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A B S T R A C T

Data-centric parallel programming models such as dataflows are well established to implement complex concurrent software. However, in a context of a configurable
software, the dataflow used in its computation might vary with respect to the selected options: this happens in particular in fields such as Computational Fluid
Dynamics (CFD), where the shape of the domain in which the fluid flows and the equations used to simulate the flow are all options configuring the dataflow
to execute.

In this paper, we present an approach to implement product lines of dataflows, based on Delta-Oriented Programming (DOP) and term rewriting. This approach
includes several analyses to check that all dataflows of a product line can be generated. Moreover, we discuss a prototype implementation of the approach and
demonstrate its feasibility in practice.
1. Introduction

Over the past decades, with the end of Moore’s law and the multi-
plication of parallel architectures such as multi-core CPUs and GPUs,
many data-centric programming paradigms were developed in order
to continue having always more efficient programs with such new
hardware. This trend is clearly visible in HPC where many data-centric
languages and libraries have been developed, such as Chapel (Chamber-
lain et al., 2007), StarPU (Augonnet et al., 2011), HPX (Kaiser et al.,
2014), Charm++ (Kale and Krishnan, 1993), Legion (Bauer, 2014) and
DAPP (Ben-Nun et al., 2019; Rausch et al., 2022). The core model of
data-centric computation is the dataflow (Kavi and Deshpande, 1991;
Roumage et al., 2022) which can be expressed as an acyclic directed
graph stating how data is generated and used by side-effect-free tasks.

While dataflows can efficiently be deployed on parallel and hetero-
geneous architectures, their structure is very static with no conditional
nor loops. Libraries like HPX (Kaiser et al., 2014) or Legion (Bauer,
2014) alleviate this restriction by extending the model with conditional
and runtime tasks creations, at the cost of a less efficient computation
model. Moreover such extensions are not well-suited to large config-
uration spaces that occur in industrial tools like elsA (Cambier et al.,
2013) and Fun3D (Anderson et al., 2023).

elsA is a tool that implements Computational Fluid Dynamics (CFD),
i.e., it simulates the flow of fluids in a given input mesh and outputs
information of interest to the user (e.g., the pressure that a material
pushed by the fluid must be able to sustain, or some modification of its
shape that would make the fluid flow more efficiently). The principle
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of elsA’s computation is a fixpoint loop: it executes the same code in
loop until the computed flow is close enough to what would happen in
reality. And since the loop’s code could be executed millions of time,
expressing it as a dataflow would greatly improve the efficiency of elsA.

However, elsA has an infinite configuration space – structured into
three parts – that has a huge impact on the shape of the executed
dataflow. The first part of the configuration space consists of about
2000 options that configure which fluid flow computation to perform.
Indeed, fluid flow is given by the Navier–Stokes equations that do
not have an analytic solutions, and so hundreds of approximations of
these equations have been defined, with various precision and stability
characteristics: it is up to the user to decide which approximation s/he
wants to use. The second part of the configuration space is the output
information provided to the user: virtually any data could interest
her/him since it depends on which phenomena s/he’s studying. So s/he
must provide the list of these data to elsA which in turn must compute
them by extending its dataflow. The last part of the configuration space
is the shape of the input mesh itself. Meshes are usually structured
in various zones (modeling the domain in which the fluids flow) and
boundaries (modeling walls of different materials, fluid injection or
extraction, or even infinite domains): fluid flow simulation must be
performed on every zone of the mesh, and specific computation must
be performed on each boundary depending on its type (e.g., the effect
of a wall on a flow is different from the effect of a fluid injection).

In this paper, we propose an approach to automatically generate
dataflows given a configuration space close to elsA’s: instead of con-
sidering an arbitrary input mesh, we consider that its variability space
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Fig. 1. Dataflow generation pipeline.

ould be expressed with features. Our approach is structured in two
ain parts: first, it uses Software Product Line (SPL) techniques (Apel

t al., 2013, Sect. 6.6.1) to express the variability of tasks w.r.t. the
onfiguration space, and configures them given the options selected by
he user; then, it uses term rewriting to assemble these configured tasks
nto a dataflow that computes the data requested by the user. Fig. 1
etails the structure of our approach:

• first, we use a Domain Specific Language (DSL) duly extended
with concepts from Delta-Oriented Programming (DOP) (Schaefer
et al., 2010) to model the variability of the dataflow’s tasks. This
DSL allows us to specify which tasks, with which inputs and which
outputs, are available to construct a dataflow. Then,

• given an input Product specifying the values of the different op-
tions, the Product Line Flattening process automatically generates
the Task Specification corresponding to that specific product; then

• the Rewriting rules Generation process automatically translates the
specification into term rewriting rules; and

• given a list of Values to Compute, we simply apply the generated
rewriting rules on this data to obtain a correct dataflow comput-
ing these values by using the tasks available in the specification.

e presented a preliminary version of this approach in Damiani et al.
2022). In this paper, we: (𝑖) replace the ad-hoc dependency solver with
ewriting; (𝑖𝑖) give a precise algorithm for each step of our dataflow
eneration process; and (𝑖𝑖𝑖) add a static analysis to guarantee that, for
ach product, a well-formed dataflow is generated.

utline. Section 2 illustrates variability on dataflows with an example
rom Computational Fluid Dynamics (CFD), and shows how such a
ataflow can be encoded with terms in order to motivate our approach
f using term rewriting. Section 3 introduces our DSL, its DOP exten-
ion, and how to use them to generate a dataflow. Section 4 describes
he different analyses guaranteeing that a DSL can generate a correct
ataflow for all its products. Section 5 introduces our prototype im-
lementation and presents some benchmarks illustrating the feasibility
f the approach in practice. Finally, Section 6 discusses related work,
hile Section 7 concludes the paper.

. Running example

In this section, we present the running example that is used through-
ut the paper to illustrate our approach. This example is inspired from
he variability and computation that occurs in elsA and is structured
n three parts: first we introduce a simple feature model; second we
resent two simple dataflows that corresponds to some products of
he feature model; and finally, we show how these dataflows could be
ncoded as terms. In this example and in the rest of the paper, we will
se the Maude term rewriting language (Clavel et al., 2007) to write
own terms and rewriting rules.
2

Fig. 2. Simple CFD feature model.

Fig. 3. Dataflow computing Rhs with inlet, outpres selected.

2.1. Feature model

Fig. 2 shows the feature model of our running example, which is
structured in two main parts. The first part encodes the variability of
the mesh and is identified with the mesh feature. A mesh always has a
unique zone, and between one and three boundaries of different types:
inlet models the injection of fluid; outpres models a possible output of
the fluid flow; and wall models a wall. The second part encodes which
approximation of the fluid dynamics is considered in the computation
and is identified with the model feature. The mandatory convective
feature only considers convective dynamics (which are triggered by
pressure). The optional diffusive feature extends the flow dynamics
by also considering its viscosity. Finally, the optional order2 feature
changes the behavior of the selected flow dynamics and asks them to
have a more precise computation (i.e., instead of approximating the
equations with a polynomial of degree one, they are now approximated
with a polynomial of degree 2).

2.2. Dataflows

Fig. 3 shows the dataflow computing the value Rhs only (i.e., the
update of the fluid flow fixpoint computation) while selecting the
boundaries inlet and outpres, and no optional model feature. The
computation starts with the data Conservative which models the
currently computed flow on the unique zone of the mesh. Then on
one side, it uses one function per boundary (resp. inlet and outpres)
o compute data (resp. BC(Inlet) and BC(Outpres)) encoding

the effect of these boundaries on the flow. On the other side, it
uses the primitive function to normalize the Conservative data into
Primitive. Then the functions convectiveFluxBC and convectiveFlux
compute the update of the convective fluid flow respectively on the
boundaries (FxcBC) and on the zone (Fxc) of the mesh. Finally, these
wo flows are merged with the fluxBalance function and normalized

with the explicitIncrement to generate the data Rhs.
Fig. 4 shows a more complex dataflow that computes the value Rhs

and the gradient (i.e., the derivative) of the pressure (which is used
to identify shocks) while selecting the boundary wall and all optional
model features. Compared to the dataflow presented in Fig. 3, this

dataflow has one modified part and three additional parts (depicted in
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Fig. 4. Dataflow computing Rhs and Grad(Pressure) with wall, diffusive and order2 selected.
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gray). The part that is modified corresponds to the management of the
boundaries: since the boundary of the mesh only contains a wall (and
not an injection and exit flow as in Fig. 3), the effect of this boundary on
the flow is now modeled by the data BC(Wall), computed by the wall
function. The first additional part occurs on the right of Primitive,
where some new tasks appeared to compute the gradient of the pres-
sure grad(Pressure) requested by the user: the function pressure
computes the Pressure from Primitive, and then the gradient
function is used to compute grad(Pressure). The second additional
part is triggered by the selection of the order2 feature: the functions
convectiveFlux and convectiveFluxBC now take the additional parameter
grad(Primitive), computed by the gradient function applied on
Primitive. The last additional part consists of the management of
the diffusive flow: in addition to the convectiveFlux and convective-
FluxBC functions, the similar functions diffusiveFlux and diffusiveFluxBC
were added, that take an extra input grad(grad(Primitive))
(computed by the gradient function applied on grad(Primitive)).

Finally, similarly to the dataflow in Fig. 3, the function fluxBalance
collects all the computed flows into the Balance data, which is then
normalized with the explicitIncrement to generate the data Rhs.

2.3. Dataflows as terms

Listing 1 presents the abstract syntax that encodes a dataflow in
the form of a Maude module. In this encoding, a dataflow is a DAG
that contains two main kinds of nodes: data and tasks. We model these
nodes with the term constructors data of sort Data and task of sort
Task. A data node can either be a root of the dataflow, or be computed
by a task. In both cases, data has a value (of sort Value). A task is
identified by the ID of its function (of sort FunctionID) and the list
of its data parameters.

1 mod DATAFLOW is
2 sorts Data Task Value FunctionID DataList .
3
4 subsort Data < DataList .
5 op _ _ : Data DataList -> DataList [ctor] .
6
7 op data : Value -> Data [ctor] .
8 op data : Value Task -> Data [ctor] .
9

10 op task : FunctionID DataList -> Task [ctor] .
11 endm

Listing 1: The DATAFLOW Maude module: abstract syntax of a
dataflow.

In the rest of this section, we use the DATAFLOW Maude module as
3

a basis to encode the two dataflows in Figs. 3 and 4 into terms.
First, the Maude module EXAMPLE-CORE in Listing 2 provides the
sorts and term constructors used to encode our dataflow examples. We
have three sorts in this module: Value and FunctionID are the same
s in the DATAFLOW module, and BC is a new sort for values held
n a mesh boundary. The rest of the module is structured in three
arts, each one declaring the constructor for a specific sort. First, the
odule declares the base values of our dataflow: Conservative,
rimitive, etc. These constructors do not have any parameters,
xcept for BC that takes a boundary value in parameter (this models
he fact that these values are somewhat special), and Grad that takes

value in parameter (as illustrated in Fig. 4, it is indeed possible
o compute the gradient of any kind of value). Second, the module
eclares the three BC of our example: Inlet, Outpres and Wall.
nd finally, the module declares all the FunctionID corresponding

o functions in our dataflow.
The Maude module EXAMPLE-1 in Listing 3 encodes the dataflow

f Fig. 3.

This module is structured in five parts:

1. we first include and merge the two modules performing the core
declarations, i.e., DATAFLOW and EXAMPLE-CORE;

2. we then declare the term dconservative, which corresponds
to the root node of our dataflow containing the value
Conservative;

3. we then construct the part of the dataflow computing Fxc:
Primitive (in node dprimitive) is computed by applying
the function primitive on Conservative; and Fxc (in the
node dFxc) is computed by applying the function
convectiveFlux on Primitive;

4. we then construct the part of the dataflow computing FxcBC:
BC(Inlet) (in the node dinlet) is computed by apply-
ing the function inlet on Conservative; BC(Outpres)
(in the node doutpres) is computed by applying the func-
tion outpres on Conservative; and FxcBC (in the node
dFxcBC) is computed by applying the function
convectiveFluxBC on Primitive, BC(Inlet), and
BC(Outpres);

5. and finally, we conclude the dataflow with the computation of
the Rhs data: Balance (in the node dBalance) is computed
by applying the function fluxBalance on Fxc and FxcBC;
and Rhs (in the node dRhs) is computed by applying the
function explicitIncrement on Balance.

The Maude module EXAMPLE-2 in Listing 4 encodes the dataflow
f Fig. 4.
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1 mod EXAMPLE-CORE is
2 sort Value BC FunctionID .
3
4 *** values
5 op Conservative : -> Value [ctor] .
6 op Primitive : -> Value [ctor] .
7 op Fxc : -> Value [ctor] .
8 op Fxd : -> Value [ctor] .
9 op FxcBC : -> Value [ctor] .

10 op FxdBC : -> Value [ctor] .
11 op Balance : -> Value [ctor] .
12 op Rhs : -> Value [ctor] .
13 op Pressure: -> Value [ctor] .
14 op BC : BC -> Value [ctor] .
15 op Grad : Value -> Value [ctor] .
16
17 *** BCs
18 op Inlet : -> BC [ctor] .

19 op Outpres : -> BC [ctor] .
20 op Wall : -> BC [ctor] .
21
22 *** function ids
23 op inlet : -> FunctionID [ctor] .
24 op outpres : -> FunctionID [ctor] .
25 op wallslip : -> FunctionID [ctor] .
26 op primitive : -> FunctionID [ctor] .
27 op pressure : -> FunctionID [ctor] .
28 op gradient : -> FunctionID [ctor] .
29 op convectiveFlux : -> FunctionID [ctor] .
30 op convectiveFluxBC : -> FunctionID [ctor] .
31 op diffusiveFlux : -> FunctionID [ctor] .
32 op diffusiveFluxBC : -> FunctionID [ctor] .
33 op fluxBalance : -> FunctionID [ctor] .
34 op explicitIncrement : -> FunctionID [ctor] .
35 endm

Listing 2: The EXAMPLE-CORE Maude module: all declarations for our running example.
1 mod EXAMPLE-1 is
2 *** includes dataflow abstract syntax, value and function

declaration
3 protecting DATAFLOW + EXAMPLE-CORE .
4
5 *** root of the dataflow
6 op dconservative : -> Data .
7 eq dconservative = data(Conservative) .
8
9 *** Fxc computation

10 op dprimitive : -> Data .
11 eq dprimitive = data(Primitive, task(primitive,
12 dconservative)) .
13 op dFxc : -> Data .
14 eq dFxc = data(Fxc, task(convectiveFlux, dprimitive)) .
15
16 *** FxcBC computation
17 op dinlet : -> Data .
18 eq dinlet = data(BC(Inlet), task(inlet,
19 dconservative)) .
20 op doutpres : -> Data .
21 eq doutpres = data(BC(Outpres), task(outpres,
22 dconservative)) .
23 op dFxcBC : -> Data .
24 eq dFxcBC = data(FxcBC, task(convectiveFluxBC, dprimitive
25 dinlet doutpres)) .
26
27 *** Rhs computation
28 op dBalance : -> Data .
29 eq dBalance = data(Balance, task(fluxBalance, dFxc dFxcBC)) .
30 op dRhs : -> Data .
31 eq dRhs = data(Rhs, task(explicitIncrement, dBalance)) .
32 endm

Listing 3: The EXAMPLE-1 Maude module: encodes the dataflow of
Figure 3.

Since this dataflow is more complex than the one of Fig. 3, it is
structured in seven parts (rather than in five parts as in Listing 3):

1. and 2. these parts are identical to the ones in Listing 3: they
first include the modules DATAFLOW and EXAMPLE-CORE, and
then declare the root node of our dataflow dconservative
that contains the value Conservative;

3. we then construct the chain of the Primitive data and its
gradients: Primitive (in node dprimitive) is computed
by applying the function primitive on Conservative;
Grad(Primitive) (in node dgprimitive) is computed by
applying the function gradient on Primitive; and
Grad(Grad(Primitive)) (in node dggprimitive) is
computed by applying the function gradient a second time,
on Grad(Primitive);

4. we then construct the computation of gradient of the pressure:
Pressure (in node dpressure) is computed by applying the
4

1 mod EXAMPLE-2 is
2 *** includes dataflow abstract syntax, value and function

declaration
3 protecting DATAFLOW + EXAMPLE-CORE .
4
5 *** root of the dataflow
6 op dconservative : -> Data .
7 eq dconservative = data(Conservative) .
8
9 *** Primitive with gradient computation

10 op dprimitive : -> Data .
11 eq dprimitive = data(Primitive, task(primitive,
12 dconservative)) .
13 op dgprimitive : -> Data .
14 eq dgprimitive = data(Grad(Primitive), task(gradient,

dgprimitive)) .
15 op dggprimitive : -> Data .
16 eq dggprimitive = data(Grad(Grad(Primitive)), task(gradient,
17 dgprimitive)) .
18
19 *** Grad(Pressure) computation
20 op dpressure : -> Data .
21 eq dpressure = data(Pressure, task(pressure, dprimitive)) .
22 op dgpressure : -> Data .
23 eq dgpressure = data(Grad(Pressure), task(gradient,
24 dpressure)) .
25
26 *** Fxc and Fxd computation
27 op dFxc : -> Data .
28 eq dFxc = data(Fxc, task(convectiveFlux, dprimitive
29 dgprimitive)) .
30 op dFxd : -> Data .
31 eq dFxd = data(Fxd, task(diffusiveFlux, dprimitive dgprimitive
32 dgprimitive)) .
33
34 *** FxcBC and FxdBC computation
35 op dwall : -> Data .
36 eq dwall = data(BC(Wall), task(wall, dconservative)) .
37 op dFxcBC : -> Data .
38 eq dFxcBC = data(FxcBC, task(convectiveFluxBC, dwall
39 dprimitive dgprimitive)) .
40 op dFxdBC : -> Data .
41 eq dFxdBC = data(FxdBC, task(diffusiveFluxBC, dwall dprimitive
42 dgprimitive dggprimitive)) .
43
44 *** Rhs computation
45 op dBalance : -> Data .
46 eq dBalance = data(Balance, task(fluxBalance, dFxc dFxd dFxcBC
47 dFxdBC)) .
48 op dRhs : -> Data .
49 eq dRhs = data(Rhs, task(explicitIncrement, dBalance)) .
50 endm

Listing 4: The EXAMPLE-2 Maude module: encodes the dataflow of
Figure 4.
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function pressure on Primitive; and Grad(Pressure)
(in node dgpressure) is computed by applying the function
gradient on Pressure;

5. we then construct the computation of the convective and diffu-
sive flows on the zone: Fxc (in the node dFxc) is computed
by applying the function convectiveFlux on Primitive
and Grad(Primitive); Fxd (in the node dFxd) is computed
by applying the function diffusiveFlux on Primitive,
Grad(Primitive) and Grad(Grad(Primitive));

6. similarly, we construct the computation of the convective and
diffusive flows on the boundary: BC(Wall) (in the node
dwall) is computed by applying the function wall on
Conservative; FxcBC (in the node dFxcBC) is computed
by applying the function convectiveFluxBC on BC(Wall),
Primitive and Grad(Primitive); FxdBC (in the node
dFxdBC) is computed by applying the function
diffusiveFluxBC on BC(Wall), Primitive,
Grad(Primitive) and Grad(Grad(Primitive));

7. and finally, we conclude the dataflow with the computation of
the Rhs data: Balance (in the node dBalance) is computed
by applying the function fluxBalance on Fxc, Fxd, FxcBC
and FxdBC; and Rhs (in the node dRhs) is computed by
applying the function explicitIncrement on Balance.

3. Model

This section presents the main elements of our approach. First, we
recall the concepts of signatures and terms used in rewriting. We then
present our DSL without its DOP extension and describe the algorithm
that transforms any DSL program into rewriting rules. Finally, we de-
scribe the full version of our DSL, and introduce the flattening algorithm
that generates the variant of an input DSL program L for an input
product 𝑝 of the associated SPL.

3.1. Dataflow term signature

As illustrated in Section 2, a signature that encodes our dataflow
is structured into two parts: one part that creates the dataflow struc-
ture (with, e.g., constructors data and task) and is common to all
dataflows, and one user part that declares which values and functions
are available in the dataflow construction, which is specific to each
dataflow.

Here, we first recall the definitions for order-sorted signatures and
terms. We then define the two parts of a dataflow signature.

3.1.1. Preliminary definitions
We provide some notation and a basic definition over sets and

ordered sets.

Definition 1 (-Sorted Set). Given a set 𝑆 and an 𝑆-indexed family
𝑉 = {𝑉𝑠}𝑠∈𝑆 , we write 𝑣 ∶ 𝑠 ∈ 𝑉 for 𝑣 ∈ 𝑉𝑠. Moreover, we denote by
𝑆∞ the set ⋃∞

𝑖=1 𝑆
𝑖.

Given a partially ordered set (poset)  = (𝑆,<), an -sorted set is
an 𝑆-indexed family 𝑉 = {𝑉𝑠}𝑠∈𝑆 such that 𝑠 < 𝑠′ implies 𝑉𝑠 ⊆ 𝑉𝑠′ .
Moreover, we add a partial order to 𝑆∞ with

(𝑠1,… , 𝑠𝑛) < (𝑠′1,… , 𝑠′𝑛) iff (∃1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 < 𝑠′𝑖) ∧ (∀1 ≤ 𝑗 ≤ 𝑛, 𝑠𝑖 ≤ 𝑠′𝑖)

The following definition specifies the arity of term constructors for
a given ordered set of sorts .

Definition 2 (-Arity). Given a poset  = (𝑆,<), an -arity 𝐴 is a subset
of 𝑆∞ such that for all (𝑠1,… , 𝑠𝑛), (𝑠′1,… , 𝑠′𝑛) ∈ 𝐴 with 𝑠𝑖 ≤ 𝑠′𝑖 for all
1 ≤ 𝑖 ≤ 𝑛 − 1, then 𝑠𝑛 ≤ 𝑠′𝑛. For all (𝑠1,… , 𝑠𝑛) ∈ 𝐴 with 𝑛 > 1, we write
(𝑠1,… , 𝑠𝑛−1) → 𝑠𝑛 as syntactic sugar for (𝑠1,… , 𝑠𝑛).

The following definition introduces an order-sorted signature for a
5

given ordered set of sorts .
Fig. 5. Static syntax of function specification.

Definition 3 (-Sorted Signature). Given a poset  = (𝑆,<), an -sorted
signature is an -sorted set 𝐹 with  being an -arity.

Finally, we can define the set of terms given an ordered set of sorts
 and a signature 𝐹 .

Definition 4 (-Sorted Set of Terms). Given a poset  = (𝑆,<), an -
orted signature 𝐹 , and an -sorted set of variables 𝑉 , the -sorted set
(𝐹 , 𝑉 ) of terms is inductively defined as follows:

• 𝑣 ∶ 𝑠 ∈  (𝐹 , 𝑉 ) if 𝑣 ∶ 𝑠 ∈ 𝑉
• 𝑓 (𝑡1,… , 𝑡𝑛) ∶ 𝑠 ∈  (𝐹 , 𝑉 ) if 𝑡1 ∶ 𝑠1,… , 𝑡𝑛 ∶ 𝑠𝑛 ∈  (𝐹 , 𝑉 ),
𝑓 ∶ 𝑠1,… , 𝑠𝑛 → 𝑠′ ∈ 𝐹 and 𝑠′ ≤ 𝑠.

3.1.2. Dataflow
The next definition states when a signature is dataflow-safe, i.e., it

is a valid user part of a dataflow signature.

Definition 5 (Dataflow-Safe Poset and -Sorted Signature). A poset  =
(𝑆,<) is dataflow-safe iff both of the following hold:

(1)  contains Value and FunctionID
(2)  contains neither Data, nor Task

An -sorted signature 𝐹 is dataflow-safe iff for all 𝑠 ∈ 𝑆, data ∶
Value → 𝑠 ∉ 𝐹 .

Example 1 (A Dataflow-Safe Signature). The Maude module
EXAMPLE-CORE in Listing 2 is a dataflow-safe signature.

For the remainder of this paper, we assume a given dataflow-safe
ordered set  = (𝑆,<) and an -sorted signature 𝐹 .

3.2. Function specification

We now present the syntax of our function specification DSL, shown
in Fig. 5. We use the following name categories: 𝑓 is a function name;
𝑣 is a term variable; and 𝑠 is a sort. Moreover, 𝑡 is a term.

A specification starts with the declaration of a list of term variables,
which is then followed by the list of function specifications. A function
has a name 𝑓 , a list of inputs, and a list of outputs (modeled by terms
of sort Value).

The declaration order of variables and functions does not matter, so
we consider this syntax up to declaration reordering (this will be used
later to simplify specification transformation).

Example 2 (Dataflow Specification). Listing 5 shows the specification
for the dataflow in Figure 3.

1 // Fxc computation
2 fun primitive: inputs Conservative outputs Primitive
3 fun convectiveFlux: inputs Primitive outputs Fxc
4
5 // FxcBC computation
6 fun inlet: inputs Conservative outputs BC(Inlet)
7 fun outpres: inputs Conservative outputs BC(Outpres)
8 fun convectiveFluxBC: inputs Primitive, BC(Inlet), BC(Outpres)

outputs FxcBC
9

10 // Rhs computation
11 fun fluxBalance: inputs Fxc, FxcBC outputs Balance
12 fun explicitIncrement: inputs Balance outputs Rhs

Listing 5: Function specification for the dataflow in Listing 3.
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This specification starts with the functions used in the Fxc compu-
ation part of Listing 3: primitive takes the value
onservative in parameter and returns the value Primitive; and
onvectiveFlux takes Primitive in parameter and returns Fxc.

The second part of the specification describes the functions used in
the FxcBC computation part of Listing 3: inlet takes
onservative in parameter and returns BC(Inlet); then
utpres takes Conservative in parameter and returns

BC(Outpres); and finally convectiveFluxBC takes Primitive,
C(Inlet), and BC(Outpres) in parameter and returns FxcBC.

Finally, the last part of the specification describes the functions
sed in the Rhs computation part of Listing 3: fluxBalance
akes Fxc and FxcBC in parameter and returns Balance, while
xplicitIncrement takes Balance in parameter and returns
hs.

.3. From function specifications to Maude rewriting rules

Fig. 6 shows the rules to translate function specifications into
aude rewriting rules. The first rule takes the specification of a

unction 𝑓 and for each of its outputs 𝑜𝑖, it generates a rewriting
ule that adds to any node containing 𝑜𝑖 not being computed (mod-
led by data(𝑜𝑖)) the task that uses 𝑓 to compute 𝑜𝑖 (modeled by
ask(𝑓,data(𝑖1)…data(𝑖𝑛)) with 𝑖1,… , 𝑖𝑛 the inputs of 𝑓 ).

The second rule takes a complete specification, and translates it into
aude by: replacing the variables declarations by equivalent Maude

eclarations; and replacing all function specifications by rewriting
ules.

1 *** Fxc computation
2 rl data(Primitive) => data(Primitive, task(primitive,
3 data(Conservative) )) .
4 rl data(Fxc) => data(Fxc, task(convectiveFlux,
5 data(Primitive) )) .
6
7 *** FxcBC computation
8 rl data(BC(Inlet)) => data(BC(Inlet), task(inlet,
9 data(Conservative) )) .

10 rl data(BC(Outpres)) => data(BC(Outpres), task(outpres,
11 data(Conservative) )) .
12 rl data(FxcBC) =>
13 data(FxcBC, task(convectiveFluxBC, data(Primitive)
14 data(BC(Inlet)) data(BC(Outpres)) )) .
15
16 *** Rhs computation
17 rl data(Balance) => data(Balance, task(fluxBalance,
18 data(Fxc) data(FxcBC) )) .
19 rl data(Rhs) => data(Rhs, task(explicitIncrement,
20 data(Balance) )) .

isting 6: Rules generated from the specification in Figure 5.

xample 3 (Rules Generated from a Dataflow Specification). Listing 6
hows the rules generated from the specification in Fig. 5. For clarity,
e added sections in this generated set of rewriting rules to illustrate its

elation to Listing 5. This generated file starts with the rewriting rules
orresponding to the functions declared in the Fxc computation
art of Listing 5: adding to the node data(Primitive) the task
6

D

ask(primitive, data(Conservative)); and to data(Fxc)
he task task(convectiveFlux, data(Primitive))).

The second part of the set describes the rewriting rules correspond-
ng to the functions declared in the FxcBC computation part of
isting 5: it adds the task task(inlet, data(Conservative))
o the node BC(Inlet); it adds to the node BC(Outpres) the task
ask(outpres, data(Conservative)); and it adds to the node
ata(FxcBC) the following task

task(convectiveFluxBC,
data(Primitive) data(BC(Inlet)) data(BC(Outpres)))

Finally, the last part of the specification describes rewriting rules
orresponding to the functions declared in the Rhs computation
art of Listing 5: adding to node data(Balance) the task
ask(fluxBalance, data(Fxc) data(FxcBC)); and to node
ata(Rhs) task task(explicitIncrement,data(Balance)).

Rewriting the term data(Rhs) with these rules will give the
ame term dRhs as in EXAMPLE-1 in Listing 3. Indeed, rewriting
onsists of applying the rewriting rules wherever on the input term,
ntil none can be applied anymore. First, data(Rhs) matches the
attern of the rule in Line 20: the rule is applied, resulting in the term
ata(Rhs, task(explicitIncrement, data(Balance))).
econd, within that term, data(Balance) matches the pattern of
he rule in Line 18: the rule is applied, resulting in the term

data(Rhs,task(explicitIncrement ,
data(Balance, task(fluxBalance ,

data(Fxc) data(FxcBC) ))))

Following this principle, the subterms data(Fxc) and
ata(FxcBC) will be then rewritten with the rules in lines 5 and
2 which expands further our encoding of the dataflow. Ultimately,
ll data and all tasks of the dataflow in EXAMPLE-1 will be added by
ifferent applications of the rules in Figure 5.

.4. Specification correction

Specifications in our DSL must validate some sanity conditions to
nsure that the generated rewriting rules are well formed. Next we list
hese conditions.

.4.1. Naming
A first standard condition is the absence of name clashes: all vari-

bles and all functions must have different names. Since this condition
s standard, in the remainder we assume that it is always satisfied.
his condition can be straightforwardly checked by a standard static
nalysis.

.4.2. Term construction
The second set of sanity conditions ensures that the left-hand side

nd the right-hand side of every generated rewriting rules are well
orted, with sort data. First, all function names must be declared in the
ignature 𝐹 , with sort FunctionID. Moreover, the inputs and outputs
f the functions need to have sort Value in 𝐹 . The rules to check the
ort of the input and output terms of every function specification in a

SL program are shown in Fig. 7.
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Fig. 7. Checking the correctness of Input/Output definition.

The first rule states that the sort of a variable is given by its declara-
ion (stored in 𝛤 ). The second rule states that if the term constructor 𝑓
as arity 𝑠1,… , 𝑠𝑛 → 𝑠 and has parameters 𝑡𝑖 of sorts 𝑠𝑖, then 𝑓 (𝑡1,… , 𝑡𝑛)

has sort 𝑠. The third rule states that all inputs and outputs of a function
declaration must have sort (or subsort of) Value. Finally, the fourth
rule creates the store 𝛤 from the variable declaration (as previously
stated) and ensures that all function specifications are correct.

Any variable in a function’s input must be present in all of the function’s
output. In any term rewriting system, rewriting rules should not intro-
duce fresh variables, i.e., the variables in the right-hand side of a rule
must all be present in the left-hand side. This constraint translates into
our DSL by the fact that for every function specification, all variables
in the inputs of the function must be declared in every output of the
function. This constraint is formalized by the following equation, where
𝑓𝑣(𝑡) denotes the set of variables in 𝑡 for any term 𝑡:

𝑘 ∈ 𝐼, 𝑓𝑣(𝑡𝑘) ⊆
⋂

𝑜∈𝑂
𝑓𝑣(𝑡𝑜) (1)

ptional: data-driven functions. This last condition is not mandatory
o ensure the correct construction of the rewriting rules, but ensures
hat every function specification corresponds to a data-driven function,
.e., a function’s outputs only depend on its inputs. This dependency
ranslates into our DSL by the fact that for every function specification,
he variables in the function’s outputs are declared in its inputs. This
onstraint is formalized by the following equation:
⋃

∈𝐼
𝑓𝑣(𝑡𝑘) =

⋃

𝑜∈𝑂
𝑓𝑣(𝑡𝑜) (2)

.5. Variable function specification

Finally, the syntax of an SPL over function specifications is given in
ig. 8.

An SPL starts with the definition of a feature model, with features
𝑜)∗ and a propositional formula 𝜙 over features. This feature model is
hen followed by the core of the SPL, i.e., the initial set of variables
nd function declarations S, using the syntax presented in Fig. 5. The
est of the SPL declares a set of deltas (Dd)∗ that manipulate S, and a

configuration knowledge CK.
Each delta specifies a number of changes to S. A delta comprises

the keyword delta followed by the delta’s name, a semicolon, and a
sequence of delta operations (Do)∗. A delta operation Do can add/remove
a function specification definition, or modify it by adding/removing
inputs and outputs (via modifying operations Dm). Moreover, a delta
operation can declare or remove variables.

Configuration knowledge CK provides a mapping from products
to variants by describing the connection between deltas and features.
First, the DAC entries specifies an activation condition 𝜙 (a proposi-
tional formula over features) for each delta in the SPL. Second, the
DAO entries specify an application order between deltas: each of these
entries specifies a partial order over the set of deltas in terms of a total
order on disjoint subsets of delta names.

The overall delta application order ≺ is the transitive closure of the
union of these partial orders. In this paper, we assume that ≺ is consis-
tent (i.e., ≺ is a partial order) and unambiguous (i.e., all the total delta
7

application orders that respect ≺ generate the same variant for each
product). Techniques that allow one to check that ≺ is unambiguous are
described in the literature (Bettini et al., 2013; Lienhardt and Clarke,
2012). Without loss of generality, we assume that the total order in
which delta definitions are listed is compatible with ≺.

Flattening rules. Fig. 9 shows the flattening rules that, given an input
SPL L and a product 𝑝 of that SPL, apply the activated deltas in L in
order on the core part of L. The first two rules describe the flattening
process at the SPL level. Rule (SPL-1) first ensures that 𝑝 is a product
f the SPL (with 𝑝 ⊢ 𝜙), takes the first delta Dd of the SPL, and applies
t to the core S. This application is written [Dd][𝜙′](S) where 𝜙′ is the
ctivation condition of the delta Dd. Rule (SPL-2) is used when all delta
ave been applied (i.e., the list of deltas that are left is empty): it still
nsures that 𝑝 is a product of the SPL, and then simply returns the core
of the SPL.

The next two rules deal with the application of deltas. Rule (D-1)
s used when the delta is activated (checked with 𝑝 ⊢ 𝜙) and contains
t least one operation Do: in that case, we apply that operation on the
ore S (denoted by [Do][S]), and use this as parameter for the rest of
he operations in the deltas. Rule (D-2) is used when the delta is not
ctivated (checked with 𝑝 ⊬ 𝜙) or does not contain any operations: in
hat case we simply return the core S unchanged.

The next three rules describe the flattening of delta operations on
unctions. Rule (F-add) states that to add a function 𝐹 to a core S,
hat function must not be declared already in S (this is checked by
ame(F) ∉ {name(F𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑛}). If this condition is validated,
e return S extended with the new function. Rule (F-rem) states that

o remove a function named 𝑓 from a core S, that function must be
resent in S (this is checked with extracting from S the function 𝐹 with
ame(F) = 𝑓 ). If this condition is validated, we return S without its
unction 𝑓 . Rule (F-mod) states that to modify a function named 𝑓 in
core S, that function must be present in S (this is checked as in rule
F-rem)). If this condition is validated, we return S with its function 𝑓
odified by the set of operations (Dm)∗.

The next two rules deal with the delta operations on variables, and
re very similar to rules (F-add) and (F-rem): to add a variable, that
ariable must not be present already in the core; and, dually, to remove
variable, that variable must be declared in the core.

Finally, the last four rules describe the flattening of modification
perations Dm. Rule (I-add) states that to add an input to a function
pecification, the added term must not already be an input of that
unction. Rule (O-add) states that to add an output to a function
pecification, the added term must not already be an output of that
unction. Rule (I-rem) states that to remove an input from a function
pecification, the removed term must be an input of that function. Rule
O-rem) states that to remove an output from a function specification,
he removed term must be an output of that function.

xample 4 (A Delta-Oriented SPL of Dataflows). Listing 7 presents the
PL that contains the complete specification for our running example.
ines 2–4 present the feature model of our running example, with the
oot feature solver, the features mesh, zone, boundary, inlet,
utpres and wall for the structure of the mesh, and the features
odel, convective, diffusive and order2 for the computation.

Line 6 declares the variable valueV of sort Value that is used for
he declaration of the gradient function.

Lines 11–19 define the base specification of all the functions work-
ng on the mesh’s zone that are used in our dataflow construction:
rimitive takes the value Conservative in parameter and returns

he value Primitive; gradient can take any value in parameter
(modeled with the variable valueV), and returns the gradient of that
value (modeled with the term Grad(valueV)); pressure takes the
value Primitive in parameter and returns the value Pressure;
the function convectiveFlux takes Primitive in parameter and
returns Fxc; and, finally, diffusiveFlux takes Primitive and
Grad(Primitive) in parameter and returns Fxd.
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Fig. 8. Syntax of deltas.

Fig. 9. Flattening rules.
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1 features solver mesh zone boundary inlet outpres wall
2 model convective diffusive order2
3 with solver /\ mesh /\ boundary /\ zone /\ model /\
4 convective /\ (inlet \/ outpres \/ wall);
5
6 vars valueV: Value
7
8 //// Base Artifact
9 // functions on zone

10 fun primitive: inputs Conservative
11 outputs Primitive
12 fun gradient: inputs valueV
13 outputs Grad(valueV)
14 fun pressure: inputs Primitive
15 outputs Pressure
16 fun convectiveFlux: inputs Primitive
17 outputs Fxc
18 fun diffusiveFlux: inputs Primitive
19 Grad(Primitive) outputs Fxd
20
21 // functions on boundaries
22 fun inlet: inputs Conservative
23 outputs BC(Inlet)
24 fun outpres: inputs Conservative
25 outputs BC(Outpres)
26 fun wall: inputs Conservative
27 outputs BC(Wall)
28 fun convectiveFluxBC: inputs Primitive
29 outputs FxcBC
30 fun diffusiveFluxBC: inputs Primitive
31 Grad(Primitive) outputs FxdBC
32
33 // Rhs
34 fun fluxBalance: inputs Fxc, FxcBC
35 outputs Balance
36 fun explicitIncrement: inputs Balance
37 outputs Rhs

38 //// DELTA
39 // boundaries
40 delta d_inlet;
41 modify convectiveFluxBC
42 add input BC(Inlet)
43 modify diffusiveFluxBC
44 add input BC(Inlet)
45 delta d_outpres;
46 modify convectiveFluxBC
47 add input BC(Outpres)
48 modify diffusiveFluxBC
49 add input BC(Outpres)
50 delta d_wall;
51 modify convectiveFluxBC
52 add input BC(Wall)
53 modify diffusiveFluxBC
54 add input BC(Wall)
55
56 // computation
57 delta d_diffusive;
58 modify fluxBalance
59 add input Fxd add input FxdBC
60 delta d_order2;
61 modify convectiveFlux
62 add input Grad(Primitive)
63 modify convectiveFluxBC
64 add input Grad(Primitive)
65 modify diffusiveFlux
66 add input Grad(Grad(Primitive))
67 modify diffusiveFluxBC
68 add input Grad(Grad(Primitive))
69
70 delta d_inlet when inlet;
71 delta d_outpres when outpres;
72 delta d_wall when wall;
73 delta d_diffusive when diffusive;
74 delta d_order2 when order2;

Listing 7: Complete Software Product Line of our running example.
4

d
g
c

Lines 23–31 define the base specification of all the functions work-
ng on the mesh’s boundaries that are used in our dataflow con-
truction: inlet takes Conservative in parameter and returns
C(Inlet); outpres takes Conservative in parameter and re-

urns BC(Outpres); wall takes Conservative in parameter and
eturns BC(Wall); convectiveFluxBC takes Primitive, in pa-
ameter and returns FxcBC; and diffusiveFluxBC takes
rimitive, in parameter and returns FxdBC.

Finally, lines 35–37 define the base specification of the remaining
unctions: fluxBalance takes Fxc and FxcBC in parameter and
eturns Balance; while explicitIncrement takes Balance in
arameter and returns Rhs.

The rest of the SPL declares the deltas that modify the base specifi-
ations with respect to the selected features.

Lines 40–44 describe the delta d_inlet that adds BC(Inlet) as
input of the functions convectiveFluxBC and diffusiveFluxBC
in case the feature inlet is selected. Lines 45 to 49 describe the
delta d_outpres that adds BC(Outpres) as input of the func-
tions convectiveFluxBC and diffusiveFluxBC in case the fea-
ture outpres is selected. Lines 50–54 describe the delta d_wall,
which adds BC(Wall) as input of the functions convectiveFluxBC
nd diffusiveFluxBC in case the feature wallslip is selected.
ines 57–59 state that if the user want to also compute the diffusive
art of the flux (i.e., if the feature diffusive is selected), the
unction fluxBalance now takes two more arguments: Fxd and
xdBC. Lines 60–68 state that if the user wants to compute the

lux with an order 2 precision, i.e., when the feature order2 is
elected, the functions convectiveFlux and convectiveFluxBC
ow take also Grad(Primitive) in arguments, and the functions
iffusiveFlux and diffusiveFluxBC now take also
rad(Grad(Primitive)) in arguments.

Finally, lines 70–74 define the previously described activation con-
itions of the deltas. No order between deltas is specified: there are no
estrictions on the order in which they can be applied.
9

. Static analysis

This section describes the different analyses ensuring the correct
efinition of an SPL L. These analyses are structured in three cate-
ories: the first analysis ensures that all products generate a variant by
hecking that the application conditions of all delta in L are validated;

the second set of analyses ensures that a generated variant is well
constructed, i.e., all the input and output terms are well sorted, with
sort Value, and the constraints modeled by Eqs. (1) and (2) are
validated; and, finally, the last analysis ensures that a dataflow can be
generated from a variant by ensuring that the corresponding rewriting
rules always terminate.

Most of these analyses are inspired by Damiani and Lienhardt
(2016) and follow the same principle of generating a SAT constraint
that is valid if and only if the analyzed property holds. The exception
is the analysis of termination, which generates a universally quantified
SAT constraint. Moreover, like in Damiani and Lienhardt (2016), our
analysis is based on the type uniformity guideline, which is stated as
follows in our context.

Type Uniformity Guideline Ensure that every time a variable 𝑣 is
declared or added, it always has the same sort.

This guideline ensures that in all variants, given that every used vari-
able is declared, the analysis checking that the functions’ inputs and
outputs are well sorted, with sort Value, is always the same and can
be performed on the SPL directly with the rules already given in Fig. 7.
That way, we reduce checking the term well-sortedness in variants into
checking that all used variables are declared.

Example 5 (Type Uniformity). Our complete running example presented
in Listing 7 contains only one variable valueV, declared in the base
artifact with sort Value. Hence this variable always has the same sort
every time it is declared, and so our running example is type uniform.
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To simplify the presentation of our analysis, we consider in the rest
of this section that the base artifact of an SPL is modeled by a delta
named base which is always activated and always applied before the
other deltas. Before we present the different analyses, we introduce a
set of getters on top of which these different analyses are constructed.

4.1. Getters on SPLs

All our analyses are based on only two sets of getters. First, we have
getters that introspect the variability of an SPL.

Notation 1. Given an SPL L, we denote by fm(L) the constraint over feature
ames corresponding to the feature model of the SPL. Moreover, we denote
y act(L) the constraint stating that every delta name in L is equivalent to
ts activation condition.

Second, we need to relate the SPL variability to the variable names,
unction names, inputs, and outputs, which are manipulated during the
pplication of the SPL’s deltas. So, we first define the notion of path to
ave a common notation for all these manipulated elements, and then
ntroduce the three getters we use.

efinition 6 (Paths in an SPL). A path is either a variable name 𝑣,
a function name 𝑓 , or a word of the form 𝑓.𝑓 𝑖𝑒𝑙𝑑_𝑡.𝑇 , where 𝑓 is a
function name; 𝑓𝑖𝑒𝑙𝑑_𝑡 is an element of {input,output}; and 𝑇 is a
term of sort Value.

For a specification SPL L, we denote by 𝙿(L) the set of paths
occurring in L.

Definition 7 (Getters on Paths). Given a specification SPL L and a path
𝜌 ∈ 𝙿(L), we denote by:

• add(L, 𝜌) the set of delta names 𝑑 that add the path 𝜌 in L;
• rem(L, 𝜌) the set of delta names 𝑑 that remove the path 𝜌 in L;
• mod(L, 𝜌) the set of delta names 𝑑 that modify the path 𝜌 in L.

Moreover, given a path 𝜌, we denote by prefix(𝜌) the set of prefixes of
𝜌.

Example 6 (Paths and Getters). We illustrate the previous two defini-
tions by giving the value of the path getters for the running example L
presented in Listing 7. Since this list is long, we split it into 13 different
parts.

1. The variable valueV corresponds to the path valueV, and
since that variable is declared in the base artifact without ever
being manipulated, we have add(L,valueV) = {base} and
rem(L,valueV) = mod(L,valueV) = ∅.

2. The function primitive corresponds to the three paths

primitive, primitive.input.Conservative,
primitive.output.Primitive

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

3. The function gradient corresponds to the three paths

gradient, gradient.input.valueV,
gradient.output.Grad(valueV)

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

4. The function pressure corresponds to the three paths

pressure, pressure.input.Primitive,
pressure.output.Pressure
10
and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

5. The function convectiveFlux corresponds to the four paths

convectiveFlux, convectiveFlux.input.Primitive,
convectiveFlux.input.Grad(Primitive),
convectiveFlux.output.Fxc

This function is first declared in the base artifact, and then
modified by the d_order2 delta, which gives:

• add(L, 𝜌) = {base} for

𝜌 ∈

⎧

⎪

⎨

⎪

⎩

convectiveFlux,
convectiveFlux.input.Primitive,

convectiveFlux.output.Fxc

⎫

⎪

⎬

⎪

⎭

• add(L,convectiveFlux.input.Grad(Primitive)) = {d_order2}
• rem(L, 𝜌) = ∅ for 𝜌 being any path related to convectiveFlux
• mod(L,convectiveFlux) = {d_order2}

6. The function diffusiveFlux corresponds to the five paths

diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive),
diffusiveFlux.input.Grad(Grad(Primitive)),
convectiveFlux.output.Fxd

This function is first declared in the base artifact, and then
modified by the d_order2 delta, which gives:

• add(L, 𝜌) = {base} for

𝜌 ∈

⎧

⎪

⎨

⎪

⎩

diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive),

diffusiveFlux.output.Fxd

⎫

⎪

⎬

⎪

⎭

• add(L,diffusiveFlux.input.Grad(Grad(Primitive))) = {d_order2}

• rem(L, 𝜌) = ∅ for 𝜌 being any path related to diffusiveFlux
• mod(L,diffusiveFlux) = {d_order2}

7. The function inlet corresponds to the three paths

inlet, inlet.input.Primitive,
inlet.output.BC(Inlet)

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

8. The function outpres corresponds to the three paths

outpres, outpres.input.Primitive,
outpres.output.BC(Outpres)

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

9. The function wall corresponds to the three paths

wall, wall.input.Primitive,
wall.output.BC(Wall)

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

10. The function convectiveFluxBC corresponds to the seven
paths

convectiveFluxBC, convectiveFluxBC.input.Primitive,
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convectiveFluxBC.input.Grad(Primitive),

convectiveFluxBC.input.BC(Inlet),

convectiveFluxBC.input.BC(Outpres),

convectiveFluxBC.input.BC(Wall),

convectiveFluxBC.output.FxcBC

This function is first declared in the base artifact, and then mod-
ified by the d_inlet, d_outpres, d_wall and d_order2,
deltas, which gives:

• add(L, 𝜌) = {base} for

𝜌 ∈

⎧

⎪

⎨

⎪

⎩

convectiveFluxBC,
convectiveFluxBC.input.Primitive,
convectiveFluxBC.output.FxcBC

⎫

⎪

⎬

⎪

⎭

• add(L,convectiveFluxBC.input.BC(Inlet)) = {d_inlet}
• add(L,convectiveFluxBC.input.BC(Outpres)) = {d_outpres}

• add(L,convectiveFluxBC.input.BC(Wall)) = {d_wall}
• add(L,convectiveFluxBC.input.Grad(Primitive)) = {d_order2}

• rem(L, 𝜌) = ∅ for 𝜌 being any path related to convectiveFluxBC
• mod(L,convectiveFluxBC) = {d_inlet,d_outpres,d_wall,d_order2}

11. The function diffusiveFluxBC corresponds to the eight
paths

diffusiveFluxBC, diffusiveFluxBC.input.Primitive,

diffusiveFluxBC.input.Grad(Primitive),

diffusiveFluxBC.input.Grad(Grad(Primitive)),

diffusiveFluxBC.input.BC(Inlet),

diffusiveFluxBC.input.BC(Outpres),

diffusiveFluxBC.input.BC(Wall),

diffusiveFluxBC.output.FxcBC

This function is first declared in the base artifact, and then mod-
ified by the d_inlet, d_outpres, d_wall and d_order2,
deltas, which gives:

• add(L, 𝜌) = {base} for

𝜌 ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

diffusiveFluxBC,
diffusiveFluxBC.input.Primitive,

diffusiveFluxBC.input.Grad(Primitive),
diffusiveFluxBC.output.FxcBC

⎫

⎪

⎪

⎬

⎪

⎪

⎭

• add(L,diffusiveFluxBC.input.BC(Inlet)) = {d_inlet}
• add(L,diffusiveFluxBC.input.BC(Outpres)) = {d_outpres}

• add(L,diffusiveFluxBC.input.BC(Wall)) = {d_wall}
• add(L,diffusiveFluxBC.input.Grad(Grad(Primitive))) = {d_order2}

• rem(L, 𝜌) = ∅ for 𝜌 being any path related to convectiveFluxBC
• mod(L,diffusiveFluxBC) = {d_inlet,d_outpres,d_wall,d_order2}

12. The function fluxBalance corresponds to the six paths

fluxBalance, fluxBalance.input.Fxc,fluxBalance.input.Fxd,

fluxBalance.input.FxcBC,fluxBalance.input.FxdBC,

fluxBalance.output.Balance

This function is first declared in the base artifact, and then
modified by the d_diffusive delta, which gives:

• add(L, 𝜌) = {base} for

𝜌 ∈

⎧

⎪

⎨

⎪

⎩

fluxBalance, fluxBalance.input.Fxc,
fluxBalance.input.FxcBC,

convectiveFlux.output.Balance

⎫

⎪

⎬

⎪

⎭

11

f

• add(L, 𝜌) = {d_diffusive} for

𝜌 ∈ {fluxBalance.input.Fxd,fluxBalance.input.FxdBC}

• rem(L, 𝜌) = ∅ for 𝜌 being any path related to fluxBalance
• mod(L,fluxBalance) = {d_diffusive}

13. Finally, the function explicitIncrement corresponds to the
three paths

explicitIncrement,

explicitIncrement.input.Balance,

explicitIncrement.output.Rhs

and since that function is declared in the base artifact without
ever being manipulated, we have add(L, 𝜌) = {base} and
rem(L, 𝜌) = mod(L, 𝜌) = ∅ for 𝜌 being any of these paths.

.2. Applicability constraints

Applicability corresponds to the fact that delta operations do not
ail (i.e., they all can be applied). As previously stated, this analysis
orresponds to the generation of a constraint, which comprises three
alidation parts: checking if delta operations adding a path are valid;
hecking if delta operations removing a path are valid; and checking if
elta operations modifying a path are valid.

.2.1. Addition operation
Given a specification SPL L, the constraint for checking that no

ddition operation of a path 𝜌 ∈ 𝙿(L) fails is as follows:

redADD(L, 𝜌) =
⋀

𝑑≠𝑑′
(𝑑 ∧ 𝑑′ ⇒

⋁

𝑑′′
𝑑′′)

with
{

𝑑, 𝑑′ ∈ add(L, 𝜌), 𝑑′′ ∈ ⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′)
and 𝑑′ ≺ 𝑑′′ ≺ 𝑑

This constraint states that if two deltas add the same path, then
here must be a third one in between that removes it.

xample 7 (predADD(L, 𝜌) Constraint). Consider the running example
presented in Listing 7: since each path 𝜌 in this product line is

ntroduced only once, add(L, 𝜌) is a singleton. Hence, predADD(L, 𝜌) is
rue for every path in L.

.2.2. Removal operation
Given a specification SPL L, the constraint for checking that no

emoval operation of a path 𝜌 ∈ 𝙿(L) fails is as follows:

redREM(L, 𝜌) =
⋀

𝑑

(

𝑑 ⇒
(

⋁

𝑑′′
(𝑑′′∧⋀

𝑑′
¬𝑑′)

)

)

with
⎧

⎪

⎨

⎪

⎩

𝑑 ∈ rem(L, 𝜌), 𝑑′ ∈ ⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′),
𝑑′′ ∈ add(L, 𝜌)
and 𝑑′′ ≺ 𝑑′ ≺ 𝑑

This constraint states that for a removal operation to succeed (in
elta 𝑑), there must be a previous delta 𝑑′′ that added the path to
emove, with no other delta 𝑑′ in between removing it first.

xample 8 (predREM(L, 𝜌) Constraint). Consider the running example L
resented in Listing 7: since this example does not contain any removal
peration (i.e., rem(L, 𝜌) = ∅ for all path 𝜌 in L), predREM(L, 𝜌) is true

or every path 𝜌 in L.
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4.2.3. Modification operation
Given a specification SPL L, the constraint for checking that no

modification operation of a path 𝜌 ∈ 𝙿(L) fails is as follows:

predMOD(L, 𝜌) =
⋀

𝑑

(

𝑑 ⇒
(

⋁

𝑑′′
(𝑑′′∧⋀

𝑑′
¬𝑑′)

)

)

with
⎧

⎪

⎨

⎪

⎩

𝑑 ∈ mod(L, 𝜌), 𝑑′ ∈ ⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′),
𝑑′′ ∈ add(L, 𝜌)
and 𝑑′′ ≺ 𝑑′ ≺ 𝑑

This constraint has the same structure as predREM(L, 𝜌) before: for a
modification operation to succeed (in delta 𝑑), there must be a previous
elta 𝑑′′ that added the path to remove, with no other delta 𝑑′ in
etween removing it first.

xample 9 (predMOD(L, 𝜌) Constraint). Consider the running example L
resented in Listing 7. In Example 6, we have seen that several paths
orresponding to functions are modified. And since all functions are
eclared in the base artifact, which is always executed before any delta,
e thus have the following equalities:

redMOD(L,convectiveFlux) = (d_order2 ⇒ base)

redMOD(L,diffusiveFlux) = (d_order2 ⇒ base)

redMOD(L,convectiveFluxBC)

=

(

(d_inlet ⇒ base) ∧ (d_outpres ⇒ base)

∧ (d_wall ⇒ base) ∧ (d_order2 ⇒ base)

)

redMOD(L,diffusiveFluxBC)

=

(

(d_inlet ⇒ base) ∧ (d_outpres ⇒ base)

∧ (d_wall ⇒ base) ∧ (d_order2 ⇒ base)

)

redMOD(L,fluxBalance) = (d_diffusive ⇒ base)

.2.4. Full applicability constraint
We can now combine all the previous constraints to ensure that all

elta operations are valid:

redAPP(L) =
⋀

𝜌∈𝙿(L)

(

predADD(L, 𝜌)∧ predREM(L, 𝜌)∧ predMOD(L, 𝜌)
)

Finally, we can bind this constraint to the variability model of the
PL to obtain the formula

fm(L) ∧ act(L)) ⇒ predAPP(L)

his formula states that if we take a product 𝑝 (i.e., a model of
m(L)), and extend it to the set of delta’s activated by 𝑝 (i.e., a model
f act(L)), then if the resulting model validates the constraints, then
ll delta operations triggered by the product 𝑝 will succeed, i.e., the
orresponding variant can be generated. This property is formalized in
he following theorem.

heorem 1 (Applicability Consistency). Consider an SPL L and the
ollowing two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ predAPP(L) is valid.
2. All variants of L can be generated.

hen Property 1 is equivalent to Property 2.

roof. See Appendix A.3. □

xample 10 (Applicability Consistency). We illustrate Theorem 1 by
sing the running example L presented in Listing 7. In Examples 7 and
we have seen that predADD(L, 𝜌) and predREM(L, 𝜌) are valid for all
12

aths 𝜌. With Example 9, we thus have that {
redAPP(L)

=
⎛

⎜

⎜

⎝

predMOD(L,convectiveFlux) ∧ predMOD(L,diffusiveFlux)
∧ predMOD(L,convectiveFluxBC)

∧ predMOD(L,diffusiveFluxBC) ∧ predMOD(L,fluxBalance)

⎞

⎟

⎟

⎠

By removing duplicate implications, we thus have

predAPP(L) = (d_inlet ⇒ base) ∧ (d_outpres ⇒ base)

∧ (d_wall ⇒ base) ∧ (d_order2 ⇒ base)

∧ (d_diffusive ⇒ base)

On the other hand, we have by definition:

fm(L) =solver ∧ mesh ∧ boundary ∧ zone ∧ model ∧ convective
∧ (inlet ∨ outpres ∨ wall)

act(L) =base ∧ (d_inlet ⇔ inlet) ∧ (d_outpres ⇔ outpres)
∧ (d_wall ⇔ wall) ∧ (d_order2 ⇔ order2)
∧ (d_diffusive ⇔ diffusive)

ence, looking at the definition of the constraint in Theorem 1, since
ct(L) (in the left hand side of the implication) selects the Boolean
ariable base, all implications in the right hand side are satisfied. This
onstraint is thus valid, and indeed, we can see that every product of
he SPL can be generated.

Now consider an erroneous definition of the SPL: suppose that the
iffusiveFlux function is declared in the d_diffusive delta

nstead of in the base artifact. This changes the path getters into
dd(L, 𝜌) = {d_diffusive} for

∈

⎧

⎪

⎨

⎪

⎩

diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive),

diffusiveFlux.output.Fxd

⎫

⎪

⎬

⎪

⎭

ut more importantly in our case, predMOD(L,diffusiveFlux) is
odified into

_order2 ⇒ False

ince the delta that adds diffusiveFlux (i.e., d_diffusive) may
ot be applied before d_order2. Consequently, the constraint in
heorem 1 is not valid in this case, because the Boolean variable
_order2 may be selected in the left hand side of the implication
hich leads the right hand side to be false (and indeed, the vari-
nt generation will fail for any product with the feature d_order2
elected).

.3. Specification validation

The analyses presented in this section check the correct definition
f the generated variants, i.e., if the input and output terms are well
orted, and if the function specifications validate Eq. (1) and optionally
q. (2). Since these analyses manipulate the paths and the variables that
re present in a variant, we first define several constraints that state the
resence status of these different elements in a variant.

.3.1. Path presence
Given a specification SPL L, the fact that a path 𝜌 ∈ 𝙿(L) is present

n a variant is given by the following constraint:

re(L, 𝜌) =
⋁

𝑑

(

𝑑∧(⋀
𝑑′

¬𝑑)
)

with
{

𝑑 ∈ add(L, 𝜌), 𝑑′ ∈ ⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′)
and 𝑑 ≺ 𝑑′

This constraint states that for 𝜌 to exist, a delta must add it with
o delta removing it later. Furthermore, we denote by input(L, 𝑓 ) (by
utput(L, 𝑓 ), respectively) the set {𝑇 ∣ 𝑓.input.𝑇 ∈ 𝙿(L)} (the set

𝑇 ∣ 𝑓.output.𝑇 ∈ 𝙿(L)}, respectively).
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Example 11 (Pre(L, 𝜌) Constraint). Since our running example L in
isting 7 has no remove operation, and since add(L, 𝜌) is a singleton
or any path 𝜌, we have that Pre(L, 𝜌) is equal to the name of the delta

adding 𝜌 for any path 𝜌. For instance:

re(L,convectiveFlux.input.Grad(Primitive)) = d_order2 and
Pre(L,valueV) = base

4.3.2. Variable presence
Given a specification SPL L, for all function names 𝑓 ∈ 𝙿(L), we

efine the set of term variables as follows:

v(L, 𝑓 ) =
⋃

𝑓𝑡∈{input,output}
{𝑓𝑣(𝑇 ) ∣ 𝑓.𝑓 𝑡.𝑇 ∈ 𝙿(L)}

or all 𝑣 ∈ fv(L, 𝑓 ), we define:

rI(L, 𝑓 , 𝑣) =
⋁

𝑇∈input(L,𝑓 )∧𝑣∈𝑓𝑣(𝑇 )
Pre(L, 𝑓 .input.𝑇 )

rO(L, 𝑓 , 𝑣) =
⋁

𝑇∈output(L,𝑓 )∧𝑣∈𝑓𝑣(𝑇 )
Pre(L, 𝑓 .output.𝑇 )

bsO(L, 𝑓 , 𝑣) =
⋁

𝑇∈output(L,𝑓 )∧𝑣∉𝑓𝑣(𝑇 )
Pre(L, 𝑓 .output.𝑇 )

Here, PrI(L, 𝑓 , 𝑣) states when the variable 𝑣 is present in an input
of 𝑓 ; PrO(L, 𝑓 , 𝑣) states when the variable 𝑣 is present in an output of 𝑓 ;
and, finally, PrO(L, 𝑓 , 𝑣) states whether there are outputs of 𝑓 that do
not contain the variable 𝑣.

Example 12 (Variable Presence Constraints). Looking at Example 6, with
L being the running example in Listing 7, we have that

fv(L, 𝜌) =
{

{valueV} if 𝜌 = gradient
∅ else

onsequently, the getters PrI, PrO, and AbsO are only defined on the
air (gradient, valueV) and we have:

rI(L,gradient,valueV) = PrO(L,gradient,valueV) = base
bsO(L,gradient,valueV) = False

.3.3. Validating function specifications
Our first analysis in this section ensures that all declarations in

variant are well sorted. First, we need to ensure that all declared
unctions are in the signature 𝐹 , sorted with FunctionID. This check
oes not depend on the variability, and can be done by simply parsing
he SPL and checking that every function name in the SPL is declared
n 𝐹 with the correct sort.

Second, we need to check that the inputs and outputs of every
unction specification are well sorted, with sort Value. As discussed
n the beginning of this section, we use the type uniformity guideline to
educe this check to two simpler tests: first, we use the rules in Fig. 7 to
heck the well sortedness of the inputs and outputs on the SPL directly;
nd second, we check that the variables used in any term present in a
ariant are declared in that variant. This second test is modeled by the
ollowing constraint:

ecl(L) =
⋀

𝑓∈𝙿(L)

(

(

⋀

𝑇∈input(L,𝑓 )
Pre(L, 𝑓 .input.𝑇 ) ⇒

⋀

𝑣∈𝑓𝑣(𝑇 )
Pre(L, 𝑣)

)

∧(

⋀

𝑇∈output(L,𝑓 )
Pre(L, 𝑓 .output.𝑇 ) ⇒

⋀

𝑣∈𝑓𝑣(𝑇 )
Pre(L, 𝑣)

)

)

The following theorem states the property expressed by the decl
predicate.

Theorem 2 (Variable Presence). Consider an SPL L such that all variants
are generable. Moreover, consider the following two properties on L:
13
1. The constraint (fm(L) ∧ act(L)) ⇒ decl(L) is valid.
2. All variants of L are such that all their variables are declared.

hen Property 1 is equivalent to Property 2.

roof. See Appendix A.5. □

xample 13 (Variable Presence). We illustrate Theorem 2 using the
unning example L presented in Listing 7. From our discussion in
xample 12, we can see that

ecl(L) = (Pre(L,gradient.input.valueV) ⇒ Pre(L,valueV))

∧ (Pre(L,gradient.output.Grad(valueV)) ⇒ Pre(L,valueV))

From Example 11, we can apply the definition of Pre to get

decl(L) = (base ⇒ base) ∧ (base ⇒ base)

which is valid, and so the constraint in Theorem 2 is also valid.
If instead the variable valueV were declared in the d_order2

delta, decl(L) would have been equal to d_order2 ⇒ base. And since
ct(L) states that base is always selected while d_order2 is not,
he constraint in Theorem 2 would not be valid (and indeed, any
ariant generated from a product without d_order2 selected would
e erroneous).

.3.4. Validating Eq. (1)
The second analysis of this section ensures that Eq. (1) is validated

y every function in every variant of the SPL. As before, we define
his analysis with the construction of a SAT constraint, namely, given
specification SPL L, we define the following formula:

Free(L) =
⋀

𝑓∈𝙿(L)

⋀

𝑣∈fv(L,𝑓 )

(

PrI(L, 𝑓 , 𝑣) ⇒ (PrO(L, 𝑓 , 𝑣)∧¬AbsO(L, 𝑓 , 𝑣))
)

This constraint states that if a function 𝑓 has an input or attribute 𝑇 ,
hen the variables of 𝑇 must be present in one output of 𝑓 . The property
xpressed by this constraint is stated in the following theorem.

heorem 3 (Input Variable Relevance). Consider an SPL L such that all
ariants are generable. Moreover, consider the following two properties on
:

1. The constraint (fm(L) ∧ act(L)) ⇒ nFree(L) is valid.
2. All variants of L validate Eq. (1) from Section 3.4.2.

hen Property 1 is equivalent to Property 2.

roof. See Appendix A.5. □

xample 14 (Input Variable Relevance). We illustrate Theorem 3 using
he running example L presented in Listing 7. From our discussion in
xample 12, we can see that

Free(L) = (PrI(L,gradient,valueV) ⇒
(PrO(L,gradient,valueV) ∧ ¬AbsO(L,gradient,valueV)))

=base⇒ (base ∧ ¬False)
≡True

onsequently, the constraint in Theorem 3 is valid.
Suppose now that another variable valueVV of sort Value is

eclared in the delta d_order2, and that the gradient function
as a second output valueVV added in the delta d_order2. Since
valueVV never appears in the input of gradient, we have that

PrI(L,gradient,valueVV) = False
PrO(L,gradient,valueVV) = d_order2

AbsO(L,gradient,valueVV) = base
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In this case, we thus have

nFree(L) = (PrI(L,gradient,valueV) ⇒
(PrO(L,gradient,valueV)
∧ ¬AbsO(L,gradient,valueV)))

∧ (PrI(L,gradient,valueVV) ⇒
(PrO(L,gradient,valueVV)
∧ ¬AbsO(L,gradient,valueVV)))

= (base ⇒ (base ∧ ¬False))
∧ (False ⇒ (d_order2 ∧ ¬base))

≡True

onsequently, the constraint in Theorem 3 is valid also in this case:
ndeed, the considered modification added a new output, which is
ransparent for Eq. (1).

Suppose finally that the new variable valueVV is now used as
n input of the function gradient when the delta d_order2 is
ctivated. Since valueVV never appears in the output of gradient,
e have that
rI(L,gradient,valueVV) = d_order2
rO(L,gradient,valueVV) = False
bsO(L,gradient,valueVV) = base

n this case, we thus have

Free(L) = (PrI(L,gradient,valueV) ⇒
(PrO(L,gradient,valueV)
∧ ¬AbsO(L,gradient,valueV)))

∧ (PrI(L,gradient,valueVV) ⇒
(PrO(L,gradient,valueVV)
∧ ¬AbsO(L,gradient,valueVV)))

= (base ⇒ (base ∧ ¬False))
∧ (d_order2 ⇒ (False ∧ ¬base))

≡d_order2 ⇒ False

ince d_order2 may be selected in the left hand side of the constraint
n Theorem 3 (i.e., fm(L) ∧ act(L)), this constraint is not valid in this
ase. And indeed, in this case, if d_order2 is selected, the gradient
unction has an input valueVV that contains a variable that is not in
ts outputs, invalidating Eq. (1).

.3.5. Validating Eq. (2)
This third analysis of this section ensures that Eq. (2) is validated

y every function in every variant of the SPL. As before, we define
his analysis by the construction of a SAT constraint, namely, given a
pecification SPL L, we define the following formula:

Ambiguous(L) =
⋀

𝑓∈𝙿(L)

⋀

𝑣∈fv(L,𝑓 )

(

PrI(L, 𝑓 , 𝑣) ⇔ PrO(L, 𝑓 , 𝑣)
)

This constraint states that for all functions 𝑓 in a variant of the SPL,
if a variable 𝑣 is in an input or attribute, then it must also be in an
output, and reciprocally. The property expressed by this constraint is
stated in the following theorem.

Theorem 4 (Output Variable Dependency). Consider an SPL L such that
all variants are generable. Moreover, consider the following two properties
on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nAmbiguous(L) is valid.
2. All variants of L validate Eq. (2) from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.5. □

Example 15 (Output Variable Dependency). We illustrate Theorem 4
14

using the running example L presented in Listing 7. From our discussion
in Example 12, we can see that

nAmbiguous(L) = (PrI(L,gradient,valueV) ⇔
PrO(L,gradient,valueV))

=base ⇔ base
≡True

Consequently, the constraint in Theorem 4 is valid.
Suppose now that another variable valueVV of sort Value is

declared in the delta d_order2, and that the gradient function
has a second output valueVV added in the delta d_order2. Since
valueVV never appears in the input of gradient, we have that

PrI(L,gradient,valueVV) = False
PrO(L,gradient,valueVV) = d_order2
AbsO(L,gradient,valueVV) = base

In this case, we thus have

nAmbiguous(L) = (PrI(L,gradient,valueV) ⇔
PrO(L,gradient,valueV))

∧ (PrI(L,gradient,valueVV) ⇔
PrO(L,gradient,valueVV))

= (base ⇔ base) ∧ (False ⇔ d_order2)
≡False ⇔ d_order2

Since d_order2 may be selected in the left hand side of the constraint
in Theorem 3 (i.e., fm(L) ∧ act(L)), this constraint is not valid in this
case. And indeed, in this case, if d_order2 is selected, the gradient
function has an output valueVV that contains a variable that is not in
its inputs, invalidating Eq. (2).

Suppose finally that the new variable valueVV is now used as
an input of the function gradient when the delta d_order2 is
activated. Since valueVV never appears in the output of gradient,
we have that
PrI(L,gradient,valueVV) = d_order2
PrO(L,gradient,valueVV) = False
AbsO(L,gradient,valueVV) = base

In this case, we thus have

nAmbiguous(L) = (PrI(L,gradient,valueV) ⇔
PrO(L,gradient,valueV))

∧ (PrI(L,gradient,valueVV) ⇔
(PrO(L,gradient,valueVV))

= (base ⇔ base) ∧ (d_order2 ⇔ False)
≡d_order2 ⇔ False

Since d_order2 may be selected in the left hand side of the constraint
in Theorem 3 (i.e., fm(L) ∧ act(L)), this constraint is not valid in this
case. And indeed, in this case, if d_order2 is selected, the gradient
function has an input valueVV that contains a variable that is not in
its outputs, invalidating Eq. (2).

4.4. Terminating specification

Our last analysis ensures that the set of rewriting rules derived from
any variant of an SPL terminates. This property implies that for any
variant of an SPL and any data to compute, a corresponding dataflow
model can be generated.

Our analysis is based on (Arts and Giesl, 2000), where it is proved
that the termination of a set of rewriting rules is equivalent to the
existence of a well-founded, weakly monotonic, and substitution-closed
partial order between some terms extracted from the rewriting rules.
Such a partial order is defined as follows.

Definition 8 (A Well-Founded, weakly Monotonic, and Substitution-Closed
Partial Order). A partial order over terms < is well-founded iff there
exists no infinite sequence (𝑎𝑖)𝑖∈N with 𝑎𝑖+1 < 𝑎𝑖. Moreover, < is

′
weakly monotonic iff for all terms 𝑡1,… , 𝑡𝑛 ∈ 𝑇 , 𝑡 < 𝑡 implies
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𝑓 (𝑡1,… , 𝑡𝑖, 𝑡, 𝑡𝑖+1,… 𝑡𝑛) ≤ 𝑓 (𝑡1,… , 𝑡𝑖, 𝑡′, 𝑡𝑖+1,… 𝑡𝑛). Finally, < is closed
under substitution iff for all (𝑙, 𝑟) ∈≤ and all substitutions 𝜎, it holds
that (𝜎(𝑙), 𝜎(𝑟)) ∈≤.

In the following, if < is well-founded, weakly monotonic, and
ubstitution-closed, then we denote this by 𝑊𝐹 (<).

Moreover, due to the structure of our generated rewriting rules, in
ur case the terms that must be ordered are the input and output of the
ifferent functions. Hence, we can define this analysis by the following
onstraint:

erminating(L) = ∃ < 𝑊 𝐹 (<).
⋀

∈𝙿(L)

⋀

𝑇∈output(L,𝑓 )

⋀

𝑇 ′∈input(L,𝑓 )

((Pre(𝑓.output.𝑇 )∧Pre(𝑓.input.𝑇 ′)) ⇒ 𝑇 ′< 𝑇
)

(3)

This constraint states that for any variant of the SPL L, there must
exist a well-founded, weakly monotonic, and substitution-closed partial
order < such that if 𝑇 and 𝑇 ′ are the input and the output of a function,
respectively, then 𝑇 ′ < 𝑇 must hold. The property expressed by this
constraint is stated in the following theorem.

Theorem 5 (Terminating Specification). Consider an SPL L such that
all variants are generable and with all the variables declared. Moreover,
consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ terminating(L) is valid.
2. Each variant of L results in a terminating TRS.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.6. □

It is important to underline that since term rewriting is Turing
complete, Eq. (3) is not decidable. However, there are many sound
but incomplete techniques, such as (Arts and Giesl, 2000; Hirokawa
and Middeldorp, 2004; Yamada, 2022), that translate the problem of
finding the partial order < into SAT or into linear constraints, and
these techniques typically have good results in practice. Therefore, it
is possible to use these techniques to transform our constraint into an
existentially quantified SAT or linear constraint problem that can be
managed by existing SAT or SMT solvers.

Example 16 (Terminating Specification). We illustrate Theorem 5 using
the running example L presented in Listing 7. Define as follows the
function rank that takes in parameter terms of sort Value and returns
an integer:

rank(Conservative) = 1 rank(Primitive) = 2
rank(BC(Inlet)) = 2 rank(BC(Outpres)) = 2

rank(BC(Wall)) = 2 rank(Pressure) = 3
rank(Grad(𝑇)) = rank(𝑇 ) + 1 rank(Fxc) = 5

rank(Fxd) = 5 rank(FxcBC) = 5 rank(FxdBC) = 5
rank(Balance) = 6 rank(Rhs) = 7

Now state that given two terms 𝑇1 and 𝑇2 of sort Value, we have
𝑇1 < 𝑇2 iff both: 𝑓𝑣(𝑇1) = 𝑓𝑣(𝑇2) rank(𝜎(𝑇2)) < rank(𝜎(𝑇2)) with 𝜎
mapping any variable in 𝑓𝑣(𝑇1) to Conservative.

We can first see that 𝑊𝐹 (<) holds:

• < is a partial order: it is indeed clearly irreflexive, asymmetric
and transitive;

• any sequence of decreasing terms (𝑇𝑖)𝑖 corresponds to a sequence
of the same length of decreasing natural numbers (rank(𝑇𝑖))𝑖, and
since the order on natural numbers is well-founded, so is <;

• since rank(Grad(𝑇 )) = rank(𝑇 ) + 1, we have Grad(𝑇1) <
Grad(𝑇2) for all 𝑇1 < 𝑇2; moreover, since Grad is the only term
15

constructor that has parameters, < is weakly monotonic;
• finally, we can see that < is substitution-closed by induction on
the structure of the terms.

We can also see that for each function declared in our running
example, we have 𝑇1 < 𝑇2 for any of its inputs 𝑇1 and any of its outputs
𝑇2:

• for the primitive function: we have
Conservative < Primitive

• for the gradient function: we have valueV < Grad(valueV)
• for the pressure function: we have Primitive < Pressure
• for the convectiveFlux function: we have

Primitive < Fxc,Grad(Primitive) < Fxc

• for the diffusiveFlux function: we have

Primitive < Fxd,Grad(Primitive) < Fxd,
Grad(Grad(Primitive)) < Fxd

• for the inlet function: we have Conservative < BC(Inlet)
• for the outpres function: we have
Conservative < BC(Outpres)

• for the wall function: we have Conservative < BC(Wall)
• for the convectiveFluxBC function: we have

BC(Inlet) < FxcBC,BC(Outpres) < FxcBC,BC(Wall) < FxcBC,
Primitive < FxcBC,Grad(Primitive) < FxcBC

• for the diffusiveFluxBC function: we have
BC(Inlet) < FxdBC,BC(Outpres) < FxdBC,BC(Wall) < FxdBC,

Primitive < FxdBC,Grad(Primitive) < FxdBC,
Grad(Grad(Primitive)) < FxdBC

• for the fluxBalance function: we have

Fxc < Balance,Fxd < Balance,FxcBC < Balance,
FxdBC < Balance

• for the explicitIncrement function: we have
Balance < Rhs

Hence, terminating(L) is valid, which implies that the constraint in
Theorem 5 is valid as well. Following Theorem 5, we thus have that
every dataflow generation request submitted to our running example
would terminate.

5. Empirical evaluation

In this section, we evaluate the approach described in this paper
on a prototype. Our evaluation focuses on the feasibility of dataflow
generation: we evaluate the time used for the product line flattening and
rewriting steps presented in Fig. 1 and check if our approach is quick
enough to consider it for an industrial application.

We first give some insights into our prototype, present our testing
protocol and the corresponding results. We conclude by discussing the
threats to the validity of our experiments.

5.1. Prototype implementation

Our prototype was designed together with the elsA development
team in order to evaluate if the approach proposed in this article could
serve as a basis for a new CFD tool. We constructed our implementation
around three design choices.

1. We first embedded in python3 the DSL described in Section 3.
This choice was motivated by the fact that python3: (𝑖) was
already well-known by the elsA development team; (𝑖𝑖) is a flex-
ible language that easily embeds DSLs; and (𝑖𝑖𝑖) can orchestrate

complex and efficient libraries implemented in other languages.
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Fig. 10. Tree version of the dataflow presented in Fig. 3.

2. We then used the pydop python library (Lienhardt, 2023) to
handle the variability aspect of our DSL. Indeed, this library can
construct Delta-Oriented Product Lines over any python object,
and was thus particularly suited for our approach, where our
DSL manipulates abstract function specification and terms.

3. For the term and signature part of our DSL, we implemented an
ad-hoc rewriting tool in C++. The main reason we implemented
an ad-hoc tool instead of using an existing rewriting engine is
because of the DAG structure of the dataflows. Indeed, existing
rewriting engines like Maude create a tree instead of a DAG
when applying the rewriting rules. For instance, Fig. 10 would
be the dataflow generated by Maude in place of the dataflow in
Fig. 3: all shared subtrees are duplicated. While this difference
is not relevant semantically (two objects representing the same
term are logically the same and we can easily identify the identi-
cal subtrees to construct the DAG dataflow), on large dataflows
the equivalent tree version generated by existing rewriting en-
gines would have a size that is orders of magnitude larger than
the expected dataflow, and would take significantly more time
to generate. Our ad-hoc tool implements a naive algorithm for
rewriting rule application, but ensures that each shared term is
created only once.

5.2. Testing protocol

Since there are no standard benchmarks for dataflow generation,
we constructed 597 dataflow generation problems to evaluate. We first
implemented a test product line with the elsA development team, which
contains a subpart of the configuration space available in elsA. This SPL
extends our running example and contains 97 features, 173 functions
and 1493 deltas.

Then, following our dataflow generation pipeline presented in
Fig. 1, every run of our prototype needs two inputs: a product and
a value to compute. For the product, we use the uniform random
configuration generator unigen (Chakraborty et al., 2015; Soos et al.,
2020) to randomly pick 597 products of the test product line.1 For the
ata to compute, we simply chose the value Rhs in all our runs.

Finally, each of the 597 runs of our prototype were executed
0 times on a single 2.5 GHz Intel Xeon CPU with 32 GB of memory
hat was hosting a CentOS 8 operating system.

1 The version of unigen that was available for our tests had a bug that
ade the tool fail whenever we specified the number of products to generate.

o we used the default behavior of the tool, which gave us the arbitrary
umber of 597 generated products. We also tried to use the smarch tool (Oh
t al., 2020), but never succeeded to compile it.
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Fig. 11. Size of generated Dataflows – the 𝑥-axis lists the 597 generated dataflows
ordered by size (i.e., number of nodes + number of edges).

Fig. 12. Computation Time w.r.t. Dataflow Size – the 𝑥-axis lists the 597 generated
Dataflows ordered by size (i.e., number of nodes + number of edges).

5.3. Results

To facilitate the discussion of the experiments, the figures present-
ing our results use a fixed ordering of the 597 dataflow generation
problems we considered along the 𝑥-axis; this ordering is determined
by the size (the sum of the number of nodes and the number of edges)
of the generated dataflow for a given problem.

Fig. 11 illustrates the size of the generated dataflows. The smallest
generated dataflow has 129 nodes and 284 edges, while the largest has
426 nodes and 1205 edges. Moreover, in all dataflows, the number
of edges is between two and three times the number of nodes. This
confirms our concern discussed in Section 5.1 that many subtrees of
the dataflows are shared, and so existing rewriting engines would not
perform efficiently on these dataflow generation problems. Indeed, we
computed the size of the trees these engines would have generated: they
would contain between 26043 and 150983896 nodes with an average
of 10 million nodes.

Fig. 12 presents the average computation time for the product
line flattening and rewriting steps of our prototype. The product line
lattening step takes between 51 ms (executing 342 deltas) and 168 ms
executing 902 deltas); and the rewriting step (performing the dataflow
eneration itself) takes between 2 ms and 8 ms. The difference of
xecution time between these two steps can be explained by the fact
hat the SPL part of our prototype is implemented in python while the
ewriting part is implemented in C++.

Moreover while the time taken by the product line flattening step is
ounded for a given SPL by the time needed to execute all its deltas, the
ewriting step can take an arbitrary amount of time, since the Value to
ompute is arbitrary. Fig. 13 shows that in our test, the execution time

or this step evolves linearly w.r.t. the number of nodes in the dataflow.
ence, we believe that our approach can scale to larger dataflows.

.4. Threats to validity

We now conclude this section by discussing the external and inter-
al threats to the validity of our experiments.
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Fig. 13. Rewriting Time w.r.t. Number of Nodes – the 𝑥-axis lists the 597 generated
Dataflows ordered by size (i.e., number of nodes + number of edges).

5.4.1. External validity
The results of the evaluation strongly depend on the dataflow

generation problems considered in our test protocol. Due to the lack
of standard benchmarks, we only performed our tests on one SPL,
on which we considered 597 randomly selected dataflow generation
problems. We plan to investigate other dataflow generation problems:
in particular, in addition to problems coming from CFD applications,
we would like to study other application domains to get more insights.
For instance, it would be interesting to investigate how the shape of
the dataflows varies w.r.t. the application domain.

5.4.2. Internal validity
Our prototype is constructed on top of two separate libraries: pydop

and our ad-hoc rewriting engine. Using other existing tools, like Fea-
tureIDE (Meinicke et al., 2017) (for the SPL part of our approach) and
any of the existing rewriting engines (Garavel et al., 2018) may affect
the execution time of our approach. We plan to repeat the experiments
using other tools for comparison.

6. Related work

Dataflows have a structure that is similar to statecharts and tran-
sition systems, on top of which variability has already been defined,
e.g., by using DOP on statecharts, resulting in delta-statecharts (Lien-
hardt et al., 2018); and the annotative approach on transition systems,
resulting in Featured Transition Systems (FTSs) (Classen et al., 2013;
ter Beek et al., 2019, 2022). While delta-statecharts and FTSs could
in principle be used for modeling the dataflow model of our running
example, the variation on the value of one option could have conse-
quences all over the dataflow since a variable function could appear in
many place in a dataflow. For instance, the grad function is variable,
with different inputs and outputs, and can be used in many different
tasks. Consequently, the use of delta-statecharts or FTSs would imply
that the variability of grad must be duplicated in every task in which
it is used, which is clearly not satisfactory.

Different approaches to implement SPL on specifications and code
have been proposed in the literature. In our DSL we used the delta-
oriented approach. We refer to a couple of surveys (Schaefer et al.,
2012; Thüm et al., 2014) for a discussion of the different approaches.

Our approach for dataflow generation was largely inspired by work
on type inhabitation (Urzyczyn, 1997; Dudenhefner and Rehof, 2017;
Alves and Broda, 2018), in particular (Alves and Broda, 2018) uses
rewriting to generate terms of a given type. Indeed, if we consider
that the Value to Compute in Fig. 1 is a type, then constructing a
dataflow computing this value corresponds to finding a term (i.e., a
composition of functions) that has this type. Finally, in Gvero et al.
(2013), the authors use type inhabitation to help programmers to use
complex libraries: their tool suggests expressions of the expected type
constructed from the libraries’ functions.
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7. Conclusion

We presented an approach to automatically generate dataflow mod-
els in an SPL setting, based on DOP and term rewriting. We provided
an analysis that allows to check that for any variant of the SPL and any
data to compute, a corresponding dataflow model can be generated.
Moreover, we also implemented a prototype for our approach and
evaluated its execution time.

In future work, we would like to address several limitations of our
current approach. First, our running example considered a mesh with
at most three boundaries of different types: in practice, there can be
an arbitrary number of boundaries with arbitrary types. Note that this
flexibility makes it so that dataflows do not have an upper bound on
their size, since there is at least one task per boundary. Consequently
annotative approaches on graphs like FTS, while not being satisfactory
in this work, can no longer be used.

Moreover, we would like to investigate extending our DSL with the
possibility to include delta operations on the -sorted signature. That
way, we could express more easily the fact that the signature is con-
structed together with the rest of the variant (e.g., function declaration
corresponds to adding a new term constructor of sort FunctionID)
instead of having a signature that is the same for all variants of an
SPL. Finally, we intend to conclude the evaluation of our approach by
implementing and testing the analyses described in this paper.
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Appendix. Proofs

A.1. Preliminary notations

Given an SPL L, we write:

• spec(L) for the constraint fm(L) ∧ act(L)
• predAPP∙(L) for the constraint spec(L) ⇒ predAPP(L)
• decl∙(L) for the constraint spec(L) ⇒ decl(L)
• nFree∙(L) for the constraint spec(L) ⇒ nFree(L)
• nAmbiguous∙(L) for the constraint spec(L) ⇒ nAmbiguous(L)
• terminating∙(L) for the constraint spec(L) ⇒ terminating(L)

.2. Correspondence product model

emma 1. Given a specification SPL L with  its set of features, and a
roduct 𝑝 of L, then there exists exactly one model 𝐼 of spec(L) such that
= {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}. More precisely, 𝐼 is such that: (𝑖) the domain of 𝐼 is

he set of features  plus the set of delta names in L; (𝑖𝑖) all the variables
orresponding to features selected for that product are set to true; (𝑖𝑖𝑖) all
he variables corresponding to modules activated for the construction of this
roduct’s variant are set to true; and (𝑖𝑣) all the other variables in dom(𝐼)
re set to false.

Reciprocally, if spec(L) has a model 𝐼 , then the set {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}

s a product of L.
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Proof. This follows direct from the way the formula spec(L) is
constructed. □

A.3. Proof of Theorem 1 (applicability consistency)

Theorem 1 (Applicability Consistency). Consider an SPL L and the
ollowing two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ predAPP(L) is valid.
2. All variants of L can be generated.

hen Property 1 is equivalent to Property 2.

roof. Let first consider that L has no product: by Lemma 1, spec(L)
has no model, and so the constraint predAPP∙(L) is valid. Moreover,
ince L has no product, it also has no variant, and so all of them can be
enerated. Hence, both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product:
e prove the equivalence by proving each implication independently.

ase 1 ⇒ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

xactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈ ∧𝐼(𝑜)}. Because
redAPP∙(L) is valid and dom(𝐼) = 𝑓𝑣(predAPP∙(L)), 𝐼 is also a model of
redAPP(L). Let us now consider the sequence 𝑑1,… , 𝑑𝑛 of delta that
re applied to generate the variant corresponding to 𝑝 (𝑑1 being the
ore of L): we prove that for all 𝑖 ∈ [1..𝑛] no errors occurs in the deltas
1,… , 𝑑𝑖 by induction on 𝑖. With 𝑖 = 1, as 𝑑1 is the core of L, it only adds
ariables and function specifications to an empty specification. It thus
rivially succeeds. Let now consider 𝑖 = 𝑗 + 1 with 𝑑1,… , 𝑑𝑗 containing
o errors. We have eight cases.

1. If 𝑑𝑖 contains no operations, then 𝑑𝑖 succeed for any input
specification, and so 𝑑1,… , 𝑑𝑖 contains no errors.

2. If 𝑑𝑖 adds a function 𝐹 with name(𝐹 ) = 𝑓 : by construction
𝑑𝑖 ∈ add(L, 𝑓 ). Since 𝐼 is a model of predADD(L, 𝑓 ) and 𝐼(𝑑𝑖)
is true, we have that 𝐼 ⊢

⋀

𝑑′ 𝑑
′ ⇒

⋁

𝑑′′ 𝑑
′′ with 𝑑′ ≺ 𝑑′′ ≺

𝑑𝑖, 𝑑′ ∈ add(L, 𝑓 ) and 𝑑′′ ∈ rem(L, 𝑓 ). Hence, if there exists
1 ≤ 𝑘 ≤ 𝑗 with 𝑑𝑘 ∈ add(L, 𝑓 ), there must exist 𝑘 < 𝑙 ≤ 𝑗
with 𝑑𝑙 ∈ rem(L, 𝑓 ). Consequently, the specification in input of
𝑑𝑖 does not contain 𝑓 , and so the operation succeeds.

3. If 𝑑𝑖 removes a function 𝐹 with name(𝐹 ) = 𝑓 : by construction
𝑑𝑖 ∈ rem(L, 𝑓 ). Since 𝐼 is a model of predREM(L, 𝑓 ) and 𝐼(𝑑𝑖) is
true, we have that 𝐼 ⊢

⋁

𝑑′′ (𝑑′′ ∧
⋀

𝑑′ ¬𝑑′) with 𝑑′′ ≺ 𝑑′ ≺ 𝑑𝑖,
𝑑′ ∈ rem(L, 𝑓 ) and 𝑑′′ ∈ add(L, 𝑓 ). Hence, there must exist
1 ≤ 𝑘 ≤ 𝑗 with 𝑑𝑘 ∈ add(L, 𝑓 ), such that no 𝑑𝑙 ∈ rem(L, 𝑓 )
with 𝑘 < 𝑙 ≤ 𝑗. Consequently, the specification in input of 𝑑𝑖
does contain 𝑓 , and so the operation succeeds.

4. If 𝑑𝑖 modifies a function 𝐹 with name(𝐹 ) = 𝑓 : by construction
𝑑𝑖 ∈ mod(L, 𝑓 ). Since 𝐼 is a model of predMOD(L, 𝑓 ) and 𝐼(𝑑𝑖) is
true, we have that 𝐼 ⊢

⋁

𝑑′′ (𝑑′′ ∧
⋀

𝑑′ ¬𝑑′) with 𝑑′′ ≺ 𝑑′ ≺ 𝑑𝑖,
𝑑′ ∈ rem(L, 𝑓 ) and 𝑑′′ ∈ add(L, 𝑓 ). Hence, there must exist
1 ≤ 𝑘 ≤ 𝑗 with 𝑑𝑘 ∈ add(L, 𝑓 ), such that no 𝑑𝑙 ∈ rem(L, 𝑓 )
with 𝑘 < 𝑙 ≤ 𝑗. Consequently, the specification in input of 𝑑𝑖
does contain 𝑓 , and so the operation succeeds.

5. If 𝑑𝑖 adds an input 𝑇 in the function 𝑓 : by construction

𝑑𝑖 ∈ add(L, 𝑓 .input.𝑇 ) ∩ mod(L, 𝑓 )

Since 𝑑𝑖 ∈ mod(L, 𝑓 ) with Case 4 we can deduce that 𝑓 is in the
input specification of 𝑑𝑖, and with a reasoning similar to Case 2,
we can show that 𝑇 is not an input of 𝑓 in that specification.
Hence the operation succeeds.

6. If 𝑑𝑖 removes an input 𝑇 from the function 𝑓 : by construction

𝑑𝑖 ∈ rem(L, 𝑓 .input.𝑇 ) ∩ mod(L, 𝑓 )

Since 𝑑𝑖 ∈ mod(L, 𝑓 ) with Case 4 we can deduce that 𝑓 is in the
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input specification of 𝑑𝑖, and with a reasoning similar to Case 3,
we can show that 𝑇 is an input of 𝑓 in that specification. Hence
the operation succeeds.

7. If 𝑑𝑖 adds an output 𝑇 in the function 𝑓 : by construction

𝑑𝑖 ∈ add(L, 𝑓 .output.𝑇 ) ∩ mod(L, 𝑓 )

Since 𝑑𝑖 ∈ mod(L, 𝑓 ) with Case 4 we can deduce that 𝑓 is in the
input specification of 𝑑𝑖, and with a reasoning similar to Case 2,
we can show that 𝑇 is not an output of 𝑓 in that specification.
Hence the operation succeeds.

8. If 𝑑𝑖 removes an output 𝑇 from the function 𝑓 : by construction

𝑑𝑖 ∈ rem(L, 𝑓 .output.𝑇 ) ∩ mod(L, 𝑓 )

Since 𝑑𝑖 ∈ mod(L, 𝑓 ) with Case 4 we can deduce that 𝑓 is in the
input specification of 𝑑𝑖, and with a reasoning similar to Case 3,
we can show that 𝑇 is an output of 𝑓 in that specification. Hence
the operation succeeds.

onsequently, all possible operations in 𝑑𝑖 succeed, and so 𝑑1,… , 𝑑𝑖
ontains no errors.

ase 1 ⇐ 2
We prove this result by contraposition: we assume predAPP∙(L) is

ot valid and prove that there is one variant that cannot be generated.
Let us consider 𝐼 with dom(𝐼) = 𝑓𝑣(predAPP∙(L)) such that 𝐼 is not

model of predAPP∙(L). Consequently, 𝐼 is a model of spec(L) and by
emma 1, 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)} is a product of L. Let us now consider
he sequence 𝑑1,… , 𝑑𝑛 of delta that are applied to generate the variant
orresponding to 𝑝 (𝑑1 being the core of L). For all 𝜌 ∈ 𝙿(L) we define

the following sets:

𝑆(add, 𝜌) = {𝑑𝑖 ∣ ∃1 ≤ 𝑗 < 𝑖.𝑑𝑖, 𝑑𝑗 ∈ add(L, 𝜌) ∧ ∀𝑗 < 𝑘 < 𝑖.𝑑𝑘 ∉ rem(L, 𝜌)}
(modify, 𝜌) = {𝑑𝑖 ∣ 𝑑𝑖 ∈ rem(L, 𝜌)

∧ ∀1 ≤ 𝑗 < 𝑖.∃𝑗 < 𝑘 < 𝑖.𝑑𝑗 ∈ add(L, 𝜌) ∧ 𝑑𝑘 ∈
⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′)}
(remove, 𝜌) = {𝑑𝑖 ∣ 𝑑𝑖 ∈ mod(L, 𝜌)

∧ ∀1 ≤ 𝑗 < 𝑖.∃𝑗 < 𝑘 < 𝑖.𝑑𝑗 ∈ add(L, 𝜌) ∧ 𝑑𝑘 ∈
⋃

𝜌′∈prefix(𝜌) rem(L, 𝜌′)}

rom the definition of these sets: if there exist 𝜌 ∈ 𝙿(L) such that 𝐼
oes not model predADD(L, 𝜌), then 𝑆(add, 𝜌) is not empty; if there exist
∈ 𝙿(L) such that 𝐼 does not model predREM(L, 𝜌), then 𝑆(remove, 𝜌)

s not empty; and if there exist 𝜌 ∈ 𝙿(L) such that 𝐼 does not model
redMOD(L, 𝜌), then 𝑆(modify, 𝜌) is not empty; Since 𝐼 does not model
redAPP∙(L), it does not model predAPP(L), which implies that the
ollowing set is not empty:

=
⋃

𝜌∈𝙿(L)

⋃

𝑜𝑝∈{add,modify,remove}
𝑆(𝑜𝑝, 𝜌)

et us consider 𝑖 minimal with 𝑑𝑖 ∈ 𝑆: we have that 𝑑1,… , 𝑑𝑖−1
ucceeds. Let us moreover consider the first operation in 𝑑𝑖, identified
y a pair (𝑜𝑝, 𝜌) with 𝑜𝑝 ∈ {add,modify,remove} and 𝜌 ∈ 𝙿(L) such
hat 𝑑𝑖 ∈ 𝑆(𝑜𝑝, 𝜌). We have three cases:

1. 𝑜𝑝 = add. By definition of 𝑆(add, 𝜌), we have that 𝑑𝑖 ∈ add(L, 𝜌)
and there exists 𝑑𝑗 such that 𝑗 < 𝑖 and 𝑑𝑗 ∈ add(L, 𝜌) and for
all 𝑗 < 𝑘 < 𝑖, 𝑑𝑘 ∉ rem(L, 𝜌). This means that the function
specification on which 𝑑𝑖 is applied does contain 𝜌. Hence, by
the Rules 1, 4, 6, and 7 of Fig. 9, 𝑑𝑖 fails.

2. 𝑜𝑝 = remove. By definition of 𝑆(remove, 𝜌), we have that
𝑑𝑖 ∈ rem(L, 𝜌) and for all 𝑑𝑗 such that 𝑗 < 𝑖 and 𝑑𝑗 ∈ add(L, 𝜌),
there exist 𝑑𝑘 with 𝑗 < 𝑘 < 𝑖 and 𝑑𝑘 ∈

⋃

𝜌′∈prefix(𝜌). This means
that the function specification on which 𝑑𝑖 is applied does not
contain 𝜌. Hence, by the Rules 2, 5, 8, and 9 of Fig. 9, 𝑑𝑖 fails.

3. 𝑜𝑝 = modify. By definition of 𝑆(modify, 𝜌), we have that
𝑑𝑖 ∈ mod(L, 𝜌) and for all 𝑑𝑗 such that 𝑗 < 𝑖 and 𝑑𝑗 ∈ add(L, 𝜌),
there exist 𝑑𝑘 with 𝑗 < 𝑘 < 𝑖 and 𝑑𝑘 ∈

⋃

𝜌′∈prefix(𝜌). This means
that the function specification on which 𝑑𝑖 is applied does not
contain 𝜌. Hence, by the third rule of Fig. 9, 𝑑𝑖 fails. □
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A.4. Presence constraints

Lemma 2. Given a specification SPL L with  its set of features and a
roduct 𝑝 of L such that the corresponding variant can be generated, consider
he model 𝐼 of spec(L) corresponding to 𝑝 with Lemma 1. Then for all
∈ 𝙿(L), the two following statements are equivalent:

1. 𝐼 is a model of Pre(L, 𝜌).
2. The variant corresponding to 𝑝 contains 𝜌.

Proof. We prove the equivalence by proving each implication inde-
pendently.

Case 1 ⇒ 2
Since 𝐼 is a model of Pre(L, 𝜌), there exists 𝑑 ∈ add(L, 𝜌) with 𝐼(𝑑)

and for each delta name 𝑑′ such that 𝑑 ≺ 𝑑′and 𝑑′ ∈ rem(L, 𝜌), we
ave ¬𝐼(𝑑′). By construction of the sets add(L, 𝜌) and rem(L, 𝜌), this
eans that during the variant generation, 𝜌 is added by 𝑑 and is never

emoved afterward. Hence 𝜌 is present in the variant.

ase 1 ⇐ 2
We prove this result by contraposition: we suppose that 𝐼 is not a

odel of Pre(L, 𝜌) and prove that the variant cannot contain 𝜌. Since
is not a model of Pre(L, 𝜌), we have that for all 𝑑 ∈ add(L, 𝜌)

ith 𝐼(𝑑), there exists 𝑑′ ∈ rem(L, 𝜌) with 𝑑 ≺ 𝑑′ and 𝐼(𝑑′). By
onstruction of the sets add(L, 𝜌) and rem(L, 𝜌), this means that during
he variant generation, every time a delta 𝑑 adds 𝜌, the path 𝜌 is
emoved afterward. Hence 𝜌 is not present in the variant. □

emma 3. Given a specification SPL L with  its set of features and a
roduct 𝑝 of L such that the corresponding variant can be generated, consider
oreover the model 𝐼 of spec(L) corresponding to 𝑝 with Lemma 1. Then

or all 𝑓 ∈ 𝙿(L) and 𝑣 ∈ fv(L, 𝑓 ), the two following statements are
equivalent:

1. 𝐼 is a model of PrI(L, 𝑓 , 𝑣).
2. The variant corresponding to 𝑝 contains the function 𝑓 and one of

the inputs of 𝑓 contains the variable 𝑣.

Proof. By construction of PrI(L, 𝜌), 𝐼 validates it iff there exists 𝑇 ∈
input(L, 𝑓 ) with 𝑣 ∈ 𝑓𝑣(𝑇 ) and 𝐼 ⊢ Pre(𝑓.input.𝑇 ). By Lemma 2,
this is equivalent to 𝑓.input.𝑇 being present in the generated variant.
By construction of paths, this is equivalent to 𝑓 being included in the
generated variant, and 𝑣 begin a variable of an input of 𝑓 . □

Lemma 4. Given a specification SPL L with  its set of features and a
product 𝑝 of L such that the corresponding variant can be generated, consider
moreover the model 𝐼 of spec(L) corresponding to 𝑝 with Lemma 1. Then
for all 𝑓 ∈ 𝙿(L) and 𝑣 ∈ fv(L, 𝑓 ), the two following statements are
equivalent:

1. 𝐼 is a model of PrO(L, 𝑓 , 𝑣)
2. the variant corresponding to 𝑝 contains the function 𝑓 and one of the

outputs of 𝑓 contains the variable 𝑣

Proof. This proof is similar to that of Lemma 3, replacing input by
output. □

Lemma 5. Given a specification SPL L with  its set of features and a
product 𝑝 of L such that the corresponding variant can be generated, consider
moreover the model 𝐼 of spec(L) corresponding to 𝑝 with Lemma 1. Then
for all 𝑓 ∈ 𝙿(L) and 𝑣 ∈ fv(L, 𝑓 ), the two following statements are
equivalent:

1. 𝐼 is a model of AbsO(L, 𝑓 , 𝑣).
2. The variant corresponding to 𝑝 contains the function 𝑓 and one of
19

the outputs of 𝑓 does not contain the variable 𝑣.
Proof. This proof is similar to that of Lemma 3, replacing input
containing 𝑣 by output not containing 𝑣. □

A.5. Specification validation: Proofs of Theorems 2 (variable presence), 3
(input variable relevance), and 4 (output variable dependency)

Theorem 2 (Variable Presence). Consider an SPL L such that all variants
are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ decl(L) is valid.
2. All variants of L are such that all their variables are declared.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L)
has no model, and so the constraint decl∙(L) is valid. Moreover, since
L has no product, it also has no variant, and so all of them have their
variables declared. Hence, both Properties 1 and 2 are valid statements.

Let us now consider that the product line has at least one product:
we prove the equivalence by proving each implication independently.

Case 1 ⇒ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

exactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈ ∧𝐼(𝑜)}. Because
decl∙(L) is valid and dom(𝐼) = 𝑓𝑣(decl∙(L)), 𝐼 is also a model of decl(L).
Let us now consider a variable 𝑣 used in the variant corresponding to 𝑝:
by definition, there exist in the variant a term 𝑇 in input or output of a
function 𝑓 that contains 𝑣. Without loss of generality, let consider that
𝑇 is an input of 𝑓 : by Lemma 2, we have that 𝐼 ⊢ Pre(L, 𝑓 .input.𝑇 ).
Hence, since 𝐼 is a model of decl(L), we must have 𝐼 ⊢ Pre(L, 𝑣′) for all
𝑣′ ∈ 𝑓𝑣(𝑇 ), including 𝑣. Consequently, by Lemma 2, we have that 𝑣 is
declared in the variant.

Case 1 ⇐ 2
We prove this result by contraposition: we suppose that decl∙(L) is

not valid and prove that there is one variant that does not declare a
used variable.

Let us consider 𝐼 with dom(𝐼) = 𝑓𝑣(decl∙(L)) such that 𝐼 is not a
model of decl∙(L). Consequently, 𝐼 is a model of spec(L), not a model
of decl(L), and by Lemma 1, 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)} is a product of L.
Since 𝐼 is not a model of decl(L) there exists 𝑓 ∈ 𝙿(L) and either:

• an input 𝑇 of 𝑓 and 𝑣 ∈ 𝑓𝑣(𝑇 ) with 𝐼 ⊢ Pre(𝑓.input.𝑇 ) and
𝐼 ⊬ 𝑣; or

• an output 𝑇 of 𝑓 and 𝑣 ∈ 𝑓𝑣(𝑇 ) with 𝐼 ⊢ Pre(𝑓.output.𝑇 ) and
𝐼 ⊬ 𝑣.

In both cases, by Lemma 1, the variant corresponding to 𝑝 contains a
term 𝑇 with a variable 𝑣 that is not declared. □

Theorem 3 (Input Variable Relevance). Consider an SPL L such that all
variants are generable. Moreover, consider the following two properties on
L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nFree(L) is valid.
2. All variants of L validate Eq. (1) from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L)
has no model, and so the constraint nFree∙(L) is valid. Moreover, since
L has no product, it also has no variant, and so all of them validate
Eq. (1). Hence, both Properties 1 and 2 are valid statements.

Let us now consider that the product line has at least one product:
we prove the equivalence by proving each implication independently.

Case 1 ⇒ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

exactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}.
∙ ∙
Because nFree (L) is valid and dom(𝐼) = 𝑓𝑣(nFree (L)), 𝐼 is also a model
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of nFree(L). Let us now consider 𝑓 declared in the variant corresponding
o 𝑝, and an input term 𝑡 of 𝑓 containing a variable 𝑣. By Lemma 3,
𝐼 is a model of PrI(L, 𝑓 , 𝑣), which implies that it is also a model of
PrO(L, 𝑓 , 𝑣) ∧ ¬AbsO(L, 𝑓 , 𝑣). By Lemma 4 and 5, this means that there
exists an output of 𝑓 that contains 𝑣, and there are no output of 𝑓 that
oes not contain that variable.

ase 1 ⇐ 2
We prove this result by contraposition: we suppose that nFree∙(L)

is not valid and prove that there is one variant that does not validate
Eq. (1).

Let us consider 𝐼 with dom(𝐼) = 𝑓𝑣(nFree∙(L)) such that 𝐼 is not a
model of nFree∙(L). Consequently, 𝐼 is a model of spec(L), not a model
of nFree(L), and by Lemma 1, 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)} is a product of L.
Since 𝐼 is not a model of nFree(L) there exists 𝑓 ∈ 𝙿(L) and 𝑣 ∈ fv(L, 𝑓 )
such that 𝐼 is a model of PrI(L, 𝑓 , 𝑣) and at least one of the following
statement holds:

• 𝐼 does not model PrO(L, 𝑓 , 𝑣) which implies by Lemma 4 that no
output of 𝑓 contains 𝑣; or

• 𝐼 models AbsO(L, 𝑓 , 𝑣) which implies by Lemma 5 that there exists
an output of 𝑓 that does not contain 𝑣. □

Theorem 4 (Output Variable Dependency). Consider an SPL L such that
all variants are generable. Moreover, consider the following two properties
on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nAmbiguous(L) is valid.
2. All variants of L validate Eq. (2) from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L)
has no model, and so the constraint nAmbiguous∙(L) is valid. Moreover,
since L has no product, it also has no variant, and so all of them validate
Eq. (2). Hence, both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product:
we prove the equivalence by proving each implication independently.

Case 1 ⇒ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

exactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈ ∧𝐼(𝑜)}. Because
nAmbiguous∙(L) is valid and dom(𝐼) = 𝑓𝑣(nAmbiguous∙(L)), 𝐼 is also a
model of nAmbiguous(L). Let us now consider 𝑓 declared in the variant
corresponding to 𝑝, and an input term 𝑡 of 𝑓 containing a variable 𝑣.
By Lemma 3, 𝐼 is a model of PrI(L, 𝑓 , 𝑣), which implies that it is also
a model of PrO(L, 𝑓 , 𝑣). By Lemma 4, this means that there exists an
output of 𝑓 that contains 𝑣. With a similar approach, we easily prove
that all variables in the outputs of 𝑓 are also in its inputs.

Case 1 ⇐ 2
We prove this result by contraposition: we assume nAmbiguous∙(L)

is not valid and prove that there is one variant that does not validate
Eq. (2).

Let us consider 𝐼 with dom(𝐼) = 𝑓𝑣(nAmbiguous∙(L)) such that 𝐼 is
not a model of nAmbiguous∙(L). Consequently, 𝐼 is a model of spec(L),
not a model of nAmbiguous(L), and by Lemma 1, 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}
is a product of L. Since 𝐼 is not a model of nAmbiguous(L) there exists
𝑓 ∈ 𝙿(L) and 𝑣 ∈ fv(L, 𝑓 ) such that 𝐼 models either:

• PrI(L, 𝑓 , 𝑣) ∧ ¬PrO(L, 𝑓 , 𝑣): by Lemma 3 and 4, this means that 𝑣 is
in an input of 𝑓 but not in any of its outputs; or

• PrO(L, 𝑓 , 𝑣) ∧ ¬PrI(L, 𝑓 , 𝑣): by Lemma 3 and 4, this means that 𝑣 is
in an output of 𝑓 but not in any of its inputs. □

A.6. Proof of Theorem 5 (terminating specification)

The proof presented in this section is based on one of the main
theorems of Arts and Giesl (2000). Hence, before presenting our proof,
20
we first present an extended version of Definition 8 that introduces
a new characterization of order relations. We then recall the concept
of dependency pairs, which is the core contribution of Arts and Giesl
(2000). Finally, we recall the theorem on which our proof is based.

A.6.1. Order relations

Definition 9 (Preorder, Partial Order, and Well-Founded Partial Order).
Given a set 𝐴, and a binary relation 𝑅 ⊆ 𝐴 × 𝐴. 𝑅 is a preorder (a.k.a.
quasi-order) iff it is reflexive and transitive. 𝑅 is a partial order iff it is
antisymmetric and transitive. Moreover, 𝑅 is a well-founded order iff it
is a partial order and for all infinite sequence (𝑎𝑖)𝑖∈N there exists 𝑖 ∈ N
with (𝑎𝑖, 𝑎𝑖+1) ∉ 𝑅.

Finally, given a preorder ≤, we write ≤↓ the partial order {(𝑥, 𝑦) ∣
(𝑥, 𝑦) ∈≤ ∧(𝑦, 𝑥) ∉≤}.

Definition 10 (Substitution-Closed Preorder Over a Set of Terms). Given a
set of terms 𝑇 =  (𝐹 , 𝑉 ), a preorder relation ≤ over 𝑇 is weakly mono-
tonic iff 𝑠 ≤ 𝑡 implies 𝑓 (𝑠1,… , 𝑠𝑖, 𝑠, 𝑠𝑖+1,… 𝑠𝑛) ≤ 𝑓 (𝑠1,… , 𝑠𝑖, 𝑡, 𝑠𝑖+1,… 𝑠𝑛)
for all 𝑠1,… , 𝑠𝑛 ∈ 𝑇 . Moreover, ≤ is closed under substitution iff for all
(𝑙, 𝑟) ∈≤ and all substitution 𝜎, (𝜎(𝑙), 𝜎(𝑟)) ∈≤.

A.6.2. Dependency pairs

Definition 11 (𝑇 -TRS and Terminating 𝑇 -TRS). Given a set of terms
𝑇 =  (𝐹 , 𝑉 ), a 𝑇 -term rewriting system (𝑇 -TRS) is a set 𝑅 ⊆ 𝑇 × 𝑇
such that for all (𝑙 ∶ 𝑠𝑙 , 𝑟 ∶ 𝑠𝑟) ∈ 𝑅, 𝑙 ∉ 𝑉 , 𝑓𝑣(𝑟) ⊆ 𝑓𝑣(𝑙) and
{(𝑠𝑙 , 𝑠𝑟), (𝑠𝑟, 𝑠𝑙)} ∩ < ≠ ∅.

A 𝑇 -TRS 𝑅 is terminating there is no infinite sequence of terms
{(𝑡𝑖)}𝑖∈N such that for all 𝑖 ∈ N, there exists a subterm 𝑡′𝑖 of 𝑡𝑖, a
substitution 𝜎 and a rewriting rule (𝑙, 𝑟) ∈ 𝑅 such that 𝑡′𝑖 = 𝜎(𝑙) and
𝑡𝑖+1 = 𝜎(𝑟).

Definition 12 (Dependency Pair of a 𝑇 -TRS). Given a set of terms 𝑇 =
 (𝐹 , 𝑉 ) and a term 𝑡 = 𝑓 (𝑡1,… , 𝑡𝑛) ∈ 𝑇 ⧵𝑉 , the root symbol of 𝑡, written
root(𝑡) is 𝑓 . Given a 𝑇 -TRS 𝑅 and writing 𝐹 = {𝐹𝑎}𝑎∈𝐴, the set of
defined symbols in 𝑅 is the indexed family 𝐹 [𝑅] = {𝐹 [𝑅]𝑎}𝑎∈𝐴 with

𝐹 [𝑅]𝑎 = {𝑓 ∣ 𝑓 ∈ 𝐹𝑎 ∧ ∃(𝑙, 𝑟) ∈ 𝑅, 𝑓 = root(𝑙)}

For all 𝑎 ∈ 𝐴, we assume a set of fresh symbols 𝐹 [𝑅]#𝑎 = {𝑓 # ∣ 𝑓 ∈
𝐹 [𝑅]𝑎}, and for all terms 𝑡 = 𝑓 (𝑡1,… , 𝑡𝑛) with 𝑓 ∈ 𝐹 [𝑅], we write 𝑡# for
the term 𝑓 #(𝑡1,… , 𝑡𝑛).

A dependency pair of 𝑅 is a pair (𝑙#, 𝑟#) such that (𝑙, 𝑟′) ∈ 𝑅 and 𝑟 is
a subterm of 𝑟′. We write DP(𝑅) the set of dependency pairs of 𝑅.

Theorem 6 (Arts and Giesl (2000, Theorem 7)). Given a set of terms 𝑇 =
 (𝐹 , 𝑉 ) and a 𝑇 -TRS 𝑅, 𝑅 is terminating iff there exists a weakly mono-
tonic preordering ⪯⋅ such that both ⪯⋅ and ⪯⋅↓ are closed under substitution,
⪯⋅↓ is well-founded, and both

• 𝑟 ⪯⋅ 𝑙 for all rules (𝑙, 𝑟) ∈ 𝑅; and
• 𝑟 ⪯⋅↓ 𝑙 for all dependency pairs (𝑙, 𝑟) ∈ DP(𝑅)

A.6.3. Proof of Theorem 5 (terminating specification)

Lemma 6. Given a specification SPL L with  its set of features, and a
product 𝑝 of L such that the corresponding variant can be generated with all
its variables declared. Then the term rewriting system generated from that
variant is

𝑅 = { (data(𝑜),data(𝑜,task(𝑓,data(𝑖1),… ,data(𝑖𝑛))) ∣ 𝑓 ∈ 𝙿(L)

∧ 𝐼 ⊢ Pre(L, 𝑓 .output.𝑜) ∧ {𝑖1,… , 𝑖𝑛} = {𝑟 ∣ 𝐼 ⊢ Pre(L, 𝑓 .input.𝑟)} }
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with 𝐼 defined by Lemma 1. Moreover, we have

P(𝑅) = { (data#(𝑜),data#(𝑖)) ∣

∃𝑓 ∈ 𝙿(L), 𝐼 ⊢ Pre(L, 𝑓 .output.𝑜) ∧ 𝐼 ⊢ Pre(L, 𝑓 .input.𝑖) }

Proof. The first statement is a corollary of Lemma 2. The second one
is a direct application of the definition of the dependency pairs. □

Theorem 5 (Terminating Specification). Consider an SPL L such that
ll variants are generable and with all the variables declared. Moreover,
onsider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ terminating(L) is valid.
2. Each variant of L results in a terminating TRS.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L)
has no model, and so the constraint terminating∙(L) is valid. Moreover,
ince L has no product, it also has no variant, and so all of them result in
terminating TRS. Hence, both Properties 1 and 2 are valid statements.

Let us now consider that the product line has at least one product:
e prove the equivalence by proving each implication independently.

ase 1 ⇒ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

xactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}.
ecause terminating∙(L) is valid and dom(𝐼) = 𝑓𝑣(terminating∙(L)), 𝐼

s also a model of terminating(L). Hence, there exist a partial order
on terms that is well-founded, weakly monotonic, closed under

ubstitution and such that for all 𝑓 ∈ 𝙿(L), all 𝑡 ∈ output(L, 𝑓 ) with 𝐼 ⊢
Pre(L, 𝑓 .output.𝑡), and all 𝑡′ ∈ input(L, 𝑓 ) with 𝐼 ⊢ Pre(L, 𝑓 .input.𝑡′),
we have 𝑡′ < 𝑡. Since the -sorted signature 𝐹 is dataflow-safe, <
contains no terms with data or task symbols. Let us define ≡ being
the transitive, reflexive closure of 𝑅 that is closed under substitution.
We moreover define the partial order ≺⋅ as follows:

≺⋅ = < ∪ { (data(𝑙),data(𝑟)) ∣ (𝑙, 𝑟) ∈< } ∪ { (data#(𝑙),data#(𝑟)) ∣ (𝑙, 𝑟) ∈< }

et ⪯⋅=≺⋅ ∪ ≡. By construction of 𝑅, it is a preorder and 𝑡 ⪯↓ =≺⋅.
With Lemma 6, is thus clear that ⪯⋅ validates Theorem 6.

Case 1 ⇐ 2
Suppose chosen a specific product 𝑝 of L: by Lemma 1, there exists

exactly one model 𝐼 of spec(L) such that 𝑝 = {𝑜 ∣ 𝑜 ∈  ∧ 𝐼(𝑜)}. Since
the TRS 𝑅 resulting of the variant corresponding to 𝑝 terminates, we
can consider the preorder ⪯⋅ given by Theorem 6. Let us recall that ⪯⋅↓
is a partial order on DP(𝑅) that is well founded, weakly monotonic,
and closed under substitution. Hence the following relation < is also
founded, weakly monotonic, and closed under substitution:

<=⪯⋅↓ ∪ { (𝑙, 𝑟) ∣ (data#(𝑙),data#(𝑟)) ∈⪯⋅↓ }

By Lemma 6, we thus have that < is such that for all 𝑓 ∈ 𝙿(L), all
𝑡 ∈ output(L, 𝑓 ) with 𝐼 ⊢ Pre(L, 𝑓 .output.𝑡), and all 𝑡′ ∈ input(L, 𝑓 )
with 𝐼 ⊢ Pre(L, 𝑓 .input.𝑡′), we have 𝑡′ < 𝑡. □
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