
TEACHING: A computing Toolkit for building Efficient
Autonomous appliCations leveraging Humanistic INtelliGence

Davide Bacciu
davide.bacciu@unipi.it

Department of Computer Science,
University of Pisa

Pisa, Italy

Konstantinos Tserpes
tserpes@hua.gr

Department of Informatics and
Telematics, Harokopio University

Athens, Greece

Massimo Coppola
massimo.coppola@isti.cnr.it

Institute of Information Science and
Technologies, National Research

Council of Italy
Pisa, Italy

Georg Macher
georg.macher@tugraz.at

Department of Informatics and
Telematics, TU Graz

Graz, Austria

Claudio Gallicchio
claudio.gallicchio@unipi.it

Department of Computer Science,
University of Pisa

Pisa, Italy

Omar Veledar
omar.veledar@avl.com

AVL
Graz, Austria

Anna Maria Anaxagorou
aanaxagorou@itml.gr

Information Technology for Market
Leadership

Athens, Greece

Patrizio Dazzi
patrizio.dazzi@unipi.it

Department of Computer Science,
University of Pisa

Pisa, Italy

ABSTRACT
TEACHING proposes a distributed, trustworthy AI integrating con-
tinuous human feedback, supporting CPSoS application design
and deployment. TEACHING envisions an intelligent environment,
empowering humans through cybernetic assistance. It advances au-
tonomous safety-critical systems, improving safety, reliability and
acceptability through human-centred design and formal validation
crossing paradigms. TEACHING brings humans and AI together,
enabling participatory development, optimisation and oversight.

CCS CONCEPTS
• Hardware → Emerging architectures; • Computer systems or-
ganization→ Embedded and cyber-physical systems; •Computing
methodologies→ Artificial intelligence; •Human-centered com-
puting;

KEYWORDS
humanistic intelligence; cyber-physical systems-of-systems; dis-
tributed artificial intelligence

ACM Reference Format:
Davide Bacciu, Konstantinos Tserpes, Massimo Coppola, Georg Macher,
Claudio Gallicchio, Omar Veledar, Anna Maria Anaxagorou, and Patrizio

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FRAME ’23, June 20, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0164-1/23/06. . . $15.00
https://doi.org/10.1145/3589010.3594886

Dazzi. 2023. TEACHING: A computing Toolkit for building Efficient Au-
tonomous appliCations leveraging Humanistic INtelliGence. In Proceedings
of the 3rd Workshop on Flexible Resource and Application Management on
the Edge (FRAME ’23), June 20, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3589010.3594886

1 INTRODUCTION
Driven by the automation capabilities of Artificial Intelligence (AI),
industry and society are experiencing the transformative impact
of the autonomous systems revolution. Cyber-Physical Systems
of Systems (CPSoS) define a diverse and dynamic environment
where autonomy is fundamental to managing complex interac-
tions between virtual and physical worlds with minimal human
intervention [1]. However, even with the highest level of auton-
omy, the human is a variable that cannot be left out of the CPSoS
equation. This is especially true in safety-critical scenarios such
as autonomous transport. TEACHING [5] embraces a vision of
the human at the centre of autonomous CPSoS by embracing the
concept of humanistic intelligence [3], where the cybernetic and
biological entities cooperate in mutual empowerment towards a
common goal and where human feedback becomes a critical driver
of CPSoS adaptivity. TEACHING addresses this challenge by inte-
grating AI with fundamental safety and reliability concepts arising
from AI-human-CPSoS interactions and considering their impact
on the underlying computing system. TEACHING is developing a
human-aware CPSoS for autonomous safety-critical applications
based on a distributed, energy-efficient and reliable AI, using edge
computing platforms that integrate a specialised computing fabric
for AI and in silico support for intelligent cyber security. The aim
is to develop a computing software and system that supports de-
veloping and deploying adaptive and reliable CPSoS applications.
This will enable sustainable human feedback to control, optimise

37

https://orcid.org/0000-0001-5213-2468
https://orcid.org/0000-0001-5183-1443
https://orcid.org/0000-0002-7937-4157
https://orcid.org/0000-0001-9215-3300
https://orcid.org/0000-0002-6692-2564
https://orcid.org/0000-0002-8302-7721
https://orcid.org/0009-0003-4111-7336
https://orcid.org/0000-0001-8504-1503
https://doi.org/10.1145/3589010.3594886
https://doi.org/10.1145/3589010.3594886
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589010.3594886&domain=pdf&date_stamp=2023-08-15

FRAME ’23, June 20, 2023, Orlando, FL, USA Davide Bacciu et al.

and personalise the services provided. TEACHING aims to impact
the development of autonomous safety-critical systems, improving
their safety, reliability and overall acceptability.

2 TEACHING PERSPECTIVE
Using specialised AI computing fabrics and in-silico support for
intelligent cybersecurity solutions, TEACHING develops human-
centric CPS for autonomous safety-critical applications based on
distributed, energy-efficient and trustworthy AI. AI methods enable
continuous human feedback to control, optimise and personalise
services and support the design and deployment of autonomous,
adaptive and reliable CPS applications. TEACHING envisages an
intelligent environment where human and cybernetic entities work
in synergy. The latter provides the former with convenient, tailored
and reliable interaction driven by implicit human feedback through
physiological responses to CPS manipulation.

3 TEACHING ARCHITECTURE
One conceptual view of the TEACHING Platform was presented in
the project report “D1.1: Report on TEACHING related technolo-
gies SoA and derived CPSoS requirements” [6]. This conceptual
architecture follows the rationale of layered architectures, where
each layer offers services to the one above. Instantiations of the
conceptual architecture may include implementations that merge
layers, similar to ISO/OSI and TCP/IP. The starting point for de-
signing the architecture of the TEACHING Platform has been the
TEACHING objective which states “a computing platform and the
associated software toolkit supporting the development and deploy-
ment of autonomous, adaptive and dependable CPSoS applications”.
As such, at the top layer, we place the CPSoS applications that are
meant to be supported by the computing platform and the software
toolkit, i.e. the TEACHING Platform. Based on our definition of
CPSoS applications, i.e. the applications that meet a certain number
of Non-functional requirements (NFRs), we provide a layer whose
components meet those NFRs. This layer is meant to provide the
specification of the software toolkit. The underlying layers form the
TEACHING computing platform. They start with the layer meant
to provide all the supporting software tools that will allow the
development of the CPSoS applications and meet the functional
requirements. The layer below is meant to specify how the comput-
ing platform will deal with interoperability issues, homogenising
the underlying computing and network infrastructures. The final
layer deals with the specification of the infrastructure. In what fol-
lows, we provide a more detailed view of the TEACHING Platform.
The TEACHING platform comprises five layers, each providing
services to the one above. At the bottom of the stack, we have the
infrastructure layer.

3.1 Infrastructure Layer
The infrastructure layer comprises various heterogeneous infras-
tructures exposed through an embedded systemOS and the cloud/edge
resources. TEACHING assumes that access to the resources of those
infrastructures is a priori possible. On that premise, the first task
of TEACHING is to homogenise those resources, something that is
the main functionality of the Infrastructure Abstraction Layer.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 41 - August, 2021

Figure 13: TEACHING platform conceptual architecture

The TEACHING platform is comprised of 5 layers, each of which provides services to the
one above. At the bottom of the stack, we have the infrastructure layer.

Infrastructure Layer: The infrastructure layer is comprised of various heterogeneous
infrastructures, exposed through an embedded system OS and the cloud/edge resources.
TEACHING assumes that access to the resources of those infrastructures is a priori possible.

Figure 1: TEACHING architecture

3.2 Infrastructure Abstraction Layer (IAL)
The IAL provides a single abstraction layer for the execution of
applications (code or components). Essentially it homogenises the
underlying infrastructures providing a single API to deploy, execute
and monitor resources and application components. This layer also
caters for implementing I/Os, with the underlying persistence layers
and the supported peripherals, i.e., the target autonomous system
(CPS), external APIs (e.g., web services), but most importantly, with
the mechanisms that provide the human feedback.

3.3 Execution/Management Environment (EME)
The EME exposes a single API that facilitates the execution and
lifecycle management of the application components. It provides
the runtime for that purpose and integrated libraries, implemented
at a low-abstraction language, providing services and optimisations
at the top layers. Such libraries include ML runtimes like those of
TensorFlow [2] and PyTorch [4] or ML optimisations in Python,
C++, Java, etc. It also includes libraries for managing IoT solutions
(e.g., OS-IoT) implementing IoT protocols such as OneM2M. Other
libraries include the DB and security libraries, ensuring this func-
tionality is provided to the layers above.

3.4 TEACHING Software Toolkit (SDK)
The TEACHING SDK provides the framework to implement CPSoS
applications. It provides APIs to implement applications that can

38

TEACHING FRAME ’23, June 20, 2023, Orlando, FL, USA

run on the TEACHING platform using the best CPSoS services. The
TEACHING SDK supports 6 toolkits:

3.4.1 AI toolkit. The TEACHING AI toolkit is the software library
that allows the developer to invoke learning modules, set up train-
ing or inference procedures, etc. The AI toolkit has the appropriate
wirings with the underlying layers to deploy and run the ML com-
ponents at the appropriate resources (e.g., GPUs). It facilitates the
I/Os and dataset management.

3.4.2 HCI toolkit. TEACHING HCI toolkit allows the software
developer to invoke the services relevant to the human feedback,
e.g., filters, buffers and other tools for retrieving and managing the
human feedback. Furthermore, this toolkit includes design patterns
and guidelines for human-centred design.

3.4.3 Security and Privacy toolkit. The Security and Privacy toolkit
provides readily available security APIs and privacy guidelines.
Regarding security, the developers may define a part of their code
or a standalone component that has to run on a secure enclave or
that the communication between components has to use OpenSSL
calls. Regarding privacy, the developers may identify datasets as
containing sensitive data, thus implicitly imposing constraints on
their further use. Furthermore, the privacy toolkit may also include
functional tools like anonymisers.

3.4.4 Dependability toolkit. The Dependability toolkit provides
software that audits the code or application components against
the TEACHING dependability guidelines and/or procedures. It also
provides engineering pattern implementations that the developers
can invoke to ensure the dependable execution of software. For
instance, in cases where the developers invoke online training ap-
proaches through the AI toolkit, the dependability toolkit may allow
the code to run in multiple instances implementing a consensus
model.

3.4.5 Energy Efficiency toolkit. The Energy efficiency toolkit links
the code or components the user would like to run with energy
efficiency services provided by the underlying layers. E.g. to run
an application, the toolkit may employ energy-efficient approaches
such as dynamic voltage and frequency scaling (DVFS), powermode

management (PMM) or using unconventional cores such as DSP or
GPUs of FPGAs. This can be done automatically or invoked by the
user (e.g., “annotating” a part of the code or a component).

3.4.6 TEACHING CPSoS Applications. The TEACHING applica-
tions may comprise loosely coupled, standalone, independent com-
ponents (e.g., docker images) that the TEACHING SDK builds or
software that the TEACHING SDK compiles and executes.

4 CONCLUSION
This paper presented the TEACHING Project, which enables sus-
tainable human participation in developing, optimising and over-
seeing intelligent autonomous systems. Through rigorous proofs
of equivalence and trustworthiness, TEACHING builds CPSoS as
adaptive partners in human progress.

ACKNOWLEDGMENTS
This research was supported by TEACHING, a project funded by
the EU Horizon 2020 research and innovation programme under
GA n. 871385.

REFERENCES
[1] Andrea Bondavalli, Sara Bouchenak, and Hermann Kopetz. 2016. Cyber-physical

systems of systems: foundations–a conceptual model and some derivations: the
AMADEOS legacy. Vol. 10099. Springer.

[2] TensorFlow Developers. 2023. TensorFlow. https://doi.org/10.5281/zenodo.
7764425 Specific TensorFlow versions can be found in the "Versions" list
on the right side of this page.
See the full list of authors <a href="htt
ps://github.com/tensorflow/tensorflow/graphs/contr ibutors">on GitHub..

[3] Steve Mann. 2001. Wearable computing: Toward humanistic intelligence. IEEE
Intelligent Systems 16, 3 (2001), 10–15.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[5] TEACHING. 2020. TEACHINGWebsite. https://cordis.europa.eu/project/id/871385.

[6] TEACHING. 2021. D1.1: Report on TEACHING related technologies SoA and de-
rived CPSoS requirements. https://teaching-h2020.eu/sites/default/files/docs/D1.2-
TEACHING-CPSoS-architecture-and-specifications.pdf.

39

https://doi.org/10.5281/zenodo.7764425
https://doi.org/10.5281/zenodo.7764425
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Abstract
	1 Introduction
	2 TEACHING perspective
	3 TEACHING architecture
	3.1 Infrastructure Layer
	3.2 Infrastructure Abstraction Layer (IAL)
	3.3 Execution/Management Environment (EME)
	3.4 TEACHING Software Toolkit (SDK)

	4 Conclusion
	Acknowledgments
	References

