Algorithm 1 CSs Selection (greedy additional heuristic)

1: input: S . The set of CSs along with their cost
2: input: V PA . list of variation points attributes to be covered
3: input: coverageinfo . list of variation points attributes covered by each CS from S
4: input: costinfo . cost of each CS
5: output: S′ . a subset of CSs, with which to implement the target SoS variant
6: S′ ← [] . S' is initialized as an empty list
7: while thereAreUncoveredVPA(S, VPA, coverageInfo, costInfo) do
8: selectedCS ←− getNextCS(S, V PA, coverageInfo, costInfo) . selects the CS with the minimum cost that covers the highest number

of uncovered VPA
9: add(selectedCS, S′)

10: updateUncoveredV PA(V PA, selectedCS) . removes the VPA covered by the selected CS from the list of uncovered VPA
11: end while

The main idea is to repeatedly select the CS instances that cover the maximum number of uncovered variation points attributes

until all variation points attributes of an SoS variant are covered. If more than one CS instance cover the same number of uncovered

variation points attributes, the CS instance with the minimum cost is selected.

As an example, let us consider the set of variation point attributes V PA1, V PA2,V PA10 (�rst column of Table 1) and the same

SoSex variant containing a subset of these variation point attributes, marked as yes in the second column of Table 1. The table

also shows a set of concrete CS instances (CS1, CS2, CS3, CS4, CS5), each one displayed along with its cost in a range [1..10], and

the variation point attributes it covers. The �rst CS that the Algorithm 1 selects is the one that achieves the highest coverage of

variation point attributes. When applied to the example in Table 1, CS1 is selected that covers 3 variation point attributes (V PA1,

V PA5, V PA7) out of the 5 ones contained in SoSex variant. Then, it looks for the next CS that achieves the highest coverage with

respect to the yet to be covered variation point attributes (V PA3 and V PA9), and CS3 is selected that is the only one covering

V PA3. For the next choice - the CS that enables to cover V PA9 - two CSs are tied (CS4 and CS5), CS4 is selected since it is the

one with lower cost. According to Equation 3, the cost of SoSex variant is 7 (i.e., the sum of the costs of CS1, CS3 and CS4).

TABLE 1 Variation point attributes coverage achieved by concrete CS instances

SoSex CS1 CS2 CS3 CS4 CS5

C=2 C=1 C=4 C=1 C=3

V PA1 yes

V PA2

V PA3 yes

V PA4

V PA5 yes

V PA6

V PA7 yes

V PA8

V PA9 yes

V PA10

Finally, the Desirabiliy of an SoS variant is computed as:

Desirability(SoSi) = Benefit(SoSi)/Cost(SoSi) (4)

For instance, the desirability of SoSex is 55/7.

4This heuristic has been proven to have a high cost-e�ectiveness ratio for white-box coverage-based test selection in software testing.

12 F. Lonetti et al.

After computing the desirability of all the SoS variants, obtained from the enhanced use case model, the SoS engineer can rank the

SoS variants according to their desirability metric and only for the SoS variants with high desirability he/she will perform more accurate

cost estimation before implementation adopting for instance more complex cost models26.

For sake of clarity, for assessing the desirability of each SoS variant we assume that all variation point attributes that are present in an

SoS variant (and then the corresponding nice-to-have functional requirements) are independent from each other. We plan in future work

to extend VANTESS in order to address more realistic scenarios in which dependencies among the nice-to-have functional requirements

can be considered.

4.5 SoS variant simulation

Once the desired SoS variant is selected, the VANTESS approach moves to the testing stage. The approach in fact allows to specify a set

of test cases for assessing the functional requirements.

The generation of test cases relies on the use cases simulation for expressing the states of the system. It is beyond the aim of this

work to investigate the e�ectiveness of existing approaches to model the states of a system. We follow Nebut et al.'s approach12,13 that

proposes a step for use cases model simulation. Speci�cally, according to Nebut et al.'s approach, a simulation model can be built by

considering an initial state and an instantiation of the functional requirements expressed in the enhanced use cases of an SoS variant. For

each use case, a set of instantiated use cases (called IUC) is obtained by replacing the formal use case parameters with all the possible

combinations of their values. Similarly, a set of instantiated predicates is obtained by replacing the formal parameters of a predicate by

all the possible combinations of their values, where for testing purposes a bounded set of arbitrary elements is considered. As an example,

referring to the �Educational� SoS, if we suppose to have two students (s1 and s2) and a class (cl1), the enhanced use case

UC enroll student into a class (s: student; cl: class)

pre created(s) and created(cl)

post enrolledStudent(s, cl)

is instantiated into two use cases �enroll student into a class(s1, cl1)� and �enroll student into a class(s2, cl1)�, whereas the predicate

�created(s)� is instantiated as �created(s1)� and �created(s2)�, respectively.

Given a current state of the simulation model, an instantiated use case can be executed if its precondition is implied by this current

state; then the new current state after the execution of the instantiated use case is a modi�cation of the current state so that the post

condition of the instantiated use case becomes true. The exhaustive use cases simulation is represented by a Use Case labeled Transition

System (UCTS) in which each state represents a state of the SoS variant and the transitions among states are represented by instantiated

uses cases. For the sake of space, we do not discuss here about the complexity of UCTS, but refer to the work by Nebut et al.12, where this

modelling formalism and the algorithms used for deriving and processing the graph are discussed in detail, along with potential limitations.

By exploring the simulation model, in this phase the SoS engineer can analyze all the possible reachable states of an SoS variant and

check which are the valid functionalities of this SoS variant, namely which are the use cases that can be executed in each state. Finally,

the SoS engineer can verify that the overall SoS variant behavior corresponds to the expected one, or detect inconsistencies and mistakes

in the requirements speci�cation.

4.6 Test cases derivation

In the last phases, for a selected SoS variant, VANTESS allows to derive a set of test cases. The test cases generation is articulated in

three consecutive main steps: i) derivation of test objectives; ii) generation of test scenarios; and iii) derivation of executable test cases.

Test objectives derivation

In this �rst step, considering the UCTS obtained for each SoS variant as described in Section 4.5, VANTESS allows to derive a set of

test objectives. A test objective is de�ned as a valid sequence of instantiated use cases in the UCTS, beginning from the initial state.

The notion of a valid sequence of instantiated use cases corresponds to the classical notion of a path in a graph, in which the �rst vertex

corresponds to the initial state. The generation of test objectives is performed according to a given UCTS coverage criterion.

Among the available UCTS coverage criteria presented by Nebut et al.20,12, and brie�y described in Section 3.1, as in Nebut et al.'s

approach, also in VANTESS we adopt the All Precondition Terms (APT) criterion for deriving test objectives. APT guarantees that all

the possible ways to apply a use case (then a requirement) are exercised, namely that each instantiated use case of the UTCS is exercised

F. Lonetti et al. 13

according to all the predicate combinations that make its precondition true. We apply the algorithm presented in12 for deriving, from

the UCTS of the desired variant, a set of functional test objectives, satisfying this criterion. However, other coverage criteria could be

used bringing to a di�erent set of test objectives. Future work could investigate the most e�ective coverage criterion in terms of testing

e�ectiveness.

The derived functional test objectives are represented by valid sequences of instantiated use cases.

Moreover, VANTESS allows for also deriving robustness tests for the desired SoS variant. 5 The simple idea beyond robustness test

cases derivation is that of correctly exercising the SoS variant up to a given point, and then applying a not foreseen action in order

to obtain a robustness test. This idea leverages Nebut et al.'s proposal of using the generated UCTS as an oracle for robustness tests

and then generate invalid paths, namely paths leading to an invalid application of a use case. An invalid path is a path derived by the

valid application of the �rst n-1 IUCs and then by the application of an invalid instantiated use case (IUCn) (that means that IUCn is

applied if its precondition is false after the application of IUCn−1). Then, robustness test objectives are derived as invalid sequences of

instantiated use cases, namely use cases sequences containing an invalid application of an instantiated use case. We will present in Section

5 an extract of the simulation model for the �Educational� SoS together with several test objectives derived from this simulation model.

Test scenarios generation

The test objectives represented by sequences of instantiated use cases are not executable test cases in the sense that they cannot be

directly executed on the SoS code. Following Nebut et al.'s approach12, VANTESS allows to derive application test cases from the test

objectives. The main idea is to replace the instantiated use cases in the test objectives with instantiated use case scenarios, expressed by

UML sequence diagrams. Speci�cally, these sequence diagrams illustrate how an actor stimulates the system, and how the system responds.

Each sequence diagram can represent a nominal or exceptional scenario, whereby the former corresponds to a functional test in which

the SoS is exercised to test a speci�c functionality and the latter corresponds to a robustness test in which the SoS is exercised in order

to raise an exception or error message. We refer to Nebut et al.12 for the speci�c procedure used for translating test objectives into test

scenarios.

Executable test cases derivation

From the test scenarios above described, a set of executable test cases must be derived. The sequence diagrams can contain parameters

as well as pre and post conditions that could include the same parameters as in the corresponding use cases. A large number of scenarios

per use case can imply a combinatorial explosion of test cases to be executed. Nebut et al.12 present a prototype tool that generates

test cases, leveraging the test scenarios, in the form of Java classes and supports the execution of these tests. In this paper, for sake of

demonstration we just provide in Section 5, some examples of generated test scenarios manually derived from a set of test objectives and

then we show the implementation of a test case for the real instantiation of the desired SoS.

5 APPLICATION OF VANTESS TO �EDUCATIONAL� SOS

In this section, we show the usefulness of VANTESS in the design and testing of the �Educational� SoS introduced in Section 3.4. We

describe the applicability of VANTESS to this SoS all along the main steps of the approach described in Section 4. As a result, a new

enhanced and fully instantiated design for �Educational� SoS is also provided and made available at the VANTESS GitHub repository,

available at https://github.com/edufysos/vantess 6.

5.1 �Educational� SoS mission diagram

The main goal of �Educational� SoS is to allow students to attend online courses at a given university and to manage their online activities

in an integrated manner. Thus, the most abstract mission de�ned by the SoS engineer is �Students can follow courses at university�, which

must be achieved by �Educational� SoS through the collaboration of its constituent systems. This more general mission was re�ned into

four concrete sub-missions: �Provide the students with the ability to choose the list of courses in the University�; �Provide the students

with the list of the courses/competences acquired during the degree�; �Provide the students with the ability to attend online courses�;

5Robustness testing would include the testing of exceptional scenarios of the use cases, whereas by applying the APT criterion we test the
nominal scenarios.

6This new example is provided inside the EDUFYSoS organization on GitHub (https://github.com/edufysos).

https://github.com/edufysos/vantess
https://github.com/edufysos

14 F. Lonetti et al.

�Provide the students with the ability to manage their course activities�. These submissions need to be provided as capabilities by di�erent

constituent systems. For each required capability, we assigned a type of abstract constituent system, namely AOS, LMS, and CS. These

abstract systems will be further discussed in Section 5.2. Figure 3 shows the �Educational� SoS mission diagram using the mKaos notation.

FIGURE 3 �Educational� SoS mission diagram.

5.2 Recognition of available CSs for �Educational� SoS

As stated in Section 3.4, for accomplishing the mission of the �Educational� SoS, the SoS engineer needs the following three di�erent types

of CSs: AOS, LMS, CS.

In this recognition phase, VANTESS allows the SoS engineer to associate to each CS type, a list of concrete available CSs implementing

the functionalities of the abstract corresponding CSs. Moreover, the SoS engineer during this recognition of the available concrete CSs

establishes which CSs are �xed and which can be instantiated with di�erent concrete CSs. In the �Educational� SoS, AOS was �xed and

implemented by means of RosarioSiS7. RosarioSiS is an open-source project promoting a management information system for educational

institutions. Concrete instances of LMS can be o�ered by Moodle, FullTeaching, and Google Classroom whereas CS could be implemented

using Google Calendar or Yahoo Calendar. We brie�y describe below the main functionalities of these concrete systems referring to

available documentation for more details:

• RosarioSiS is a free and open-source School Management System (SMS) whose main functionalities are managing teachers, students,

classes, and grades. Also, it has a plugin that allows integration with Moodle. RosarioSoS is developed using the PHP language

and PostgreSQL database. Additional information can be obtained at www.rosariosis.org;

• Moodle (Modular Object-Oriented Dynamic Learning Environment) is a free software for learning management. With Moodle, it

is possible to create virtual learning environments, make material available o�ine, and assign tasks to students. It is developed in

PHP and uses the MySql database. More information can be obtained at https://moodle.org/;

• FullTeaching is a web application that allows to make synchronous lessons. It leverages OpenVidu capabilities for real-time mul-

timedia communications. It also allows the creation of courses and classes and the asynchronous communication, then providing

content available o�ine. It is developed in Java and Angular and uses MySQL as a database. More information is available in the

FullTeaching repository available at https://github.com/pabloFuente/full-teaching;

• Google Classroom is a free service from Google for managing teaching activities. It allows a teacher to create classes and enroll

students. Other features are the management of activities, in which the teacher can make material available online and create

assignments for his/her students. Also, it has integration with other Google services, such as Google Meet and Google Calendar.

More information can be accessed at https://edu.google.com/products/classroom/;

7see at https://github.com/francoisjacquet/rosariosis

www.rosariosis.org
https://moodle.org/
https://github.com/pabloFuente/full-teaching
https://edu.google.com/products/classroom/
https://github.com/francoisjacquet/rosariosis

F. Lonetti et al. 15

• Google Calendar is a free calendar service from Google. It is possible to create and schedule meetings and events and sharing them

with other people. More information can be seen at https://developers.google.com/calendar;

• Yahoo Calendar is another free calendar service o�ered by Yahoo!. Like in Google Calendar, it is possible to create and schedule

meetings and events, as well as sharing them with other people. More information can be seen at https://www.calendar.com/

yahoo-calendar-guide/.

Leveraging the knowledge about the functionalities of these concrete CSs, in this step the SoS engineer de�nes also a list of requirements

for �Educational� SoS, by specifying the desirability level of each requirement, namely which are the requirements that �Educational� SoS

has to ful�ll (they are tagged as must-have) and which ones the �Educational� SoS could ful�ll (they are tagged as nice-to-have). Table 2

shows a subset of natural language requirements for �Educational� SoS, tagged with their desirability level. For instance, if creating a

lesson is a must-have requirement (R5) for �Educational� SoS, creating a synchronous lesson (R7) is a nice-to-have one.

TABLE 2 A subset of requirements for �Educational� SoS

Requirement ID Requirement Description Desirability Level

R1 Create a student if it is not yet created must-have

R2 Create a teacher if it is not yet created must-have

R3 Create a class if it is not yet created must-have

R4 Enroll a student in a class must-have

R5 The teacher will be able to create a lesson must-have

R6 Assign the course to a category if the category exists nice-to-have

R7 The teacher will be able to create a synchronous lesson nice-to-have

R8 The teacher will be able to open a chat nice-to-have

R9 The teacher will send lesson material to students must-have

5.3 �Educational� SoS requirements model

Starting from the list of high level requirements as de�ned in Section 5.2, the SoS engineer provides a description of �Educational� SoS

requirements in the form of UML use cases as in Figure 4. The �Educational� SoS allows the delivering and learning of contents as well

as course administration in an integrated way. When students, teachers, courses and classes are created they are registered both at AOS

and LMS. The students can request to enroll in a class and their enrollment is registered at both AOS and LMS, they can attend a lesson

in the online learning system, enroll in a chat, and see all activities assigned to them in their calendar. The teacher is responsible for

managing his/her classes, scheduling the assignments and the online lessons. People belonging to the administrative sta� are in charge of

creating students and teachers, providing the students with the ability to register to a course and to enroll in a class.

Table 3 shows a description of the enhanced use case model of �Educational� SoS in which, parameters, contracts, dependencies among

use cases and variability points are expressed as described in Section 4.3. These use cases contain parameters: for instance the use case

UC1, is parameterized by the administrative sta� in charge of creating the student and the created student, whereas in the use case

UC5 the parameters are the student who want to enroll in a class and the class itself. In these use cases the contracts, namely logical

expressions on predicates involving these parameters, are de�ned as pre and post conditions. For instance the use case UC4 �create

class(u:administrativeSta�; c:course; t:teacher; cl:class)� requires that the class is created (Object Oriented Programming section A is a

class example) if the administrative sta� is logged in the system, the corresponding course (Object Oriented Programming course) and

the teacher are created at AOS and LMS. After performing the class creation, the class is created, this means that it is registered at AOS

and LMS and the teacher is enrolled into the class. By means of pre and post conditions, some dependencies arise between use cases. For

instance, the student can enroll in a class (see use case UC5) only if he/she has been created at AOS and LMS (use case UC1).

The enhanced use case model of Table 3 expresses the must-have and nice-to-have functional requirements of �Educational� SoS de�ned

during the recognition phase as in Section 5.2. The nice-to-have functional requirements are expressed in the enhanced use case model

using variation points and variation point attributes, as described in Section 4.3. In particular, the enhanced use case model of Table 3

shows four nice-to-have functional requirements of �Educational� SoS that are:

https://developers.google.com/calendar
https://www.calendar.com/yahoo-calendar-guide/
https://www.calendar.com/yahoo-calendar-guide/

16 F. Lonetti et al.

FIGURE 4 �Educational� SoS use case diagram.

• VPSettingCategory. The use case UC3 of Table 3 requires that a course (for instance Object Oriented Programming course)

is created if the administrative sta� is logged in the system and the course has not been already created. This is a must-have

functional requirement of the system. When creating a course the system could o�er also the possibility to associate a category

(for instance Computer Science category) for this course. This is a nice-to-have functional requirement of �Educational� SoS that is

expressed by tagging the use case UC3 with the variation point VPSettingCategory(SettingCategory_true, SettingCategory_false).

The variation point attribute VPSettingCategory(true) allows to select the SoS variant owning this functionality. In this variant,

when a course is created, a category is set for that course. Note that if a variation point attribute is associated with a pre or post

condition, the ful�llment of the condition is required only when the variation point attribute holds. For example, again in UC3 both

post conditions created(cat)ifnotcreated(cat) and set(c, cat) are required only for those SoS variants owning the above described

nice-to-have capability.

• VPSynchronousLesson. This nice-to-have functional requirement of �Educational� SoS deals with the possibility to manage

synchronous and asynchronous lessons, expressed in UC6 and UC7 of Table 3 with the variability point VPSynchronousLes-

son(SynchronousLesson_ true, SynchronousLesson_ false). The variation point attribute VPSynchronousLesson(true) allows to

select the SoS variant in which the teacher can schedule a synchronous lesson (namely a video conferencing), setting a date (UC6

use case) and opening a chat (UC8 use case) whereas the student can attend the lesson by joining the video conferencing (UC7

use case) and the associated chat (UC9 use case). Note that, for aim of simplicity, in this use cases model we assume that the chat

management is a must-have functionality associated to the synchronous lesson.

• VPSendNoti�cation. This functionality deals with the possibility of sending a noti�cation when an assignment is set. Speci�cally,

the UC10 use case expresses the must-have functionality of setting an assignment. The variation point VPSendNoti�ca-

tion(SendNoti�cation_true, SendNoti�cation_false) expresses the nice-to-have functionality of sending a noti�cation when the

assignment is set. The variation point attribute VPSendNoti�cation(true) allows to select the SoS variant in which the teacher sends

a noti�cation with the assignment (UC10 use case) and a noti�cation of the deadline variation for that assignment (UC11 use case).

• VPImport-ExportCalendar. This functionality allows the user to export the course calendar and import it in his/her personal

agenda. As speci�ed in UC12 use case, the system must allow the teacher to set a calendar event. The variation point VPImport-

ExportCalendar(Import-ExportCalendar_true, Import-ExportCalendar_false) expresses the nice-to-have functional requirement

F. Lonetti et al. 17

TABLE 3 Variability model for �Educational� SoS

UCId UC description

UC1 UC create student(u:administrativeSta�; s:student)

pre not createdStudentAtAOSandLMS(s) and logged(u)

post createdStudentAtAOSandLMS(s)

UC2 UC create teacher (u:administrativeSta�; t:teacher)

pre not createdTeacherAtAOSandLMS(t) and logged(u)

post createdTeacherAtAOSandLMS(t)

UC3 UC create course(u:administrativeSta�; c:course; cat:category) VPSettingCategory(SettingCategory_true, SettingCategory_false)

pre not createdCourseAtAOSandLMS(c) and logged(u) and not created(cat)

post createdCourseAtAOSandLMS(c)

post created(cat) VPSettingCategory(true)

post set(c, cat) VPSettingCategory(true)

UC4 UC create class(u:administrativeSta�; c:course; t:teacher; cl:class)

pre createdTeacherAtAOSandLMS(t) and logged(u) and createdCourseAtAOSandLMS(c)

post createdClassAtAOSandLMS(cl, t)

UC5 UC enroll student into a class(s:student; cl:class)

pre createdStudentAtAOSandLMS(s) and createdClassAtAOSandLMS(cl, t) and logged(s)

post enrolledStudentAtAOSandLMS(s, cl)

UC6 UC create lesson (t:teacher; cl:class; l:lesson; d:date; m:material) VPSynchronousLesson(SynchronousLesson_true, SynchronousLesson_ false)

pre createdClassAtAOSandLMS(cl, t)

post createdLesson(t, cl, l)

post scheduledLesson(t, l, d) VPSynchronousLesson(true)

post sentMaterial(t, l, m)

UC7 UC join lesson (s:student; cl:class; l:lesson; d:date; m:material) VPSynchronousLesson(SynchronousLesson_true, SynchronousLesson_ false)

pre enrolledStudentAtAOSandLMS(s, cl) and createdLesson(t, cl, l)

post lessonJoin(s, l, d) VPSynchronousLesson(true)

post downloadMaterial(s, l, m)

UC8 UC start chat (t:teacher; l:lesson; d: date; ch:chat) VPSynchronousLesson(true)

pre scheduledLesson(t, l, d)

post startedChat(t, l, ch)

UC9 UC join chat (s:student; l:lesson; ch:chat) VPSynchronousLesson(true)

pre lessonJoin(s, l, d) and startedChat(t, l, ch)

post joinedChat(s, l, ch)

UC10 UC set assignments (t:teacher; cl: class; a:assignment; l:lesson) VPSendNoti�cation(SendNoti�cation_true, SendNoti�cation_ false)

pre createdLesson(t, cl, l)

post createdAssignment(t, a, l)

post noti�cationSent(t, a) VPSendNoti�cation(true)

UC11 UC manage deadline (t:teacher; s: student; cl:class; a:assignment; d:deadline; l:lesson)

pre createdAssignment (t, a, l)

post deadlineSet(t, a, l, d)

post deadlineNoti�cationSent(t, a, d) VPSendNoti�cation(true)

post seeAssigmentPersonalAgenda(s, a, cl, d) VPImport-ExportCalendar(true)

UC12 UC create calendar event (t:teacher; cal:calendar; cl:class; e:event) VPImport-ExportCalendar(Import-ExportCalendar_true, Import-ExportCalendar_ false)

pre createdClassAtAOSandLMS(cl, t)

post created calendarEvent(cal, e)

post exportedCourseCalendar(cal) VPImport-ExportCalendar(true)

UC13 UC see calendar event (s:student; cl:class; cal:calendar; e:event)

pre created calendarEvent(cal, e)

post seenCalendarEvent(s, cal, e)

post exportedCourseCalendar(cal) implies personalAgendaEventSeen(s, e, cal) VPImport-ExportCalendar(true)

of importing/exporting the course calendar. The variation attribute VPImport-ExportCalendar(true) allows indeed to select the

SoS variant in which the teacher exports the calendar course (UC12 use case) and the student can see the calendar events (UC13

use case) and its assignments (UC11 use case) in his/her personnel agenda.

As showed in Table 3, for �Educational� SoS, the SoS engineer de�ned four nice-to-have functionalities expressed as variation points

and associated variation point attributes. Table 4 (second column called V PAttr) summarises all the variation points attributes that

could be present in an SoS variant of �Educational� SoS. Taking into account these variation point attributes, a set of SoS variants has

been derived and considered by the SoS engineer for implementation.

18 F. Lonetti et al.

For sake of simplicity, in order to derive the set of SoS variants for �Educational� SoS, we considered all the k − combinations with

k > 027 of the 4 variation point attributes of Table 4 (second column), deriving a set of 16 possible di�erent SoS variants, that were put

forth to the SoS engineer for consideration. The application of di�erent approaches for the derivation of the SoS variants, may have led

to a di�erent number of SoS variants to be considered.

5.4 Desirability of �Educational� SoS variants

The set of the 16 SoS variants derived as explained in Section 5.3 were ranked according to their desirability. As explained in Section 4.4,

the desirability metric was computed in terms of expected bene�t and cost of each SoS variant.

TABLE 4 Variation point attributes of SoS variants in �Educational� SoS

VP VPAttr VPA_score

VPSettingCategory SettingCategory_true 25

VPSynchronousLesson SynchronousLesson_true 25

VPSendNoti�cation SendNoti�cation_true 30

VPImport-ExportCalendar Import-ExportCalendar_true 20

For computing the bene�t of each SoS variant, we assigned a score (see last column called V PAscore of Table 4) to each variation point

attribute (column VPAttr) so that their sum was 1008. The highest score was that of SendNoti�cation_true variation point attribute

(V PAscore equal to 30), this implies that having the SendNoti�cation functionality in the implemented SoS variant is considered highly

bene�cial. The scores of SettingCategory_true and SynchronousLesson_true were the same (V PAscore equal to 25), this means that the

SettingCategory and SynchronousLesson nice-to-have functionalities take the same importance in the desired SoS.

Then, we computed the bene�t of each SoS variant of �Educational� SoS according to Equation 1 in the range [0,100]. For instance, let

us consider two of the 16 SoS variants for �Educational� SoS, with identi�er SoS1 and SoS2 and de�ned as:

SoS1 = {SettingCategory_true, SynchronousLesson_true, SendNotification_true, Import− ExportCalendar_true}
SoS2 = {SettingCategory_true, SendNotification_true, Import− ExportCalendar_true}
we computed their bene�t as:

Benefit(SoS1) = 25 + 25 + 30 + 20 = 100

Benefit(SoS2) = 25 + 30 + 20 = 75

The bene�ts of the 16 SoS variants under consideration for the �Educational� SoS ranged from a low value of 20 (reached by the SoS

variant in which only the Import−ExportCalendar_true variation point attribute of Table 4 was present) to a high value of 100 (reached

by an SoS variant in which all the variation point attributes of Table 4 were present, namely SoS1 variant).

After computing the bene�t of each SoS variant, we computed the expected cost of implementing each SoS variant in terms of the cost

of the available CS instances able to cover the variation point attributes present in each SoS variant, according to Equation 3.

In particular, Table 5 shows for each CS type involved in the �Educational� SoS, the available CS instances identi�ed during the CS

recognition phase (see Section 5.2), along with their cost, estimated simply on a [1-10] scale. In particular, the available concrete instances

of LMS were Moodle, Google Classroom and FullTeaching, whereas the available instances of the Calendar System were Google Calendar

and Yahoo Calendar 9.

The �rst column of Table 5 shows the set of variation point attributes derived for �Educational� SoS that could be present in an SoS

variant, whereas columns two and three show the subset of these variation point attributes that are present (marked as yes) into the same

SoS variants with identi�er SoS1 and SoS2 presented before, respectively.

Moreover, the table also shows the variation point attributes for �Educational� SoS that the concrete CS instances were able to cover

(see rows from 5 to 9). Note that in order to compute the cost, the Import-ExportCalendar_true variation point attribute was split into

the ExportCalendar_true and ImportCalendar_true variation point attributes corresponding to the functionalities that the LMS and the

Calendar System must cover respectively in order to satisfy the Import-ExportCalendar_true variation point attribute.

8Note that for aim of simplicity the table does not show the V PAscore of the remaining variation point attributes of �Educational� SoS, namely
SettingCategory_false, SynchronousLesson_false, SendNoti�cation_false and Import-ExportCalendar_false, that has been set equal to zero.

9The AOS was �xed and instantiated by RosarioSiS, then we did not consider its cost in the computation of the SoS variant cost.

F. Lonetti et al. 19

TABLE 5 CSs instances vs variation point attributes of �Educational� SoS

LMS Calendar System

Moodle Google Classroom Full Teaching Google Calendar Yahoo Calendar

C=5 C=6 C=4 C=1 C=2

SoS1 SoS2

SettingCategory_true yes yes

SynchronousLesson_true yes

SendNoti�cation_true yes yes

ExportCalendar_true yes yes

ImportCalendar_true yes yes

Applying Algorithm 1, we selected: i) Moodle, Full Teaching and Google Calendar for implementing SoS1 with a total cost equal to

10; ii) Moodle and Google Calendar for realizing SoS2 with a total cost equal to 6. Analogously, we computed the cost of the remaining

SoS variants for �Educational� SoS.

Finally, for each SoS variant, the desirability metrics were computed according to Equation 4. The 6 highest desirability scores of the

SoS variants for �Educational� SoS are showed in Table 6. SoS2 results to be the selected SoS variant since it yields the highest desirability

score, equal to 12.5. Moodle and Google Calendar are then chosen as the concrete implementations for LMS and CS respectively, for the

development of SoS2.

We will show in the next sections how to generate test cases for SoS2 variant through model simulation and test objectives derivation.

TABLE 6 The top 6 desirability scores for �Educational� SoS

SoS Variant ID SOS Variant Description Desirability Score

SoS2 {SettingCategory_true, SendNoti�cation_true, Import-ExportCalendar_true } 12.5

SoS4 {SettingCategory_true, SendNoti�cation_true} 11

SoS1 {SettingCategory_true, SynchronousLesson_true, SendNoti�cation_true, Import-ExportCalendar_true } 10

SoS3 {SettingCategory_true, SynchronousLesson_true, SendNoti�cation_true} 8.88

SoS7 {SendNoti�cation_true, Import-ExportCalendar_true} 8.33

SoS5 {SynchronousLesson_true, SendNoti�cation_true, Import-ExportCalendar_true } 7.5

5.5 �Educational� SoS simulation model

In this phase, a set of enhanced use cases for the SoS2 variant (the one with the highest desirability) is derived parsing the variation

points of the enhanced use case model of �Educational� SoS presented in Table 3 and applying the algorithm of requirements extraction

presented in Nebut et al.'s approach12,13. The obtained set of enhanced use cases for SoS2 includes all the use cases of Table 3 except for

UC_8 (start chat) and UC_9 (join chat) since they refer to the variation point attribute SynchronousLesson_true that is not present in

SoS2 variant.

The SoS engineer proceeds to derive a set of test cases to assess SoS2 functional requirements. As explained in Section 4.5, by simulating

the use cases of SoS2 variant, a UCTS is built. Speci�cally, this UCTS has been derived applying the algorithm by Nebut et al.12, which

successively tries to apply each instantiated use case of SoS2 from the current state until all the reachable states have been explored. An

instantiated use case is applied when its precondition is true with respect to the set of true predicates of the current state. The application

of an instantiated use case allows to create an edge from the current state to a state of the system in which the postcondition is true. The

theoretical maximum size of this UCTS could be high if all the states are evaluated. The UCTS maximum size depends on the number of

instantiated predicates (p)12, and is computed as maxsizeUCTS = 2nip where nip = p×maxistancesmaxparam, where maxistances is

the maximum number of instances, and maxparam is the maximum number of parameters per predicate. In the use case model of SoS2

there are 20 predicates, then assuming to have one instance for each predicate, the maximum size of UCTS for SoS2 is equal to 220 =

1.048.576 states. In practice, the actual size of the UCTS could be smaller since many potential states could not be reachable. An extract

20 F. Lonetti et al.

FIGURE 5 Extract of the UCTS for �Educational� SoS2 variant.

of the UCTS obtained for the SoS2 variant of �Educational� SoS is shown in Figure 5. This UCTS is used for deriving the test objectives

and the test cases as we explain in the following Section 5.6.

5.6 Test cases derivation for �Educational� SoS

In this section we show some test objectives, test scenarios and executable test cases derived for the �Educational� SoS.

5.6.1 Test objectives

As explained in Subsection 4.6, we can derive the functional test objectives for the SoS2 variant, as the sequences of instantiated use cases

of the simulation model of SoS2 variant so to satisfy the APT criterion. Considering for instance to exercise the instantiated use case

�enroll student into a class (s1, cl1)� (this is an instantiation of UC5 of Table 3) whose precondition is �createdStudentAtAOSandLMS(s1)

and createdClassAtAOSandLMS(cl1, t1) and logged(u1)�, we explore the values of the predicates that make the precondition true. In this

example, the precondition is true only if all of its parts are true. Thus, referring to the simulation model of Figure 5, we can derive the

test objective TO5 corresponding to the path that from the initial state leads to a valid application of this use case, namely a state that

satis�es its precondition, and then we can apply this instantiated use case. Since the initial state is logged (u1), a possible path resulting

by the application of �enroll student into a class (s1, cl1)� is [create teacher(u1,t1), create course(u1,c1,cat1), create class(u1,c1,t1,cl1),

create student(u1,s1), enroll student into a class(s1,cl1)].

To apply robustness testing, we derive from the simulation model the robustness test objectives, obtained by the invalid application

of an instantiated use case. Considering for instance the same instantiated use case �enroll student into a class (s1, cl1)�, a robustness

test objective leads to the invalid application of this use case, namely to an assessment of the system that violates its precondition. We

represented this path by the red dotted arrows in the UCTS in Figure 5. Thus, if we consider the path [create teacher(u1,t1), create

course(u1,c1,cat1), create class(u1,c1,t1,cl1), enroll student into a class(s1,cl1)], it leads to the execution of the �enroll student into a class

(s1, cl1)� instantiated use case, but violating its precondition �createdStudentAtAOSandLMS(s1)�, so the system is expected to handle it

in a speci�c way, for example, by issuing an error message.

Table 7 summarizes the test objective examples generated by applying the APT criterion and the robustness test criterion to the extract

of the UTCS of the SoS2 variant presented in Figure 5. Speci�cally, the �rst column represents the exercised use case, the second and

third columns represent respectively the identi�er and the corresponding path of the derived test objective, whereas last column speci�es

if it represents a functional or robustness test objective.

F. Lonetti et al. 21

TABLE 7 Examples of test objectives for �Educational� SoS

UCId TOId TOPath
Functional (F)/

Robustness(R)

UC1 TO1 [logged(u1), create student(u1,s1)] F

UC2 TO2 [logged(u1), create teacher(u1,t1)] F

UC3 TO3 [logged(u1), create teacher(u1,t1), create course(u1,c1,cat1)] F

UC4 TO4 [logged(u1), create teacher(u11,t1), create course(u1,c1,cat1), create class(u1,c1,t1,cl1)] F

UC5 TO5
[logged(u1), create teacher(u11,t1), create course(u1,c1,cat1), create class(u1,c1,t1,cl1), createStudent(u1, s1),

enroll student into a class (s1, cl1)]
F

UC5 TO6 [logged(u1), create teacher(u11,t1), create course(u1,c1,cat1), create class(u1,c1,t1,cl1), enroll student into a class (s1,cl1)] R

....

5.6.2 Test scenarios generation

Following the strategy proposed by Nebut et al.14,12, to �ll the gap between the test objectives, which are derived at the requirements

level, and the test cases, which are at the implementation level, we generate the application test scenarios. These test scenarios are derived

from the test objectives by associating a scenario, expressed as a UML sequence diagram, to each instantiated use case contained in the

test objective. The UML sequence diagrams can represent nominal or exceptional scenarios. The �rst represents the basic way to exercise a

use case successfully; the latter represents a way to exercise a use case leading to a failure or error message. Sequence diagrams may contain

more information than the use cases and, therefore, may express more detailed pre and post conditions than use case14,12. Referring to the

�Educational� SoS, we show in Figure 6 the sequence diagram we derived for the nominal scenario of the instantiated use case �enroll student

into a class (s1, cl1)�. As shown in Table 3, this use case has �createdStudentAtAOSandLMS(s1) and createdClassAtAOSandLMS(cl1, t1)

and logged(u1)� as precondition. We transform this precondition into Object Constraint Language (OCL)10 restrictions that check if the

student and the class exist in both AOS and LMS and if the admin user is logged. The �requestToEnroll� and �StudentSchedule� messages

in Figure 6 correspond to the steps necessary to enroll a student in a class in the RosarioSiS system, which we had not considered during

the analysis phase. The �enrolledStudentAtAOSandLMS(s1,cl1)� postcondition is also transformed into an OCL constraint that veri�es

that after performing the steps indicated in the diagram, the student is enrolled in the class and he/she has access to that class in the

LMS. Sequence diagrams deal with testing at the system level. Therefore, taking into account the context of the SoS, sequence diagrams

consider the actors and all constituent systems involved in the use case. In this example, the systems involved in this nominal scenario

are RosarioSiS and Moodle.

To obtain the application test scenarios, we transformed test objectives, both for functional and robustness testing, into sequence

diagrams, replacing all the instantiated use cases belonging to the test objective by their test scenarios. Considering the �Educational� SoS,

to generate the test scenario corresponding to the nominal test objective TO5 presented in Table 7, we replace the instantiated use cases

UC2, UC3, UC4, UC1, and UC5, by their nominal scenarios as shown in Figure 7. Analogously, to derive the robustness test scenarios,

we replace all the instantiated use cases belonging to the robustness test objective by their test scenarios, but the last instantiated use

case is always replaced by an exceptional scenario. We show in Figure 8 the test scenario for TO6 robustness test objective of Table 7.

5.6.3 Executable test cases derivation

From the derived sequence diagram, we can use tools that explore the system's behavior speci�cations to generate test cases automatically.

For each scenario, a test method is created corresponding to a test case. The code of these tests comprises successive calls to the methods

corresponding to the sequence diagrams messages with the actual parameters and assertions derived from the OCL contracts. For instance,

Listings 1 and 2, correspond respectively, to the scenarios presented in Figures 7 and 8.

The test scenarios may be incomplete, depending on the sequence diagrams that are derived from. Only when the sequence diagrams

contain precisely the same messages as the methods invoked on the considered constituent systems we can use a test scenario as a test case

without any adaptation. Further, it is not possible to know in advance details of the GUI used in tools that simulate users' interaction in

end-to-end tests. In this sense, we mark this step as semi-automatic, and we foresee that the tester must carry out the implementation of

these interaction methods. Listings 3 shows the implementation of the studentCanAccessClassInMoodle method using the tools JUnit

10for Object Constraint Language, see https://www.omg.org/spec/OCL/2.4/PDF.

https://www.omg.org/spec/OCL/2.4/PDF

22 F. Lonetti et al.

FIGURE 6 Sequence diagram for nominal scenario for use case UC5.

Listing 1: Automated test case for test scenario for use case UC5.

1 private User u1;

2

3 @Test

4 public void enrollStudentIntoAClassTest () {

5 User t1 = this.createTeacher ();

6 Subject c1 = this.addCourse ();

7 Class cl1 = this.createClass(t1, c1);

8 User s1 = this.createStudent ();

9 Assertions.assertTrue(login(s1));

10 this.requestToEnroll(s1, cl1);

11 this.enrollStudentIntoAClass(s1, cl1);

12 Assertions.assertTrue(this.studentIsEnrolled(s1, cl1));

13 Assertions.assertTrue(this.studentCanAccessClassInMoodle(s1, cl1));

14 }

11 and Selenium 12. In this method, which is responsible for checking if a student can access a class on Moodle, it is possible to see that

details of the existing system's user interface were used to implement the test case.

11https://junit.org
12https://www.selenium.dev/

https://junit.org
https://www.selenium.dev/

F. Lonetti et al. 23

FIGURE 7 Nominal test scenario for use case UC5 (test objective TO5).

6 FOCUS GROUP

The focus group is an empirical method in software engineering28 designed to obtain the expert opinions of a group of practitioners or

researchers about a de�ned area of interest. It consists of a carefully planned discussion within a limited number of participants, who are

asked during a moderated group interview a prede�ned list of questions about the research focused.

The method is not suitable for testing hypotheses or obtaining quantitative assessments that are di�cult to catch into a time-limited

session29, however it can provide a fast and cost-e�ective means to obtain an initial feedback on new concepts or ideas, by leveraging the

experiences of the group members30.

Our aim in conducting the focus group was, in fact, to receive a �rst evaluation of VANTESS by discussing the bene�ts and issues of the

approach within a group of six academic experts. In the following sections, we �rst describe the main aspects of the adopted methodology

and then provide an analysis of the obtained results.

24 F. Lonetti et al.

FIGURE 8 Exceptional test scenario for use case UC5 (test objective TO6).

6.1 Methodology

In the focus group we addressed the �rst four phases of VANTESS, namely De�ne at abstract level the SoS overall mission, Make a

recognition of available CSs, Model variability, and Assessing the desirability of SoS variants. These are the phases that best characterize

the novelty of our approach, and that we wanted to discuss with the academic experts.

TABLE 8 Participants to the Focus Group and their expertise

SoS PLs & Variability SW Architecture SW Requirements & Modeling SW Testing

P1 good knowledge good knowledge good knowledge expert familiar

P2 familiar good knowledge outsider expert familiar

P3 expert familiar expert good knowledge familiar

P4 familiar good knowledge good knowledge good knowledge familiar

P5 familiar familiar expert expert outsider

P6 expert familiar good knowledge good knowledge familiar

F. Lonetti et al. 25

Listing 2: Automated test case for exceptional test scenario for use case UC5.

1 private User u1;

2

3 @Test

4 public void enrollStudentIntoAClassExceptionalTest () {

5 User t1 = this.createTeacher ();

6 Subject c1 = this.addCourse ();

7 Class cl1 = this.createClass(t1, c1);

8 User s1 = this.createNotRegisteredStudent ();

9 Assertions.assertFalse(login(s1));

10 this.requestToEnroll(s1, cl1);

11 Assertions.assertFalse(this.studentIsEnrolled(s1, cl1));

12 Assertions.assertFalse(this.studentCanAccessClassInMoodle(s1 , cl1));

13 }

Listing 3: Example of real implementation with JUnit and Selenium.

1 public boolean studentCanAccessClassInMoodle(User s, Class cl) {

2 WebElement userMoodle = driverMoodle.findElement(By.id("username"));

3 userMoodle.sendKeys(s.getUsername ());

4 WebElement passMoodle = driverMoodle.findElement(By.id("password"));

5 passMoodle.sendKeys(s.getPassword ());

6 WebElement buttonLoginMoodle = driverMoodle.findElement(By.xpath("//*[@id=\" loginbtn \"]"));

7 buttonLoginMoodle.click ();

8 driverMoodle.get(urlMoodle+"user/profile.php?id="+s.getId());

9 List <WebElement > courses= driverMoodle.findElements(By.xpath("//*[@id=\"

yui_3_17_2_1_1616083860288_22 \"]/ section [1]/ul"));

10 return courses.size() > 0;

11 }

Speci�cally, the focus group involved six academic experts recruited from di�erent universities and research institutes in computer

science around the world, and selected by convenience sampling. They form a homogeneous group with expertise as well as relevant

publications in the following subjects: systems of systems, product lines & variability, software architecture, software requirements &

modeling, software testing. Table 8 summarises the level of expertise self-declared from the anonymized participants for each research

subject. Speci�cally, the level of expertise declared by the participants is: outsider (the participant judges him/her self as not expert at

all), familiar (the participant knows the topic and follows its literature, but he/she has not worked much on it), good knowledge (the

participant worked on it although may not be up-to-date with the latest literature), expert (the participant worked for years in the topic

as a researcher and knows well the state of the art).

The focus group session lasted for two hours, was conducted remotely and recorded for later transcription. It involved the six academic

experts as in Table 8 and the three paper authors, one of them taking the role of moderator. As shown, most of the participants indicated

to be experts or to have good knowledge in at least two of the considered research subjects. About software testing, all the participants

declared to have a low level of expertise (familiar or outsider). However, software testing is addressed in the remaining phases of VANTESS

that are not object of this focus group.

After a preliminary step in which the moderator introduced the rules and objectives of the study, the focus group session was structured

into two main parts: in the �rst part, one of the paper's authors (di�erent from the moderator) did a short presentation about some

background notions concerning the SoS architectures, the SoS design, the selection of constituent systems and the SoS variability, and then

a group discussion was raised guided by the research questions (see below). The goal of this �rst part was to give a shared background and

26 F. Lonetti et al.

identify whether the variability provided by the available CSs is a concern when designing SoSs. In the second part, the other author who

was not moderating presented the �rst four steps of VANTESS, again followed by the group discussion guided by research questions; in

this second part we wanted to assess whether VANTESS can be useful to deal with variability when designing SoSs and identify strengths

and weaknesses when using VANTESS to guide future work. In this direction we also sought advise concerning how the approach could

be validated.

In particular, in the �rst part of our session we investigated the following Research Questions(RQs):

• RQ1.1 Which approaches do you know for the selection of constituent systems when conceiving an SoS?

• RQ1.2 How important/challenging is it to manage variability during SoS modeling/design?

� RQ1.2a: Which approaches do you know that could be used or adapted?

� RQ1.2b: As far as you know, could PL approaches be used/adapted?

In the second part, we investigated the following RQs:

• RQ2.1: Please comment usefulness/issues of VANTESS with regard to handling SoS variability.

• RQ2.2: Which aspects could be improved and how?

• RQ2.3: How could the approach be validated?

All along with the session, the role of the moderator was to keep the focus on the RQs, to encourage all the participants to be frank

and express their opinions without concerns, and to limit the discussion's sidetracks.

6.2 Results

All answers provided during the focus group have been recorded, transcribed and anonymized13. Then, we analyzed these data using the

Thematic Analysis Template (TAT) method31, which is a particular form of thematic analysis32 used in organizational and management

research33 and other disciplines34 for examining textual data including focus group transcripts. TAT has already been used in software

engineering for analysis and reporting of focus group results35.

In TAT, data analysis is based on the development of an initial coding template representing an initial set of the themes that are

studied; then, according to the analysis of further data, this template can be revised and re�ned. The approach is very �exible about the

style and the format of the template, as well as the development of the initial coding template. The themes of the initial template can be

derived carrying out a preliminary coding of the data, as in most thematic approaches, or on the basis of a subset of data, or they can be

a set of themes a priori identi�ed and considered relevant according to the author's experience34.

In our case, we created an initial template whose themes were set in advance of coding, according to the de�ned research questions

(which in turn had been formulated on the basis of the aspects of VANTESS that we wanted to investigate in the focus group). Table 9

shows this initial template.

TABLE 9 Initial TAT template with themes and discussion aims

ID Theme Discussion

1 Variability management Reveals issues and challenges of managing variability during SoS design

2 Constituent systems selection Reveals existing approaches that could be adopted for selection of CSs when conceiving an SoS

3 Analogy of SoS with SPL Reveals commonalities in managing variability between SoS and SPL

4 VANTESS approach Reveals usefulness and issues of VANTESS

5 VANTESS validation Reveals how VANTESS could be validated

The TAT was independently carried out by two authors manually (i.e., without using specialized software), who analyzed the transcribed

data and provided two preliminary versions for the TAT �nal template. These two versions were very similar, with small disagreements

regarding the chosen themes. Then, we held a meeting of all the authors in which we compared and aligned the respective TAT versions.

13The anonymized data are available at the VANTESS GitHub repository, available at https://github.com/edufysos/vantess

https://github.com/edufysos/vantess

F. Lonetti et al. 27

Table 10 presents the �nal set of themes, articulated into sub-themes. In the �nal template two new themes (SoS evolution and SoS

cost) have been introduced with respect to the themes of the initial template. The results of the TAT analysis are presented below,

grouped by themes and sub-themes.

TABLE 10 Final TAT template with the themes and sub-themes identi�ed after data analysis

ID Theme Sub-theme

1 Variability management
1.1 SoS variability modeling

1.2 Adapting existing approaches from other domains

2 Constituent systems selection
2.1 Reusing existing CS

2.2 Adapting existing approaches from other domains

3 Analogy of SoS with SPL

3.1 Features selection

3.2 Feature models

3.3 SPL versioning

4 SoS evolution
4.1 Dynamic SoS architecture

4.2 Evolutionary architecture simulation

5 VANTESS approach
5.1 Bene�ts

5.2 Issues

6 VANTESS validation
6.1 What to do

6.2 What not to do

7 SoS variant cost
7.1 Cost computation

7.2 Re�nement steps

1) Variability management

1.1) SoS variability modeling. All the participants agreed that modeling SoS variability is very challenging. They identi�ed the

following main challenges: i) the model size could be very large when considering all the possible SoS variants; ii) the granularity of the

CSs knowledge is very important for de�ning variability models. One of the participants declared that a problem is indeed �Abstraction

and completeness of the description that you have for your system, because depending on what's your model, then you can take some

decisions�. iii) Moreover, even though a complete knowledge of CS functionalities could be achieved, their dynamic evolution would make

it extremely di�cult to model all their variable functionalities; �nally, iv) for some participants also the interaction with CSs stakeholders

represents an issue for SoS variability modeling.

1.2) Adapting existing approaches from other domains. The participants concluded that no speci�c approaches for modeling SoS

variability exist, and they suggested adapting solutions coming from other domains. Speci�cally, the suggested approaches were related

to: i) feature models synthesis, based on requirements or textual inputs; ii) feature engineering; iii) simulation of dynamic architectures;

and iv) SPL management (the latter domain repeatedly emerged during the discussion and is developed as a separate theme below).

2) Constituent systems selection

2.1) Reusing existing CS (from public repositories). The participants agreed that reusing existing CSs available into public repositories

without applying a speci�c selection strategy represents the common practice when developing an SoS. One of the participants declared

indeed �If I'm thinking as a developer the �rst thing I will do is to give a look at existing systems in GitHub, that might be reused for

building my own system of systems''.

2.2) Adapting existing approaches from other domains. As for SoS variability management, also for CSs selection, participants declared

not knowing any speci�c approach and suggested adapting solutions coming from other domains. Some participants perceived an analogy

of SoSs with service-based systems, namely choreography and orchestration, for what concerns the composition at design time of the

SoS. When CSs selection happens at runtime, the same participants perceived an analogy of SoSs with self-adaptive systems where the

28 F. Lonetti et al.

continuous changes and updates of CSs are triggered by changes of the context and can be analyzed by a monitoring system. Other

participants suggested to investigate solutions related to search-based software engineering and, more in general, to optimization problems,

based for instance on genetic algorithms, to face the problem of CSs selection. One participant declared �The idea is using optimization to

reduce the number of systems and maximize the number of functionalities you need to draw�. Finally, solutions around goal modeling and

especially the KAOS approach were considered suitable methods in the SoS context, not for the selection of the optimal SoS con�guration

but for the modeling of the di�erent goals of the system.

3) Analogy of SoS with SPL

3.1) Feature selection. The focus group con�rmed a strong analogy between SoS and SPL, which was, in fact, the initial premise of

this paper. Many participants revealed similarities among SoS and SPL for what concerns both variability management and CSs selection.

A participant declared �It seems that there are some analogies with software product lines where you de�ne the number of features of

your systems, and then, essentially when you want to create a product, you select the features, or �x the variance that you might want

to have for your �nal system�.

3.2) Feature models. Feature models have been considered suitable models for selecting features, obtaining system con�gurations and

expressing variability. The participants suggested feature models synthesis based on textual requirements or natural language inputs to

collect features description and try to generate feature models of what is available in the market for a speci�c purpose.

3.3) SPL versioning. The SoS representation has been considered more complex with respect to that of SPL, due to the dynamic

SoS con�guration. In particular, it has been identi�ed an analogy with SPL versioning, namely SoS con�guration could be compared to

multiple snapshots of the same software product line, but with di�erent conditions.

Theme 4) SoS evolution

4.1) Dynamic SoS architecture. A challenging aspect that emerged during the focus group is the dynamic SoS architecture, namely

the SoS could change over time as the CSs are replaced. A participant declared: �SoS in general has dynamic or evolutionary architectures.

This happens because the CSs can come and go, can join and leave the SoS at runtime. And so this is a challenge to manage variability�.

The dynamic nature of CSs during the time and the evolution of their interfaces represent an issue to be considered for both variability

management and CSs selection. Also, the SoS mission could deviate from the initial speci�cation, and as a consequence, the set of CSs

and functionalities that should be integrated to accomplish that mission at a certain time of the SoS operation should change. Finally,

another challenging aspect to be considered is the evolution of SoS requirements. A participant declared: �Fixing the requirements at the

beginning and not being able to update them during the life of the system, I think it's a risky assumption because today I think there is

no system where requirements don't change�.

4.2) Evolutionary architecture simulation. Some participants remarked that to address the dynamic SoS evolution in modeling vari-

ability and CSs selection, it is needed that all the necessary functions or capabilities expressed in the variability model be present in the

SoS at runtime, independently of CSs changes. To face this problem, one of the participants suggested adapting the existing approaches

for simulation of evolutionary SoS architectures so to predict the di�erent SoS con�gurations that could occur at runtime36.

5) VANTESS approach

5.1) Bene�ts. Participants found that VANTESS targets an interesting topic and addresses many (or even too many) challenging

aspects related to the di�erent phases of the development lifecycle. One of the participants declared �I just want to join P5 in saying that

you have a lot of courage in proposing an entire method and not focus on just a tiny little bit. So, it's good to have research like that�.

Another participant added �We needed to have some tool like this�. They recognized that the main novelty of the approach is variability

management in SoS. More than one participant appreciated its ease of use. One of the participants declared �You are doing some selection

of the optimal variant in a way that is quite easy to understand and simple, and, that's �ne''. Two of the participants agreed that a

strong point of the presented approach is that it is general and independent from the deployment environment of the SoS as well as from

the addressed domain. The approach has indeed been considered useful for managing CSs that could belong to di�erent domains such as

robotics or smart cities. In particular, robots have been considered good instances of independent systems that could cooperate into an

SoS.

F. Lonetti et al. 29

5.2) Issues. Some of the issues raised were related to the presentation rather than the approach itself. Two of the participants

complained that VANTESS presentation during the focus group was not focused on showing the strong points of the approach. In

particular, they advised to stress two main aspects: i) the novelty and distinguishing aspects of the proposed variability management

approach with respect to existing solutions adopted in search-based software engineering, SPL, project management, and requirements

management areas; ii) which are the strong points of VANTESS that are the object of the validation, namely if the validation aims to

cover the entire approach or a part of it, and �nally if it aims to show the e�ciency in terms of time for deriving the best SoS variant.

The focus discussion eventually allowed them to better grasp these aspects. One participant indeed declared: �After the discussion is more

clear to me, what is the focus and what could be the bene�ts''. Concerning more speci�cally the proposed methodology, the participants

raised the following main limitations of VANTESS: the approach does not consider non-functional requirements such as compatibility or

interoperability among CSs; the dynamic evolution of CSs and SoS requirements are not addressed; dependencies among SoS variants are

not considered.

6) VANTESS validation

6.1) What to do. The participants recognized the di�culty of validating a new approach or method as VANTESS. They declared:

�It's not the tool that you run an experiment and now you're done. It's really more challenging�. One participant suggested performing

VANTESS validation by means of a controlled experiment with a set of users who could be not con�dent with the development of

SoSs. The idea was that the users could apply VANTESS in a constrained environment, then choose pieces of software from a public

repository and combine them to accomplish the goals speci�ed in the requirements. Then, the usefulness and user experience of the

approach could be evaluated by questionnaires or interviews. Other approaches have been suggested to assess the usefulness of VANTESS:

i) simulation models that should allow to exercise di�erent SoS variants and predict their functional behavior; ii) methods, similar to

mutation testing, able to detect some intentionally introduced changes in the system, by comparing the obtained results with the expected

ones. Independently of the type of evaluation, it has been remarked that �It's important to perform validation on more than one system,

and across domains�. Speci�cally, the participants suggested that VANTESS could be validated in the following domains: i) robotics in

which di�erent functionalities like vision, object recognition, or navigation are implemented as systems that are completely independent

of the robot in which they are going to be run; ii) smart cities, using real data from available repositories for making SoS simulation; and

�nally, iii) civil protection and communication for risk awareness.

6.2) What not to do. It has been remarked that it would be unfair to compare VANTESS application with traditional development

approaches where no variability management is applied. About the controlled experiment suggested to make the validation of VANTESS,

some discussion arose about the opportunity of using students (who could not be expert of computer science disciplines) to assess if

VANTESS represents a good educational approach. The participants also proposed to perform a survey with expert architects who have

the knowledge and experience closer to reality to estimate the cost of a con�guration over another.

Theme 7) SoS variant cost

7.1) Cost computation. An interesting discussion was raised about the cost computation of an SoS variant. More than one participant

agreed that, concerning the cost computation, an issue of VANTESS is that it only associates the cost to a single CS without evaluating

the cost of compatibility or interoperability among more CSs. A participant said: �If you have a very strong choice, but it's not compatible

with all the other, and you cannot integrate with the rest of the components, then you are stuck and the cost is maximum�. An agreement

emerged that another factor that should be considered into SoS variant cost computation is the dependencies among CSs, hence the cost

of a CS should also consider the cost of the other CSs it depends on.

7.2) Re�nement steps. Participants agreed that how to measure integration and interoperability costs among CSs still represents an

open challenge. Estimating this cost by considering all the possibilities of integration of the available CSs could likely cause a combinatorial

explosion and make the approach unusable. Participants suggested to introduce in VANTESS a cost computation re�nement step, by

which after an SoS variant has been selected, the integration costs associated to the CSs belonging to that SoS variant are estimated.

Some more sophisticated metrics are needed to estimate such costs. Moreover, simulation or experimentation could help to know if some

changes in the CSs could a�ect the cost of integration.

30 F. Lonetti et al.

Threats to validity

As for other qualitative studies, potential threats to validity of the focus group results should be considered. The researchers who organized

the focus group session are the same authors and developers of VANTESS, this could have been introduced biases in the planning,

execution and results analysis of the focus group. To mitigate this risk, we followed an objective and rigorous methodology28 along with

all the phases of the focus group: in no way neither the moderator nor the other authors intervened in the discussion beyond the planned

presentations, not to in�uence the orientation of the group. In addition, analysis of data has been performed independently by two authors

of the paper and results have been compared and aligned. Moreover, we make available the data transcription to allow other researchers

to evaluate the validity of the results. Another threat of the focus group session is related to the identi�cation of the participants. This

is an intrinsic threat of all focus group sessions, we tried to mitigate this issue by recruiting academic experts from di�erent universities

and research institutes. Moreover, they represent a well complemented group, whose expertise covers all the research subjects considered

relevant for our study. Other possible threats are related to well-known focus group weaknesses30: i) business relationships between

participants could have in�uenced their opinion; ii) group dynamics or communication styles among the participants could have in�uenced

the results; iii) short discussion time could have forbidden participants to deeply discuss and understand more complex aspects. These are

unavoidable threats of these studies. In our focus group session, business relationships or potential con�icts of interests among participants

and with the authors were not present. To mitigate threats ii) and iii), the moderator clearly explained at the beginning of the session

the rules and objectives of the focus group, and she balanced the discussions trying to involve less active participants.

7 RELATED WORK

The works related to our proposal span over di�erent research directions that are:

Designing SoS

Proper methodologies supporting the design of SoSs are still missing. On the other hand, methods and tools used to design monolithic

and large-scale systems do not appear to work for SoSs3. Lana et al.5 provide a comprehensive literature review of formal and semiformal

languages that have been used for modeling SoS requirements grouped from model-based to property-oriented ones. According to this

literature review, UML (speci�cally activity diagram, class diagram, and sequence diagram) and its variants such as SysML are largely

adopted for de�ning SoS requirements.

Model-based approaches represent a promising direction for the analysis and development of SoS6. Di�erent types of models are used

in the di�erent stages of SoS design, from mission model used by the application domain expert to the architecture model used by the

system architect. Cherfa et al.6 o�er a procedure for explicitly specifying the SoS end-to-end mission and generating the appropriate

abstract architecture. New architecture description languages, such as SosADL37 have been speci�cally conceived to formally describe

abstract architectural emergent behaviors of SoSs to be further re�ned according to the availability of the constituent systems of the

SoS38. Mori et al.39 propose a SysML40 pro�le for SoSs providing novel architectural concepts and language constructs able to support

automated SoS modeling and analysis.

mKAOS23, which we introduced already in Section3.3, is a pioneering language that supports the speci�cation of missions and the

de�nition of relationships between such missions and the other elements of the SoS. Other model-based solutions38,6 exist that support

both the analysis and the architecture speci�cation of SoS. Speci�cally, Silva et al.38 present a model-based re�nement process to

automatically derive architecture models represented in SosADL starting from mKAOS mission models, whereas Cherfa et al.6 provide

precise procedures for guiding the speci�cation of the SoS mission and then the generation of the appropriate architecture, focusing on

acknowledged SoSs.

The aim of our proposal is not to develop a new SoS modeling language, rather we aim at identifying a method for expressing the

variability implicit in the possibility to connect di�erent existing CSs. Indeed, we leverage mKAOS for the de�nition of the SoS mission and

UML use cases for the de�nition of the SoS functional behavior. With regard to existing SoS design approaches, the novelty of VANTESS

consists into a new method for expressing variability in the SoS functional requirements leveraging enhanced UML use cases models.

Testing SoS

Not only our SoS architecture speci�cation supports the automatic derivation of di�erent SoS variants, it also permits the semi-automated

generation of test cases. SoS testing is challenging due to highly dynamic and evolutionary nature of SoSs. Distinct characteristics of

SoS, including their operational and managerial independence, geographic distribution, distributed operational environment, evolutionary

F. Lonetti et al. 31

development, and emergent behavior greatly impact on their test and evaluation41. In a previous work42 we discussed how and to what

extent existing test techniques can be adapted to cope with SoS peculiarities. SoS testing deals with di�erent activities at the SoS level,

as well as at the CSs level. Although many challenges have been identi�ed for SoS testing at di�erent testing levels11, not much research

on SoS testing yet exists and only few approaches in the literature address testing solutions for SoS.

At integration testing level, the main problem is to test all possible interactions and execution �ows that could arise when CSs join or

leave the SoS at any time. To address this problem, Luna et al.43 identify all relevant SoS entities and their interfaces and the �ow of

information between the CSs, and then propose combinatorial testing strategies for optimizing the testing and SoS evaluation. Liang and

Rubin44 use a randomization approach to design test cases for SoS that minimize the number of possible test cases during the integration

of the CSs. Moreover, interoperability issues and dependencies among CSs should be considered during integration testing.

At system level, the high number of states and settings that an SoS can reach prevents the use of exhaustive or exploratory testing.

Zapata et al.45 de�ne an approach similar to white-box testing to generate test cases for an SoS. They use a basic path testing approach,

after modeling the CSs as the nodes of a control �ow graph; however they do not carry out case studies and do not discuss how their

approach can scale up in a scenario with many CSs.

Another issue in SoS testing is to deal with the huge number of changes that can occur in an SoS con�guration. To this purpose,

two di�erent testing strategies could be adopted: i) on the one hand, regression testing should be used to ensure that each new SoS

con�guration does not cause any inappropriate emergent behavior. In this direction, Bertolino et al.46 propose a conceptual framework

to govern regression testing for collaborative and acknowledged SoS, based on the regression test objectives for each phase of the SoS and

using an orchestration graph; ii) on the other hand, it could be useful to revise testing activities according to the SoS changes. In this

direction, Hess and Valerdi47 present the PATFrame framework that aims to predict when a test system needs to be adapted and tested

using the information learned during the test process.

Rather than proposing yet another testing strategy for SoS, following our earlier re�ections11 we leverage existing approaches for test

case derivation in the context of SPL12 and show some test cases semi-automatically generated for the �Educational� SoS.

Handling variability for SoS designing and testing

Variability modeling has been deeply investigated in the context of SPL. It aims to express the commonalities and di�erences among the

products within a family and represents one of the main research areas of variability management.

A recent tertiary study19 provides an overview of existing variability models for SPL. According to such study19 a large majority of

solutions is based on feature modeling. There are also other mechanisms of expressing variability such as decision modeling or orthogonal

models, structured natural languages, use cases with variability specialization or adaptation, other UML-based models or domain-speci�c

languages.

In this paper, we de�ne a UML use case-based SoS variability model. UML use cases are considered a valid approach for modeling

functional requirements in SPL and several approaches in the literature focus on how to describe variability in use cases18. Several

proposals aim to extend use case diagrams with additional modeling elements for expressing the di�erent types of variability (options,

alternative, optional alternatives)48 or by adding UML tagged values expressing variation point attributes as in Nebut et al.'s approach13.

Another common approach to model the variability of a software product line is represented by feature models that represent all the

possible products of the SPL by de�ning relationships and constraints among features49. To deal with the combinatorial explosion of the

number of derivable products in an SPL, existing testing solutions aim to test SPLs by generating test con�gurations that cover all the

valid t-wise feature interactions of a feature model50. However, applying t-wise testing, the number of product con�gurations to be tested

may still be too high in large models with respect to the budget allocated for SPL testing.

Then, by the analysis of feature models, automated approaches have been developed for making pruning and prioritization of the tests

to be executed within a product line51,52,53. Such approaches adopt optimization functions as well as cost and value feature information

to derive a sorted list of products to be tested51, or use statistical testing techniques based on usage models expressed as discrete-time

Markov chains for selecting products and generating test cases52, or leverage search-based approaches for the generation of product

con�gurations for t-wise testing for large SPLs and similarity heuristics for their prioritization53. A di�erent goal is that of multimorphic

testing, namely to derive a family of variants or morphs with the objective of assessing the quality of a test suite54. All these approaches

try to optimize the tests execution for a set of products, sampling the product con�gurations to test or identifying relevant products to

test or checking whether testing di�erent variants of the same program yields signi�cant di�erences in terms of tests results. The goal

of our approach is di�erent, it is not on deriving an e�ective testing strategy for a set of SoS variants but handling SoS variability at

design-time to support the SoS architect in the derivation and selection of a set of SoS variants. Then, we show how to apply existing

approaches for testing of SPLs for deriving a set of test cases for a speci�c SoS variant.

32 F. Lonetti et al.

In this paper, we leverage the enhanced use case model proposed by Nebut et al.13 and adapt it to the speci�c needs of modeling

variability in SoS context.

Handling variability that occurs at model level represents a challenge of SPL testing due to the huge complexity associated to testing

the large number of speci�c products that could be derived. Petry et al.55 provide a roadmap of SPL model-based testing approaches and

variability management techniques for the test cases derivation. The results of this roadmap outline that 68% of the analyzed studies treat

variability both at domain and application level engineering and that the majority of these studies focus on handling variability at design-

time. Two main basic strategies for test case derivation leveraging variability models can be identi�ed in SPL, they are abstraction and

parametrization56: the former consists in developing general domain test cases by abstracting from di�erences among possible variants

and then re�ning these general test statements with respect to the chosen variant; in the latter, parameterized domain test cases are

developed and application test cases are derived from binding the parameters. Speci�cally, Nebut et al.14,12 adopt parameterized domain

test cases: by combining parameters and constraints expressed at use case level, test patterns formulated as UML sequence diagrams are

developed and then test cases for application testing are synthesized from such test patterns.

The main idea of this paper is to leverage variability modeling that has been deeply investigated in SPL literature for expressing

variability in SoS functional behavior and managing this variability for SoS variants selection and testing purposes. We are only aware of

few preliminary works that speculate about variability in SoS development8,9,11. Precisely, Klein et al.8 investigate variation points in

the common platforms used for SoS so that new SoS con�gurations can be easily derived. To analyze the bene�ts and costs of di�erent

variation implementations and time binding requirements, methods and practices from product line could be used. In particular, they plan

to extend the cost and bene�t estimation models for SPL with additional categories of costs and bene�ts speci�cally conceived to address

the SoS scale and context8. Botterweck9 deals with variability and evolution in SoS in a position paper discussing the relationships

between the concepts of Systems of Systems Engineering and the Product Line Engineering. Speci�cally, he fosters a vision in which

systems (in an SoS context) could be products of a product line and at the same time product lines could be seen as a technique to

produce components in an SoS approach. This vision could be bene�cial for SoS evolution and recon�guration. Finally, in our previous

workshop paper11 we outline commonalities and di�erences between the SoS and SPL paradigms from the point of view of testing and

investigate how existing SPL methods and tools addressing variability could be leveraged to ful�ll the challenges of SoS testing.

All these early papers raise interesting questions and identify important challenges, but do not provide approaches or techniques to

express and leverage variability modeling for designing and testing of SoS. To the best of our knowledge, we propose the �rst concrete

solution to leverage variability modeling adopted in SPL for designing, selecting and testing the most desirable SoS variant.

8 CONCLUSIVE DISCUSSION AND FUTURE WORK

We have introduced VANTESS, a new variability-aware approach for designing and testing of SoSs. More speci�cally we target directed

and acknowledged SoSs, and we support an SoS engineer who aims at creating an SoS from the assembling of available CSs with other

components that are adapted or ad-hoc developed.

In the early stage of SoS architecture de�nition, the choice of the concrete CSs that will form the SoS is based on an opportunistic

approach that considers the di�erent functionalities they o�er as well as their contribution to ful�ll the overall SoS mission weighted

against bene�ts and costs. In this context, VANTESS supports the SoS engineer during the early design and testing phases by providing:

i) a new method for expressing variability in the SoS functional requirements according to the functionalities o�ered by the available CSs.

The proposed SoS variability model leverages enhanced use cases models and the variability concepts widely explored in the SPL domain;

ii) a solution to master such variability and then the large number of possible SoS behaviors that could arise when considering the various

functionalities that the di�erent involved CSs could o�er. In this direction, VANTESS provides a heuristic to assess the desirability of

the di�erent SoS variants guiding the SoS engineer in the selection of the CSs during the design stage; iii) for the selected SoS variant,

VANTESS also allows to generate in a semi-automated way a test plan in terms of test objectives and then a set of executable test cases

through model simulation and test scenarios derivation. These test cases will allow us to assess both the functional behavior of the SoS

and its robustness.

We walked-through the application of all the phases of VANTESS to the �Educational� SoS. This application example, introduced in

our previous work24, has been here further developed according to the proposed approach and then fully implemented. We provide all

the artifacts produced while applying the VANTESS approach at the VANTESS GitHub repository, available at https://github.com/

edufysos/vantess, whereas the reference implementation of the selected constituent systems and their integration can be found from the

EDUFYSoS repository at https://github.com/edufysos/edufysos.

https://github.com/edufysos/vantess
https://github.com/edufysos/vantess
https://github.com/edufysos/edufysos

F. Lonetti et al. 33

To assess the approach, we conducted a focus group session with six experienced �eld participants. We transcribed the session and

performed the qualitative analysis using TAT. The results obtained in the focus group allowed us to identify seven themes and �fteen

sub-themes. Although participants were not aware of a speci�c approach to CSs selection and variability management, they pointed out

that approaches from other domains could be adapted to deal with this problem. We highlight the SPL and KAOS approaches, which we

consider in this work. Regarding the VANTESS approach, we found that the main pros are that it is a simple approach and considers

the entire stage of the SoS development process, from its conception to testing. However, the cons are that it does not consider the

evolutionary aspect of the SoS and it does not take into account the quality attributes.

Some limitations of the approach are related to costs computation. As said, the approach does not take into account the integration

costs of CSs. These costs can be related to non-functional requirements, such as, for instance, compatibility costs between CSs, that would

prevent their coexistence in the same SoS. Also, costs related to dependences on other systems that a given CS may have, for example, a

CS that needs to authenticate itself using another system.

To assess the desirability of SoS variants, we leveraged and modi�ed the CBAM method. With respect to CBAM, in VANTESS, the

contribution score is very simple (1 or 0), it could be less re�ned than in CBAM but it can be automatically derived avoiding the manual

assignment from the stakeholders. A limitation of VANTESS with respect to the original CBAM decision-making technique is the number

of the involved stakeholders. In VANTESS, for aim of simplicity we consider only one stakeholder, but the approach could be extended

to consider more than one stakeholder.

Another limitation of the bene�t function adopted in VANTESS is that of considering the variation point attribute scores as single values

into a de�ned range. More complex measures for the variation point attributes could be de�ned depending for instance on application

scenarios or using utility level associated to the variation point attributes as done by Moore et al.21.

While the SoS architect can check the consistency of each SoS variant's requirement using simulation of the use cases, the VANTESS

approach does not yet allow to detect con�icting requirements. The management of emerging con�icting requirements in SoS is a challenging

problem and existing approaches57 in literature try to address it. We plan in the future to investigate state-of-the-art approaches for

con�icting requirements detection in SPL and to extend VANTESS adapting them to the context of SoS design.

We conclude that the results obtained also open up opportunities for future research. VANTESS deals with modeling variability of the

functional behavior of SoSs. In future, we plan to extend our approach in order to consider also the variability of quality attributes such as

performance, interoperability, or security. For that, we can include a re�nement step that calculates the CSs integration cost considering

these quality attributes during the early design phase of the SoS. This extension of VANTESS will permit to take into account also these

quality aspects to select the con�guration of CSs that can better guarantee for instance a given performance or security level, or, on the

other hand, that high interoperability costs, for instance, impede the realization of an SoS.

In this paper, we focused on handling variability of functional requirements of the SoS at the early design stage, i.e. over space. Our

goal in the future is to investigate the challenging problem of how to manage the variability in time, i.e., when the SoS is running and the

autonomous CSs implementing the desired functionalities may need to evolve to adapt to changes of the context. We plan to develop an

extension of VANTESS able to support the SoS engineer in the iterative process of selecting for each new release of the SoS, the set of its

functional requirements by considering the evolution of the existing CSs as well as the functionalities of new CSs that could be enrolled

in the SoS to ful�ll the new requirements.

We intend to conduct case studies to increase con�dence in the validity and usefulness of VANTESS. For this, we may consider di�erent

SoS domains such as robotics and smart cities. Faults seeding techniques can be researched and applied in the context of SoS to analyze

the e�ectiveness of the generated test cases.

ACKNOWLEDGMENTS

This paper has been partially supported by the Italian MIUR PRIN 2017 Project: SISMA (Contract 201752ENYB).

We would like to thank all the participants to the focus group for their insightful feedback.

References

1. Dahmann JS, Baldwin KJ. Understanding the current state of US defense systems of systems and the implications for systems

engineering. In: Systems Conference. ; 2008: 1�7.

34 F. Lonetti et al.

2. Nielsen CB, Larsen PG, Fitzgerald J, Woodcock J, Peleska J. Systems of systems engineering: basic concepts, model-based techniques,

and research directions. ACM Computing Surveys (CSUR) 2015; 48(2): 1�41.

3. DeLaurentis DA. A taxonomy-based perspective for systems of systems design methods. In: IEEE international conference on Systems,

Man and Cybernetics. ; 2005: 86�91.

4. Pohl K, Böckle G, Van Der Linden F. Software product line engineering: foundations, principles, and techniques. Springer . 2005.

5. Lana CA, Guessi M, Antonino PO, Rombach D, Nakagawa EY. A Systematic Identi�cation of Formal and Semi-Formal Languages

and Techniques for Software-Intensive Systems-of-Systems Requirements Modeling. IEEE Systems Journal 2018; 13(3): 2201�2212.

6. Cherfa I, Belloir N, Sadou S, Fleurquin R, Bennouar D. Systems of systems: From mission de�nition to architecture description.

Systems Engineering 2019; 22(6): 437�454.

7. Lock R, Sommerville I. Modelling and analysis of socio-technical system of systems. In: 15th IEEE International Conference on

Engineering of Complex Computer Systems. ; 2010: 224�232.

8. Klein J, Chastek G, Cohen S, Kazman R, McGregor J. An early look at de�ning variability requirements for system of systems

platforms. In: Second IEEE International Workshop on Requirements Engineering for Systems, Services, and Systems-of-Systems

(RESS). ; 2012: 30�33.

9. Botterweck G. Variability and evolution in systems of systems. In: 1st Workshop on Advances in Systems of Systems (AiSoS'13). ;

2013: 8-23.

10. Ncube C, Oberndorf P, Kark AW. Opportunistic software systems development: making systems from what's available. IEEE Software

2008; 25(6): 38�41.

11. Bertolino A, Lonetti F, Neves VO. Standing on the Shoulders of Software Product Line Research for Testing Systems of Systems. In:

IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). ; 2020: 209�214.

12. Nebut C, Fleurey F, Le Traon Y, Jezequel JM. Automatic test generation: A use case driven approach. IEEE Transactions on Software

Engineering 2006; 32(3): 140�155.

13. Nebut C, Le Traon Y, Jézéquel JM. System testing of product lines: From requirements to test cases. In: Springer. 2006 (pp. 447�477).

14. Nebut C, Pickin S, Le Traon Y, Jézéquel JM. Reusable test requirements for UML-modeled product lines. In: International Workshop

on Requirements Engineering for Product Lines (REPL). ; 2002: 51�56.

15. Kazman R, Asundi J, Klein M. Quantifying the costs and bene�ts of architectural decisions. In: 23rd International Conference on

Software Engineering (ICSE 2001). ; 2001: 297�306.

16. US Department of Defense . Systems Engineering Guide for Systems of Systems. O�ce of the Deputy Under Secretary of Defense for

Acquisition and Technology, 2008.

17. Chen L, Babar MA. A systematic review of evaluation of variability management approaches in software product lines. Information

and Software Technology 2011; 53(4): 344�362.

18. Santos IS, Andrade RMC, Neto PAS. How to describe SPL variabilities in textual use cases: A systematic mapping study. In: Eighth

Brazilian Symposium on Software Components, Architectures and Reuse. ; 2014: 64�73.

19. Raatikainen M, Tiihonen J, Männistö T. Software product lines and variability modeling: A tertiary study. Journal of Systems and

Software 2019; 149: 485�510.

20. Nebut C, Fleurey F, Le Traon Y, Jézéquel JM. Requirements by contracts allow automated system testing. In: 14th International

Symposium on Software Reliability Engineering (ISSRE). ; 2003: 85�96.

21. Moore M, Kaman R, Klein M, Asundi J. Quantifying the value of architecture design decisions: lessons from the �eld. In: 25th

International Conference on Software Engineering. ; 2003: 557�562.

F. Lonetti et al. 35

22. Falessi D, Cantone G, Kazman R, Kruchten P. Decision-Making Techniques for Software Architecture Design: A Comparative Survey.

ACM Comput. Surv. 2011; 43(4).

23. Silva E, Batista T, Oquendo F. A mission-oriented approach for designing system-of-systems. In: 10th System of Systems Engineering

Conference (SoSE). ; 2015: 346�351.

24. Bertolino A, De Angelis G, Lonetti F, Neves VO, Olivero MA. EDUFYSoS: A factory of educational system of systems case studies.

In: IEEE 15th International Conference of System of Systems Engineering (SoSE). ; 2020: 205�210.

25. Rothermel G, Untch RH, Chu C, Harrold MJ. Test case prioritization: An empirical study. In: IEEE International Conference on

Software Maintenance (ICSM). ; 1999: 179�188.

26. Lane J. Cost model extensions to support systems engineering cost estimation for complex systems and systems of systems. In: 7th

Annual Conference on Systems Engineering Research. ; 2009.

27. Karakashian S, Choueiry BY. Tree-Based Algorithms for Computing k-Combinations and k-Compositions. Tech. Rep. CSE Technical

reports, University of Nebraska - Lincoln; 2010.

28. Kontio J, Bragge J, Lehtola L. The Focus Group Method as an Empirical Tool in Software Engineering. In: Shull F, Singer J, Sjøberg

DIK., eds. Guide to Advanced Empirical Software EngineeringSpringer London. 2008 (pp. 93�116).

29. Edmunds H. The focus group research handbook. The Bottom Line 1999.

30. Kontio J, Lehtola L, Bragge J. Using the focus group method in software engineering: obtaining practitioner and user experiences.

In: International Symposium on Empirical Software Engineering (ISESE'04). ; 2004: 271�280.

31. Cassell C, Symon G. Essential guide to qualitative methods in organizational research. Sage . 2004.

32. Guest G, MacQueen KM, Namey EE. Applied thematic analysis. Sage publications . 2011.

33. King N, Brooks J, Tabari S. Template analysis in business and management research. In: Ciesielska M, Jemielniak D., eds. Qualitative

methodologies in organization studiesSpringer. 2018 (pp. 179�206).

34. Brooks J, McCluskey S, Turley E, King N. The utility of template analysis in qualitative psychology research. Qualitative research

in psychology 2015; 12(2): 202�222.

35. Scanniello G, Romano S, Fucci D, Turhan B, Juristo N. Students' and professionals' perceptions of test-driven development: a focus

group study. In: 31st Annual ACM Symposium on Applied Computing. ; 2016: 1422�1427.

36. Manzano W, Graciano Neto VV, Nakagawa EY. Dynamic-sos: An approach for the simulation of systems-of-systems dynamic

architectures. The Computer Journal 2020; 63(5): 709�731.

37. Oquendo F. Formally describing the software architecture of systems-of-systems with SosADL. In: 11th System of Systems Engineering

Conference (SoSE). ; 2016: 1�6.

38. Silva E, Cavalcante E, Batista T, Oquendo F. Bridging missions and architecture in software-intensive systems-of-systems. In: Int.

Conf. on Engineering of Complex Computer Systems. ; 2016: 201�206.

39. Mori M, Ceccarelli A, Lollini P, Frömel B, Brancati F, Bondavalli A. Systems-of-systems modeling using a comprehensive viewpoint-

based SysML pro�le. Journal of Software: Evolution and Process 2018; 30(3): e1878.

40. OMG . Systems modeling language (SYSML) speci�cation, version 1.3 (June 2012). http://www.omg.org/spec/SysML/1.3/PDF; .

41. Dahmann J, Lane JA, Rebovich G, Lowry R. Systems of systems test and evaluation challenges. In: 5th International Conference on

System of Systems Engineering. ; 2010: 1�6.

42. Neves VO, Bertolino A, De Angelis G, Garcés L. Do We Need New Strategies for Testing Systems-of-Systems?. In: IEEE/ACM 6th

International Workshop on Software Engineering for Systems-of-Systems (SESoS). ; 2018: 29�32.

http://www.omg.org/spec/SysML/1.3/PDF

36 F. Lonetti et al.

43. Luna S, Lopes A, Tao HYS, Zapata F, Pineda R. Integration, veri�cation, validation, test, and evaluation (IVVT&E) framework for

system of systems (SoS). Procedia Computer Science 2013; 20: 298�305.

44. Liang Q, Rubin SH. Randomization for testing systems of systems. In: IEEE International Conference on Information Reuse &

Integration. ; 2009: 110�114.

45. Zapata F, Akundi A, Pineda R, Smith E. Basis path analysis for testing complex system of systems. Procedia Computer Science

2013; 20: 256�261.

46. Bertolino A, De Angelis G, Lonetti F. Governing regression testing in systems of systems. In: IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW). ; 2019: 144�148.

47. Hess JT, Valerdi R. Test and evaluation of a SoS using a prescriptive and adaptive testing framework. In: 5th International Conference

on System of Systems Engineering. ; 2010: 1-6.

48. Maÿen v. dT, Lichter H. Modeling variability by UML use case diagrams. In: International Workshop on Requirements Engineering

for product lines. ; 2002: 19�25.

49. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-oriented domain analysis (FODA) feasibility study. tech. rep.,

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst; 1990.

50. Perrouin G, Oster S, Sen S, Klein J, Baudry B, Le Traon Y. Pairwise testing for software product lines: comparison of two approaches.

Software Quality Journal 2012; 20(3): 605�643.

51. Galindo JA, Turner H, Benavides D, White J. Testing variability-intensive systems using automated analysis: an application to

android. Software Quality Journal 2016; 24(2): 365�405.

52. Devroey X, Perrouin G, Cordy M, et al. Statistical prioritization for software product line testing: an experience report. Software &

Systems Modeling 2017; 16(1): 153�171.

53. Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le Traon Y. Bypassing the combinatorial explosion: Using similarity to

generate and prioritize t-wise test con�gurations for software product lines. IEEE Transactions on Software Engineering 2014; 40(7):

650�670.

54. Temple P, Acher M, Jézéquel JM. Empirical Assessment of Multimorphic Testing. IEEE Transactions on Software Engineering 2021;

47(7): 1511-1527.

55. Petry KL, OliveiraJr E, Zorzo AF. Model-based testing of software product lines: Mapping study and research roadmap. Journal of

Systems and Software 2020; 167: 110608.

56. Kamsties E, Pohl K, Reis S, Reuys A. Testing variabilities in use case models. In: International Workshop on Software Product-Family

Engineering. ; 2003: 6�18.

57. Viana T, Zisman A, Bandara AK. Identifying con�icting requirements in systems of systems. In: IEEE 25th International Requirements

Engineering Conference (RE). ; 2017: 436�441.

58. Mikkonen T, Taivalsaari A. Software reuse in the era of opportunistic design. IEEE Software 2019; 36(3): 105�111.

59. Temple P, Acher M, Jézéquel JM. Poster: Multimorphic Testing. In: IEEE/ACM 40th International Conference on Software

Engineering: Companion (ICSE-Companion). ; 2018: 432�433.

60. DeLaurentis DA, Crossley WA, Mane M. Taxonomy to guide systems-of-systems decision-making in air transportation problems.

Journal of Aircraft 2011; 48(3): 760�770.

61. Uday P, Marais K. Designing resilient systems-of-systems: A survey of metrics, methods, and challenges. Systems Engineering 2015;

18(5): 491�510.

62. Axelsson J, Fröberg J, Eriksson P. Architecting systems-of-systems and their constituents: A case study applying Industry 4.0 in the

construction domain. Systems Engineering 2019; 22(6): 455�470.

F. Lonetti et al. 37

63. Mori M, Ceccarelli A, Lollini P, Bondavalli A, Frömel B. A holistic viewpoint-based SysML pro�le to design systems-of-systems. In:

IEEE 17th International Symposium on High Assurance Systems Engineering (HASE). ; 2016: 276�283.

How to cite this article: F. Lonetti, V. Neves, A. Bertolino, (2021), Designing and Testing Systems of Systems: From Variability Models

to Test Cases passing through Desirability Assessment, JSEP, 2021;00:1�6.

	Designing and Testing Systems of Systems: From Variability Models to Test Cases passing through Desirability Assessment
	Abstract
	Introduction
	Basic Concepts
	SoS architectures
	Managing variability in SoS

	Background
	Leveraging SPL variability models
	Leveraging CBAM for SoS variant selection
	mKAOS
	``Educational'' SoS

	Overview of the Approach
	Overall SoS mission definition
	Constituent systems recognition and requirements definition
	SoS requirements modeling based on enhanced use cases
	Assessing the desirability of SoS variants
	SoS variant simulation
	Test cases derivation

	Application of VANTESS to ``Educational'' SoS
	``Educational'' SoS mission diagram
	Recognition of available CSs for ``Educational'' SoS
	``Educational'' SoS requirements model
	Desirability of ``Educational'' SoS variants
	``Educational'' SoS simulation model
	Test cases derivation for ``Educational'' SoS
	Test objectives
	Test scenarios generation
	Executable test cases derivation

	Focus Group
	Methodology
	Results

	Related Work
	Conclusive Discussion and Future Work
	Acknowledgments
	References

