2301.00924v3 [cs.NE] 18 Jan 2024

arxXiv

Increasing biases can be more efficient than increasing weights

Carlo Metta’
ISTI-CNR Pisa, Italy

Gianluca Amato?
University of Chieti-Pescara, Italy

Alessandro Marchetti®
University of Chieti-Pescara, Italy

Maurizio Parton'

University of Chieti-Pescara, Italy

Abstract

We introduce a novel computational unit for neural net-
works that features multiple biases, challenging the tradi-
tional perceptron structure. This unit emphasizes the impor-
tance of preserving uncorrupted information as it is passed
from one unit to the next, applying activation functions
later in the process with specialized biases for each unit.
Through both empirical and theoretical analyses, we show
that by focusing on increasing biases rather than weights,
there is potential for significant enhancement in a neural
network model’s performance. This approach offers an al-
ternative perspective on optimizing information flow within
neural networks. See source code [5].

1. Introduction

Historically the structure of the perceptron, the arti-
ficial neural network’s fundamental computational unit,
has rarely been questioned. The biological inspiration is
straightforward: input signals from the dendrites are accu-
mulated at the soma (with a linear combination), and if the
result is above the activation threshold (that is, the opposite

OEU Horizon 2020: G.A. 871042 SoBig-Data++, NextGenEU - PNRR-
PEAI (M4C2, investment 1.3) FAIR and “SoBigData.it”.
'Funded by INAAM (groups GNAMPA, GNCS, and GNSAGA).
ZPartially supported by SPARK Pisa.
3National PhD in AL, XXXVII cycle, health and life sciences, UCBM.
allComputational resources provided by CLAI lab, Chieti-Pescara.

Marco Fantozzi
University of Parma, Italy

Matteo Bergamaschi
University of Padova, Italy

Andrea Papini
Scuola Normale Superiore, Pisa, Italy

Silvia Giulia Galfre?
University of Pisa, Italy

Michelangelo Veglio
University of Chieti-Pescara, Italy

Francesco Morandin®
University of Parma, Italy

of some bias) there is a nonlinear reaction, as the neuron
fires along the axon (with the activation function).

In time, the early sigmoid activation function was re-
placed by ReLU and variants, and the biological analogy
became less stringent, shifting focus on the desirable math-
ematical properties of the class of functions computed by
the networks, like representation power and non-vanishing
gradients.

This has brought us to the current situation in which most
units output their signal through a nonlinear activation func-
tion which effectively destroys some information. In fact,
ReLU is not invertible, as it collapses to zero all negative
values. Though some of its variants may be formally invert-
ible (leaky ReLU [21] and ELU [4] for example), the fact
that they overall perform in a way very similar to ReLU,
suggests that their way of compressing negative values via
a small derivative bijection leads to the same general prop-
erties of the latter.

In this paper, we investigate a radical rethinking of the
standard computational unit, where the output brings its
full, uncorrupted information to the next units, and only at
this point is the activation function applied, with biases spe-
cialized for each unit. From the biological point of view,
this is like having the activation at the dendrites instead of
at the base of the axon, and correspondingly we call the new
unit ‘DAC’, for ‘Dendrite-Activated Connection’.

This kind of reversed view has already proved fruitful
in the evolution from ResNets vl [11] to v2 [12] when a
comprehensive ablation study showed that for residual net-



works it is better to keep the information backbone free of
activations for maximum information propagation, and pre-
activate the convolutional layers in the residual branch.

Here this view is taken forward: not only the units are
pre-activated, but the biases become specific to each input-
output pair, as the weights are. We refer to this as having
unshared biases.

The main result of this paper is evidence that sometimes
incorporating more biases can increase accuracy more than
adding weights, without altering model complexity (see
Section 5, SGEMM subsection). The fact that DAC con-
sistently outperforms the baseline models across diverse ar-
chitectures and datasets strengthens this finding, see the rest
of Section 5. Hence, DAC emerges as a viable strategy
for enhancing neural network performance when increasing
weights proves ineffective.

The proposed model is introduced in Section 2 with a
first theoretical discussion. Related works are listed in Sec-
tion 3. The main practical details for replacing shared with
unshared biases are discussed in Section 4, and the empiri-
cal experiments can be found in Section 5. Finally, further
theoretical questions can be found in Section 6 and in the
Appendix.

2. Model

In a standard neural network, units are often post-
activated: they compute a linear combination of their inputs
and then apply a nonlinear filter to the result.

{Zi = Zjezi Wi, 5 Yj

linear aggregation
gereg 1)

yi = @(b; + 2;) nonlinear filter
where, for unit ¢, Z; denotes the set of input nodes, b; the
bias and ¢ the activation function.

We propose to consider units that are pre-activated with
unshared biases:

{yi,j = @(bij + z;) nonlinear filter @

=3 ez, Wij Yij linear aggregation

In (1) there is one weight w; ; for each connection be-
tween units and one bias b; for each unit. In (2) each con-
nection still has its own weight w; ;, but it also has its own
nonlinear filter with a specific bias b; ;. (Compare Figures 1
and 2.)

Connections between units correspond to synapses or
dendrites in biological neurons, and it is known that activa-
tion at the level of dendrites can actually occur in biological
neural networks [18,22]. With this motivation we refer to
a connection as in (2) as a Dendrite-Activated Connection
(DAC). See Section A in the Appendix for additional details
on the biological inspiration.

ya = p(bs + 24)

3
2= Wil
=

Figure 1. Standard connection between two consecutive layers.
The output layer (pink) is fully connected and has two units la-
belled 4 and 5. The input layer has three units: Zy = Zs =
{1,2, 3}. Bullets and rectangles represent linear aggregation and
nonlinear filters from (1), respectively. Units 4 and 5 must share
the same biases b1, b2, b3 in the activation of their inputs.

A DAC unit is more general than a standard unit, in fact
it can have almost twice as many parameters, and a corre-
spondingly greater representation capacity (see Section C
of the Appendix on representation power). For this reason,
in experiments, neural networks with DACs should be com-
pared to standard ones with similar number of parameters
or computational complexity, and not with the same num-
ber of units or channels. In this regard it is important to
note that, in convolutions larger than 1 x 1, DAC biases can
be partially shared, yielding a much lesser increase in the
number of parameters (see Section 4).

In this paper we investigate the properties of DAC units

and the behaviour of typical network structures when stan-
dard connections are replaced with DACs.
Remark 2.1. DAC and the standard post-activation may co-
exist in the same connection (in analogy with what happens
in the biological neuron, where the standard post-activation
of the axon is always present):

linear combination — shared bias post-activation

— unshared biases pre-activation — linear combination

For ReLU activations, the composition of post-activation
and pre-activation is equivalent to a pre-activation with
modified coefficients, so we do not investigate further this
generalization.

3. Related work

The multi-bias activation (MBA) from [19] replicates K
times the input features z;, applies a different bias param-
eter b‘gk) to each of them, filters them with ReLLU, and then
computes a linear combination over j and k for every output
node i:

K
2, = Z Zw”k go(bgk) + zj). 3
JEL; k=1

Equation (3) resembles our equation (2) of pre-activated
units. However, in (3) the pre-activation biases do not de-



Eal ¢(z1 +ba1)

(i)

¢(23 + ba3)

Figure 2. Same structure as in Figure 1 with post-activation re-
placed by pre-activation with unshared biases. Rectangles and
bullets represent nonlinear filters and linear aggregations from (2),
respectively. The biases in the activation between the input and
the output layer depend both on the input node (1, 2 or 3) and the
output node (4 or 5), and so, from the point of view of the output
units, we refer to them as unshared.

pend explicitly on the output ¢, so they are multiplied in
number, but still effectively shared from the point of view of
the linear operator. Another consequence of this is that pa-
rameters and computations are increased K -fold. Squeeze
MBA [8] is a variation of MBA that still shares biases
among outputs but tweaks the network structure to partially
reduce the number of parameters.

Other approaches to mitigate the loss of information
intrinsic in the ReLU activation, such as Maxout net-
works [10], adaptive piecewise linear activation func-
tions [ 1], Concatenated ReLLU [31], and Activation ensem-
bles [16], generalize the activation function by using multi-
ple biases (among other parameters) but they all maintain a
single nonlinear filtered output per node, and hence shared
biases.

There are also ways to design a network that inherently
mitigate or avoid the loss of information of activations with
shared biases. ResNet v2 architecture [12] keeps the in-
formation backbone free of nonlinearities that are only on
residual branches (with pre-activation). All the nonlinear
blocks take their inputs from the backbone, so each input is
the pure linear sum of all the previous nonlinear branches.
ConvNeXt [20] not only uses the same linear backbone as
above, but then applies depthwise convolutions, brought to
popularity by [3] and common to other recent successful ar-
chitectures. In depthwise convolutions, every input channel
is unique to one output kernel: this is a simple solution to
avoid sharing biases, though the consequent low capacity
requires that depthwise convolutions are used together with
other types of layers that will typically have shared biases.

4. Methods

To use DAC in a given neural network structure, one
replaces the usual post-activations of computational units
with pre-activations for the downstream units, using un-
shared biases. To this end one can design dense and con-
volutional units that include the required pre-activation.

For a dense layer with n units and m inputs, (2) becomes:

fi) =Y wigebiy+2),  i=12..n @

j=1

In the case of a 2d convolutional layer with n units/kernels
and m input channels, we get instead:

l m
fhki(2) = Z Zwa,b,i,j ©(bij + Zhtak+bj)s
a,b=—1j=1
i=1,2,...,n, (h,k)€grid (5)

where L = 2] + 1 and L x L is the kernels size.

In the latter equation, if one were to follow the principle
in (2), for which there should be one pre-activation bias for
every weight, then these totally unshared biases would take
the more general form b, 4, ; ; depending on channel, kernel
and position in the kernel. There is however the possibility,
in this case, to partially share biases and have b; ; depend on
input channel and output kernel only, to get a better trade-
off between flexibility and number of parameters.

In most cases, pre-activated layers (4) and (5) can replace
the usual ones (by removing the post-activation of the layer
before the one considered, but see Remark 2.1). In a few
cases this change could have no real effect: in fact there are
situations in which the standard shared biases are effectively
unshared, notably when the subsequent layer has only n =
1 unit/kernel, or if it is a depthwise convolution [3]. In these
cases DAC reduces to a standard connection. In all other
situations, DAC will use more parameters and require more
computations than a standard connection.

Parameters and number of operations. A dense layer
with n units and m inputs, has mn weights. When it is
pre-activated with unshared biases as in (4), a total of mn
DAC biases are used, in place of the m shared biases in the
post-activation of the layer before that one, for a relative
increase factor 2 — 1/n, that is, almost 2 when n is not very
small. For a convolutional layer as in (5), the number of
biases involved is the same, but the weights are mnlL?, so
the relative increase factor is 1 + 1/L? — 1/nL?. In the
case of a 3 x 3 kernel, this leads to a modest increase of
approximately +11% in the number of parameters.

In calculating FLOPs, we adopt the usual convention
to ignore activation function costs. Though pre-activation
involves significantly more calls to the activation function
than post-activation, for simple functions like ReLU, the
computation cost is very small and can be neglected. This
assumption may not hold for other, more computationally
expensive, activation functions.

Considering again a dense layer with n units and m
inputs, FLOPs are mn multiplications and mn additions.
When using pre-activation, another mn additions are re-
quired, that replace the m additions in the post-activation



of the layer before that one. The relative increase factor
is 1.5 — 1/2n, that is, almost +50% when n is not very
small. In the case of a convolutional layer, FLOPs per
unit/kernel are m L? multiplications and m L? additions, to-
taling 2mnL?st operations for an output shape of s x t.
When using pre-activation as in (5), since DAC biases b;_;
do not depend on the particular kernel position, initial ac-
tivation results ¢(b; ; + z..;) can be cached, requiring
mnst additions, in place of the mst additions in the post-
activation of the layer before that one. This results in a rela-
tive increase factor of 14+0.5L~2(1—1/n), or about +5.5%
for 3 x 3 convolutions and +50% for 1 x 1 convolutions.

More complex structures. While the above discussion
explains how to use DACs in the case of a plain network,
i.e. a regular sequence of basic layers, it is not always clear
what to do in more realistic situations, that include, for
example, normalization layers and skip connections. The
guiding principle then, is to identify activations followed by
linear operators, and check whether, from the point of view
of the linear operators, those activations are using shared bi-
ases. If this is the case, using DAC means to remove said
activations and add pre-activations with unshared biases to
the linear operators.

Hence for example, in a periodic sequence like

... — ReLU — linear —+ BN — ReLLU — linear — ...

where BN stands for batch normalization and “linear” might
be either fully connected or convolutional layers, a DAC
version would be something like

...— DAC - BN — DAC — ...

where BN’ is batch normalization without the trainable shift
parameter $ and DAC might be either (4) or (5).

5. Experiments

We tested empirically the effect of using pre-activations
with unshared biases, on several common tasks. All the ex-
periments can be reproduced using the source code [5], that
includes a test implementation of the pre-activated layers
in (4) and (5).

SGEMM performance regression. We experimented
with a regression task from the UCI repository [2, 30]. The
task is to predict the execution time of a matrix multi-
plication on a highly-tuneable SGEMM kernel for GPU.
The input variables are 14 kernel parameters that are ei-
ther binary or take values that are powers of 2, and the
response variable ranges between 13.25 and 3397.08 mil-
liseconds. Non-binary variables, including the response,
were log,-transformed. Input variables were normalized
and the dataset, consisting of all the 241600 combinations,
one replica each, was split with a 70%, 15% and 15% pro-
portion between training, validation and test. We assessed

performances as mean squared error (MSE) between pre-
dicted and real response (in log, scale).

The nature of the task suggests to use fully connected
neural networks. We tested several hundreds architectures,
all with the same basic structure but variable size. The struc-
ture is a simple sequence of fully connected layers, each
followed by batch normalization and ReLU. The output is a
fully connected layer with 1 unit and no activation. The
size ranges in depth (from 5 to 16 layers before the last
one), in width (from 16 to 250 units) and in the progres-
sion of widths with layers, that was either rectangular (con-
stant width) or pyramidal (decreasing width). The number
of trainable parameters ranged between 1700 and 1.4M.

Network structures were defined in pairs, consisting of
one network with post-activations and shared biases (base-
line), and one network with pre-activations and unshared
biases (DAC) with similar number of trainable parameters.
To this end, in the DAC version, the number of units in each
layer was reduced by roughly a factor v/2, in such a way
that the number of weights was halved, and adding the un-
shared biases, the total number of trainable parameters was
almost exactly the same as for the baseline network.

For the training we used MSE loss, L2-regularization of
weights (not biases) with a coefficient of 10~°, Adam opti-
mizer with a batch size of 1024, learning rate set to 0.01, He
normal initializer for weights, and zero initializer for biases
(both shared and unshared). Early stopping based on vali-
dation MSE was activated after epoch 250, with a patience
of 50 epochs and a threshold of 1074,

Training failed to reach a suitable error level in 15/576
cases for the baseline and 2/449 cases for DAC. The occur-
rence of this problem is significantly lower for DAC (bi-
lateral p-value 0.0063). Failed training experiments were
excluded from further analysis as outliers. Figure 8 in the
Appendix shows the results of all the other experiments.

We found that there is weak dependence on depth for
this task, and hence we aggregated experiments by width,
see Figure 3. Since DAC networks with the same number
of parameters have reduced number of units, we computed
their “equivalent width”, i.e. \/2 times the actual width:
for example rectangular DAC networks with 141 units per
layer have as many parameters as base networks with the
same depth and 200 units per layers, and so we say they
have equivalent width 200. For rectangular networks, there
are four groups with widths (or equivalent widths) 25, 50,
100 and 200 for base (or DAC). For pyramidal networks,
the width of layers is not uniform, so we estimated an av-
erage width (or equivalent width) as 4/parameters/depth.
Obtained values formed six natural clusters that were used
as groups.

From these initial analyses we observed that passing
from shared to unshared biases can be inefficient if the net-
work is too small and hence has insufficient capacity. To



Minimum test error

Pyramidal structures Rectangular structures

#— base, pyramidal base, rectangular
0.01 A —#— DAC, pyramidal - —- DAC, rectangular
o 0.005 A
©
&
o
o
w 0.003
(%]
=
0.002 A
0.001

25 50 100 200 25 50 100 200
Width (group average, log scale) Width (log scale)

Figure 3. Aggregated and averaged results for the SGEMM regres-
sion task. Experiments are grouped by network shape (pyramidal
or rectangular, see text) and width. Error bars represent the sample
standard deviation of the values concurring to the average. Fully
connected networks with DACs perform better than the baseline
for larger widths, and similarly or worse for smaller widths, when
the general performance of the network is far from optimal.

Variation in test error when doubling parameters

0.1

0.0 === m e

—-0.1

—-0.2 1

—0.3

—-0.4

Log-MSE variation (nats)

—0.5

increase width

—0.6 1
- apply DAC

17525 35550 70100 1415200

Equivalent width (log scale)

Figure 4. Efficiency analysis of unshared biases for the SGEMM
regression task. Rectangular baseline networks were compared
with models with double the parameters: either by adding weights
(orange) or by making biases unshared (blue). The resulting varia-
tions of the MSE are shown (negative means improvement). Error
bars represent the sample standard deviation of the values concur-
ring to the average (see text).

better explore the matter of efficiency of biases with re-
spect to weights, we considered a situation in which one
wants to enlarge a standard (shared-biases) model that has
N weights, either by adding weights or by adding biases.
We measured the error reduction obtained when the num-

ber of parameters doubles in these two ways: by increasing
the number of units by a factor v/2 (adds about N weights),
or by making the biases unshared (adds about /N biases).
To estimate this reduction, first we obtained for each ex-
periment the averages of log-MSE across replicates; then
we computed the differences between models of size nor-
mal and double, for all widths and depths; then, since these
differences did not show dependence on the depth (see Fig-
ure 9 in the Appendix), for each width we collected the dif-
ferent depths and computed the average of the values.

The results are shown in Figure 4. Increasing the number
of weights (orange) has diminishing returns when the width
increases, with large benefits for small sizes and almost no
improvement passing from 141 to 200 units per layer. Pass-
ing from shared to unshared biases instead (blue), gives a
uniform improvement of about 0.25 nats in the test error.
This confirms that small networks, with error levels that are
far from optimal, benefit more from increased width than
from unshared biases, but when further width increase is
no more beneficial, then using unshared biases gives an ad-
ditional boost of performances and leads to otherwise un-
reacheable error levels.

Image classification tasks. We further experimented
with convolutional architectures for image classification
tasks, like VGG and ResNet. In all experiments we trained
a standard structure with post-activations and shared biases
(baseline) and a similar network with pre-activations and
unshared biases (DAC). In the case of convolutional layers,
using unshared biases only increases marginally the number
of parameters and the number of operations (see Section 4),
so we did not reduce the number of units in the DAC ver-
sion.

In all experiments we trained with the following hyper-
parameters: cross-entropy loss; L2-regularization of kernel
weights, with coefficient tuned for the baseline and left the
same for DAC; no regularization of biases; initialization
zero for all biases and He normal for weights; data aug-
mentation as proposed, for CIFAR, in [ 1]; batch size 128;
SGD optimizer with momentum 0.9; learning rate schedule
starting at 0.1 and decreasing by a factor 10 after 40%, 60%
and 80% of the total training steps, with the total length de-
pending on the dataset size.

We chose three classification tasks with datasets of di-
verse nature: CIFAR-10 and CIFAR-100 [17]; two subsets
of ImageNet called Imagenette and Imagewoof [14]; and
ISIC 2019, a medical images dataset, consisting of skin le-
sion images [13]. Below we give further details and results
of the various experiments.

Plain convolutional networks on CIFAR. We designed
two VGG-like architectures for CIFAR-10 and CIFAR-100,
in line with modern revisitations like [6]. The structure is
a simple sequence of 3 x 3 convolutional layers, each fol-
lowed by batch normalization and ReLLU. The output is a



CIFAR-10, VGG CIFAR-100, VGG
11% A 38% A
20/16 20/16
10% - + 36% - ¢
34% A
9% A
’ 14/32 14/32
8% 32% A
? base ¢ base
¢ DAC 30%-1 ¢ DAC
7% 1,

0.05 0.10 0.15 0.20 0.25
GFLOPs

0.05 0.10 0.15 0.20 0.25
GFLOPs

Figure 5. VGG, average test error. Compared performances of
VGG 20 layers, 16 channels, and VGG 14 layers, 32 channels
with shared biases (baseline, orange) and unshared biases (DAC,
blue) on CIFAR-10 and CIFAR-100. Test error (vertical axis) is
averaged over 5 replicates and over 5 epochs (see text). Error bars
are 95% confidence intervals for the true mean value. Complexity
(horizontal axis) is measured in GFLOPs per forward pass.

global average pooling (GAP) layer, followed by a fully
connected layer with 10 or 100 units and softmax activa-
tion. The first structure (referred as 20/16) has 20 layers
including the output, and the 19 convolutional layers start
with 16 kernels that become 32 and 64, after 7 and 13 lay-
ers. The second structure (14/32) has 14 layers, starts with
32 kernels and doubles after 5 and 9.

The split ratio between training, validation and test was
set to 4:1:1. We trained for a total of 80k steps, correspond-
ing to 256 epochs. The coefficient of L? regularization
was 2 - 10~ for CIFAR-10 and 3 - 10~* for CIFAR-100.
Each experiment was replicated 5 times with a 5-fold cross-
validation scheme. The best test accuracy was estimated by
averaging over the 5 replicates and over 5 epochs centered
on the best epoch on the validation dataset, see Section B of
the Appendix for details on this robust statistical estimator.

The networks with pre-activations and unshared biases
obtained a systematic improvement in the test accuracy
with respect to the baselines. The improvement is statis-
tically significant in all cases. For the two architectures
20/16 and 14/32, the improvement was 0.65% =+ 0.17% and
0.43% =+ 0.09% on CIFAR-10, and it was 1.16% =+ 0.22%
and 1.81%=0.19% on CIFAR-100, see Figure 5. The mod-
els with unshared biases require only a marginal increase
in complexity, with 11% more parameters and 5.5% more
FLOPs than the baseline, so these improvements cannot be
explained just by the larger size of the models.

Remark 5.1. To measure the size of the models, in this and
other plots, we favor floating point operations (FLOP) over
the number of parameters, as was advocated among other
sources in [29]. We provide plots with the number of pa-
rameters in the Appendix.

ResNet networks on CIFAR. We used as baseline the

architecture proposed for CIFAR in the original ResNet pa-
pers [1 1, 12], with 20, 32, 44, and 56 layers (n = 3,5,7,9)
both with the v1 post-activated [ |] architecture and the v2
pre-activated [12] architecture. The structure is similar to
the VGG of the previous section, but with skip connections
every two layers. More explicitly, it starts with a convolu-
tion with 16 kernels, followed by three stages of n residual
blocks each, with 16, 32 and 64 kernels respectively. The
output is GAP plus fully connected, as before.

The residual blocks come in two versions, referred as v1
and v2. For v1 there is a classical post-activation sequence:

conv — BN — ReLU — conv — BN — +input — ReL.U

For v2, instead, the authors found that ResNet performs bet-
ter with a pre-activations sequence:

BN — ReLU — conv — BN — ReLU — conv — +input

The conversion to pre-activation with unshared biases
(DAC) was done as follows:

DAC — BN — DAC — BN — +input (28
BN — DAC — BN — DAC — +input v2)

The training hyperparameters were the same as in the
plain convolutional networks experiments.

Figure 6 summarizes the results in terms of best test ac-
curacy, estimated robustly as for the VGG experiments (see
Section B of the Appendix). Among the 16 comparisons,
15 are in favor of DAC models, with 9 of them statistically
significant (p-value below 5%). This confirms that using un-
shared biases improves the performances of residual convo-
lutional networks on CIFAR, with only a marginal increase
in the model complexity. In fact, one could argue that, if the
improvement of the test error between baseline and DAC
was due only to the larger sizes of the latter, then in the fig-
ure, the decreasing blue and orange lines connecting models
of growing depth, would be superimposed. They are par-
tially superimposed for CIFAR-10, v2 and CIFAR-100, v1,
but well separated in the other two cases.

Table 1 presents a simpler metric: the lowest test error
rate (calculated as the minimum over the epochs of the av-
erage of the 5 replicates). The performance of the baselines
aligns with typical values for networks of similar complex-
ity found in the literature. Both the figure and table suggest
that using unshared biases in ResNet architectures leads
to measurable performance improvements across most ver-
sions and benchmark datasets. In some instances, using un-
shared biases improves the corresponding baselines despite
having fewer layers.

We performed also an experiment on CIFAR-10 using
a four times wider ResNet20 v2 architecture, with 64, 128
and 256 kernels in the three stages, resulting in a total of



9.0% 1 ]
? CIFAR-10, v1 20 CIFAR-10, v2
8.5%4 20 1
_ 32 | 32
8.0% 4
56
7.5% - 1 44
° 56
7.0% 1
34% - 5
20 CIFAR-100, v1 20 CIFAR-100, v2
33% - 1
32% - 32 1 32
56
319 44 | 44
56
30% 7 base 1
—é— DAC
29%

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
GFLOPs GFLOPs

Figure 6. ResNet, average test error. Compared performances of
ResNet networks with shared biases (baseline, orange) and un-
shared biases (DAC, blue), on CIFAR-10 (top) and CIFAR-100
(bottom), with architectures v1 (left) and v2 (right). Floating num-
bers are the layers count. Test error (vertical axis) is averaged over
5 replicates and over 5 epochs (see text). Error bars are 95% con-
fidence intervals for the true mean value. Complexity (horizontal
axis) is measured in GFLOPs per forward pass.

Table 1. Comparison of minimum test errors in percent points on
CIFAR-10 and CIFAR-100 (& one standard error).

CIFAR-10, v1 CIFAR-10, v2
Layers Base DAC Base DAC
20 8.64+£0.12 8.2840.19 8.73+0.10 8.33+0.07
32 7.90+£0.04 7.57+0.11 7.85£0.09 7.56+0.15
44 7.694+0.09 7.27+£0.06 7.14£0.09 7.10+0.05
56 7.344+0.17 7.13£0.11  7.02£0.09 6.89+0.05
CIFAR-100, v1 CIFAR-100, v2
Layers Base DAC Base DAC

20 33.5040.16 32.54+0.04
32 31.66+0.12 31.09+0.09
44 30.40£0.11 30.42+0.19
56 30.53+0.23 30.32+0.19

33.50£0.11 32.62+0.10
31.79+0.12 31.05+0.12
30.50+0.07 29.93+0.20
29.894+0.22 29.32+0.17

4.3M parameters for the baseline model. Using unshared
biases instead of shared biases, the minimum test error
dropped from 5.69% to 5.16%, while the number of param-
eters increased as usual by 11%, and the FLOPs by 5.5%.
ResNet networks on Imagenette and Imagewoof. Im-
agenette and Imagewoof [14] are subsets of ImageNet that
are frequently utilized for model benchmarking. They of-

Table 2. Comparison of minimum test errors in percent points on
Imagenette and Imagewoof (4 one standard error).

Imagenette, v1

Layers Base DAC Base DAC
20 13.42+0.26 11.69+0.11 11.984+0.17 11.79+0.13
32 13.14£0.45 11.75+0.08 11.40+0.09 11.28+0.11

Imagenette, v2

Imagewoof, vl Imagewoof, v2

Layers Base DAC Base DAC
20 23.204+0.26 22.61+0.25 22.614+0.17 21.70+0.22
32 23.06£0.24 21.32+0.29 21.75+£0.17 20.65+0.14

0.509 0.542 0.509 0.542
0.865 0.918 0.865 0.918

GFLOPs

fer a simpler and faster alternative to ImageNet while pre-
serving many of its challenges. Imagenette comprises about
10k images belonging to 10 easily distinguishable classes,
whereas Imagewoof includes 10 classes that are more chal-
lenging to classify due to their similarities, as they represent
10 different dog breeds.

For each dataset, we selected the 160-pixel version, in
which the shortest side is resized to 160 pixels while main-
taining the aspect ratio. These images undergo further pro-
cessing to achieve a final size of 80 x 80 pixels. The split ra-
tio between training and validation was set to 4:1:2 approx-
imately. We trained for a total of 64k steps, corresponding
to 259 epochs.

We used the 20 and 32 layers ResNet structure of the
CIFAR-10 experiments, with the same training hyperpa-
rameters.

Table 2 summarizes the resulting lowest test error rates
(calculated as the minimum over the epochs of the aver-
age of the 5 replicates). The performance of the baselines
aligns with typical values for networks of similar complex-
ity found in the literature. Using unshared biases (DAC)
shows marked performance improvements, again at the cost
of a marginal increase in size and complexity. In partic-
ular it can be observed that the baseline ResNet v1 (post-
activated) is much worse than baseline v2 and DACs (both
pre-activated).

ResNet networks on images for melanoma diagno-
sis. To investigate performances in image classification
tasks that are both more difficult and more applied, we con-
ducted an experiment using a ResNet vl model on a real-
world dataset from International Skin Imaging Collabora-
tion (ISIC). We used ISIC 2019 [13], a collection of 25330
quality-controlled dermoscopic images of skin lesions, di-
vided into 8 classes. With 20 layers, the baseline error
is 27.05%, and with DAC is 26.47%, for an improvement
of 0.58%. The same figures for 32 layers are 26.30% and
25.04%, for an improvement of 1.26%.



Table 3. Ablation study isolating the contribution made by pre-
activation only (with shared biases) for ResNet20 architectures
on CIFAR. Reported values (absolute) are the estimated improve-
ments in test accuracy when replacing the standard post-activation
with pre-activation. Relative values are relative with respect
to the estimated improvement when using full DACs, with pre-
activations and unshared biases.

Absolute Relative to DAC

vl v2 vl v2
CIFAR-10 —-0.13%  +0.08% —41% +31%
CIFAR-100 +0.08% +0.07%  +9% +8%

Ablation study: pre-activation with shared biases.
Since unshared biases cannot be realized without pre-
activations, in all previous DAC experiments we used both
together. We decided then to investigate briefly with pre-
activation only (hence, with shared biases). We trained
ResNet20 vl and v2 architectures, on CIFAR-10 and
CIFAR-100.

We found that these models performed comparably to the
baseline model, but distinctly worse than using full DACs,
with pre-activations and unshared biases, see Table 3. In
one case the result was slightly worse than the baseline, and
even in the other cases the improvements were never statis-
tically significant.

Comparison with MBA. Since multi-bias activation
(MBA, see Section 3) introduced in [19] is based on a prin-
ciple close to DAC, we tested it on the same ResNet20
architecture on CIFAR-100. MBA works by creating K
copies of the output of convolutions, then applying inde-
pendently trainable biases to each of them, applying ReLU,
and then using the enlarged output as input for the subse-
quent layer. When converting a baseline structure to MBA,
the number of parameters increases K -fold, so these mod-
els are much larger than DAC, that increases the parameters
by 11%. In spite of this, we found improvements over the
baseline smaller than using DACs (0.52%, 0.64%, 0.14%
for MBA with K = 2, 4, 8, and 0.97% for DAC). It is pos-
sible that MBA might require a specific tuning of hyperpa-
rameters to reach better performances, but since we did not
do this for DAC models, we did not investigate the matter
further.

6. Theoretical discussion

In Section 5 we gathered empirical evidence support-
ing the primary assertion of this paper: the use of pre-
activations with unshared biases, trading some weights for
additional biases, can be an efficient way to boost a model’s
performance. This section explores theoretical arguments
that support this claim, highlighting the fact that using un-

shared biases improves considerably the flexibility of the
model.

Last and first layers. In a plain fully connected neu-
ral network with ReLLU activations and standard units, one
would expect a ReLU activation at the output of the very last
layer. However, this is undesirable as the final output should
be informative and compatible with the loss function (e.g.,
logits for cross-entropy). So one usually has to remove that
last activation, which, using pre-activations, would not have
existed in the first place.

Symmetrically, consider the first layer of a similar net-
work: with standard units, it would not make sense to filter
the input nodes with ReLLU. Nevertheless, with unshared bi-
ases, it is instead very reasonable to apply the nonlinearity
to the input nodes, because different units in the first layer
might benefit from tailored filtering of the input.

In both cases pre-activated units with unshared biases
seem more natural.

Input replication. Filtering the input as just described
might be even more useful if the input is replicated multi-
ple times. Consider the toy example of a one-dimensional
input  and a shallow network with only one layer of one
unit aiming at approximating some function f : R — R.
A pre-activated unit ‘0’ with input replicated n times T =

(z,x,...,x) and unshared biases gives:
foac(@ Zwo,] ¢(bo,; + ), ©6)
j=1

which is a universal approximator of a large class of func-
tions R — R, for n — oo. On the other hand, a standard
post-activated unit with replicated inputs would give:

faa(®@) (bo-l-zwo,j ) = ¢(bo + Wo ),

equivalent to the same without replicating the inputs, re-
gardless of n. To gain expressivity we can add a hidden
layer with n standard units (with or without replicated in-
puts is the same), obtaining:

(bo + Zwo,j (b + W, x))

To show that fgmd has a representation power similar to
fDAc, we reparametrize, putting wo ; = wo ;|w;| and b] =
bi/|@;| in the above expression, which gives:

f2><std(

n
faxsu(T) = w(bo + Y io,; (b + sign(dy) x))
j=1
Thus, in this toy problem, one needs a two-layers standard
neural network to get a representation power similar to a
single pre-activated unit.



Backpropagation. In this section, we derive the back-
propagation equations for a fully connected multi-layer
plain architecture with pre-activations using unshared bi-
ases. Interestingly, these models enable a more granular
masking of the various contributions to the gradient.

We compute the derivatives of a loss E with respect to
the parameters. Let y;, w;; and b; ; denote the outputs,
weights, and DAC biases of layer &, respectively, and let
m denote the number of units and y;) denote the outputs of
layer k — 1. Then y; = Z;nzl wj j p(bi,j +y5), and we get:

F) o]

8115]' = @(bi,j + yj) 075

DE = wi i (i + y5) 2 @
Fy o)

G =Sy wi @ (b7 i) 5

Here n, wy';, b;, and y; are the units, the weights, the pre-
activation biases and the outputs of layer k+ 1, respectively.

If we were to use post-activated units with shared biases
instead, then ¢’ (b} + y;) in the last equation would not de-
pend on [ and could be taken out of the sum. This would
result in a single 0-1 factor regulating the entire derivative.
Therefore, unshared biases provide a more granular mask-
ing of the different contributions to the gradient.

7. Conclusions

This paper is intended as a foundational study on archi-
tectures that leverage pre-activation with unshared biases. It
provides qualitative arguments and empirical evidence that
this choice has measurable advantages and promising po-
tential and that there are situations in which trading some
weights for additional biases is more efficient. As a future
development, one could investigate if and how DAC units
can be integrated on diverse architectures, like for instance
mobileNet [28], EfficientNet [34], Transformers [35], ViT
[7], generative models [9, 5] or in a reinforcement learn-
ing setting like the ones described in [23-20, 32, 36]. See
the last paragraph of Section 4 about DAC integration into
complex models.

Acknowledgements. Many thanks to Rosa Gini for her
important intellectual contribution.

References

[1] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and
Pierre Baldi. Learning Activation Functions to Improve
Deep Neural Networks, 2015. arXiv:1412.6830 [cs,
stat]. 3
Rafael Ballester-Ripoll, Enrique G. Paredes, and Renato Pa-
jarola. Sobol tensor trains for global sensitivity analysis. Re-
liability Engineering & System Safety, 183:311-322, 2019.
4
Francois Chollet. Xception: Deep Learning with Depthwise
Separable Convolutions. pages 1800-1807. IEEE Computer
Society, 2017. 3
Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and Accurate Deep Network Learning by Expo-
nential Linear Units (ELUs), 2016. arxXiv:1511.07289
[es.LG]. 1
CurioSAIL. Increasing biases can be more efficient than
increasing weights, 2023. https://github.com/
CuriosAI/dac-dev. 1,4
Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. RepVGG: Making VGG-
Style ConvNets Great Again. pages 13733-13742, 2021. 5
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 9
Leyuan Fang, Guangyun Liu, Shutao Li, Pedram Ghamisi,
and Jon Atli Benediktsson. Hyperspectral Image Classifica-
tion With Squeeze Multibias Network. IEEE Transactions on
Geoscience and Remote Sensing, 57(3):1291-1301, 2019. 3
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial networks. Com-
mun. ACM, 63(11):139-144, 2020. 9
[10] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron C. Courville, and Yoshua Bengio. Maxout networks.
In Proceedings of the 30th International Conference on Ma-
chine Learning, ICML 2013, volume 28 of JMLR Workshop
and Conference Proceedings, pages 1319-1327,2013. 3
[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /EEE
CVPR, pages 770-778, 2016. 1,5, 6
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Computer
Vision - ECCV 2016 - 14th European Conference Proceed-
ings, Part IV, volume 9908 of Lecture Notes in Computer
Science, pages 630-645. Springer, 2016. 1, 3,6
[13] ISIC. Isic 2019: Skin lesion analysis towards melanoma de-
tection. https://challenge.isic—archive.com,
2019. Accessed: 2023-05-03. 5, 7
[14] Jeremy Howard. Imagenette and Imagewoof datasets, 2019.
https://github.com/fastai/imagenette. 5,7
[15] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, 2014. 9

2

—

3

—

[4

—_

[5

—

[6

—

[7

—

[8

—

[9

—


arXiv:1412.6830
arXiv:1511.07289
https://github.com/CuriosAI/dac-dev
https://github.com/CuriosAI/dac-dev
https://challenge.isic-archive.com
https://github.com/fastai/imagenette

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

Diego Klabjan and Mark Harmon. Activation Ensembles for
Deep Neural Networks. In 2019 IEEE International Confer-
ence on Big Data (Big Data), pages 206-214, 2019. 3
Krizhevsky, A. and Nair, V. and Hinton, G. CIFAR-10
and CIFAR-100 datasets, 2009.
toronto.edu/~kriz/cifar.html. 5

Matthew E. Larkum. Are Dendrites Conceptually Useful?
Neuroscience, 489:4-14, 2022. 2, 11

Hongyang Li, Wanli Ouyang, and Xiaogang Wang. Multi-
bias non-linear activation in deep neural networks. In Pro-
ceedings of the 33nd International Conference on Machine
Learning, ICML 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 221-229, 2016. 2, 8
Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11966-11976, 2022.
3

Andrew L. Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier Nonlinearities Improve Neural Network Acoustic Mod-
els. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, volume 30, page 3, 2013. 1
Jeffrey C Magee. Dendritic integration of excitatory synaptic
input. Nature Reviews Neuroscience, 1(3):181-190, 2000. 2
Francesco Morandin, Gianluca Amato, Marco Fantozzi,
Rosa Gini, Carlo Metta, and Maurizio Parton. SAI: A sensi-
ble artificial intelligence that plays with handicap and targets
high scores in 9x9 go. In ECAI 2020, volume 325, pages
403-410, 2020. 9

Francesco Morandin, Gianluca Amato, Marco Fantozzi,
Rosa Gini, Carlo Metta, and Maurizio Parton. SAI: a Sen-
sible Artificial Intelligence that plays with handicap and tar-
gets high scores in 9x9 Go (extended version). AAAI2I-
RLG workshop, 2021. arXiv:1905.10863 [math.CS]. 9
Francesco Morandin, Gianluca Amato, Rosa Gini, Carlo
Metta, Maurizio Parton, and Gian-Carlo Pascutto. SAI a
Sensible Artificial Intelligence that plays Go. In IJCNN,
pages 1-8, 2019. 9

Luca Pasqualini, Maurizio Parton, Francesco Morandin, Gi-
anluca Amato, Rosa Gini, Carlo Metta, Marco Fantozzi,
and Alessandro Marchetti. Score vs. winrate in score-based
games: which reward for reinforcement learning? In 217st
IEEE International Conference on Machine Learning and
Applications, ICMLA 2022, pages 573-578. IEEE, 2022. 9
Panayiota Poirazi and Athanasia Papoutsi. [lluminating den-
dritic function with computational models. Nature Reviews
Neuroscience, 21(6):303-321, 2020. 11

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018,
pages 45104520, 2018. 9

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Et-
zioni. Green Al. Commun. ACM, 63(12):54-63, 2020. 6
SGEMM. SGEMM GPU Kernel Performance. https:
//archive.ics.uci.edu/ml/datasets/SGEMM+
GPU+kernel +performance, 2018. Accessed: 2023-
05-03. 4

https://www.cs.

(31]

(32]

(33]

(34]

(35]

(36]

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak
Lee. Understanding and Improving Convolutional Neural
Networks via Concatenated Rectified Linear Units. In Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning
Research, pages 2217-2225. PMLR, 2016. 3

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George van den Driessche, Julian Schrit-
twieser, loannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529(7587):484-489, 2016.
9

Manisha Sinha and Rishikesh Narayanan. Active dendrites
and local field potentials: Biophysical mechanisms and com-
putational explorations. Neuroscience, 489:111-142, 2022.
Dendritic contributions to biological and artificial computa-
tions. 11

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. In Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, volume 97 of Proceedings of Machine
Learning Research, pages 6105-6114. PMLR, 2019. 9
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 6000-6010, 2017. 9

David J Wu.  Accelerating Self-Play Learning in Go.
AAAI20-RLG workshop, 2020. https://arxiv.org/
abs/1902.10565.9


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1905.10863
https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://arxiv.org/abs/1902.10565
https://arxiv.org/abs/1902.10565

Appendix
A. Biological inspiration

The proposed extension of the artificial neuron also reflects to some extent a recent shift in the understanding of the
biological neuron. In fact, the early soma-centric representation of the neuron today has been discarded in favor of a more
realistic and complex model that incorporates active dendrites [18,33].

A typical biological neuron consists of many input branches called dendrites, a main body called soma, and the axon,
which branches at its end in many terminals, where synapses connect to the dendrites of other neurons. The input signals
originate in the dendrites, flow through the soma, and are integrated into the region of the soma where the axon connects, and
if a specific threshold is reached, the neuron fires its signal down the axon, to the synapses.

Until some years ago, the biological neuron model was soma-centric and essentially modeled by a point neuron where
dendrites simply pass the signals, and all elaboration happens at the soma. This elementary representation was the inspiration
of the traditional perceptron in artificial neural networks.

Current biological models are more complicated and the central role of dendrites in signal modulation is better under-
stood [27]. Dendrites in fact present voltage-gated ion channels [ 8] able to produce local electrical events termed dendritic
spikes. Dendrites actually present at least four groups of ion channels [33]: the synaptic receptors, activated by neurotransmit-
ters, the passive leak channels, and the active subthreshold ion channels, able to produce transmembrane currents also when
the threshold for the action potential is not reached, and supra-threshold ion channel active when the threshold is reached. In
this way, a dendrite or a group of dendrites can perform the first important local, not linear signal integration before reaching
the cell axon.

B. Error rate estimation

While we always trained for the same number of steps, we evaluated the best error rate by simulating early stopping. Let
vk,; and i ; denote the validation and test errors for replicate k and epoch j. We select the epoch m corresponding to the
minimum validation error (averaging on the 5 replicates and on a moving window of 5 epochs), and then compute the average
test error of the same 5 epochs and replicates:

5 2 5 2
m = argimin % Z Z Uk, itss T := % Z Z thk,mty-

k=1j=—2 k=1j=—2

This approach allows for evaluation of the statistical error of the estimator and it is more robust and reliable than simply
taking the minimum of the test error, as in a real application one would be able to choose the early stopping on the validation
set, but not on the test set.

Assuming that ty, p4j = pm +0 2y, + 7 Zy, 5, With p,,, the true value, Zj, and Z;, ; independent standard Gaussian noises,
and o, 7 coefficients measuring randomness in replicates and epochs, the square of the standard error of T is Var(T) =
%02 + 2—157'2. Here the two terms were conservatively estimated using respectively:

2

_ 1 _
(tem — T)? and 572 ~ Z (temss — T)%
k=1 j=—2

N

hE

1
02§02+72%Z

C. Representation power
C.1. Separation of sets in low dimension

Figure 7 presents two toy problems where using pre-activations with unshared biases provably improves the represen-
tational power of the corresponding architectures using post-activations. In Figure 7a, a binary classification problem that
cannot be solved by a standard fully connected layer R? — R can be solved by its DAC counterpart. In Figure 7b, a fully
connected layer R? — R? with unshared biases is able to separate a dataset that is not separable by a standard fully connected
layer R? — R2.

C.2. Optimal use of parameters for piecewise-linear functions

To support the statement that DAC units allow better use of parameters, we prove that piecewise-linear functions R — R
with k£ components can be represented with 2k parameters by fully connected DAC-enhanced layers, and not less than 3k 4 1



@ (ii) (iid) (iv)

(a) bias ReLU linear

Figure 7. (a). A pre-activated unit with unshared biases and two inputs can separate points that are not linearly separable. (i) Black and
white points are not linearly separable. (ii) Applying two independent biases allows to choose a translation that moves the leftmost point to
the second quadrant (red line) while keeping the other in the first one. (iii) ReLU projects all points in the second quadrant onto the vertical
axis (red line), making the dataset linearly separable. (iv) The linear part of the unit learns a direction (blue line) onto which to project to
separate the points. (b). The combination of a pre-activated layer f : R* — R? with two units and a linear unit g : R? — R can separate
the blue from the green points. In fact, let [f(z)]s = >_,_, 5 wijp(bi; + x;) with ¢ denoting ReLU, then it is enough to set wi; = 1,
bi; = 1,b2; = 0and g(y) = y1 —2y2 — 1o get g(f(z)) = p(1 + z1) + (1 + z2) — 2p(z1) — 2¢p(z2) — 1, which is positive and
equals 1 — |z1| — |22| inside the red square and is negative outside. On the contrary, it is easy to see that if f : R* — R? was a standard
fully connected layer, then for all choices of f and g the set where g(f(z)) > 0 would always be unbounded or empty. A post-activated
network requires four units in the first layer to achieve the same result.

parameters by fully connected layers with standard units. In this example, DAC units obtain the best theoretical parameter
efficiency.

Theorem C.1. Let k be a positive integer, and let PLy, be the set of continuous piecewise linear functions R — R consisting
of exactly k linear components. Then:

1. There exists a one-layer fully connected DAC-enhanced neural network fi, representing PLy. The input is replicated k
times, and there are 2k parameters.

2. A standard neural network with one layer cannot represent PLy, with or without input replication.

3. For a standard neural network, the minimal structure needed to represent PLy, is two layers and 3k + 1 parameters.
Proof.

1. Let fx w.b be a one-layer fully connected neural network with one DAC unit, with weight and bias vector w € R* and
b € R*, respectively, and input = € R replicated k times. By Formula (2), DAC output is

k
e (@) =D wp(b; + ),
j=1

and PL; = {fk7w7b|w, b e Rk}
2. Without input replication, a one-layer standard neural network R — R is just f(z) = ¢(wax +b). With input replication,
the representational power does not change, because
k k
Frows(@) = @b+ Y wiz) = p(b+ (Y w))z).

j=1 j=1

3. By point (2), we need at least two layers with a standard neural network. Since we need to represent k different slopes,
we need at least & units in the first layer, for a total of 2k parameters (k weights and k biases). The second layer is then a
single unit, adding k additional weights and one bias. Thus, a standard neural network needs at least 2k +k+1 = 3k +1
parameters to represent the whole PLy.

O

Remark C.2. Note that PL; depends on exactly 2k parameters (k slopes and £ intercepts), so that DAC units realize PLy,
with the theoretical minimum number of parameters.



Minimum test error

= base, rectangular

Eg ® » base, pyramidal

o m

E-:E_:]m = DAC, rectangular

102 = B » DAC, pyramidal

g
Sgpe _m
| ]

MSE (log scale)
A4
w
g Yy
-;lv
| |
VV’}' "
v
v
v
vy
[ .
v

13
< >y E >
LB 438 < E
o] -
;E | E E
a3 -
1073 T T T
103 104 10° 10°

Parameters (log scale)

Figure 8. Comprehensive results of 1008 experiments for the SGEMM regression task. Some outliers were removed (see text). Fully
connected networks with unshared biases (DAC, blue) perform worse than networks with shared biases (baseline, orange), for number
of parameters up to 10, but become generally better for number of parameters above 10°, also exceeding the best results of baseline
networks.

D. Additional plots

Variation in test error when doubling parameters
Increase width Apply DAC

original width 17
original width 35
original width 70
original width 141

ttit

o
[N]
L

o
<)
:

—0.2 A

Log-MSE variation (nats)

|
<
>

L

—0.6

—-0.8 1

5 8 12 16 5 8 12 16
Networks depth Networks depth

Figure 9. Efficiency analysis of unshared biases for the SGEMM regression task. Rectangular baseline networks were compared with
models with double the parameters: either by adding weights (left) or by making biases unshared (right). The resulting variations of
the MSE are shown (negative means improvement). Error bars are 95% confidence intervals for the true values. These plots show no
dependence on the depth. These are the original values before merging depths that yielded the plot in Figure 4.



CIFAR-10, VGG
11% A
20/16
10%1 ¢
9% -
14/32
o/ J ®
8% base )
¢ DAC
7% N T T T
0.2 0.4 0.6 0.8

# params (million)

CIFAR-100, VGG

38% A

20/16
36% -1 ¢
34% A

14/32

32% A

base °
30%1 ¢ DAC

0.2 0.4 0.6 0.8

# params (million)

Figure 10. Same as Figure 5 but with model size on the horizontal axis.

9.0% A

8.5% |

8.0% -

7.5% A

7.0% A

CIFAR-10, v1 |/

CIFAR-10, v2

20

34% A

33% A

32% A

31% A

30% -

29% -

base
—— DAC

-0 CIFAR-100, v2

0.4 0.6 0.8
# params (million)

0.4 0.6 0.8
# params (million)

Figure 11. Same as Figure 6 but with model size on the horizontal axis.




	. Introduction
	. Model
	. Related work
	. Methods
	. Experiments
	. Theoretical discussion
	. Conclusions
	. Biological inspiration
	. Error rate estimation
	. Representation power
	. Separation of sets in low dimension
	. Optimal use of parameters for piecewise-linear functions

	. Additional plots

