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Abstract

Causality and eXplainable Artificial Intelligence (XAI) have developed as separate fields in computer science,
even though the underlying concepts of causation and explanation share common ancient roots. This is further
enforced by the lack of review works jointly covering these two fields. In this paper, we investigate the literature to
try to understand how and to what extent causality and XAI are intertwined. More precisely, we seek to uncover
what kinds of relationships exist between the two concepts and how one can benefit from them, for instance, in
building trust in AI systems. As a result, three main perspectives are identified. In the first one, the lack of causality
is seen as one of the major limitations of current AI and XAI approaches, and the "optimal" form of explanations
is investigated. The second is a pragmatic perspective and considers XAI as a tool to foster scientific exploration
for causal inquiry, via the identification of pursue-worthy experimental manipulations. Finally, the third perspective
supports the idea that causality is propaedeutic to XAI in three possible manners: exploiting concepts borrowed
from causality to support or improve XAI, utilizing counterfactuals for explainability, and considering accessing a
causal model as explaining itself. To complement our analysis, we also provide relevant software solutions used
to automate causal tasks. We believe our work provides a unified view of the two fields of causality and XAI by
highlighting potential domain bridges and uncovering possible limitations.
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Figure 1: Graphical Abstract: Reviewing the literature to uncover how eXplainable Artificial Intelligence (XAI) and causality are related - the
three main perspectives.
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2. Introduction

Causation and explanation are not new concepts, since they have always drawn humans’ attention. They
are, indeed, highly intertwined since the ancient Greeks and throughout the philosophy of science (Sec. 3.1).
Unfortunately, it seems that these concepts have had a diverse evolution in the field of Artificial Intelligence
(AI). Regarding explanations, the eXplainable AI (XAI) research field has been formalized in the past few years
to overcome the limitations of conventional black-box machine learning (ML) and deep learning (DL) models
(Sec. 3.2). Regarding the field of causality (Sec. 3.3), some seminal works have been investigating its integration
within ML and DL systems (Schölkopf et al., 2021; Berrevoets et al., 2023). What seems to emerge from the
current literature is that there is no clear vision of whether there is a dependent relationship between the two
fields.

In this review, we investigate the interdisciplinary literature regarding causality and XAI from both theoretical
and methodological viewpoints to try to gain a clearer understanding of this question. Our results show three main
perspectives can be identified. The first way to relate the two fields is to move some critics to XAI under a causal
lens, to serve as a watch out. In this regard, a non-negligible subset of publications recognizes causality as a
missing component of current XAI research to achieve robust and explainable systems. Other works highlight
how the field of XAI (and AI by extension) suffers from certain innate issues, making the problem itself ill-posed.
In a similar light, a further branch of works investigates different forms and desiderata of the XAI-produced ex-
planations and their link with the causal theory. The second perspective tries to relate XAI and causality in a
pragmatic way and sees the former as a means to get to the latter. Such works believe XAI has the potential
to foster scientific exploration for causal inquiry. Indeed, by means of approaches able to identify pursue-worthy
experimental manipulations, XAI may help scientists generate hypotheses about possible causal relationships to
be tested. The third perspective turns the previous one around, claiming that causality is propaedeutic to XAI.
Causal tools and metrics are exploited to implement XAI, and specific XAI approaches are brought back to their
formal causal definition to improve generalization capabilities. Among the distinctive ideas of this perspective,
getting access to the causal model of a system is a way to intrinsically explain the system itself.

We argue that the third of the perspectives is the one to be preferred to correctly combine the two areas of
causality and XAI to advance the research toward reliable systems that are truly useful to humans. Overall, the
novelty of our work lies in bridging the XAI-causation gap rigorously, highlighting areas of future development, and
exposing limitations.

3. Rationale and Objective

3.1. Ancient roots

The study of causation and explanation can be traced back to the ancient Greek philosophers. Aristotle, for
instance, introduced causality as the foundation of explanation and argued that there must be a necessary and
sufficient reason for every event (Hankinson, 1998).

As early as the 18th century, the empiricist David Hume formalized causation in terms of sufficient and nec-
essary conditions: an event c causes an event e if and only if there are event-types C and E such that C is
necessary and sufficient for E. He, however, remained skeptical about humans’ ability to explain and truly know
any event. Indeed, he argued that we cannot perceive any necessary connection between cause and effect, but
only events occurring in regular succession based on habit (Hume, 2003).

From the 1950s onward, some others also investigated scientific explanations. Initially, the “standard model” of
explanation was deductive, following the Deductive-Nomological (DN) model by Hempel and Oppenheim (1948).
An outcome was implied logically from universal laws plus initial conditions via deductive inference (e.g., explaining
the volume of gas via the ideal gas law and some observations such as pressure). Regarding Hempel’s viewpoint
on causality, causal explanations are special cases of DN explanations, but not all laws and explanations are
causal.

Later, Salmon (1984) developed a model in which good scientific explanations must be statistically relevant
to the outcome to get explained. He argued that, in attempting to explain probabilistic phenomena, we seek not
merely a high probability but screen for causal influence by removing system components to find ones that alter
the probability. Salmon found causality ubiquitous in scientific explanation and was convinced that the time had
come to put the “cause” back into “because”. Although remaining vague as to how to attain it, he invited scientists
to reconsider the role of causal relations as potentially fundamental constituents of adequate explanations.
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3.2. The need for XAI

Given the rapidly increasing interest in data mining for knowledge discovery, AI is becoming pervasive in our
lives, and understanding and trusting its decisions has become imperative. This is further enforced, for instance,
by the current guidelines for trustworthy AI by the European Commission1. Indeed, opacity in such decisions can
lead to reluctance when adopting AI in a product, a decision process, or research. This, therefore, can result in
missed opportunities in the use of AI to its fullest potential. To prevent this scenario, the research field of XAI aims
to provide humans with explanations to understand the reasoning behind an AI system and its decision-making
process. In other words, the goal of XAI is to enable end-users to understand the underlying explanatory factors
of why an AI decision is taken. The term XAI was first introduced in Van Lent et al. (2004), but its popularity has
spread across the literature only after the DARPA’s XAI program (Gunning and Aha, 2019), reaching a certain
degree of maturity to date (Guidotti et al., 2018; Du et al., 2019; Carvalho et al., 2019; Rudin, 2019; Arrieta et al.,
2020; Molnar, 2020).

XAI systems have been prioritized in different fields, such as healthcare, finance, education, and legal. In
healthcare, XAI has been utilized for medical image analysis, acute critical illness prediction, intraoperative de-
cision support systems, drug discovery, and treatment recommendations (Van der Velden et al., 2022; Lauritsen
et al., 2020; Gordon et al., 2019; Jiménez-Luna et al., 2020). Regarding finance, popular applications of XAI are
credit risk management and prediction, loan underwriting automation, and investment advice (Bussmann et al.,
2021; Moscato et al., 2021; Sachan et al., 2020; Yang et al., 2021). In education, XAI has been applied in au-
tomatic essay scoring systems, educational data mining, and adaptive learning systems (Kumar and Boulanger,
2020; Alonso and Casalino, 2019; Khosravi et al., 2022), while digital forensics for law enforcement context rep-
resents an example in the legal domain (Hall et al., 2022).

Regardless of the application field, XAI is driven by the idea of making the reasoning process of AI transparent
and, therefore, AI models more intelligible to humans. Accordingly, when it comes to explaining the logic of an
inferential system or a learning algorithm, four aspects can be identified as the main driving motivations for XAI
(Adadi and Berrada, 2018): (i) explain to justify (i.e., provide justifications for particular decisions to make sure
they are not unfairly yielded by bias), (ii) explain to control (i.e., understand the system behavior for debugging
vulnerabilities and potential flaws), (iii) explain to improve (i.e, understand the system behavior for enhancing its
accuracy and efficiency), and (iv) explain to discover (i.e., learn from machines their knowledge on relationships
and patterns).

3.3. A causal perspective

Even though the wide literature on causality spans different interpretations, such as the causal potential theory
(Xu, 2018) and Wiener-Granger causality (Granger, 1969), the one by computer scientist Judea Pearl is popularly
associated with AI. Pearl identifies some major obstacles still undermining the ability of AI systems in reasoning in
a way akin to humans, to be overcome by equipping machines with causal modeling tools (Pearl, 2019). Among
those obstacles, is the lack of robustness of AI systems in recognizing or responding to new situations without
being specifically programmed (i.e., adaptability), as well as their inability to grasp cause-effect relationships.
Instead, those abilities are innate features of human beings, who can communicate with, learn from, and instruct
each other since all their brains reason in terms of cause-effect relationships (Pearl, 2018).

Pearl argues humans organize their knowledge of the world according to three distinct levels of cognitive
ability, which he embodies in distinct rungs of the Ladder of Causation (Pearl and Mackenzie, 2018). As Tab. 1
shows, the first rung is Association and involves passive observation of data. Reasoning on this level could not
distinguish the cause from the effect and, although this might come as a surprise to some, Pearl argues that it
is where conventional AI approaches to classification or regression stand today. The second rung is Intervention
and involves not just viewing what exists, but also changing it. However, reasoning on this rung cannot reveal
what will happen in an imaginary world where some observed facts are bluntly negated. To this end, we need to
climb to the third rung, i.e. Counterfactuals (CF). It involves imagination since to answer counterfactual queries
one needs to go back in time and change history. For instance, we may wonder whether it was, indeed, turning
the heating system on that caused a warm apartment or, rather, for instance, the outdoor weather.

Note that, in a somewhat confusing way, the term "counterfactual" may be encountered also in the XAI liter-
ature, where it applies to any instance with an alternative outcome. There, a counterfactual explanation (CFE)

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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Table 1: The Ladder of Causation by Pearl and Mackenzie (2018).
Level (rung) Cognitive ability (activity) Typical questions Examples
Association Seeing, observing (i.e., recognizing

recurrent patterns in an environment)
“What if I see . . . ?” "What is the probability that an apartment

is warm if I see the heating system being
on?"

Intervention Doing (i.e., predicting the effect(s) of
multiple intentional actions on the
environment and choosing the best to
produce a desired outcome)

"What if I do . . . ?" "What is the probability that the apartment
will get warm if I turn on the heating
system?".

Counterfactuals Imagining, reasoning in retrospection, and
understanding

"What if I had done . . . ?" "What would have happened to the indoor
comfort of the apartment if I had kept the
heating system off?".

refers to the smallest change in an input that changes the prediction of an ML classifier (Wachter et al., 2017;
Mothilal et al., 2020). This concept is quite distinct from the causal meaning of the term. In this regard, as a piece
of clarification, we utilize CFE and CF to address, respectively, the XAI method and the causality concept.

In general, building models that represent causal relationships among variables from observations may be
challenging without relying on assumptions that are hard to verify in practice, such as the absence of unmeasured
confounding between the variables (Robins and Wasserman, 1999; Greenland and Mansournia, 2015). Never-
theless, Pearl’s work was revolutionary in that it transformed causality from a notion clouded in mystery into a
concept with logical foundations and defined semantics. The formalization of causality in mathematical terms
within an axiomatic framework allowed the development of automatic computational systems for causal modeling.
We refer the reader to Appendix A for some notations and terminology regarding Pearl’s causality (and related
concepts).

3.4. Objective

This review investigates the role(s) of causality in the world of XAI today or, broadly, the relationship between
causality and XAI. Throughout the paper, we aimed to refer to an interdisciplinary audience, which reflects the
use of an accurate (yet not overly zealous) register, leaving the more technical parts (e.g., mathematical notations
and supplementary details) to Appendix A and Appendix B.

Three main pieces of information led us to believe that those could be complementary fields, and, thus,
motivated us to start our investigation. First, the concepts of causality and explanation have been jointly in-
vestigated since ancient times (Sec. 3.1). Second, even though they were born separately in the field of AI
(explanation as XAI and causation as Pearl’s causality theory), they share a common goal. Indeed, both fields
feature human-centricity in AI systems and aim to ensure true usefulness to humans, be it by explaining in a
human-comprehensible way what an AI system did, or by designing the system in such a way that it reasons
like humans (Sec. 3.2 — 3.3). Third, another "canary in the coal mine" for us was the presence of the same
"counterfactual" term in both fields (Sec. 3.3).

To the best of our knowledge, Chou et al. (2022) are the only ones investigating a somewhat similar question,
albeit with a narrower scope. They systematically review current counterfactual model-agnostic approaches (i.e.,
CFEs) studying how they could promote causability. Causability is a relatively new term representing "the extent
to which an explanation of a statement to a human expert achieves a specified level of causal understanding with
effectiveness, efficiency, and satisfaction in a specified context of use." (Holzinger et al., 2019). Since causability
differs from causality, this is the first (and major) difference with our study, which covers the wide notion of causality
itself. Our work also departs from Chou et al. (2022) in that they solely investigate CFE methods, while, in our
analysis, we consider the whole corpus of XAI literature, which also includes (but is not limited to) CFEs.

4. Methods

This review aims at exploring the literature surrounding the relationship between causality and XAI, from both
theoretical and methodological viewpoints. We conducted our work by adopting a structured process that involved
the following: (i) specifying the eligibility criteria; (ii) detailing the information sources; (iii) illustrating the search
strategy on specified databases; (iv) describing the selection process; (v) conducting a high-level analysis on the
cohort of selected studies; (vi) extracting relevant data and information from studies; and (vii) synthesizing results.
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We carried out our search on four popular bibliographic databases, Scopus2, IEEE Xplore digital library (s.
IEEE)3, Web of Science (s. WoS)4, and ACM Guide to Computing Literature (s. ACM)5, utilizing the following
query:

(CAUSAL*) AND (EXPLA*) AND ("XAI" OR "EXPLAINABLE ARTIFICIAL INTELLIGENCE" OR "EXPLAINABLE AI")
AND ("MACHINE LEARNING" OR "AI" OR "ARTIFICIAL INTELLIGENCE" OR "DEEP LEARNING")

Elements within brackets had to be present within at least one of the title, abstract, or keywords of the manuscript.
Terms ending with the wildcard “∗” matched all the terms with the specified common prefix. Among the ob-
tained publications, we ensured that only peer-reviewed papers from conference proceedings and journals were
included. Upon completion of the process of identification, screening, eligibility, and inclusion of articles, 51 publi-
cations formed the basis of our review. We describe the technical details of the whole study collection process in
Appendix B.

In our study, we first performed a high-level analysis of the final cohort of records regarding keywords co-
occurrence, then, we extracted information from the publications to answer our research question, and, finally, we
collected any cited software solutions in a structured way.

4.1. Keywords’ co-occurrence analysis

Regarding the high-level analysis of the final cohort of records, we constructed a bibliometric network of
articles’ keywords co-occurrence, by utilizing the Java-based application VOS Viewer6. Bibliometric networks are
methods to visualize, in the form of graphs, the collective interconnection of specific terms or authors within a
corpus of written text. In our setting, we applied such networks to study the paired presence of articles’ keywords
within a corpus of scientific manuscripts.

4.2. Research question analysis

For each of the papers that were included in the review, we identified the most relevant aspects on a conceptual
level. According to the research question, we searched for any theoretical viewpoints and comments on the
possible ways in which causality and XAI may relate, including formalization frameworks and insights from AI,
cognitive, and philosophical perspectives.

Based on the collected information, we performed a topic clustering procedure to organize the literature in
related concepts and gain a global view of the field. Selecting cluster topics for a multidisciplinary field as that of
causality in the broad field of XAI proved challenging. Topics that are too general would result in an excessively
vague and superficial division of papers and therefore be of little use in answering the research question. On the
other hand, topics that are too specific would create many quasi-empty clusters, resulting in an improper division,
which lacks abstraction capabilities and prevents an overall view of the field. Therefore, we iteratively refined the
clusters during a trial-and-error process.

4.3. Software tools collection

During the analysis of the full-text manuscripts, we kept track, in a structured collection, of any cited software
solutions (e.g., tools, libraries, packages), whenever they were used to automate causal tasks. Specifically, for
each one, we analyzed: (i) the URL of the corresponding web-page; (ii) whether the software was commercial or
with an open-source license, according to the Open Source Initiative7; (iii) the name of the company for cases of
commercial software; (iv) the eventual release publication that launched the software; (v) whether the frontend
consisted in a command line interface (CLI) or a graphical user interface (GUI); and, finally, (vi) the main field of
application and purpose.

2https://www.scopus.com/
3https://ieeexplore.ieee.org/
4https://clarivate.com/webofsciencegroup/solutions/web-of-science/
5https://dl.acm.org/browse
6https://www.vosviewer.com/
7https://opensource.org
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Figure 2: Bibliometric network of papers’ keywords for the cohort of publications included in the review.

5. Results to the keywords’ co-occurrence analysis

As a result of the high-level analysis of the final cohort of records, we obtained the bibliometric network
shown in Fig. 2. The items (i.e., nodes) of the network represent terms (specifically, articles’ keywords); the link
(i.e., edge) between two items represents a co-occurrence relation between two keywords; the strength of a link
indicates the number of articles in which two keywords occur together; and, finally, the importance of an item is
given by the number of links of that keyword with other keywords and by the total strength of the links of that
keyword with other keywords. Accordingly, more important keywords are represented by bigger circles in the
network visualization, and more prominent links are represented by larger edges between keywords.

This visualization provides insight into how and to what extent the literature relates different research concepts,
and it helped us to appreciate the multidisciplinary nature of our research question. Moreover, it is possible to
marginalize the scope of specific keywords by identifying the terms to which they relate, as shown in Figs. 3a-b for
the keywords causality and counterfactual, respectively. The relevance and wide scope of the first are justified by
the structure of our query, where it was an obligatory search term. Regarding the latter, its scope and relevance
represent the central role of the term in both the research fields of causality and XAI.

6. Results to the research question analysis

This review allowed us to understand how the theory of causality could intertwine with the XAI literature and,
specifically, which methodologies and theoretical frameworks could be adopted to approach the bridge between
these two fields. We conceived three main topic clusters of studies, which are presented together with their
possible sub-clusters in Fig. 4. Specifically, they embody the following perspectives:

• critics to XAI under the causality lens;

• XAI for causality ;

• causality for XAI.

This procedure led us to identify which of the three possible perspectives is the preferable one in order to
correctly combine the two areas of causality and XAI. We discuss them in Sec. 6.1 — 6.3.
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a b

Figure 3: The isolated connections from Fig. 2 for the terms causality (a) and counterfactual (b).

6.1. Critics to XAI under the causality lens

This first perspective utilizes a causal viewpoint to identify some issues in current XAI. The focus of such
papers is either: (i) to point out the inability of XAI to consider causality, (ii) to highlight the profound limitations
of current (X)AI both on a methodological and a conceptual level, or (iii) to investigate the forms of the produced
explanations.

6.1.1. Lack of causality
A fundamental aspect that hinders the value of classical AI models’ inference and explainability methods is

the lack of a foundation in the theory of causality. Indeed, classical ML and DL predictive models are based
on the correlation found among training data instead of true causation. This might be of particular concern in
specific fields, such as epidemiology, that have always been grounded in the theory of causation (Broadbent and
Grote, 2022). Moreover, this lack of causality makes models more easily affected by adversarial attacks and less
valuable for decision-making (Molnar et al., 2020). Since the parameters and predictions of classical data-driven
AI models cannot be interpreted causally, they should not be used to draw causal conclusions.

As Naser (2021) points out, meeting specific performance metrics does not necessarily mean that an AI/ML
model captures the physics behind a phenomenon. In other words, there is no guarantee that the found cor-
relations map to causal relations between input data and final decisions. For this reason, determining whether
such models reflect the true causal structure is crucial (Ryo et al., 2021). This inability of today’s ML/DL to grasp
causal links reflects also on XAI, constituting a major broad challenge to the ability of AI systems to provide sound
explanations.

Hamon et al. (2022) stress how this poses serious challenges to the possibility of satisfactory, fair, and trans-
parent explanations. Regarding the soundness of the generated explanations, Watson et al. (2022) demonstrate
that they are volatile to changes in model training that are perpendicular to the classification task and model struc-
ture. This raises further questions about trust in DL models which just rely on spurious correlations that are made
visible via explanation methods. Since causal explanations cannot be provided for AI yet, explanatory methods
are fundamentally limited for the time being.

6.1.2. Pitfalls of (X)AI
In addition to the weaknesses due to the lack of causality, some works highlight how the fields of AI and XAI

may suffer from some innate issues. On a methodological level, Molnar et al. (2022) present a number of pitfalls of
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local and global model-agnostic interpretation techniques, such as in case of poor model generalization, interac-
tions between features, or unjustified causal interpretations. At a deeper level, some researchers advocate some
concerns about XAI based on its very nature. For instance, Landgrebe (2022) argues that the human inability to
interpret the behavior of deep models in a more objective manner still restricts XAI methods to provide merely
a partial, subjective interpretation. Undeniably, deep neural networks solve their classification in a manner that
differs completely from the way humans interpret text, language, sounds, and images. For instance, convolutional
neural networks (CNNs) use features of the input space to perform their classifications, which are different from
those humans use. Not only is it true, but what’s more, we do not understand how humans themselves classify
texts or images or conduct conversations. Indeed, as of now, human or physical behavior can only be emulated
by creating approximations, but approximations cannot be understood any more than complex systems can be.

Under similar considerations, Leventi-Peetz et al. (2022) study the scope and sense of explainability in AI
systems. In their view, it is impossible or unwise to follow the intention of making every ML system explainable.
Indeed, even domain experts cannot always provide explanations for their decisions and, furthermore, on AI
systems much higher demands are made than on humans when they have to make decisions.

6.1.3. Form of the explanations
These works explore different forms, qualities, and desiderata of the explanations produced by XAI methods

and their link with causality. Depending on the application domain, less accurate yet simpler explanations may
be preferable to convey a proper understanding of an AI decision. For instance, in Natural Language Generation,
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Figure 4: The included studies are classified according to the three main perspectives on how causality and XAI may be related: Critics to XAI
under the causality lens, XAI for causality, and Causality for XAI. Next to each of them, are the possible sub-clusters.
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a narrative explanation where facts are linked with causal relations is probably a better explanation for narrative-
inclined individuals, even though it may not be the most accurate way to describe how the model works (Reiter,
2019). Similarly, in image classification via CNNs, a simpler visualization (e.g., natural dataset examples) may lead
to an equal causal understanding of unit activation instead of using complex activation maximization approaches
(Zimmermann et al., 2021).

Shimojo et al. (2020) examine what a good explanation is by drawing on psychological evidence regarding
two explanatory virtues: (i) the number of causes enforced in an explanation8, and (ii) the number of effects
invoked by cause(s) in an explanation9. The authors report that, in a user study, the two virtues had independent
effects, with a higher impact for the first one. Similarly, Kim et al. (2021) discuss several desiderata of XAI
systems, among which, they should adjust explanations based on the knowledge of the explainee, to match
their background knowledge and expectations. This is further stated by Kovalerchuk et al. (2021), who define
as "quasi-explanations" those explanations using terms that are foreign to a certain application domain (e.g.,
medicine, finance, law), such as distances, weights, and hidden layers, and that consequently do make sense
only for the data scientists. Kim et al. (2021) further states that explanations are considered to be causal when
they arise from the construction of causal models, serving as the basis for recreating a causal inference chain
to (i.e., a “recipe” for reconstructing) a prediction. According to the authors, intelligent systems must be able to
provide causal explanations for their actions or decisions when they are critical or difficult to understand. When a
causal explanation answers a "why" question, it can be referred to as a scientific explanation. In general, answers
to questions such as “How does a personal computer work?” are not considered to be scientific explanations.
Such answers are still part of a scientific discipline, but they are descriptive rather than explanatory.

Some other works argue that useful explanations are not only causal explanations but many types of non-
causal explanations (e.g., semantic, contrastive, justificatory) may help (Sovrano et al., 2019). A pilot user study
from Taschdjian (2020) supports this idea revealing that participants preferred causal explanations over the others
only when presented in chart form, whilst they resulted as the least favorite choice when in text form.

6.2. XAI for causality
Only three papers openly support a pragmatic line of thinking according to which XAI is a basis for causal

inquiry. Indeed, such works recognize certain limits of current XAI methods but approach the discussion pragmat-
ically.

Zednik and Boelsen (2022) discuss the role of post-hoc analytic techniques from XAI in scientific exploration.
The authors show that XAI techniques, such as CFEs, can serve as a tool for identifying potentially pursue-
worthy experimental manipulations within a causal framework and, therefore, for recognizing causal relationships
to investigate. In this regard, the authors remark on an asymmetry between the role of CFEs in industry and in
science. The following two hypothetical scenarios clarify this idea:

• industry : a bank decides whether to accept or reject a loan application based on an AI agent. A CFE for a
rejection case has revealed that doubling the client’s income would have led to the acceptance of the loan.
Here, the AI agent is not trying to model reality, but it is reality itself. Indeed, a change in the client’s income
would actually change the application outcome, meaning that CFEs are perfect guides to causal inference.

• science: an AI agent determines the probability of type-2 diabetes based on patients’ features. A CFE for a
high-probability case has revealed that losing weight would decrease that probability. Here, the AI agent is
trying to model the biological reality of the problem, but still, it remains an approximation. Indeed, it is still
possible that losing weight does not actually reduce the probability of type-2 diabetes. That is to say that a
change in the model’s behavior does not actually change the way the world works, but at best constitutes
a changed representation of how the world could possibly work. In this light, CFEs are imperfect guides to
causal inference.

All in all, it is just because the relevant ML models might not perfectly adhere to reality that the generated XAI
explanations only foster scientific exploration rather than scientific explanation. At most, products of XAI may be
thought of as starting points to study potentially causal relationships that have yet to be confirmed.

8This is sometimes referred to as simplicity and is conforming with the Occam’s razor principle, according to which, an event should not
be explained by more causes than necessary (Jefferys and Berger, 1992).

9This is sometimes referred to as scope. Explanations with a broader scope (i.e., correctly predict more events) make humans feel more
certain than explanations with a narrower one (Johnson et al., 2014).

9



Similarly, Medianovskyi and Pietarinen (2022) consider the outputs of the current XAI methods, such as CFEs,
to be far from conclusive explanations. Rather, they are initial sketches of possible explanations and invitations
to explore further. Those sketches must go through validation processes and experimental procedures before
satisfactorily answering the "why" questions, long sought after by XAI.

According to the review by Antoniadi et al. (2021), XAI can help to shed some light onto causality. Indeed,
since causation involves correlation, an explainable ML model could validate the results provided by causality
inference techniques. Additionally, XAI can provide a first intuition of (i.e., generate hypotheses about) possible
causal relationships that scientists could then test (Arrieta et al., 2020; Lipton, 2018).

6.3. Causality for XAI

This third perspective is driven by the idea that causality is propaedeutic to XAI. Indeed, these works either:
(i) exploit causality-based concepts to support XAI, (ii) restore the causal foundation of CFEs, or (iii) argue that
accessing the causal model of a system is intrinsically explaining the system itself.

6.3.1. Causal tools for supporting XAI
Such papers interpret the role of causality in XAI in the sense that some causal concepts, such as structural

causal model (SCM) and do-operator (Appendix A.3) and causal metrics, may bring useful tools for explainability
and for finding the causes of AI predictions. Regarding the use of Structural causal models to foster XAI,
Reimers et al. (2020) reduce DL to a basic level and frame the constitutional structure of a CNN model into an
SCM. In this setting, the random variables represent, for instance, the network’s weights and the final prediction,
while the functions linking the variables are the training function (from labeled images to the network’s weights),
and the inference function (from unlabeled images and weights to the prediction). By doing so, the authors aim
to establish whether a feature is relevant to a CNN prediction by leveraging causal inference and Reichenbach’s
Common Cause Principle10.

Lazzari et al. (2022), in order to predict employee turnover, utilize the concept of SCM to revisit and equip the
Partial Dependence Plot (PDP)11 method with causal inference properties. Their SCM-based PDP can now go be-
yond correlation-based analyses and reason about causal interventions, allowing one to test causal claims around
factors. This, in turn, provides an intuitive visual tool for interpreting the results and achieving the explainability of
automatic decisions.

Regarding do-operator, some authors employ this concept to bring the theory of Shapley values a step
further. A fundamental component of Shapley values is to evaluate the reference distribution of dropped (i.e.,
’out-of-coalition’) features, which has implications on how Shapley values are estimated since this helps define
the value function. Based on this distribution, the following variants of Shapley values exist (Watson, 2022;
Heskes et al., 2020): marginal Shapley values (they ignore relations among features and are used to discover the
model’s decision boundary), conditional Shapley values (they consider feature dependencies and condition by
observation), and interventional Shapley values. The latter was introduced by Janzing et al. (2020) who replaced
conventional conditioning by observation with conditioning by intervention (do-operator).

Extending this concept, Heskes et al. (2020) introduce causal Shapley values by explicitly considering the
causal relationships between the data in the real world to enhance the explanations. Using the interventional dis-
tribution is optimal when, with access to the underlying SCM, one seeks explanations for causal data-generating
processes. These methods are required when seeking to use XAI for discovery and/or planning, as they seem to
provide sensible, human-like explanations that incorporate causal relationships in the real world.

Finally, some other works borrow metrics from the causal theory to aid XAI, and, specifically, Probability of
Necessity (PN) and Probability of Sufficiency (PS) from Glymour et al. (2016) and the metric of responsibility from
Chockler and Halpern (2004). Regarding PN and PS, two works investigate their implications for XAI. Indeed,
such probabilities, often addressed as "probabilities of causation", play a major role in all "attribution" questions.
Watson et al. (2021) formalize the relationship between existing XAI methods and the probabilities of causation.
For instance, they highlight the role of PN and PS in feature attribution methods and CFEs. Regarding the former,
the authors reformulate the theory of Shapley values in their framework and show how the value function (i.e.,

10According to Reichenbach (1956), if two variables A and B are dependent, then there exists a variable C that causes A and B. In particular,
C can be identical to A or B meaning that A causes B or B causes A.

11A visual tool introduced by Friedman (2001), commonly used for model-agnostic XAI, that shows the marginal effect of one feature on the
predicted outcome of a system.
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the payoff associated with a feature subset) precisely corresponds to the PS of a factor. Regarding the latter,
the authors rewrite the CFE optimization problem with an objective based on the PS of the factor with respect
to the opposite of the outcome. Moreover, Tan et al. (2022) borrow PN and PS and adapt them to evaluate the
necessity and sufficiency of the explanations extracted for a graph neural network (GNN). This makes it possible
to conduct a quantitative evaluation of GNN explanations even without ground-truth explanations for real-world
graph datasets.

On the other hand, regarding the metric of responsibility, Chockler et al. (2021) propose DC-CAUSAL, a
greedy, compositional, perturbation-based approach to computing explanations for image classification. It lever-
ages causal reasoning in its feature masking phase with the goal of finding causes in input images by causally
ranking parts of the input image (i.e., superpixels) according to their responsibility for the classification. In addition
to responsibility, Debbi (2021) borrows from Chockler and Halpern (2004) the concept of blame to compute visual
explanations for CNN decisions. The author abstracts the CNN model into a causal model by virtue of similarity
in a hierarchical structure, and filters are considered as actual causes for a decision. First, each filter is assigned
a degree of responsibility (i.e., weight) as a measure of its importance to the related class. Then, the responsibil-
ities of these filters are projected back to compute the blame for each region in the input image. The regions with
highest blame are returned then as the most important explanations.

PN is the probability that the garden would not have got wet had the sprinkler not been activated
(Y0 = 0), given that, in fact, the garden did get wet (Y = 1) and the sprinkler was activated (X = 1).
Mathematically, this becomes: PN = P (Y0 = 0|X = 1, Y = 1). In other words, this probability quantifies
to what extent activating the sprinkler is necessary to get the garden wet, and consequently if other factors
(e.g., rain) may have caused the wet garden.

PS is the probability that the garden would have got wet had the sprinkler been activated (Y1 = 1),
given that the sprinkler had not in fact been activated (X = 0), and the garden did not get wet (Y = 0).
Mathematically, this becomes: PS = P (Y1 = 1|X = 0, Y = 0). In other words, this probability quantifies
to what extent activating the sprinkler is sufficient to wet the garden, and consequently, if there may exist
scenarios (e.g., hardware malfunctioning) where activating the sprinkler does not wet the garden.

Responsibility is a quantification of causality, attributing to each actual cause its degree of responsibility
1

1+k , which is based on the size k of the smallest contingency feature set required to obtain a change in
the prediction (i.e., creating a counterfactual dependence). The degree of responsibility is always between
0, for variables that have no causal influence on the outcome (k → ∞), and 1, for counterfactual causes
(k = 1). Responsibility extends the actual causality framework of Halpern and Pearl (2005) .

6.3.2. Causal counterfactual explanations
As noted in Sec. 3.3, the counterfactual concept seems to belong both to the XAI literature and to the causality

literature. Some authors remark on how CFEs and CF are two separate concepts (Crupi et al., 2022) and, strictly
speaking, some would not even call the former counterfactuals, precisely to contrast the causal perspective (Dash
et al., 2022). Interestingly, however, these two seemingly separate concepts may be bridged in what we could
name structural causal explanations. Indeed, the papers in this sub-cluster present methods for generating CF
based on their formal causal definition, restoring the causal underpinning to CFEs by using the concept of SCM
and Pearl’s CF three-step "recipe" (Appendix A.3).

In their quest to explain an image classifier’s output and its fairness using counterfactual reasoning, Dash
et al. (2022) propose IMAGECFGEN, a system that combines knowledge from an SCM over image attributes
and uses an inference mechanism in a generative adversarial network-like framework to generate counterfactual
images. The proposed architecture directly maps to Pearl’s three steps: (i) for abduction, an encoder infers the
latent vector of an input image coupled with its attributes; (ii) for action, a subset of desired attributes is changed
and, accordingly, the values of their descendants in the SCM are updated; (iii) for prediction, a generator takes
the latent vector together with the modified set of attributes and produces a counterfactual image. A subset of
work focuses on a specific aim of the XAI research tightly bound with counterfactual reasoning, i.e., recourse.
Recourse can be seen as the act of recommending a set of feasible actions to assist an individual to achieve
a desired outcome. Karimi et al. (2021) argue that the conventional, non-causal CFEs are unable to convey a
relevant recourse to the end-user of AI algorithms since they help merely understand rather than act (i.e., inform
an individual to where they need to get, but not how to get there). Shifting from explanation to minimal intervention,
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the authors leverage causal reasoning (i.e., tools of SCMs and structural interventions) to incorporate knowledge
of the causal relationships governing the world in which actions will be performed. This way, the authors are
able to compute what they refer to as structural CF by performing the abduction-action-prediction steps and
provide algorithmic recourse. Galhotra et al. (2021) introduce LEWIS, a principled causality-based approach for
explaining black-box decision-making systems. They propose to achieve counterfactual recourse by solving an
optimization problem that searches for minimal interventions on a pre-specified set of actionable variables that
have a high probability of producing the algorithm’s desired future outcome. Notably, the authors propose a GUI
that implements LEWIS, of which they show a demo in Wang et al. (2021). Crupi et al. (2022) also contribute to
the recourse objective by proposing CEILS, a new post-hoc method to generate causality-grounded CFEs and
recommendations. It involves the creation of an SCM in the latent space, the generation of causality-grounded
CFEs, and their translation to the original feature space.

6.3.3. Accessing the causal model is explaining
Part of the work relates to the common thought that accessing the causal model of a system intrinsically

explains the system itself. Under this view, two fundamental observations are supported:

• when a model is built on a causal structure, it is inherently an interpretable model;

• making the inner workings of a causal model directly observable, such as through a directed acyclic graph
(DAG) (Appendix A.1), makes the model inherently interpretable.

Much of the causality theory focuses on explaining observed events, that is, inferring causes from effects.
According to its retrospective attribution, causality lies at the heart of explanation-based social constructs such as
explainability and, therefore, causal reasoning is an important component of XAI (Wu et al., 2021).

Ibrahim et al. (2020) try to fill the lack in the causality literature of automatic and explicit operationalizations to
enable explanations. The authors propose an extensible, open-source, interactive tool (Actual Causality Canvas)
able to implement three main activities of causality (causal modeling, context setting, and reasoning) in a unifying
framework. According to the authors, what Canvas can provide, through answers to causal queries, largely
overlaps with the ultimate goal of XAI, which is providing the end-user with explanations of why particular factors
occurred. Hoque and Mueller (2021) propose Outcome Explorer, an interactive framework guided by causality,
that allows expert and non-expert users to select a dataset, choose a causal discovery (CD) algorithm for structure
discovery (Appendix A.2), generate (and eventually refine) a causal diagram, and interpret it by setting values to
the input features to observe the changes in the outcome. Katz et al. (2017) propose an XAI system that encodes
the causal relationships between actions, intentions, and goals from an autonomous system and explains them
to a human end-user with a cause-effect reasoning mechanism (i.e., causal chains). Chatterjee and Dethlefs
(2020) exploit the representational power of CNNs with attention, to discover causal relationships across multiple
features from observed time-series and historical error logs. The authors believe causal reasoning can enhance
the reliability of decision support systems making them more transparent and interpretable.

A subset of publications sees CD as the most appropriate way of operationalizing the idea that accessing
the causal model of a system intrinsically explains the system itself. In this regard, all of them utilize Bayesian
networks (BNs) (Appendix A.2) as the methodological tool. Since establishing unique directions for edges based
on passive evidence alone may be challenging, knowledge-based constraints can help orient arrows to reflect
causal interpretations (Cox Jr, 2021). In line with this, some works perform CD with BNs in a mixed approach: on
the one hand, they leverage knowledge from domain-experts to outline the causal structure of the system (i.e.,
finding nodes and related edges); on the other hand, they fit the model parameters on observed, real-world data.

Sahoh and Choksuriwong (2022) propose a new system to support emergency management (e.g., terrorist
events) based on the Deep Event Understanding perspective, introduced in an earlier work of theirs (Sahoh and
Choksuriwong, 2021). Deep Event Understanding aims to model expert knowledge based on the human learning
process and offers explanation abilities that mimic human reasoning. Their model utilizes BNs based on social
sensors as an observational resource (i.e., text data from Twitter), with prior knowledge from experts to infer and
interpret new information. Their approach helps in recognition of an emergency event and in the uncovering of its
possible causes, contributing to the explanation of “why” questions for decision-making.

Sahoh et al. (2022) propose discovering cause-effect ML models for indoor thermal comfort in Internet of
Things (IoT) applications. They employ five different CD algorithms and show how these may converge to the
ground-truth SCM of the problem variables obtained from domain experts. Kliangkhlao et al. (2022) introduce
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a BN model for agricultural supply chain applications, initially constructed from causal assumptions from expert
qualitative knowledge, which conventional ML cannot reasonably conceive. Therefore, a data-driven approach
using observational evidence is employed to encode these causal assumptions into quantitative knowledge (i.e.,
parameter fitting). The authors report their system constitutes a framework that is able to provide reasonable
explanations of events for decision-makers.

In Zapaishchykova et al. (2021) the authors leverage the respective strengths of DL for feature extraction and
BNs for causal inference, achieving an automatic and interpretable system for grading pelvic fractures from CT
images. The BN model is constructed upon variables extracted with the neural network, together with a variable
from the clinical practice (i.e., patient age). By doing so, the authors believe that the framework provides a
transparent inference pipeline supplying fracture location and type, by establishing causal relationships between
trauma classification and fracture presence.

Yang et al. (2022) propose a new process monitoring scheme based on BNs to explain (diagnose) a detected
fault and promote decision-making. Their system allows the identification of the root cause (i.e., labeling the ab-
normal variables) so that the result of the analysis can be linked to the repairing action, reducing the investigation
time. Among one of their use cases, the authors fit a BN model on observed, real-world data for manufacturing
fault events. During this CD process, they employ a blacklist obtained from domain experts to exclude causally-
unfeasible relationships.

7. Results of software tools collection

We hereby present a summary of the main data mining software tools collected within the cohort of papers.
Table 2 comprises tools for performing CD with BNs (i.e., PySMILE12, CausalNex13, bnlearn14, CompareCausal-
Networks15, CaMML16, Python Causal Discovery Toolbox17, and Tetrad18), creating and analysing SCMs (i.e.,
IBM® SPSS® Amos19, lavaan20, and semopy21), and editing and analyzing DAGs (i.e., DAGitty22). We believe this
list of software solutions may be of interest to AI practitioners in helping them save valuable time when choosing
the right tool to automate causal tasks.

The most popular choice is an open-source license type, and this reflects the great interest in sharing code
and information across the AI research community. The first benefit of that is flexibility. Researchers often need
to access the source code of software implementations to eventually customize its functionalities according to a
desired (yet not implemented) purpose. This would be highly unfeasible with closed and commercial software.
Another advantage of having open-source implementations is software security. According to Linus’s law, "given
enough eyeballs, all bugs are shallow" (Raymond, 1999). That is, when all the source code for a project is made
open to professionals worldwide, it is more likely that security checks could discover eventual flaws.

Furthermore, Table 2 shows that the CLI is the preferred frontend interface across such solutions. This aspect
also reflects the AI research community viewpoint. Opting for CLI over the GUI brings some advantages, such
as faster and more efficient computing, easier handling of repetitive tasks, lighter memory usage, and availability
of the history of commands. On the other hand, using CLI involves a steeper learning curve associated with
memorizing commands and complex arguments, together with the need for correct syntax. This may explain why
GUI is preferred in cases where the end-user does not have a programming background. Typical examples of
that include physicians in healthcare facilities or product managers in finance companies, who prefer, in general,
a more user-friendly product.

12https://www.bayesfusion.com/smile/
13https://causalnex.readthedocs.io/en/latest
14https://www.bnlearn.com
15https://cran.r-project.org/web/packages/CompareCausalNetworks/
16https://bayesian-intelligence.com/software/
17https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html
18https://htmlpreview.github.io/?https:///github.com/cmu-phil/tetrad/blob/development/docs/manual/index.html
19https://www.ibm.com/products/structural-equation-modeling-sem
20https://cran.r-project.org/web/packages/lavaan/index.html
21https://semopy.com/
22http://www.dagitty.net/
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Table 2: Software tools within the cohort of papers useful to automate causal tasks. BSD: Berkeley Software Distribution, CD: causal discovery,
CLI: common line interface, GPL: General Public License, GUI: graphical user interface.

Name License
type

Release
paper

Frontend
interface

Main
purpose

bnlearn Open-source
(GPL)

Scutari (2010) CLI (R) BNs for CD

CaMML by Bayesian Intelligence Pty Ltd Open-source
(BSD)

n.a. CLI (Bash)
and GUI

BNs for CD

CausalNex by QuantumBlack, AI by McKinsey Open-source
(Apache 2.0)

n.a. CLI (Python) BNs for CD

CompareCausalNetworks Open-source
(GPL)

Heinze-Deml et al. (2018) CLI (R) BNs for CD

DAGgity Open-source
(GPL)

Textor et al. (2016) CLI (R) and
GUI

Create and
analyze causal
diagrams

IBM SPSS Amos by IBM Corp. Commercial n.a. GUI Create and
analyze SCMs

lavaan Open-source
(GPL)

Rosseel (2012) CLI (R) Create and
analyze SCMs

PySMILE by BayesFusion LLC Commercial n.a. CLI (Python) BNs for CD
Python Causal Discovery Toolbox by Fentech Open-source

(MIT)
Kalainathan et al. (2020) CLI (Python) BNs for CD

semopy Open-source
(MIT)

Igolkina and Meshcheryakov
(2020)
Meshcheryakov et al. (2021)

CLI (Python) Create and
analyze SCMs

Tetrad Open-source
(GPL)

Ramsey et al. (2018) GUI BNs for CD

8. Conclusion

The concepts of causation and explanation have always been part of human nature, from influencing the
philosophy of science to impacting the data mining process for knowledge discovery of today’s AI. In this study,
we investigated the relationship between causality and XAI, by exploring the literature from both theoretical and
methodological viewpoints, to reveal whether a dependent relationship between the two research fields exists.
We provided a unified view of the two fields by highlighting which methodologies could be adopted to approach
the bridge between these two fields and uncovering possible limitations. As a result of the analysis, we found and
formalized three main perspectives.

The Critics to XAI under the causality lens perspective analyses how the lack of causality is one of the major
limitations of current (X)AI approaches as well as the "optimal" forms to provide explanations. Regarding the
former, traditional AI systems are only able to detect correlation instead of true causation, which affects the
robustness of models against adversarial attacks and of the produced explanations. This is of concern since pure
associations are not enough to accurately describe causal effects. Regarding the latter, optimal explanations may
be characterized by being expressed according to the explainee’s knowledge and domain terminology and being
able to explain many effects with few causes. However, it is debated whether causal explanations (i.e., causal
inference chains to a prediction) are the only useful ones in the XAI landscape. This first perspective states the
problem and serves as a watch out.

The XAI for causality perspective openly claims that XAI may be a basis for further causal inquiry. Despite the
recognized limits of XAI explanations, they may be pragmatically thought of as starting points to generate hypothe-
ses about possible causal relationships that scientists could then confirm. That is, XAI can only foster scientific
exploration, rather than scientific explanation. Although underrepresented in the final cohort, this perspective
suggests a really thoughtful idea in our opinion.

The Causality for XAI perspective supports the idea that causality is propaedeutic to XAI. This is realized in
three manners. First, some causal concepts (i.e., SCM and do-operator) are leveraged to revisit existing XAI
methods to empower them with causal inference properties. Second, the formal causal definition of CF (Sec. 3.3)
is invoked to generate causal-CFEs using the SCM tool, which may also enable recourse. Third, and lastly, it
is argued that, when a model is built on a causal structure, it is inherently an interpretable model. In a related
way, making the inner workings of a causal model directly observable (e.g., through a DAG) makes the model
inherently interpretable.
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Among the three main perspectives, we believe Causality for XAI to be the most promising one. Naturally, it
comes with limitations. Much work in causal modeling is based on specific and (by far) non-unique causal views
of the problems at hand. Interventions and CF make sense as long as the specified causal graph makes sense,
which may hinder the generalization of their results. Overall, their causal claims depend on strong and often non-
testable assumptions about the underlying data-generating process. On the other hand, however, this may be in
line with what already happens in our life, and we should not request from AI more than we request from human
beings. Another weak point is the interpretability of a causal model with hundreds of variables. In this scenario, a
DAG would encode too much information and the complexity of the underlying SCM would rise exponentially with
the number of modeled variables. This, however, is common to other simpler and more traditional approaches
such as Decision Trees with hundreds of nodes.

We acknowledge three main limitations that may have led us to miss publications that could have potentially
been included in the review: (i) the exclusion of non-peer-reviewed e-prints, (ii) the usage of only four databases,
and (iii) not having extracted any references from the collected papers to enrich our search. The latter was
motivated by the fact that, this being an unexplored field, the papers we collected were sufficient and significant
enough to produce a first scenario. Obviously, as with any human-made assignment, the search process for
relevant material may have been affected by the cognitive bias of the authors, who have brought their knowledge
and assumptions in the study.

We believe our results could be useful to a wide spectrum of readers, from upper-level undergraduate students
to research managers in the industry, and have implications for practice, policy, and future research. Indeed,
having a clear view of how the two concepts of causality and XAI are related can benefit both areas individually,
as well as the joint research field. Considering our conceptual framework, future publications may be framed in
a precise and rigorous way and have the potential to expand (or generate new flavors of) one of the identified
perspectives.

All in all, our work disclosed how causality and XAI may be related in a profound way. In our opinion, the
Causality for XAI perspective has great potential to produce significant scientific results and we expect the field to
flourish the most soon.
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Appendix A. Background notions

Appendix A.1. Directed acyclic graphs

From graph theory, a graph consists of a set V of vertices (i.e., variables) and a set E of edges (i.e., relation-
ships) that connect some pairs of vertices. A graph is directed when all the edges are directed (i.e., marked by
a single arrowhead). In a directed graph, an edge goes from a parent node to a child node. A path in a directed
graph is a sequence of edges such that the ending node of each edge is the starting node of the next edge in the
sequence (e.g., nodes A, B, D in Fig. A.5). A cycle is a path in which the starting node of its first edge equals the
ending node of its last edge (e.g., nodes C, E, F in Fig. A.5a), and this represents mutual causation or feedback
processes. When a directed graph does not include directed cycles, it is called a directed acyclic graph (DAG),
and much of the discussion of causality and qualitative modeling is occupied by it (Pearl, 2009).

Appendix A.2. Bayesian networks

A Bayesian network (BN) is a probabilistic graphical model that consists of two parts, a qualitative one based
on a DAG, representing a set of variables and their dependencies, and a quantitative one based on local probability
distributions for specifying the probabilistic relationships (Pearl, 1985). Let X = [X1, X2, . . . , Xm] be a data matrix
with n samples and m variables. In the DAG G = (V,E) of a BN, each node Vk ∈ V represents the random
variable Xk in X, k ∈ {1, 2, . . . ,m}, and each edge e ∈ E describes the conditional dependency between pairs
of variables. The absence of an edge implies the existence of conditional independence.
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Figure A.5: Examples of directed graphs: (a) directed cyclic graph, (b) directed acyclic graph (DAG).

The structure of the DAG can be constructed either manually, with expert knowledge of the underlying domain
(knowledge representation), or automatically learned from a large dataset. In this regard, causal discovery (CD)
denotes a broad set of methods aiming at retrieving the topology of the causal structure governing the data-
generating process, using the data generated by this process. CD algorithms are commonly divided into two
families: constraint-based and score-based.

Constraint-based methods begin with fully-connected edges between random variables and leverage condi-
tional independence tests to identify a set of edge constraints for the graph. By deleting relations if there is no
statistical significance between variables, they narrow down the candidate graphs that explain the data and then
try to determine the direction of the found relationships. Popular examples include the PC algorithm (Spirtes and
Glymour, 1991), assuming no latent confounders (i.e., variables that are not directly observed but interact with the
observables), and the Fast Causal Inference (FCI) algorithm (Spirtes et al., 2000), whose results are asymptot-
ically correct even in the presence of (possibly unknown) confounders. Although constraint-based methods can
handle various types of data distributions and causal relations, they do not necessarily provide complete causal
information, since they output a set of causal structures satisfying the same conditional independence.

On the other hand, score-based methods iteratively generate candidate graphs, assign them a relevance score
to evaluate how well each one explains the data (i.e., “model fit”), and select the best one. Since enumerating
(and scoring) every possible graph among the given variables is computationally expensive, these algorithms
apply greedy heuristics to restrict the number of candidates. Among them, Greedy Equivalence Search (GES)
(Chickering, 2002) is a well-known two-phase procedure that directly searches over the space of equivalence
classes. Starting with an empty graph, at each step, it adds currently needed edges (if that increases fit), and
then eliminates unnecessary edges in a pattern.

Regarding the quantitative part of which a BN consists, the local probability distributions can be either marginal,
for nodes without parents (root nodes), or conditional, for nodes with parents. In the latter case, the dependencies
are quantified by Conditional Probability Tables (CPTs) for each node given its parents in the graph. These quan-
tities can be estimated from data in a process known as Parameter Estimation, two popular examples of which
are the Maximum Likelihood approach and the Bayesian approach.

Once the DAG and CPTs are determined, a BN is fully specified and compactly represents the Joint Probability
Distribution (JPD). An example of a fully specified BN is shown in Fig. A.6. According to the Markov condition,
each node is conditionally independent of its non-descendants, given its parents. As a result, the JPD can be
expressed in a product form:

p(X1, X2, . . . , Xm) =

m∏
k=1

p(Xk|Xpa(k)) (A.1)

Where Xpa(k) is the set of parent nodes of Xk and p(Xk|Xpa(k)) is the conditional probability of Xk given Xpa(k).
Thus, such a BN can be used for predictions and inference, that is, computing the posterior probabilities of any
subset of variables given evidence about any other subset.
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Figure A.6: Example of a fully specified BN which models the probability of observing wet grass. In this (simplified) real-world scenario, grass
can be wet either by turning on a sprinkler or by rainfall, and both can be influenced by the presence of clouds in the sky.

Appendix A.3. Structural Causal Models

Consider the set X of variables associated with the vertices of a DAG. When each of them appears on the
left-hand side (i.e., the dependent variable) of an equation of the type:

Xk = fk(Xpa(k), Uk), k = 1, . . . ,m (A.2)

that represents an autonomous mechanism, then the model is called a structural causal model (SCM) (Pearl,
2009; Schölkopf et al., 2021). In this equation, fk represents a deterministic function depending on the Xk ’s
parents in the graph (i.e., Xpa(k)), and on Uk, which represents the exogenous variables (i.e., errors or noises
due to omitted factors). These noises are assumed to be jointly independent, and hence ensure that each struc-
tural equation can represent a general conditional distribution p(Xk|Xpa(k)), Recursively applying Eq. A.2, when
the distributions of U = {U1, . . . , Um} are specified, allows the computation of the entailed observational joint
distribution p(X1, X2, . . . , Xm), which, in turn, can be canonically factorized into Eq. A.1. The advantages of
using the SCM language include modeling unobserved variables (i.e., latent variables and counfounders), easily
formalizing interventions, and computing CF. Interventions and CF are defined through a mathematical concept
called do-operator, which simulates physical interventions by modifying a subset of structural equations (e.g.,
replacing them with a constant), while keeping the rest of the model unchanged. Specifically, to compute the
probability of CF, Pearl proposes a three-step procedure. Given a known SCM M over the set X of variables, let
xfactual = [X1 = x1, X2 = x2, . . . , Xm = xm] be the evidence. To compute the probability of a counterfactual
instance xcounterfactual, one needs to:

1. abduction: infer the values of exogenous variables in U for xfactual, i.e., calculate P (U |xfactual);
2. action: intervene on X = xfactual by replacing (some of) the equations by the equations X = xcounterfactual,

where xcounterfactual = [X1 = x′
1, X2 = x′

2, . . . , Xm = x′
m], and thus obtain a new SCM M ′;

3. prediction: use M ′ to compute the probability of P (xcounterfactual|xfactual).

Appendix B. Study selection process

Although we did not apply any temporal constraint to the search, we adopted some exclusion criteria in the
process. We excluded works that were not written in English, articles from electronic preprint archives (e.g.,
ArXiv23), book chapters, and theses. In addition, we excluded too-short papers and/or papers of poor quality
that hindered our ability to extract data meaningfully. We also deemed off-topic those papers that considered
causality in the common and everyday sense of the term, not based on theoretical definitions. Indeed, they
frequently present few occurrences of the causal domain terms, which were often either poorly contextualized or
only present in the abstract/keywords of the article.

23https://arxiv.org
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Figure B.7: Flowchart of the study collection process, from identification, through screening, to eligibility and inclusion.

Regarding information sources, we selected Scopus, IEEE, Wos, and ACM because they cover a compre-
hensive range of AI works and provide powerful interfaces for retrieving the required data with limited restrictions.
Conversely, we excluded Google Scholar24, SpringerLink25, and Nature26 since they do not allow to formulate the
query string with the same level of detail as the selected databases do, and, on the other hand, we excluded
PubMed27, since it provides this capability, but its coverage is restricted solely to the medical field.

As for the search strategy on the specified databases, the use of the wildcard made word-matching easier. For
instance, causal∗ matched terms like causal and causality, while expla∗ matched terms such as explanation(s),
explainable, explainability, explaining, and explained.

On July 14, 2022, we utilized the research query on the four databases for the first time. We collected the
retrieved publications and started analyzing them. Then, on September 5, 2022, we repeated the search in the
same settings. This allowed us to refine our cohort of papers with new works that have been published in the
meanwhile, therefore enriching our analyses. In general, although we utilized the same research query across
the four databases (Sec. 4), the actual query string was edited according to the specific syntax of each of them.
In this regard, those strings are shown in Tab. B.3.

Fig. B.7 shows the process of identification, screening, eligibility, and inclusion of articles in our work.
From the search, we obtained the following number of records from the four databases: 99 (Scopus), 17

(IEEE), 62 (WoS), and 44 (ACM). As a result, we collected a total of 222 publications. Upon extraction of query
results from the databases, we operated the identification phase. For the retrieved records, we extracted the
BibTeX files and uploaded them into a popular reference manager application by Elsevier, namely Mendeley28,
desktop version 1.19.8. We then utilized its Check for Duplicates feature to perform duplicate removal. Then, we
removed one thesis and two book chapters, according to the defined exclusion criteria. After these steps, the joint

24https://scholar.google.com/
25https://link.springer.com/
26https://www.nature.com/siteindex
27https://pubmed.ncbi.nlm.nih.gov/
28https://www.mendeley.com/
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Table B.3: Query strings used for each database. AB, ABS: abstract; AK, KEY: keywords; TI: title.
Database Query string
Scopus TITLE-ABS-KEY(causal*) AND

TITLE-ABS-KEY(expla*) AND
TITLE-ABS-KEY(xai OR "explainable artificial intelligence" OR "explainable ai")
AND
TITLE-ABS-KEY("machine learning" OR ai OR "artificial intelligence" OR "deep
learning")

Web of
Science

(TI=causal* OR AB=causal* OR AK=causal*) AND
(TI=expla* OR AB=expla* OR AK=expla*) AND
(TI=(xai OR "explainable artificial intelligence" OR "explainable ai") OR AB=(xai
OR "explainable artificial intelligence" OR "explainable ai") OR AK=(xai OR
"explainable artificial intelligence" OR "explainable ai")) AND
(TI=("machine learning" OR ai OR "artificial intelligence" OR "deep learning") OR
AB=("machine learning" OR ai OR "artificial intelligence" OR "deep learning") OR
AK=("machine learning" OR ai OR "artificial intelligence" OR "deep learning"))

IEEE Xplore ("Document Title":causal* OR "Abstract":causal* OR "Author Keywords":causal*) AND
("Document Title":expla* OR "Abstract":expla* OR "Author Keywords":expla*) AND
("Document Title":xai OR "Document Title":"explainable artificial intelligence"
OR "Document Title":"explainable ai" OR "Abstract":xai OR "Abstract":"explainable
artificial intelligence" OR "Abstract":"explainable ai" OR "Author Keywords":xai
OR "Author Keywords":"explainable artificial intelligence" OR "Author
Keywords":"explainable ai") AND
("Document Title":"machine learning" OR "Document Title":ai OR "Document
Title":"artificial intelligence" OR "Document Title":"deep learning" OR
"Abstract":"machine learning" OR "Abstract":ai OR "Abstract":"artificial
intelligence" OR "Abstract":"deep learning" OR "Author Keywords":"machine
learning" OR "Author Keywords":ai OR "Author Keywords":"artificial intelligence"
OR "Author Keywords":"deep learning")

ACM (Title:causal* OR Abstract:causal* OR Keyword:causal*) AND
(Title:expla* OR Abstract:expla* OR Keyword:expla*) AND
(Title:xai OR Title:"explainable artificial intelligence" OR Title:"explainable
ai" OR Abstract:xai OR Abstract:"explainable artificial intelligence" OR
Abstract:"explainable ai" OR Keyword:xai OR Keyword:"explainable artificial
intelligence" OR Keyword:"explainable ai") AND
(Title:"machine learning" OR Title:ai OR Title:"artificial intelligence"
OR Title:"deep learning" OR Abstract:"machine learning" OR Abstract:ai
OR Abstract:"artificial intelligence" OR Abstract:"deep learning" OR
Keyword:"machine learning" OR Keyword:ai OR Keyword:"artificial intelligence"
OR Keyword: "deep learning")

output was 107 publications.
During the screening phase, we examined independently the resulting works by title, abstract, and keywords

to verify and ensure that proper results were retrieved by the query. Whenever both authors deemed a paper
irrelevant, it was discarded from the cohort. Specifically, two publications were hereby discarded. Instead, publi-
cations for which the authors agreed on the inclusion, together with those on which they disagreed, passed to the
next phase.

Next, in the eligibility phase, we first checked for the availability of full-text manuscripts for the records in the
cohort. We excluded two studies as we could not access their full text. We then jointly analyzed the available full-
text publications to remove papers that were clearly out of scope, together with poor-quality or too-short papers.
As a result, we identified 11 poor-quality or too-short papers and 41 out-of-scope works. Lastly, once we reached
a common decision for each of the publications, we collected the final cohort of studies to be included in the
review.

19



References

Adadi, A., Berrada, M., 2018. Peeking inside the black-box: a survey on explainable artificial intelligence (xai).
IEEE access 6, 52138–52160.

Alonso, J.M., Casalino, G., 2019. Explainable artificial intelligence for human-centric data analysis in virtual learn-
ing environments, in: Higher Education Learning Methodologies and Technologies Online: First International
Workshop, HELMeTO 2019, Novedrate, CO, Italy, June 6-7, 2019, Revised Selected Papers 1, Springer. pp.
125–138.

Antoniadi, A.M., Du, Y., Guendouz, Y., Wei, L., Mazo, C., Becker, B.A., Mooney, C., 2021. Current challenges and
future opportunities for xai in machine learning-based clinical decision support systems: a systematic review.
Applied Sciences 11, 5088.

Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S.,
Molina, D., Benjamins, R., et al., 2020. Explainable artificial intelligence (xai): Concepts, taxonomies, opportu-
nities and challenges toward responsible ai. Information fusion 58, 82–115.

Berrevoets, J., Kacprzyk, K., Qian, Z., van der Schaar, M., 2023. Causal deep learning. arXiv preprint
arXiv:2303.02186 .

Broadbent, A., Grote, T., 2022. Can robots do epidemiology? machine learning, causal inference, and predicting
the outcomes of public health interventions. Philosophy & Technology 35, 1–22.

Bussmann, N., Giudici, P., Marinelli, D., Papenbrock, J., 2021. Explainable machine learning in credit risk man-
agement. Computational Economics 57, 203–216.

Carvalho, D.V., Pereira, E.M., Cardoso, J.S., 2019. Machine learning interpretability: A survey on methods and
metrics. Electronics 8, 832.

Chatterjee, J., Dethlefs, N., 2020. Temporal causal inference in wind turbine scada data using deep learning for
explainable ai, in: Journal of Physics: Conference Series, IOP Publishing. p. 022022.

Chickering, D.M., 2002. Optimal structure identification with greedy search. Journal of machine learning research
3, 507–554.

Chockler, H., Halpern, J.Y., 2004. Responsibility and blame: A structural-model approach. Journal of Artificial
Intelligence Research 22, 93–115.

Chockler, H., Kroening, D., Sun, Y., 2021. Explanations for occluded images, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1234–1243.

Chou, Y.L., Moreira, C., Bruza, P., Ouyang, C., Jorge, J., 2022. Counterfactuals and causability in explainable
artificial intelligence: Theory, algorithms, and applications. Information Fusion 81, 59–83.

Cox Jr, L.A., 2021. Information structures for causally explainable decisions. Entropy 23, 601.

Crupi, R., González, B.S.M., Castelnovo, A., Regoli, D., 2022. Leveraging causal relations to provide counterfac-
tual explanations and feasible recommendations to end users., in: ICAART (2), pp. 24–32.

Dash, S., Balasubramanian, V.N., Sharma, A., 2022. Evaluating and mitigating bias in image classifiers: A causal
perspective using counterfactuals, in: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 915–924.

Debbi, H., 2021. Causal explanation of convolutional neural networks, in: Machine Learning and Knowledge
Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September
13–17, 2021, Proceedings, Part II 21, Springer. pp. 633–649.

Du, M., Liu, N., Hu, X., 2019. Techniques for interpretable machine learning. Communications of the ACM 63,
68–77.

20



Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics , 1189–
1232.

Galhotra, S., Pradhan, R., Salimi, B., 2021. Explaining black-box algorithms using probabilistic contrastive coun-
terfactuals, in: Proceedings of the 2021 International Conference on Management of Data, pp. 577–590.

Glymour, M., Pearl, J., Jewell, N.P., 2016. Causal inference in statistics: A primer. John Wiley & Sons.

Gordon, L., Grantcharov, T., Rudzicz, F., 2019. Explainable artificial intelligence for safe intraoperative decision
support. JAMA surgery 154, 1064–1065.

Granger, C.W., 1969. Investigating causal relations by econometric models and cross-spectral methods. Econo-
metrica: journal of the Econometric Society , 424–438.

Greenland, S., Mansournia, M.A., 2015. Limitations of individual causal models, causal graphs, and ignorability
assumptions, as illustrated by random confounding and design unfaithfulness. European journal of epidemiol-
ogy 30, 1101–1110.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D., 2018. A survey of methods for
explaining black box models. ACM computing surveys (CSUR) 51, 1–42.

Gunning, D., Aha, D., 2019. Darpa’s explainable artificial intelligence (xai) program. AI magazine 40, 44–58.

Hall, S.W., Sakzad, A., Choo, K.K.R., 2022. Explainable artificial intelligence for digital forensics. Wiley Interdis-
ciplinary Reviews: Forensic Science 4, e1434.

Halpern, J.Y., Pearl, J., 2005. Causes and explanations: A structural-model approach. part i: Causes. The British
journal for the philosophy of science .

Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., De Hert, P., 2022. Bridging the gap between ai and ex-
plainability in the gdpr: towards trustworthiness-by-design in automated decision-making. IEEE Computational
Intelligence Magazine 17, 72–85.

Hankinson, R.J., 1998. Cause and explanation in ancient Greek thought. Clarendon Press.

Heinze-Deml, C., Maathuis, M.H., Meinshausen, N., 2018. Causal structure learning. Annual Review of Statistics
and Its Application 5, 371–391.

Hempel, C.G., Oppenheim, P., 1948. Studies in the logic of explanation. Philosophy of science 15, 135–175.

Heskes, T., Sijben, E., Bucur, I.G., Claassen, T., 2020. Causal shapley values: Exploiting causal knowledge
to explain individual predictions of complex models. Advances in neural information processing systems 33,
4778–4789.

Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H., 2019. Causability and explainability of artificial
intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9, e1312.

Hoque, M.N., Mueller, K., 2021. Outcome-explorer: A causality guided interactive visual interface for interpretable
algorithmic decision making. IEEE Transactions on Visualization and Computer Graphics .

Hume, D., 2003. A treatise of human nature. Courier Corporation.

Ibrahim, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A., 2020. Actual causality canvas: a general frame-
work for explanation-based socio-technical constructs, in: ECAI 2020. IOS Press, pp. 2978–2985.

Igolkina, A.A., Meshcheryakov, G., 2020. semopy: A python package for structural equa-
tion modeling. Structural Equation Modeling: A Multidisciplinary Journal 0, 1–12. URL:
https://doi.org/10.1080/10705511.2019.1704289, doi:10.1080/10705511.2019.1704289,
arXiv:https://doi.org/10.1080/10705511.2019.1704289.

Janzing, D., Minorics, L., Blöbaum, P., 2020. Feature relevance quantification in explainable ai: A causal problem,
in: International Conference on artificial intelligence and statistics, PMLR. pp. 2907–2916.

21

https://doi.org/10.1080/10705511.2019.1704289
http://dx.doi.org/10.1080/10705511.2019.1704289
http://arxiv.org/abs/https://doi.org/10.1080/10705511.2019.1704289


Jefferys, W.H., Berger, J.O., 1992. Ockham’s razor and bayesian analysis. American scientist 80, 64–72.

Jiménez-Luna, J., Grisoni, F., Schneider, G., 2020. Drug discovery with explainable artificial intelligence. Nature
Machine Intelligence 2, 573–584.

Johnson, S., Johnston, A., Toig, A., Keil, F., 2014. Explanatory scope informs causal strength inferences, in:
Proceedings of the Annual Meeting of the Cognitive Science Society.

Kalainathan, D., Goudet, O., Dutta, R., 2020. Causal discovery toolbox: Uncovering causal relationships in python.
J. Mach. Learn. Res. 21, 1–5.

Karimi, A.H., Schölkopf, B., Valera, I., 2021. Algorithmic recourse: from counterfactual explanations to interven-
tions, in: Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, pp. 353–362.

Katz, G.E., Dullnig, D., Davis, G.P., Gentili, R.J., Reggia, J.A., 2017. Autonomous causally-driven explanation of
actions, in: 2017 International Conference on Computational Science and Computational Intelligence (CSCI),
IEEE. pp. 772–778.

Khosravi, H., Shum, S.B., Chen, G., Conati, C., Tsai, Y.S., Kay, J., Knight, S., Martinez-Maldonado, R., Sadiq,
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