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Abstract  
The pervasiveness in daily environments of objects equipped with sensors and actuators and 

characterized by the possibility of communicating over the Internet has steadily increased in 

recent years. In this scenario, smart home automations are becoming increasingly adopted. It 

is hence important to provide users with explainable tools to better control these automations 

and make them more useful for their needs. We present a novel mobile augmented reality 

solution to support users in creating and controlling automations through recommendations 

and a simulation tool. We also discuss the application of an augmented reality XAI framework 

to the presented solution in order to improve its transparency. 
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1. Introduction 

In automation-based environments it is possible to have several automations active at the same time 

with a resulting behaviour different from the expected one. In this case, explainability strategies should 

be put in place to identify potential problems, and help in finding possible solutions, involving users in 

this process. One possible strategy is to provide explanations for contributing to reaching some overall 

goal for the targeted context of use. Examples of possible overall goals are improving security or health 

or energy saving or entertainment. A key point is how people can receive useful information and help 

in identifying possible mismatches between desired and actual behaviour. A way to reduce the 

likelihood of errors in the specification of automations is to allow users to simulate the conditions and 

events that can trigger an automation and the effects that they will bring about. Alternatively, 

automations could be actually applied and executed in the current context of use and explain how they 

work. While testing is aimed at detecting the presence of errors in the programs built by users, 

debugging is the process of finding the cause of the identified errors in the behaviour and 

fixing/removing them. We intend to support both. This can be quite problematic for end users especially 

because, as noted by [6], most EUD environments do not include debugging aids for unprofessional 

end users. A general approach for the debugging part is represented by the Interrogative Debugging 

paradigm [10], in which the system directly answers “why” and “why not” questions. In this perspective 

we have considered previous studies on the use of why and why not explanations to improve the 

intelligibility of context-aware intelligent systems [12]. More recently, general approaches for 

explainable artificial intelligence have been put forward with the goal to identify the key questions to 

address for this purpose [11]. Such questions have been refined for the augmented reality context [14]. 

Even such recent contributions have not addressed the issue of how to provide useful explanations about 

the available automations through a mobile augmented reality solution. In this paper we introduce a 

novel solution to effectively localize issues in the currently specified behaviours, and provide users with 

support through natural-language explanations of why or why not the automations can/cannot be 
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correctly executed, moreover accompanied by concrete examples (or counterexamples) highlighting the 

situations in which a specific automation is verified or not. Another way to provide support to users is 

to show recommendations that match the intended behaviour they are currently defining. Previous work 

[3, 5, 13, 15] analysed how to generate and present automation recommendations in IoT scenarios. 

However, how to generate, present, and explain recommendations using a mobile augmented reality 

approach is an untapped and potentially fruitful new direction. 

In particular, this paper presents two main contributions. The first is the introduction of the ARACS 

(Augmented Reality Automation Creation and Simulation) platform (Andrea Mattioli and Fabio 

Paternò, A Mobile Augmented Reality App for Creating, Controlling, Recommending Automations in 

Smart Homes, submitted paper), an effort to empower users to better understand, configure, and modify 

automations in their everyday environments with the support of recommendations and a context 

simulator/debugger. The second is a discussion about how to improve the transparency of the ARACS 

system through the application of an augmented reality explainable AI framework.  

2. Augmented Reality Automation Creation and Simulation 

The proposed platform is an Android application developed in Unity using the ARFoundation library. 

The application exploits the camera of the mobile phone to capture the user’s environment, and place 

visualization over the physical objects available in the current context which functionalities can be used 

to define automations. The main functionalities of the application are “Create automation” and “Explore 

environment”. The first allows users to personalise the environment with automation rules involving 

objects and services while moving about in their spaces. The configuration of the automation (see Figure 

1) is performed in a situated and dynamic way: at the start of the application, a visualisation is placed 

over the objects that can be used in the automations. Selecting one of these visualisations, a panel 

describing the functionality that can be used as a trigger or action is shown. After the configuration, the 

visualisation over the object changes, indicating its use in the current automation. Also, panels with 

recommendations related to the inserted configuration are placed over the other objects. The user can 

then continue the visit, moving to the next object she wants to use in the automation and configuring it, 

repeating this process until the automation is completed. Supporting information can be presented on 

request, for instance showing the partial automation configuration done at the current moment. The 

“Explore environment” functionality is used to make the relation between the automations and the real 

objects more transparent and perceivable. When using this functionality, natural language descriptions 

of the rules defined by the user are displayed over the corresponding objects. 

 

 
Figure 1: Example of the “Create automation“ functionality. (Left): visualizations are placed over the 
objects that can be used in automations. (Left-centre): after selecting the visualization over the 
multipurpose sensor, a panel to configure it is shown. (Right-centre): after pressing “add to rule”, the 



configuration is added to the automation the user is currently defining, and the visualization changes 
to indicate it. (Right): recommendations related to the inserted configuration are placed over the 
other objects, in the example, the action to automatically open the window.  

 

The platform provides two types of intelligent support. The first is rule elements recommendations. 

In the context of EUD for smart home configuration, recommendations should help users to define the 

joint behaviours of the IoT devices and services. Hence, the system should present users with 

recommendations during the configuration of these behaviours, providing diverse options to complete 

them. The adopted approach is to generate personalised recommendations starting from a dataset of 

automation rules2. The recommender system matches the user representation and what she is currently 

defining (the recommendation context, represented using one-hot encoding) with the automations in the 

dataset, also leveraging the similarity between the natural language transcription of the context and the 

textual parts of automations defined by other users. The textual similarity match is performed using a 

large language model, BERT [7]. This recommendations approach has been implemented using neural 

collaborative filtering [8]. This deep learning architecture leverages neural networks to model the 

interaction between the users and the items to suggest, and it is hence capable of learning complex non-

linear relationships between them. Since the various inputs are projected in a vector space, the 

embeddings generated by a large langue model can also be used in the process. This approach is hence 

a generalization of the matrix factorization-based collaborative filtering and is capable of learning from 

different inputs. The output of the model is a score indicating how well a rule element to recommend 

fits with the various inputs provided (in this case, the user representation, the one-hot context 

representations, and its natural language description). 

The second type, which is currently under development, is a rule simulation and debugger. The rule 

simulation is an extension of the “Explore environment” functionality,  to consider and visualise also 

the state of the environment (the context). It will allow loading the current context or some predefined 

context snapshots (for instance, summer morning, weekday night, dinner with friends), and visualising 

the associated values over the various object in the environment. The users can modify these contextual 

values (for instance, changing the time, or acting on the temperature) to check whether some automation 

will or will not activate in the environment, providing them a “Why/Why not” [10, 12] supporting tool.  

Furthermore, the possibly problematic relations between automation rules will be made perceivable. As 

reported in previous work [4, 9, 16] and summarised in [1], three main unexpected relations between 

automations can lead to logical errors, namely, rule prevention (when the execution of a rule prevents 

the triggering of another one), rule collisions (when the outcome of two rules are in contrast), and 

unexpected rule chains (when the activation of a rule cause another one to trigger). In general, to detect 

these problems an intermediate graph representation of the automations active in the system (hence that 

will be executed if the triggering conditions are met) is needed. An approach to detect these errors and 

make them perceivable in the environment will be developed together with the rule simulation.   

3. Application of the XAIR Framework to the ARACS Platform  

In the following, the XAIR framework, its key factors, and the steps to assess them will be introduced. 

Then, it will be analysed an application of the framework to the ARACS platform to determine how to 

present AR explanations in two use-case scenarios. 

3.1. XAIR Framework 

We based the design of the augmented reality explanations on the XAIR design framework [14]. The 

goal of XAIR is to support the design of effective XAI experiences for AR, addressing the key concepts 

needed to provide explanations of AI output. The framework is the result of an analysis of the literature, 

a large-scale end-user survey, and workshop iterations with designers and experts in relevant fields. It 

is based on a definition of the problem space (when, what, and how to explain) and the assessment of 

the key factors needed to determine the answers to these questions. The design space is structured as 
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follows. On the “When” dimension, the two main aspects are the availability of the explanation 

(whether the explanation should be always ready or not) and the delivery (when to show it). Since the 

availability should always be ready to improve user experience, the decisions are about the delivery 

timing. An explanation can be automatically presented or shown when requested by the user, and both 

approaches can be valid depending on the use case. The second dimension is the “What”. It articulates 

in content and detail level. About the content, seven types of explainable content were identified: 

input/output, why/why not, how, certainly, example, what if, and how to, delivered possibly via local 

explanation. Concerning the detail, the priority is to provide explanations that expand users’ prior 

knowledge or fulfil their immediate needs, also considering the cognitive capability available and the 

possibility of presenting personalized and detailed information. About the “How” dimension, the 

identified levels are the modality (visual and audio emerge as the most suited) and the paradigm, where 

the larger design space concerns the visual modality. The design aspects to consider in the visual 

modality are the format (textual and graphical, eventually combined) and the pattern type (implicit, 

explicit). Implicit pattern refers to naturally blending the additional information with the referring 

object, for instance directly highlighting an anomaly with a circle or an arrow over it, while explicit 

refers for instance to an extended dialogue window.  

The second part of the framework consists of the steps to assess the key factors in relation to the 

defined dimensions. For the “When” dimension, the decision is about when to present the auto-

triggered explanation (by default, the explanation should be on-demand). The first necessary condition 

is that the user has enough cognitive capability and time to engage with the explanation. The second is 

that at least one of the conditions is true among 1) there is a mismatch between the user expectation and 

the received recommendation, hence, the user is surprised or confused; 2) the user is not familiar with 

the output of the system; and 3) the system is uncertain of the output. Concerning the “What”, the 

explanations should be contextualised considering the user goal (depending on what the user is doing, 

a type of explanation can be more useful than another), the system goal (for instance, a recommendation 

can be shown to calibrate the system to the user taste, to propose alternatives, to help manage errors, or 

to improve trust in the system), and the user profile (in particular the AI literacy). Regarding the detail 

level, by default explanations should be short and focused on the why aspect, with the possibility of 

providing more details upon user request. For the “How” part, the modality should normally be the 

same as the outcome of the AI process, but for specific situations (e.g., when the used channel is 

overloaded) an alternative one should be used. Concerning the paradigm of visual explanations, textual 

should be the main explanation format, and a simple graphic such as icons could provide additional 

information. More advanced graphics (such as heatmaps) could be used in detailed explanations. About 

the pattern, when possible the explanation should be implicit (blended with the real environment), while 

the explicit possibility represents the backup solution. 

3.2. Recommendations during rule creation 

The first scenario involves the rule recommendation functionality of the ARACS platform. The user 

wants to automate the morning air circulation in the living room. She configures the time the automation 

should activate, and then the living room window opening action. After these operations, the 

recommendation “if (condition) the humidity level of the room is more than 70%” is placed in a panel 

over the multipurpose sensor in the living room, indicating that the humidity check functionality can be 

used together with widows automatic opening and time checks. The user is surprised since she was 

thinking about temperature or weather-related recommendations, but not humidity. 

Following the XAIR framework, the first dimension to assess is the “When”. Since the user is 

currently defining the automation, we can assume that she has enough cognitive capability and time to 

eventually engage with explanations. Then, an assessment is performed to establish whether a condition 

is true among the three necessary for targeting the explanation. In this scenario, possible cases for each 

condition can verify. For instance, the user can receive a suggestion of a rule whose main goal is 

different from her intended goal for that automation, e.g., security instead of energy saving, or it 

concerns a service she had never used before. In this case, the condition for automatically presenting 

an explanation is true because she has never used the “humidity level” trigger. Indeed she's surprised 

because she wasn't even aware that the sensor had that feature. Concerning the “What” part, the first 



assessment is about the System goal, which is user intent discovery (suggesting a user with new 

automation possibilities that she may find useful and be unaware of). The main user goal is to resolve 

the surprise since she received an unexpected recommendation. The last assessment is about the user 

AI literacy, which we know from the user profile to be low. Hence, the framework’s suggested 

explanation types for the intersection of the various parameters are Input/Output and Why/Why-not 

explanations. Concerning the detail level, the interface can show the why as default (for instance, with 

a text explaining that humidity checks are often used to automate the air circulation), and the 

Input/Output can be shown as additional information. Concerning the “How”, the modality of the 

explanation is visual, using text as a default. The detailed explanation can show the information that 

impacted the decision to recommend this automation part (e.g., which part of the incomplete automation 

inserted by the user had more weight for proposing the recommendation, or which aspect of the user 

profile), or how the recommendation changes when some parameter is modified (for instance, the 

automation goal, or using a default user instead of the current one). The pattern can be explicit (text 

panels), with some implicit components, for instance highlighting with a bright colour the objects with 

positive impact for a specific recommendation. 

3.3. Situated automations simulation and debugging  

The second scenario concern using the environment simulator/rule debugger to better understand the 

smart environment behaviour and eventually help the user to solve logical errors in the configured 

automations. In this scenario, the user has configured the smart coffee maker to brew a coffee at the 

time she wakes up, at 6:30 AM. In the morning, she finds out that the machine is on, but no coffee has 

been brewed. To debug the situation, she loads the most similar environment predefined conditions, 

namely the “night weekday” preset.  Once loaded, the augmented representations over the various object 

changes, indicating the simulated values. This scenario starts at 11 PM. She then modifies the “time” 

contextual value to “fast forward” the environment’s state near her wake-up time. Reaching 6:30 AM, 

she notices that the description of the coffee brewer automation is placed over the related machine, but 

the panel is opaque, indicating a rule not in execution. At the same time, a dotted red connection line 

appears between the visualization and another panel placed over the smart plug to which it is connected. 

The panel over the plug is instead bright, indicating a rule currently in execution, which function is to 

deactivate that plug at nighttime, between 12 PM and 7 AM, and it is hence preventing the coffee 

automation to start.  

To better assess how to define explanations with respect to the framework, we start with the 

“When” aspect. In this scenario the user is actively using the simulator to better understand what causes 

or prevents the activation of automations and possibly clarify her confusion, hence explanations are 

automatically triggered. For the “What” part, the main system goal, in this case, is error management 

since the simulator aims to help users to better collaborate with the system and to calibrate their 

expectations of the system’s capability and functioning. From the intersection of the related table in the 

framework, the most suited explanation types are Input/Output, Why/Why-not, How, and Certainty. 

Concerning the detail level, priority should be given to a concise explanation of the why (in this case, 

making clear that the smart plug automation is preventing the coffee maker). Further details and 

explanation types can be provided on request,  for instance, by giving concrete examples of contexts in 

which the specific automation can be activated. Concerning the “How” part, the modality is visual, 

using a mix of implicit (the red dotted line connecting the objects) and explicit (the opaque or bright 

panels with textual explanation) patterns.  

4. Conclusions and Future Work 

In this paper, we presented ARACS, an AR platform to define IoT automations with recommendation 

support. The platform provides users with dynamic suggestions on how to complete the automation 

they are editing based on the specific user, context, and textual representation of the context. The 

platform will include a simulator to allow users to load context snapshots and simulate the execution of 

the rules and the effects between them. We then introduced XAIR, a framework that aggregates the 

main XAI factors from the literature and allows for a systematic definition of the When, What, and 



How of an AI explanation. Finally, we discussed how the intelligence aspects in the ARACS platform 

(recommender system and automations simulator) could be made explainable by applying the XAIR 

framework. For future work, we plan to refine the application's simulation part and introduce further 

features. An example can be the automatic evolution of the context snapshots, for instance, based on 

predictions from stored context data and knowledge of the environment [2] and also considering the 

effects of the activation of automations. We are also planning to extend the recommendation 

architecture to consider further data such as user profiles and assess the solution with different TAP 

rules datasets. We will also conduct user studies to assess the impact of introducing explanations into 

the platform.  
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