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EXECUTIVE SUMMARY 

This deliverable reports the activities conducted within Task 5.4 “Executing complex similarity 
queries over multi layer P2P search structures” of the SAPIR project. In particular the 
deliverable discusses complex similarity queries issues and the implementation of the query 
processing over the P2P indexing. The document is accompanied by a zip file containing the 
javadoc for MUFIN. 
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1 INTRODUCTION 

The aim of the SAPIR project is to develop novel and scalable methods for querying audio-
visual content using complex queries combining text, meta-data and audio-visual content. 
Query input is supplied by the user following the “query by example” paradigm using several 
audio-visual sources for querying. Scalability is achieved by using P2P overlay network with 
Semantic Overlay Networks (SON) for the different media involved. Example Overlays can be 
an image overlay that index and search images in a P2P overlay using metric space for Visual 
descriptors similarity. Another overlay can deal with text and metadata.  

1.1. OBJECTIVES OF WP5 

The aim of WP5 is to develop novel and scalable methods for content-search in audio-visual 
data. Query input is supplied by the user following the “query by example” paradigm using 
several audio-visual sources for querying. P2P overlay networks are used to provide scalable 
search and combine sophisticated ranking algorithms over several media specific similarity 
metrics. 

1.2. OBJECTIVES OF THE DELIVERABLE 

The objective of this deliverable is to report the activities conducted during Task 5.4 - 
“Executing complex similarity queries over multi layer P2P search structures”. The main 
objective of the Task was to achieve multi-feature similarity ranking based on the P2P 
similarity indices developed in WP4. In this report we describe the implementation of scalable 
algorithms to answer top-k queries for multiple predicates supported by distributed similarity 
search index overlay developed in T4.1, on a dynamic network of peer computers. 

The deliverable is organized as follows. In Section 2 we give an overview of the similarity 
search problem focusing on complex queries and on a general distributed incremental nearest 
neighbor algorithm. In Section 3 we describe the MUFIN overlay and its implementation. 
Moreover we describe the distributed threshold algorithm specifically developed for MUFIN. In 
Section 4 how the metadata of the CoPhIR collection was used for indexing using MUFIN. 
This document is accompanied by a zip file containing a javadoc for MUFIN. 
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2 SIMILARITY SEARCH 

2.1 INTRODUCTION 

Similarity search, particularly in metric spaces, has been receiving increasing attention in the 
last decade, due to its many applications in widely different areas. The notion of similarity has 
been studied extensively in the field of psychology and the given definition characterizes that 
similarity has been found to have an important role in cognitive sciences. From a database 
prospective, similarity search is based on gradual rather than exact relevance. A distance 
between objects is used to quantify the proximity, similarity or dissimilarity of a query object 
versus the objects stored in a database. 

A similarity search can be seen as a process of retrieving data objects in order of their 
distance or dissimilarity from a given query object. It is a kind of sorting, ordering, or ranking of 
objects with respect to the query object, where the ranking criterion is the distance measure. 
The most common similarity queries are Range and Nearest Neighbor (see D4.1 - Section 
2.1). Though this principle works for any distance measure similarly to most recent research in 
this topic, we restrict the possible set of measures to metric distances (see D4.1, Section 2.2). 
In fact, because of the mathematical foundations of the metric space notion, partitioning and 
pruning rules can be defined in this case for developing efficient index structures. In 
Deliverable D4.1 we discussed the similarity search concept in more detail. 

2.2 COMPLEX SIMILARITY QUERIES 

Complex similarity queries are queries consisting of more than one similarity predicate. 
Efficient processing of such kind of queries differs substantially from traditional (Boolean) 
query processing. The problem was studied first by Fagin in [Fagin 1996]. The similarity score 
(or grade) a retrieved object receives as a whole depends not only on the scores it gets for 
individual predicates, but also on how such score are combined. 

To this aim, Fagin has proposed two algorithms - the A0 algorithm [Fagin 1996] and the 
Threshold algorithm [Fagin 2001]. Both algorithms assume that for each query predicate we 
have an index structure able to return objects in order of decreasing similarity. This is an 
important example of the application of Incremental Nearest Neighbor. 

By using the Fagin algorithms it is possible to answer queries involving more than one feature 
overlay, such as: find all images most similar to the query image with respect to the color and 
the shape at once. In this situation, we do not know how many neighbors must be retrieved in 
individual layers before the best object is found that satisfies the complex condition. 

In Section �2.3 we describe a generic Distributed Incremental Nearest Neighbor (DINN) 
algorithm which approach the Incremental Nearest Neighbor problem for P2P-based systems. 
The DINN algorithm finds closest objects in an incremental fashion over data distributed 
among computer nodes, where each node is able to perform its local Incremental Nearest 
Neighbor (local-INN) algorithm. The algorithm is optimum with respect to both the number of 
involved nodes and the number of local-INN invocations. 

In Section �3.3 we present a distributed threshold algorithm specifically developed for MUFIN. 
It allows a user to specify an arbitrary aggregation function for combining the individual 
descriptor distances into an overall distance so that the best matching results are closest to 
the query. The function can be different for each query thus different results can be obtained 
even if the query descriptors remain the same. 

Another important contribution to the complex similarity queries is the work presented in 
[Ciaccia et al. 1998]. In this paper the authors concentrated on complex similarity queries 
expressed through a generic language and whose predicates refer to a single feature. The 
proposed solution suggests that the index should process complex queries as a whole. The 
approach was implemented through an extension of the M-tree. Under the limitation of single 
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feature, experimental results show that performance of the extended M-tree is consistently 
better than the A0 Algorithm. In the following we will concentrate on the multi feature problem. 

2.3 DISTRIBUTED INCREMENTAL NEAREST NEIGHBOR ALGORITHM 

An important building block of complex similarity queries algorithms, as the ones proposed by 
Fagin, is incremental similarity search. An incremental similarity search can provide objects in 
order of decreasing similarity without explicitly specifying the number of nearest neighbors in 
advance. As reported in Deliverable D4.1, when finding  nearest neighbors  to the query 
object using a kNN algorithm, k is known prior to the invocation of the algorithm. Thus, if the 
(k+1)-th neighbor is needed, the kNN needs to be re-invoked for (k+1) neighbors  from 
scratch. To resolve this problem, the authors of the Incremental Nearest Neighbors algorithm 
[Hjaltason and Samet 1999] proposed the concept of distance browsing which is to obtain the 
neighbors  incrementally (i.e. one by one) as they are needed. This operation means browsing 
through the database on the basis of distance. 

For allowing efficient execution of complex queries in distributed systems the definition of a 
generic Distributed Incremental Nearest Neighbor (DINN) was investigated [Falchi et al 2009] 
[Falchi et al 2007] during the SAPIR project. The proposed algorithm finds closest objects in 
an incremental fashion over data distributed among computer nodes, each able to perform its 
local Incremental Nearest Neighbor (local-INN) algorithm.  

The DINN algorithm is based on a generalization of the algorithm proposed in [Hjaltason and 
Samet 1999]. The incremental nearest neighbor algorithm defined in [Hjaltason and Samet 
1999] is applicable whenever the search space is structured in a hierarchical manner. The 
algorithm starts off by initializing the queue of pending requests with the root of the search 
structure — since the order of entries in this queue is crucial, they refer to it as the priority 
queue. Our proposed solution is independent of any specific P2P architecture – it can be 
applied to any Scalable and Distributed Data Structure (SDDS), P2P system, and Grid-based 
similarity search infrastructure. 

In the main loop, the element closest to the query is taken off the queue. If it is an object, it 
reports it as the next nearest object. Otherwise, the child elements of the element in the 
search hierarchy are inserted into the priority queue. 

The INN algorithm [Hjaltason and Samet 1999]] was defined for a large class of centralized 
hierarchical spatial data structures. Instead our DINN algorithm is distributed and not limited to 
hierarchical structures. Thus it can be used over SDDSs, P2P systems and Grid 
infrastructures. Our algorithm is built over nodes which are able to perform locally an INN 
between the objects they store (this will be formalized in Assumption 1). 

In particular, we reformulate the definition of priority queue given in [Hjaltason and Samet 
1999] by considering as elements of the queue, objects and nodes (or peers). We prove that 
our algorithm is optimal, in terms of both number of involved nodes and local-INN invocations. 
The elements of the queue are ordered according to a key which is always associated with 
both objects and nodes. 

 
Figure 1 Snapshot of the priority queue during the execution of the DINN algorithm. 

The key associated with each object is the distance between the query and the object itself. 
Instead the key associated with each node is a lower bound for the distance between the 
query and the next result coming from the node. While for an already involved node this lower 



������������������ � �

� � � ��������	
��
���
	������� � � �

�
���-�	�������������������������������������

��������������
���	� ����� �� ��
���!�"����� �	#���� ������
!������� �
��$� �������� ��% 
��$��&&'�
��������������������������������������

��������(	
 	����� ��&&'� � ��)&�)�&&'��*+��+�'�

bound can be simply the distance from the query of the last object retrieved by its local-INN, 
for the not yet involved nodes a naive solution could be to always use 0 as lower bound. 
However, this would imply all nodes to be involved for every similarity query. To avoid this, we 
suppose that each node is able to evaluate this lower bound for every node it knows (in P2P 
systems they are called neighbors). 

Furthermore, in P2P systems there is no global knowledge of the network. Thus, we make an 
assumption (regarding the ability to find the next most promising node (by considering the 
lower bound mentioned before). This assumption replaces the consistency condition used in 
[Hjaltason and Samet 1999] for hierarchical data structures. We prove that our assumption 
can be satisfied under one of two simpler conditions which are common for data structures 
able to perform similarity search. 

During the DINN algorithm execution, the queue contains a certain number of entries sorted in 
order of decreasing key. Entries can be both nodes and objects. Because of the values used 
as key, when a node is after an object we are sure that no better results than the object itself 
can be found in the node. The algorithm proceeds by processing the queue from the top. 
Basically if the first entry of the queue is an object, this object is the result of the DINN. In case 
the first entry is a node, we invoke its local-INN. The resulting object of this invocation is 
placed in the queue and its distance from the query allows us to update the entry with a more 
accurate (greater) lower bound which moves the node backward in the queue. 

In [Falchi et al 2009, Falchi et al 2007] we proved that the DINN algorithm is optimum with 
respect to both the number of involved nodes and the number of local-INN invocations. 

This outlined implementation is intrinsically sequential, since a single step of the algorithm 
involves only the first element of the queue at a time. In the second part of the paper, we 
straightforwardly generalize the algorithm introducing parallelism by invoking the local-INN 
algorithm of more than one node simultaneously. The precise definition of the algorithms is 
provided in the next section. Examples are given to help understanding the algorithm. 
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3 THE MUFIN OVERLAY AND ITS IMPLEMENTAION 

3.1 DESCRIPTION 

The MUFIN indexing overlay merges two similarity search technologies: 

� M-Chord: peer-to-peer structure for similarity search in metric spaces [Novak, Zezula, 
2006], 

� M-Tree: a dynamic disk-oriented local indexing structure for similarity search in metric 
spaces. 

Every peer (unit of the distributed structure) of the M-Chord organizes its data locally in M-
Tree. Let us describe separately the principles of M-Chord and M-Tree. 

3.1.1 M-Chord Principles 

The M-Chord structure is based on the following ideas: 

� It maps the metric space into a one-dimensional domain exploiting a set of selected 
pivots.  

� It employs standard P2P techniques, like Chord or Skip Graphs, to divide the one-
dimensional routing domain among the peers and to provide the navigation within the 
systems.  

� Using the properties of the data space mapping, M-Chord provides algorithms for 
efficient evaluation of the metric similarity queries.  

The fundamental idea of M-Chord is to map the metric space into a single-dimensional domain. 
The mapping schema has been inspired by iDistance, which is a centralized technique for kNN 
queries in vector spaces. We have generalized its fundamental idea for metric spaces and further 
adjusted it to meet our needs. 

The M-Chord mapping, schematically depicted in Figure 2 (a), works basically as follows: 
Several reference points are selected from the sample dataset – we call these objects pivots 
and are denoted as pi. The data space is partitioned in a Voronoi-like manner into clusters (Ci). 
Following the iDistance idea, the one-dimensional mapping of the data objects is defined 
according to their distances from the cluster’s pivot. Having a separation constant c, the M-
Chord key for an object  x� Ci is calculated as  

 mchord(x) = d(pi, x) +  i � c 

To evaluate a range query R(q; r), the data space to be searched is specified by mchord 
domain intervals in clusters which intersect the query region – see an example in Figure 2 (b). 

 

 
Figure 2: M-Chord mapping principles (a) and search-space pruning mechanism (b). 
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Having the data space mapped into the mchord domain, every active node (peer) of the 
system takes over responsibility for an interval of keys. The M-Chord then applies one-
dimensional P2P protocol, for instance Chord or Skip Graphs, in order to divide the data 
among the peers and to provide navigation within the system. The M-Chord search algorithms 
navigate the similarity queries to the relevant peers. See Section �3.2 for details for detail on 
the M-Chord search algorithms. 

3.1.2 The M-Tree Structure 

The M-Tree [Ciaccia et al., 1997] is a popular dynamic disk-oriented structure for metric data 
indexing. Similarly to B-Trees and R-Trees, it is a balanced tree built in a bottom-up fashion by 
splitting overfilled nodes. Each entry of the M-Tree internal node contains a pivot and a 
covering radius which specify a sphere-like region of the space covering by the entry and its 
sub-tree. The leaf nodes store data objects together with their distances to the pivot in the 
parent node. The internal nodes keep distances to the parent node’s pivot as well. All these 
values are utilized in order to achieve pruning effect for the search algorithms. 

The M-Tree can evaluate standard similarity queries – the range query and the kNN query. 
The latter can be processed also in an approximate fashion. The approximate algorithm 
follows the generic scheme: It maintains a dynamic queue of M-Tree nodes sorted according 
to a heuristic which ensures that the “most promising” entries are processed first. If the 
currently processed entry is an internal node, its child nodes are reinserted into the queue; the 
leaf nodes are processed according to standard kNN algorithm. The processing can be 
stopped at any time according to a predefined condition; in our implementation, the 
approximate search is stopped when a certain portion of data has been searched. 

A number of M-Tree extensions have been published [Zezula et al., 2006]. We implement the 
Pivoting M-Tree (PM-Tree) extension [Zezula et al., 2006], which employs additional filtering 
and pruning by means of pre-computed distances between the indexed objects and a fixed set 
of pivots. We use the same set of pivots as the M-Chord and thus the object-pivot distances 
are computed only once during the insert operation. The M-Tree is used as a local index at 
each peer of the M-Chord network. The overall system is schematically depicted in Figure 3. 

 

 
Figure 3: Schema of the MUFIN overlay. 
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3.2 IMPLEMENTATION 

Let us now describe details of the M-Chord algorithms and of the implementation of the whole 
MUFIN overlay. 

3.2.3 M-Chord Algorithms Details 

Insert operation 

Any node Nins from the structure can initiate insert operation for an object o. First, node Nins 

applies calculates mchord(o) key according to formula described above. Values d(p0,o),...,d(pn-

1,o) are obtained as a by-product and are carried along with o from now on. 

The navigation protocol (e.g., Chord [Sotica, 2001], Skip Graphs [Aspnes, 2007]) is now 
followed to forward the insert request to node N<mchord(o)> 

 

responsible for key mchord(o). See 
an example of this process in Figure 4. This node stores o into a metric-based similarity index 
structure such as M-Tree.  

 

 
Figure 4: Principles of M-Chord Insert operation. 

Range Query Operation 

Resolving range queries is a basic task which is fundamental also for more complex similarity 
queries. The node Nq which initiates the query R(q,r) runs the following RANGESEARCH(q,r) 
algorithm:  

� for each cluster Ci, i= 0,...,n-1, determine interval Ii  of keys to be scanned:  

  Ii=[d(pi,q) + i�c-r), d(pi,q)+ i�c + r)]; 

� for i= 0,...,n-1 use the P2P navigation algorithm to deliver the LOCALSEARCH(q,r) 
request to nodes whose intervals of keys intersect with Ii; two variants can be used:  

o route the query to the node responsible for the “midpoint” of interval and then 
spread the message left and right (this variant is expected in the following),  

o or branch the routing process to reach the target nodes at once;  

� wait for all responses and create the final answer set.  

LOCALSEARCH(q,r) is evaluated on the destination nodes as follows:  

� search the locally stored data and create the local answer set  

  SA = {x | 
 
mchord(x)� Ii, d(q,x) �

 
r } 

� let the local metric-based index structure M-Tree evaluate the R(q,r) query;  

� send SA back to node Nq.  
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Figure 5: Principles of the M-Chord range search algorithm. 

 

Figure 5: Principles of the M-Chord range search algorithm. shows an example of a range 
query flow through the system. The figure simplifies the query forwarding to nodes NI

i 
as the 

routing is usually not direct. So, n queries are spread simultaneously from node Nq following 
the navigation protocol (Chord, Skip Graphs, etc.). According to this protocol, a lot of these 
messages “travel” partially along the same path. In order to decrease flooding of the network, 
the requests are sent as one message along the common path parts.  

Approximate kNN Search 

Precise processing of kNN queries can be relatively expensive. Therefore, M-Chord can 
evaluate kNN queries in an approximate fashion. The approximate algorithm is parametrized; 
the parameters can be set according to the particular dataset and the expected ratio between 
precision and efficiency.  

Having kNN (q,r) query, the idea of the algorithm is to:  

1. Determine a certain number m of pivots pi which are the nearest to q. The 
corresponding m clusters are considered to be the most promising to contain objects 
near q.  

2. For these pivots, calculate values d(pi,q)+i�c; these values correspond to areas where 
objects similar to q could occur.  

3. The kNN (q,k) query is routed to peers responsible for the calculated values. These 
peers evaluate the query on their local index structures.  

4. The query can also be spread to a certain number of the peers neighboring on either 
side of the navigation circle.  

The number of nearest pivots involved in the searching, m, can be either fixed as a parameter 
or can be determined by a heuristic. The number of peers visited within each cluster can be a 
either fixed or defined as a “percentage of the peers which cover the cluster”. The latter approach 
requires an external analysis of the particular instance of M-Chord to find out numbers of peers in 
individual clusters.  

3.2.4 MESSIF: Implementation Framework 

Implementation of all MUFIN parts (M-Chord, M-Tree, etc.) takes advantage of the Metric 
Similarity Search Implementation Framework (MESSIF) [Batko et al., 2007]. This Java-based 
framework allows a developer to focus on the implementation of the core of the technique and 
let the MESSIF modules take care of the low-level tasks like storage management, networking 
or performance statistics gathering. It pursues the following objectives:  

� to provide basic support for the indexing based on metric space;  
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� to create a unified and semi-automated mechanism for measuring and collecting 
statistics;  

� to define and use uniform interfaces to support modularity and thus allow reusing of 
the code;  

� to provide infrastructure for distributed processing with focus on peer-to-peer paradigm 
– communication support, deployment, monitoring, testing, etc.;  

� to support similarity search in multi-metric spaces (see the following section). 

3.3 DISTRIBUTED THRESHOLD ALGORITHM FOR MUFIN 

To be able to execute also combined search where a query is composed of more than one 
descriptor and its result is formed by objects that best match the query in several aspects, a 
distributed variant of the threshold algorithm has been proposed for MUFIN [Batko et al., 
2008]. It allows a user to specify an arbitrary aggregation function for combining the individual 
descriptor distances into an overall distance so that the best matching results are closest to 
the query. The function can be different for each query thus different results can be obtained 
even if the query descriptors remain the same. 

Assume that a complex data object is simplified by extraction techniques into a set of 
descriptors. Such a set together with an identifier of the original object form a metaobject. 

 
Figure 6: Example of metaobject extraction 

To compare similarity within respective descriptors, a metric function is specified. For 
instance, we would like to index images from which we can extract color and shape 
descriptions. A metaobject for a given image is composed of the two descriptors – one for 
the color and the other for the shape – plus the link to the original image (see Figure 6). 
Naturally, to express the similarity of two metaobjects, we must combine the similarities of 
their respective descriptors. For this task, a user-supplied aggregation function f(x1, x2, ... 
xn) is used to compute the combined distance d(o1, o2) = f(d1(e1(o1), e1(o2)), d2(e2(o1), 
e2(o2)), ... , dn(en(o1), en(o2)) between two objects. The aggregation function is required 
to be monotonous. The result is not necessarily metric (consider for a example an 
aggregation function f(x1, x2, ... xn) = x1+…+xn +1. So d(o, o) = f(d1(e1(o), e1(o)), ... , 
dn(en(o), en(o))) = f(0, ..., 0)  = 1 which contradicts the reflexivity property). Still it 
expresses the similarity in the same way as metric functions – the higher the value of 
distance the more dissimilar the objects are. Following our example with colors and 
shapes, we supply a weighted sum as the aggregation function, i.e., the weighted sum of 
the color and shape descriptor distances. This means that we perceive two objects similar 
if they are similar in both color and shape and weights are used to emphasize either color 
over shape or the other way round. 
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3.3.5 Threshold Algorithm 

The threshold algorithm [Fagin et al., 2001] (TA) was proposed for obtaining top-k results of 
several ranked lists. Even though it was originally proposed for the scores (ranks), it can be 
inverted to suit the distance measures. Let Top(k, q, f) be the top-k query for the query object 
q and aggregate function f that we want to solve on a database with m descriptors mss ,,1 � . 

Note that each descriptor forms a metric space with its own metric function mdd ,,1 � . Then, 
the sorted access of descriptor si is a list Si of all objects and their distances to the query 
object using only the descriptor i. The list is sorted by distances; the lower the distance is the 
sooner the object appears in the list. On the other hand, random access can retrieve the 
distance between the query and a given object o for all the descriptors and thus compute the 
overall distance of this object as d(q, o) = f(d1(q, o1), ... , dm(q, om)). Then, the algorithm works 
as follows: 

1. Do sorted access for all m descriptors to get their respective sorted lists. 
2. In every iteration, the next object is taken from each sorted list mm SoSo �� ,,11 �  

having the respective descriptor’s distances �1 = d(q, o1), ... , �m = d(q, om). 
3. Use the random access to the other lists to compute the overall distances of objects 

o1, ... , om. Update the list of the resulting k objects with the lowest overall distances. 
Let dmax be the distance of the kth object, i.e. the maximal distance of the result.  

4. Compute the threshold value t = f(�1, ... ,�m). Do next iteration unless the result list has 
k objects and dmax ��t. 

The correctness of the stop condition in the fourth step is proved in the original paper [Fagin et 
al., 2001] and the modification for metric distances is straightforward. Basically, the threshold t 
can only increase in each iteration of the algorithm while the maximal distance dmax only 
decreases after the result list is filled with k objects. 

3.3.6 MUFIN Implementation 

To evaluate similarity queries efficiently, we build a P2P index for each of the descriptors. So, 
every single descriptor of a particular ContentObject1 is stored by the respective index along 
with an identifier of the metaobject. Moreover, a special zero-overlay is defined where 
complete metaobjects are stored. The zero-overlay allows efficient retrieval of metaobjects 
using their identifiers as a key – a classical P2P distributed hash table can be used, because 
we only need the “get-by-id” operation in this overlay. In principle, these overlays are allowed 
to share the same infrastructure of physical peers. 

                                                
1 for a definition of ContentObject in SAPIR refer to Deliverable D2.1 – Section 4.1.2 
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Figure 7: Multiple overlays schema 

Figure 7 depicts a system with three overlays. The first is built for color descriptors, the 
second indexes shapes, and the third represents the zero-overlay. Observe that each overlay 
consists of multiple nodes and their specifics are left up to a particular distributed index 
structure used in the overlay. These nodes are maintained by physical peers (illustrated by the 
dotted arrows). Each peer usually manages one node from every overlay. Such a mapping is 
completely transparent for overlay index structures and in general, it is automatically done by 
a load-balancing mechanism. 

 
Figure 8: Evaluation of a complex query 

Running a standard TA in a distributed environment would be very expensive, because single 
object retrieval is very inefficient. The batch approach is more suitable and it works as follows 
(see Figure 8 for schematic overview). The issuing peer breaks the query ContentObject into 
its descriptors and executes a nearest neighbor query for every descriptor in the respective 
similarity-search overlay. They are evaluated in parallel and a sorted list of the top-most 
similar objects is returned for each descriptor. The ContentObjects are then used to query the 
zero-overlay to get distances for missing descriptors. Next, an aggregation function is used to 
compute the objects’ overall similarity. If there are not enough objects with their overall 
similarity under a certain threshold value, the descriptor overlays are requested to provide 
additional batch of objects until this condition is met. 

However, to get under the threshold can take a lot of time for huge data collections. For 
example, a top-50 query in a dataset of 1.6 million images takes more than one minute to 
evaluate even for a batch size of 1,000 objects. Moreover, the interpretation of similarity itself 
is highly individual so even the optimal results of the search may not satisfy user needs. 
Therefore, it is more reasonable to give good-enough results quickly even if they are not 
precise. Thus, we alter the stop condition and we end the processing prematurely after � 
iterations even if the threshold condition is not satisfied. The value � allows us to tune the ratio 
of the response time and the quality of the result. 
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Since the parameter � is specific for each query, the system can automatically adjust the value 
according to user preferences or the actual system load. To help the system tune the � more 
precisely, we can compute actual quality estimations during the iterations of the TA. Since the 
actual threshold value t and the maximal result-list distance dmax are updated in every iteration 
of TA, we can see them as functions t(i) and dmax(i) of the TA iteration i. If we know the final 
maximal distance dmax(final) of the precise result, we can express the quality of the result after 
i iterations as a ratio dmax(i)/dmax(final). The best quality is equal to 1 (precise result) while the 
higher values represent worse quality. However, the final distance is unknown during the 
evaluation and we can only use the threshold t(i) as its lower bound (due to the TA stop 
condition). The quality is therefore upper-bounded by dmax(i)/t(i). Using the first � values of t(i) 
and dmax(i), we can improve the estimation of the quality by extrapolating the behavior of the 
t(i) and dmax(i) functions. Then, their intersection can be computed, and the function value at 
the intersection is an estimation of dmax(final) and can be used to compute the estimated 
quality at iteration �. 

 

3.4 MUFIN IN SAPIR 

 
Figure 9: MUFIN API, packages and classes 

3.4.1 Introduction 

In Figure 9 we report the packages of the MUFIN API and the classes. A javadoc for MUFIN is 
given as an appendix of this document. 

The MUFIN implementation was used in SAPIR for experimenting large scale indexing of 
photos. In SAPIR we built and used the CoPhIR2 collection. CoPhIR is the largest publicly 
available collection of high-quality images metadata. It consist of 106 Million images. Each 
contains five MPEG-7 visual descriptors (Scalable Color, Color Structure, Color Layout, Edge 
Histogram, Homogeneous Texture), and other textual information (title, tags, comments, etc.) 
of photos that have been crawled from the Flickr photo-sharing site. 

                                                
2 http://cophir.isti.cnr.it 
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Since no collection of this scale was available for research purpose, we had to tackle the non-
trivial process of image crawling and descriptive feature extraction using the European EGEE 
computer GRID. In particular, we had the possibility to access the EGEE (Enabling Grids for 
EsciencE) European GRID infrastructure provided to us by the DILIGENT IST project. 

More details about the crawling process can be found in Deliverable D4.5. 

3.4.2 CoPhIR and MUFIN in SAPIR 

The CoPhIR metadata built and used to perform experiments in the SAPIR project, contains 
five MPEG-7 visual descriptors: 

Scalable Colour 

It is derived from a colour histogram defined in the HueSaturation-Value colour space with 
fixed colour space quantization. The histogram values are extracted, normalized and 
nonlinearly mapped into a four-bit integer representation. Then the Haar trasform is applied. 
We use the 64 coefficients version of this descriptor. 

Colour Structure 

It is also based on colour histograms but aims at identifying localized colour distributions using 
a small structuring window. We use the 64 coefficients version of this descriptor. 

Colour Layout 

It is obtained by applying the DCT transformation on a 2-D array of local representative 
colours in Y or Cb or Cr colour space. This descriptor captures both colour and spatial 
information. We use the 12 coefficients version of this descriptor. 

Edge Histogram 

It represents local-edge distribution in the image. The image is subdivided into 4×4 sub-
images, edges in each sub-image are categorized into five types: vertical, horizontal, 45° 
diagonal, 135° diagonal and nondirectional edges. These are then transformed in a vector of 
80 coefficients. 

Homogeneous Texture 

It characterizes the region texture using the mean energy and the energy deviation from a set 
of 30 frequency channels. We use the complete form of this descriptors which consist of 62 
coefficients. 

More information about these MPEG-7 Visual Descriptors can be found in Deliverable 3.1. 

The metric space model adopted by SAPIR, provides us with a unique generality and almost 
absolute freedom in designing and combining the similarity measures. Specifically, as the 
individual MPEG-7 features and their distance functions form metric spaces, we can combine 
several features into a single metric function by a weighted sum of the individual feature 
distances. The particular distances are normalized before being weighted and summed. 

For indexing the CoPhiR dataset using MUFIN in SAPIR we do not use the dynamic 
aggregate function that was described in Section �3.3. The CoPhIR dataset was indexed using 
MUFIN merging the MPEG-7 visual descriptors together and using the weighted sum of the 
individual distances as global distance. The following table summarizes the features we use, 
their respective distance measures (i.e., the ones suggested by the MPEG group [Manjunath 
et al. 2002]), and the weights used in the aggregate metric function. These weights were 
determined performing experiments and considering the work reported in [Amato et al. 2004]. 
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4 SUMMARY 

In this report we have presented the result of the work done in SAPIR about executing 
complex similarity queries over multi layer P2P search structures which was the main topic of 
Task T5.4. In particular we reported the algorithms for similarity search complex queries 
execution and the implementation of the MUFIN overlay. 

This document is accompanied by a zip file containing a javadoc for MUFIN. 
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