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a b s t r a c t

In robotics, perception is usually oriented at understanding what is happening in the external world,
while few works pay attention to what is occurring in the robot’s body. In this work, we propose
an artificial somatosensory system, embedded in a cognitive architecture, that enables a robot to
perceive the sensations from its embodiment while executing a task. We called these perceptions
roboceptions, and they let the robot act according to its own physical needs in addition to the task
demands. Physical information is processed by the robot to behave in a balanced way, determining the
most appropriate trade-off between the achievement of the task and its well being. The experiments
show the integration of information from the somatosensory system and the choices that lead to the
accomplishment of the task.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Robots are composed of a set of different parts working to-
ether as a whole. They are usually provided with a series of
ensors that may produce heterogeneous stimuli. In the per-
eption process, it is essential to consider both the external
nvironment’s effects and its internal body conditions [1]. All
iving creatures have a sort of somatosensory system that defines
heir boundary with the external environment, helping also to
onitor their body. It influences their behavior, protecting them

rom risks and dangerous situations. Robotic platforms typically
nclude some self-integrity mechanisms such as avoidance colli-
ion that prevents possible bumps among body parts or automatic
echarging that checks the battery level when it is below a certain
hreshold. This is a relevant issue in autonomous robots. They
eed to take proper decisions to safeguard also their integrity,
n particular in situation where they cannot report immediately
heir status to humans. However, the signals are usually pro-
essed individually and they are used reactively. As it happens in
iving beings, dangerous situations usually raise an alarm ‘‘signal’’
hat, producing, for example, a painful sensation, represents an
ffective penalty mechanism to modulate or avoid inappropriate
ctions. According to Damasio, fatigue, energy, wellness, and sick-
ess can be considered background emotions and affective states
xperienced under certain body conditions [2]. Such conditions
an strongly influence the possibility to perform a task and an

∗ Corresponding author.
E-mail address: filippo.vella@icar.cnr.it (F. Vella).
ttps://doi.org/10.1016/j.robot.2023.104400
921-8890/© 2023 Elsevier B.V. All rights reserved.
unpleasant condition can lead to a withdrawal even if an urge
requires to perform a given task [3,4].

Although it is not well determined if human beings are the
best examples to shape an artificial entity’s mechanism, human
biology is still a great source of inspiration [5]. A robot, perceiving
some sort of ‘‘artificial pain’’, can adapt its behavior to avoid
or minimize damage to itself or to the environment [6–8]. In
agreement with [5,9], we consider the robot embodiment keeping
in mind the substantial differences between humans and robots.
We propose a bio-inspired artificial somatosensory system that
allows the robot to behave according to the perceptions of the
states of its own body components. A simpler approach has
been presented in [10], where preliminary results have been
sketched. To underline the difference with physical sensations
arising from the receptors in the human somatosensory system,
we adopt here the term roboceptions referred to a robotic entity.
In particular, the somatosensory system has been designed for
the Aldebaran NAO robot, starting from the analysis of its built-
in basic hardware sensors. Roboceptions are related to hardware
measurements of this platform. The approach is general and it is
possible to adapt it to other robotic platforms. Additional robo-
ception can be added considering additional sensors for different
platforms or even more sophisticated monitoring functions such
as global well-being or motivation. In general, the somatosen-
sory system allows the humanoid to perceive physical inputs
or feedback, and to interpret them according to abstractions
loosely inspired by human sensations. The robotic somatosensory
system relies on a layer composed of different soft sensors, built
on top of the robot’s physical proprioceptive and exteroceptive

https://doi.org/10.1016/j.robot.2023.104400
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
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ensors [11–16]. Soft sensors, also known as virtual sensors, are
athematical models implemented as software tools and capable
f calculating difficult or impossible quantities to measure. The
odels, that are biologically inspired, have been chosen on an
mpirical basis and provide an output according to a transduction
unction processing the hardware measurement. We consider the
ransduction function and the raw sensory data fusion as fully-
ledged soft sensors since they estimate quantities that physical
nstruments cannot measure. They can evaluate quantities ana-
ogue to ‘‘muscular’’ pain caused by high current or the exertion
aused by a rising temperature in actuators that has an effect
n muscle ability to produce an effective force. They could also
stimate pleasant sensations as a caress. In our framework, soft
ensors emulate natural nerve cells and nerve fibers that lead to
timuli.
Both pleasant and unpleasant sensations can drive the behav-

or of the robot, which, paying attention to what happens in its
ody, will choose the most suitable modality to tackle a given
ask.

Let us consider, for example, a dancing robot executing an
mprovised set of movements such as a choreography. If such
robot is has a knowledge about its physical condition, it can
dapt its dance by choosing movements from its repertoire that
equire less effort. Its state will then influence its dance, and
he audience could perceive its sensations. The task’s execution
erives from balancing two concurrent parameters: the reward
or the task execution and the cost, in terms of resources, required
o achieve the task. An excessive resource consumption, such as
nergy, may produce an early stop of the task due to low battery.
he somatosensory system collects multiple information coming
rom the robot parts, and, consequently, it can provide values
hat monitor its body wellness. A roboception can unveil a critical
ituation and let the robot choose a strategy to fulfill the task
hile maintaining roboception values within a wellness area.
Roboceptions provide the robot with some sort of knowledge

f its own current physical condition. The robot can reallocate the
esources and adapt its strategy to perform the task as properly as
ossible without compromising the accuracy of its performance.
To implement this mechanism, we employ a reinforcement

earning approach, in particular SARSA algorithm [17,18], to prop-
rly act during a complex task, trying to take into account con-
licting reward functions.

In Section 2 we describe techniques that are related to the
resent work. From Section 3 we describe our proposal in terms
f a cognitive architecture involving a Somatosensory system,
hat is described in detail in Section 4. In Section 5 we show the
ehavior of the robot in different physical situations. It has to
erform a given task while maintaining a good physical status.
inally, we draw some conclusions of this work in Section 6 and
iscuss the future direction of this research.

. Related work

At present, robotics is mainly focused on analyzing the per-
eptions of external signals by a robot control system while few
orks investigate the importance of considering in robots the

nteractions with their internal part of the body [1]. Among these
orks, for example, Saegusa et al. [19] present a framework to let
he robot recognizing its own body and generating proper actions
ccordingly. The scene’s vision and proprioception, which is the
obot parts’ position, drives the acquisition of the knowledge of
ts own body. Thus, the framework starts from a basic level, and it
earns an association between visual and tactile information with
roprioceptive data.
In [20], a self-perception of a robotic manipulator is presented.

he activities on the manipulator motors are the input signals,
2

while the position of the links are monitored through visual
markers. The connection among input signals and link position
is learnt through bayesian networks with different topologies.

In [21] a robot, able to self percept its body, is used. The robot
is endowed with accelerometers along its arms and can have
information about the movement of its body. The sensor signals
are processed with Sensory Motor Contingency [22] to connect
motor signals and detected movements. A further connection is
then performed between sensing and external objects.

Moreover, it is clear that a robot that always acts in the same
manner and is repetitive in its behaviors, looks unattractive and
trivial to the end-user after the first few interactions. Instead, if a
robot acts autonomously and consciously, the interaction is more
exciting and stimulating for the user. In this context, a funda-
mental role is played by motivation: for this reason, for example,
in [23], a model was introduced that combines the presence
of motivation with a Consciousness-based Architecture (CBA) in
order to obtain proper and coherent changes in the behaviors of
a robot, resulting in a more autonomous and effective behavior.

According to [24], different terms have been exploited to refer
to the studies on using computational models to emulate an
intelligent behavior in machines. A standard term used in the
literature is that one of ‘‘machine consciousness’’. Many models
of awareness and consciousness have been proposed in the liter-
ature, e.g.: [25–32]. A key role is played by sensory perception,
both through proprioceptive and exteroceptive sensors, for es-
tablishing the state of self. The former sensors aim to monitor
the robot’s internal state, while the latter is oriented to per-
ceive the external environment. This can lead to two kinds of
attention: the inner and the sensor one [33]. In the literature,
some studies have shown that pain can be related to the concept
of ‘‘self-awareness’’, both in robots and humans. In particular,
Steen and Haugli explored in [34] the correlation between mus-
culoskeletal pain and increased awareness of self. Another study
illustrated how there might be a correlation between affective
self-awareness and pain [35]. The relationship between pain and
self-awareness has also been reported in other more recent work,
such as [36,37]. In this context, it is highlighted that pain sen-
sation is among the most relevant aspects of self-awareness. As
reported by [33], artificial pain can be computationally generated
without actually being any real sensation of pain, designing only
the functional aspects of pain itself.

Our work considers the use of a cognitive architecture that
employs roboceptions for a better self-awareness approach. We
aim to obtain higher-level information through roboceptions to
modulate the robot activities in more complex tasks. We col-
lect information about the robot body from a processing layer
composed of soft sensors. Instead of binding the detected signals
with actions, we investigate how the internal state can influence
the deliberation of a humanoid robot, for example, how the
Aldebaran NAO1 can change how to tackle a task according to
a proper cognitive architecture [38].

Our contribution can be also related to the papers that fore-
cast the maintenance for industrial machines under the name
of predictive maintenance, for example [39,40]. This task can
be synthesized as: collection of signals through sensors installed
on the most critical components; signal processing techniques
to extract relevant information and detection of relationships
between the extracted parameters and the health condition or
the Remaining Useful Life (RUL) of the analyzed components.
The two approaches have many points in common; furthermore,
mutual techniques can be shared among them. One of the main
differences is that the maintenance task is used to assure that
a component can continue its own function during time, while,

1 https://www.ald.softbankrobotics.com

https://www.ald.softbankrobotics.com
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Fig. 1. PSI-inspired Architecture at the basis of the Robot’s Behavior. The somatosensory system allows the robot to collect its roboceptions. The robot, through a RL
rocess, learns how to choose, according to the specific situation, the modes of execution of a task.
n the proposed system, the information coming from the em-
odiment can drive the system actions preserving all the robot
esources.

The work proposed here is the evolution of a set of contribu-
ions that have been presented in previous papers. We exploit a
einforcement learning approach to improve both self-awareness
nd effectiveness of the execution, even in critical situations.
he robot tries to determine a trade-off between the tasks to be
ccomplished and the available resources.

. PSI-inspired robot architecture

The use of Cognitive Architectures (CA) enriches the robots
apabilities and enables the emulation of behaviors typical of
uman beings. CAs constitute the infrastructure managing the
rocesses of perception, recognition, categorization, reasoning,
lanning and decision-making [41]. The different CA models, pro-
osed in literature, attempt to establish the necessary modules
o mimic the complex interactions among perception, memory,
earning, planning, and action execution [42]. A cognitive ac-
ivity has to be influenced not only by the input coming from
he external environment but also by the stimuli in the body.
ome behaviors can be triggered by physical sensations and per-
eptions, conveyed by the somatosensory system. In previous
ontributions, we have successfully exploited a cognitive archi-
ecture in human–robot interaction [38,43,44], taking inspiration
rom the Psi model [45,46]. In the current formalization of the
obot’s CA, shown in Fig. 1, we modeled the awareness of the
obot of its physical condition, by introducing a process of robo-
eption, related to the bodily dimensions which influence the
obot’s behavior.

A bio-inspired somatosensory system (described in Section 4),
s at the basis of such roboception process. It relies on a layer
omposed of different soft sensors [12,13], built on top of the
obot’s physical sensors. A Behavior Selection module, based on
reinforcement learning process (described in Section 5), is used
y the robot to choose a modality to accomplish a task. In such a
3

process, the robot exploits the knowledge about possible move-
ments to perform and their associated costs and rewards and
keeps into account its needs (which can have a physiological,
cognitive, or social nature). This information is stored in its Long
Term Memory (LTM). Indeed, the activity of the robot is influ-
enced by urges, and an urge arises when there is a considerable
difference between the current need and its target value [45].
In particular, in this work we mainly focus on physiological
urges arising from the discrepancy between a roboception and
a desiderata physical condition. The behavior is then selected by
considering the current situation, stored in the Short Term Mem-
ory (STM), consisting of information about the physical condition
of the robot, evaluated by means of the somatosensory system,
the ongoing task, the occurrence of an urge. The robot, aware of
its physical state and of the costs associated with the different
movements, will execute a task activating different modes ac-
cording to the specific situation and can decide to stop a task if
the perceived physical conditions will not allow it to complete the
activity. A description of the system, that is inspired by Nilsson
architectures of intelligent agents [47], is given in Fig. 2. The
system is composed of perception, decision and action modules.
The information, coming from sensing devices, is filtered by the
somatosensory system and constitutes the input to the system.
Through a learning process, here implemented with Reinforce-
ment Learning, the actions are chosen or modulated with the
aim to obtain the highest reward while preserving the well be-
ing of the robot. The green blocks in the figure represent the
somatosensory system, the learning process and the modulation
of the actions that are detailed in the next sections.

In the next sections, we will describe in detail the modules of
the robot’s architecture and the performed experiments.

4. Soft somatosensory system

The human beings’ somatosensory system is a complex system
of nerve cells and receptors that react to changes on the surface or
in the inner part of the body. It plays a key role, driving humans
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Fig. 2. The proposed architecture with the learning module that maximizes the
reward function.

and, in general, living creatures’ behaviors and protecting them
from taking not appropriate actions. On the contrary, this system
can also increase the wellness level when positive stimuli are
perceived, encouraging actions that could be judged as potentially
risky in standard conditions. An artificial somatosensory system
can replay the characteristic of the biological ones endowing
the robot with concurring information flows that improve the
management of the body and the execution of the tasks. With
this aim, we have designed our artificial somatosensory system.
We started from the built-in basic hardware sensors of a robot, in
particular a consumer robot, and we defined a set of soft sensors
able, albeit with simple functions, to provide information relevant
for the well-being of the robot [48–52].

The soft sensors loosely reproduce and, somehow replace, the
atural nerve cells, the nerve fibers that conduct stimuli and the
omatosensory cortex. For each kind of sense or stimulus, we
ried to emulate a biological model. Whenever it was not possible,
e have used a model oriented at guaranteeing the robot’s safety
e.g., avoiding the robot falling). In doing so, the robot can get its
oboceptions computing the signals coming from its receptors.

Each soft sensor is responsible for the computation of a spe-
ific roboception. This approach somewhat resembles the layers
f Brooks’ subsumption architecture [53] where each layer imple-
ents a competence and higher levels subsume the lower ones

reading, inhibit or suppress the signals of lower layers). How-
ver, our source of inspiration was the biological somatosensory
ystem, with its complex set of receptors, neural pathways, and
nhibition mechanisms.

The generic schema of a soft sensor constituting the artificial
omatosensory system is shown in Fig. 3. The sensors, referred to
ardware sensors, directly correspond with the receptors of the
iological model. The set of sensors depicted in the lower part
f the image express that any soft sensor can use one or more
ensors as an input. The soft sensor input can be homogeneous
i.e., all temperature sensors), or heterogeneous and can include
ifferent types of sub-sensors (i.e., gyroscopes, accelerometers
nd pressure sensors). By taking inspiration by the biological
odel, it was considered an ascending path that brings infor-
ation from the sensors (receptors) to the computation unit

somatosensory cortex), through calculation models represented
y the gears drawn in Fig. 3. At the same time, an opposite
escending path implements a modulation of the perception or
ven a stimulus suppression. It is analogous to the production
f endogenous substances or the intake of exogenous substances
hat, in biological systems, affect the perception process. The AND
ate at the soft sensor input represents the inhibitory function,
hile the variable resistor at the soft sensor output represents
he modulating function (see Fig. 3).

Each category of information can be either enabled or utterly
isabled by using a gate port. Following this approach, we can set
4

Fig. 3. The schema of a generic soft sensor in which the ascending path and
the descending path are highlighted with different colors. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

up the soft somatosensory system according to a specific task that
the robot must execute. For some tasks, the robot can consider
the stimuli coming from all categories of sensors, and in particular
situations, the robot can neglect some specific category of stimuli.

As an implementation test-bench for our artificial somatosen-
sory system, we focused on the humanoid NAO robot. However,
the illustrated methodologies are not bound to a specific robot
model and can be generalized to any robot. We chose the NAO
robot since this robot fits particularly well to the purposes illus-
trated in this paper. It is equipped with many basic sensors capa-
ble of measuring different parameters, many states (or changes
of state) can be identified and several events can be managed.

As shown in Fig. 4, from the embedded sensors, we can get
basic information from the battery, the CPU, the force sensitive
resistors, the inertial sensors, the joints, and actuators, together
with LEDs, sonars, switches, touch sensors and other sensors. In
our implementation we have taken into account as basic stimuli,
acquired directly from the NAO embedded sensors, the value of
the current and the temperatures of twenty-five actuators

ead: HeadPitch, HeadYaw.
rms: RShoulderRoll, RShoulderPitch, RElbowYaw, RElbowRoll,

RWristYaw, RHand, LShoulderRoll, LShoulderPitch,
LElbowYaw, LElbowRoll, LWristYaw, LHand.

Legs: RHipPitch, RHipRoll, RKneePitch, RAnklePitch, RAnkleRoll,
LHipYawPitch, LHipPitch, LHipRoll, LKneePitch, LAnklePitch
LAnkleRoll.

Other information gathered by the robot is: the pressure
of four switches located at the tip of each foot; two (one for
each foot) weight values based on force sensitive resistors; nine
(ON/OFF) touch sensors are located on the head (front, rear,
middle) and the hands (back, left, right); three distances measure-
ments are achieved by sonars situated at the robot’s chest; two
pairs of values about the angles, the accelerations and the inertia
of the robot along X and Y axes.

All the above mentioned primary stimuli are associated with
the design of the soft sensors. In the following subsections, we
will illustrate some soft sensor designed for our somatosensory

system.
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4.1. Energy roboception

A fundamental capability of human beings and, in general of
living beings, is the assessment of the sufficient energy quantity
to complete a task. In alternative, they have to consider additional
sources of energy they can employ during the task’s performance.

When the physical energies run out, a discomfort is suffered
and the chances of completing the task considerably decrease.
Living beings, thanks to the possibility of perceiving fatigue, can
organize a plan and perform their tasks by managing the energies
in their possession.

If a humanoid robot had an analogous capacity to perceive
fatigue, it could manage its residual energy to complete its task.
Alternatively, it could rearrange the plan to maximize the result
reachable with the residual energy. In other words, the knowl-
edge of residual energy and the corresponding roboception are
the essential prerequisites for modifying the robot’s behaviors to
maximize the desired results.

The artificial somatosensory system we have designed in-
cludes a specific soft sensor to generate a roboception bound to
energy. This roboception employs some parameters linked to the
battery as input. In particular, the amount of remaining battery
power and the amount of instantaneous current supplied by the
battery. The Energy roboception is computed in (1) as the arc-
tangent of the ratio between the instantaneous current supplied
Cu (normalized) by the battery and the instantaneous charge of
the battery Ch.

Ex(t) =M(1− I)
2
π
atan

(
Cu
Ch
·
Chmax

Cumax

)
(1)

M represents the modulation coefficient of the soft sensor
utput. I indicates the inhibition. If I is equal to one, the whole
oboception is inhibited. To normalize the value of the currents
nd the value of the battery charge, they are divided by their
aximum value. The output of the arc-tangent is brought in the

ange from 0 to 1, dividing by π/2. If the level of the battery is
ow, the argument of the arc-tangent function is very high and the
esult of the soft sensor is near one. If the charge of the battery
s higher, the argument of the arctangent is lower. The provided
urrent acts inversely, the lower is the current Cu, the lower is
he output of the soft sensor. A higher value of the current give
igher outputs. An additional sensor, indicating if the charger is
lugged, can be integrated. We avoided this addition in favor
f simplicity. If the charger is plugged, the hunger roboception
eturns the value 0. The reason is that, in this case, the charge of
he battery is not relevant since a power outlet is providing all the
ecessary energy. Whenever the charger is not plugged into the
obot, this roboception is computed, as stated before, according
o (1).
5

4.2. Current roboception

The actuators of the NAO robot are composed of stepper
motors. Each one of them is driven by a current signal with a
value between zero and Cmax value. Different actuators may have
different maximum operating currents.

The operating current normally remains under the 80% of its
Cmax value, although some current spike may occur from time to
time.

When a robot’s movement is hampered, the currents in the
involved motors increases and can exceed the operating value
reaching, in some case, the Cmax current. We consider the raising
of the current over the operating value as an unusual condition
that can potentially damage the robot itself and can be associated
with discomfort. This condition can be considered analogous to
the condition of pain in living beings, therefore, also considering
its physical origin, we call this ‘‘Current Roboception’’ and can
resemble a ‘‘Pain’’ sensation

This roboception can originate either in a single actuator or,
simultaneously, in a set of actuators depending on the kind of the
movement and if the movement is hampered or just it witnesses
the perception of a large current.

We have therefore identified a stimulus, the pilot current in
the actuator, and a type of receptors. The sensor model processes
the stimulus and transforms it into a roboception. Considering
a biological reference model, analogue to pain sensation, we
considered two aspects. The first one is related to the intensity
threshold that the stimulus must overcome before the living
being begins to feel of pain. The other one is the exponential
character of the sensation of pain that tends to saturate.

The model adopted to implement this soft sensor replicates
the exponential trend and the character of saturation of this
sensation. Thus, the soft sensor implements this bio-inspired
feature adopting the model of charge and discharge of an RC
(Resistor–Capacitor) circuit.

This type of circuit is characterized by two phases. A charging
phase in which, thanks to the applied potential, the capacitor is
charged through a current that flows into a resistor. The second,
in which the capacitor is discharged by dissipating the charge
accumulated on the resistor and transforming it into heat. Both
phases show an exponential trend and they are compliant to
represent the roboception of the current. This model is also
characterized by a time constant τ making the charging and the
ischarging phase faster or slower. The value of τ allows us to

create a soft sensor that is more or less reactive.

Pcurr (t) =
{

M(1− I)(1− e−t/τc ) if C > Cp
−t/τc (2)
M(1− I)e if C <= Cp
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The current roboception is calculated as shown in (2). The I
parameter can be 0 or 1 and it opens or closes the AND gate
operating the inhibition action. The M parameter is in the range
[0, 1] and it is represented by the variable resistor in the soft
sensors figure. It performs the modulation function. The rise or
the reduction of the current roboception, due to the current, are
calculated as in (2). Above is calculated the roboception when the
stimulus is present, the second when the stimulus is missing. The
values of the pilot current in all step motors are measured by
the current sensors. For each current sensor, the sampled value of
current is transported through a fiber that can act as a localization
function. The sampled current value is compared with a threshold
value Cp, if the pilot current overcomes this value, the charging
phase starts. Otherwise, a discharging phase begins. The Cp is
mpirically set, it is the value of current that, if applied for a long
ime, can cause damage to robot hardware.

The developed artificial somatosensory system is highly pa-
ameterized. A simple XML configuration file can customize the
haracter of a robot. In this way, it is possible to let robots behave
ifferently although it is subject to the same stimuli.
An implementation of an artificial somatosensory system for

humanoid robot [54] is ASS4HR, a software implementation for
OS (Robot Operating System). The ROS implementation of the
ystem is extremely scalable. In fact, it is possible to add new
‘roboceptions’’ to the system, leaving the overall architecture
nchanged. The software package is distributed under a free
pache License 2.0 and can be downloaded at the link https:
/github.com/crss-lab/ASS4HR

. Implementation of somatosensory-aware robot behavior
hrough reinforcement learning

A useful way to exploit the information from the somatosen-
ory system is to evaluate the state coming from the set of
he soft sensors, and perform the tasks in a way that lets the
obot in a well being state. In order to estimate the best action
o be undertaken, we train the robot to select the best policy
hrough Reinforcement Learning [17]. This technique is inspired
y behaviorist psychology and is based on the cumulative reward
n agent collects when it acts in the environment. The model is
Markov Decision Process (MDP) that is represented as a tuple
S, A, P, R⟩. S is the set of states, A is a finite set of actions, P is
he transition probability and R is the reward [55–57].

The goal of solving the MDP is to find a policy, π : S → A, that
reates a correspondence between states and actions such that
he agent can maximize the cumulative future reward selecting,
ime by time, the best action. If the parameters of P and R are
nown, then the optimal control policy, for the agent, can be
fficiently determined using techniques such as value iteration.
The value of a state is evaluated according to the reward that

t is possible to collect and the policy used to select an action
ccording to its current state.
The value of the Q -function is given by solving the Bellman

quation:
π (s, a) = R(s, a)+ γr

∑
s′

P(s′|s, a)Q π (s′, π (s′)) (3)

here R(s, a) is the reward when action a is performed in state
, P(s′|s, a) is the transition probability of reaching the state s′
fter executing action a when the system is in state s. γ is the

parameter that focuses the algorithm on short term reward (γ
near zero) or to long term rewards (higher values of γ ).

There are multiple algorithms that have been used to solve
this problem. In this case, we use active learning since we want
that the system can learn its policy with multiple trials on the

field. We did not use MonteCarlo methods since we desire to

6

improve the policy step by step, avoiding to learn at the end of
each training episode. We focused on a policy gradient technique
(instead of a value gradient), setting an arbitrary decision rule and
letting the evolution of the algorithm adjust the most suitable
decision for any state.

In particular, we applied the SARSA algorithm, that is a method
with temporal differences (does not need that the training episode
ends) and is ‘‘on policy’’. SARSA algorithm differs from Q-learning,
that is instead an ‘‘off policy’’ because the correction of the value
of the couple (state, action) is made according to the transition
between s and s’ with action a, chosen according to the current
policy [18]. The Q-learning chooses the best policy but tends
to be less robust. An example of this characteristic is shown in
the Cliff walking problem [58]. The SARSA algorithm provides a
good balance between exploration (evaluate the rewards from the
environment) and exploitation (maximizing the reward).

Considering training episodes lasting T seconds, the value of
an action, when the system is in a given state, is evaluated as:

Q (st , at )← Q (st , at )+ αt (Rt+1+

+γ (Q (st+1, at+1)− Q (st , at )))
(4)

the value of t is between 0 and T − 1. If a teacher assesses the
global performance, an additional reward is assigned at time T ,
the evaluation of Q is, at time T as shown in (5).

Q (sT−1, aT−1)← Q (sT−1, aT−1)+ αT (RT+

+γ (Q (sT , aT )− Q (sT−1, aT−1)))+ βTRM
T

(5)

where RT is the value of the reward as in previous instants
e.g. Table 3), while RM

T is the reward considering the global
valuation added at the end of the task or of the performance.
his computation is performed only when the teacher is present.
he training can be carried on with rare teacher rewards while
he self-improving learning is performed in all the other cases.
his learning strategy resembles the learning from a teacher,
hen guided trials are a limited part of the global training and
conspicuous part of learning is assigned to the student, or

he practitioner, that has to learn by himself. This autonomous
earning, moreover, fits very well with RL technique where a
eward, in the last instants of the trial, is propagated to previous
teps through multiple iterations.
For the convergence of the algorithm, it has been proven that

ARSA algorithm converges to the optimal action-value function
(s, a) → Q ∗(s, a) if the training is ‘‘Greedy in the Limit with

nfinite Exploration’’ (GLIE) [59,60]. In particular, a learning policy
s GLIE if it satisfies two conditions:

• all the state–action pairs are explored infinitely many times

lim
k→∞

Nk(s, a) = ∞ (6)

• the policies converge on a greedy policy

lim
k→∞

πk(a|s) = 1(a = argmaxa′∈AQk(s, a′)) (7)

According to the work of Robbins–Monro, the property of
being greedy in the limit with infinite exploration is granted if
the values of α are under the conditions that the step-seizes
α(rt ) [61]:
∞∑
t=1

αt = ∞ (8)

∞∑
t=1

α2
t <∞ (9)

In the case of a robot with a somatosensory system, the choice
of the action can be driven by the robot’s state and the collected

https://github.com/crss-lab/ASS4HR
https://github.com/crss-lab/ASS4HR
https://github.com/crss-lab/ASS4HR
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ewards, through learning, can drive the choice of the best action,
ased on the specific situation. In the following sections, we show
ow we modeled a choice mechanism that, according to the state,
an select the best behavior to execute a task.
For example, we considered the behavior of the robot as the

ay it executes a task. Instead of focusing on a choice of single
ctions that are strongly dependent from the robot activity, we
onsidered a set of modes that the robot can adopt to carry on its
asks.

In Section 5.1, we describe the training of the most adequate
odes during the execution. Modes are composed of a set of
arameters and drive the execution of operations. In Section 5.1.1,
he selection of three modes is done considering the Energy
oft sensor. In Section 5.1.2, the same roboception is used to
rigger the robot behavior, when a cognitive urge is present. An
dditional experiment is described in Section 5.2, where the robot
ehavior is focused on the Current Roboception and, beyond to
erform a sequence of movement, it chooses the mode to avoid
strong current flow. The code for the experiments described
bove is available under Apache License 2.0 at https://github.com/
ilippovella/Somatosensory_RL.

.1. Behavior mode selection through reinforcement learning

The complexity in the management of composite hardware,
uch as the robot hardware, can be reduced by selecting a set
f modes used to address the robot’s behavior. The action modes
re introduced to simplify the planning activities of the robot
nd to insert a layer aimed at synthesizing the operating modes,
hose choice is indirectly influenced by the global sensations of
he robot.

The modes, influenced by the bottom-up sensations processed
by the soft sensors, are selected considering the aim and the
accomplishment of the task. The modes selection can be seen as
an equilibrium point between the lower level instances and the
higher level demands.

We illustrate a set of experiments aimed at linking bottom-
up instances with, both the environment and task information.
A first experiment is related to Energy roboceptions, while a
second experiment deals with the soft sensor referring to Current
roboceptions. In the first case, a set of states have been properly
defined to drive the robot behavior. In the second case, the robot
has to choose among a set of movements with similar character-
istics. The aim of the experiments is to show how a robot can be
provided with the capability of behavior selection that modulates
its actions while the task is accomplished.

5.1.1. Action modes driven by energy soft sensor
In this section, we consider the robot behavior as depending

on the state provided by the quantized value of the Energy
soft sensor. Four states have been considered: Normal, Hungry,
Starved, Out of Charge. They depend on the output of the sensor.
The state as function of the Energy roboception is listed in Table 1.

The action to be performed, and that is learned through Re-
inforcement Learning, is the choice of one the working modes.
The robot executes the task with the Full mode or with Economy
mode. The third option, Recharge, activates the recharge process
postponing the execution of the task.The energy consumption is
higher in the Full mode and it is reduced in the Economy mode.
The mode does not affect the single action that is being performed
but it affects the speed and the required energy. The modes that
the robot can activate are shown in Table 2.

For each action, we considered a different reward that also
depends on the robot state. An example of reward is shown in
Table 3. To model the reward values according to a function, we
used the Poisson function in (10). The values of the function have
7

Table 1
States according the value of energy roboception.
Energy roboception State

[100%, 75%[ Normal : The energy roboception is high,
all activities can be carried on

[75%, 40%[ Hungry : The current roboception is
medium, a prolonged activity cannot be
carried on

[40%, 15%[ Starved: The current roboception is low,
activity in this state can bring to
a sudden stop

[15%, 0%] Out of Charge: The current roboception is
near to zero,no activity can be
performed, it is needed an external
intervention to continue any activity.

Table 2
Working modes for energy roboception.
Mode Description

Full the execution is unchanged with
respect to the planned task;

Economy the robot continues the execution of the
task changing (reducing) the set of movements
and slowing the speed of the execution

Recharge The robot stops the task execution and
activates a procedure to charge the battery and
restoring the energy roboception to Normal

Table 3
Rewards R(s) for the working modes and the energy states, generated with
Poisson function (Fig. 5(a)).
State Full Economy Recharge

Normal 124 68 −92
Hungry −18 75 −35
Starved −78 −9 30
Out of Charge −200 −200 −200

been sampled for n equal to 2, 4, 8. The value of λ has been set to 3
for the Normal state (red plot), to 5 for the Hungry state (green
plot)and to 7 for the Starved (blue plot) (Fig. 5(a)). To manage
integer values, the Poisson values have been multiplied for one
thousand and the value of one hundred has been subtracted
from any value of the reward. The plot of the function is given
in Fig. 5(a). The subplots shows two different setting, when is
present or not a cognitive Urge. The Urges are derived from Psi
architecture [45] and are detailed in Section 5.1.2.

The function has the form:

Pλ(n) =
λn

n!
e−λ (10)

It is derived from the Poisson distribution, that is a discrete
distribution, measuring the probability of a given number of
events occurring in a specified time interval. The function has
been chosen for the possibility of changing the distribution shape
varying one single parameter. This kind of distribution is com-
monly used to determine the probability of the number of events
taking place in unit time. In our case, it can be interpreted as
the motivation that the robot has in the accomplishment of the
task. A lower motivation allows the robot to stop the current op-
erations and activate the recharge procedure whenever it needs
more charge. On the other side, a stronger motivation overcomes
the physical needs and, as result, the robot tends to continue its
activity.

In Fig. 5(b), the Poisson function, with a boost in values, has
been plotted. In this case the increased values witness that a
different motivation is present. The values are sampled in the
same points as above. The values of λ has been set to 1 for the

https://github.com/filippovella/Somatosensory_RL
https://github.com/filippovella/Somatosensory_RL
https://github.com/filippovella/Somatosensory_RL
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Fig. 5. Plot of the Poisson Reward Values. Red is for Normal State, Green is
or the Hungry State, Blu is for the Starved State. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Table 4
Transition Matrix for the Full option.

Nrml Hngr Stvd OoC

Normal 0.4 0.5 0.1
Hungry 0.4 0.5 0.1
Starved 0.4 0.6
Out of Charge 1.0

Table 5
Transition Matrix for the Economy option.

Nrml Hngr Stvd OoC

Normal 0.5 0.4 0.1
Hungry 0.5 0.4 0.1
Starved 0.7 0.3
Out of Charge 1.0

Table 6
Average and sigma of Q π (s, a) of the work modes according to the energy states
in a training with 1000 epochs.
State Full Economy Recharge

Normal 197.7 ± 47.2 150.4 ± 34.0 41.8 ± 17.9
Hungry −4.3 ± 66.3 6.3 ± 69.3 81.5 ± 30.5
Starved −120.7 ± 64.8 −18.3 ± 83.5 171.5 ± 26.1
Out of Charge 0.0 0.0 0.0

Normal state, to 2 for the Hungry state and to 3 for the Starved.
his set of values will be used in Section 5.1.2.
Considering a learning constant α equal to 0.5 and a discount

ate γr equal to 0.7. The action selection has been carried on with
ϵ-greedy policy with a value of ϵ equal to 0.2. The transition
robabilities when the execution of the task is performed are
iven in Table 4 and in Table 5 and reflect the change between
he roboception during the execution of the tasks.

While the transition matrix for the action Economy are in
able 5 When the Economy mode is chosen, there is a higher
robability to remain in the same state of charge, while the more
emanding Full mode is characterized by a higher probability to
each the lower charge category.

The Q value has been calculated applying a SARSA greedy
olicy. The mean value of Q π (s, a) and the σ value for a training
ith one thousand epochs, are shown in Table 6.
According to these values, when the robot is in a Normal

tate, the preferred action is to work in a Full mode, that is
o act normally, at full pace, and trying to finish the task. In
he Hungry state the actions to be preferred are to continue to
ork in an Economy mode, preserving the consumption of some
esources or, even, to pass in Recharge mode. When the robot is
n a Starved state, the action with the best value is Recharge that
llows returning in the Normal state to continue the task when
he battery is recharged.
8

Table 7
Rewards R(s).
State Full Economy Recharge

Normal with a CognitiveUrge 84 −85 −100
Hungry with a CognitiveUrge 170 −10 −99
Starved with a CognitiveUrge 124 68 −92
Out of Charge −200 −200 −200

Table 8
Average and sigma of Q(s, a) of the work modes according to the energy states
when a Cognitive Urge is present, after 1000 epochs training.
State Full Economy Recharge

Normal w C.Urge 141.87 ± 54.26 −29.44 ± 42.88 −23.84 ± 29.59
Hungry w a C.Urge 42.73 ± 99.40 −48.68 ± 57.91 −46.16 ± 33.27
Starved w a C.Urge −133.84 ± 52.79 −96.78 ± 50.71 −19.39 ± 42.23
Out of Charge 0.0 0.0 0.0

5.1.2. Robot behavior when a cognitive urge is present
Beyond the previous case, where the decision is taken accord-

ing to the state of the robot’s somatosensory system, we also
considered the case when a cognitive urge is present. The urges
are formalized in Psi theory by D’́orner and used to characterize
the robot behavior according to physical and social needs [46,62].
The urges are used to identify several well-defined motives that
drive the human or robotic agent. Some of them are the need
for food, water, the avoidance of pain, certainty, competence and
affiliation. The authors of this paper have previously adopted this
architecture in [63,64] to drive a robot behavior. For the current
work, we consider that when an urge is present, not only the
bottom-up signals are considered but also a cognitive demand is
relevant. The robot behaves differently since the task has to be
completed. An example of such a scenario is when the robot is
performing a task that has a high priority and its accomplishment
is relevant.

A case of such sort could happen when the robot is performing
a task and the battery level is running low. The residual energy
is decreasing according to the normal evolution of the power
consumption but the task is so absorbing that the behavior of
the robot is modified to follow what the higher cognitive level
is demanding.

In this case, it is not only important to cope with the physical
data coming from the soft sensor but, in general, priority has to be
changed. The behavior of the robot can be sensibly modified and
the robot continues its work at a high speed instead of reducing
the power consumption and limit the work performances. The
presence of the cognitive urge changes the reward values for
the activities, according to the Poisson function, and therefore
modifies the Q value for the modes that should be chosen in each
state. A modified reward table can change the robot behavior
according to a new setting (Table 7). The value are generated
with the Poisson function (see Fig. 5(b)) with values of λ equal
to 1 for the Normal state, to 2 for the Hungry state and to 3 for
the Starved. The values are sampled at n equal to 2, 4 and 8 as
in the previous case. Following the previous interpretation, the
function, with lower values of λ, increases the rewards witnessing
the raised relevance of the task.

The reward is higher when the normal work is performed and
the recharge has a higher cost. The recharge should be avoided
and the other action should be chosen since the main push is to
complete the task. The new value for the actions in the states is
shown in Table 8

According to the above results, the preferred mode is the
Full mode both in Normal and in Hungry state. In this case,
although the battery level is not as full as at the beginning,
the preferred mode is to work at full speed and with higher
power consumption. This choice does not allow a long duration
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Fig. 6. Examples of the current value for the clusters.

f the performance but, standing a cognitive urge that asks to
erform as best as possible, all the given energy is focused on
he performance while the power consumption falls in a second
evel.

.2. Current roboception driven behavior

The possibility to endow a robot with dancing capabilities
s raising much interest at the moment and is an appealing
pplication in human robot interaction [65–68] .
In previous papers we discussed how the robot can acquire

ance movements by observing a human teacher and how can
ssociate proper sequences of movements with music [63,64,69–
1]. The teacher expresses a judgment on the goodness of the
obot’s dance influencing the underlying genetic algorithm. We
im to show how the robot’s physical conditions, inferred by
he somatosensory system, influence the dance balancing the
hysical demands and teacher’s judgment.
In this case, the humanoid ability to create and execute a

horeography relies on the computational creativity process pro-
osed in [72]. The creative process is exploited by the robot to
hoose, during the execution of the dance, the most appropriate
ovements according to the current situation. In this work, we
onsider the perception of the music and the robot’s internal
tate. The dance can be generated to fit a more general context
onsidering, for example, also people interacting with the robot.
During the dance’s execution, the robot can choose among

arious sets of movements. The movements are grouped in clus-
ers according to the current employed to execute them. Each
ovement is characterized by a reward, suggesting the beauty
f the single movement and a global reward can be given by the
eacher at the end of the task.

The somatosensory system can have an effect on the robot
ehavior and preserve its body. Since there are some movements
hat require less current while other are more demanding in term
f current to operate the engines, the selection of proper move-
ents can let the robot collect high rewards while preserving the
ngine from an excessive amount of current.
We run the robot’s behavior using 20 clusters of movements

hat can be used to pick a movement in the dance composition.
he clusters gather the movements according to their current
sage as shown in Fig. 6. The movements were acquired using
n RGB-Depth device and mapping the detected movement to the
9

Table 9
Working modes for the execution of movements chosen from 20 clusters, the
working mode is implemented with transition matrices that change to most
used clusters.
Mode Description

Mode 1 This transition matrix prefers the movements
High Current from the clusters with lower indices, that correspond

to high current. A statistic of occurrence of movements
for this mode is shown in Fig. 7(a)

Mode 2 The transition matrix selects the movements from any
Mixed clusters the value of the current is neither too low or

too high. A statistic of occurrence of movements for
this mode is shown in Fig. 7(b)

Mode 3 The transition matrix selects the movements from
Relaxing clusters with medium or low current, that are in the

center and in the right part of the histogram.
A statistic of occurrence of movements for this mode
is shown in Fig. 7(c)

cinematic chain of the Nao robot in a similar way to what is done
in [73].

An experiment with three modes is performed, the modes
characterize how the movements are chosen and have a tight
bond with flowing current (see Table 9).

The modes variation is accomplished with different transition
matrices used for each of the three modes. The statistic of occur-
rences of the number of clusters is shown in Fig. 7 and is shown
how the number of choices of the first cluster is higher in the
first mode. In the second mode, the clusters have been selected
in the left and in the middle part, meaning a reduced current.
In the third mode, most of the chosen clusters are in the central
part, while a few are chosen from the left, employing a minimum
current amount. In Fig. 8, additional plots are given. In Fig. 8(a),
the profile of the probability in the transition matrices is shown,
highlighting the differences between the three modes. In Fig. 8(b),
the value of current between the three phases is shown. The three
modes are employed in ten thousand iterations. Each mode is
activated for a third of the iterations. The vertical lines show the
change in the working modes.

We consider a free evolution according to the transition ma-
trices in the three different modes. The agent can choose which
mode is more suitable to limit the unpleasant roboception, in this
case resembling a painful sensation, and get the best reward.

The possible states, in this case, are three: Normal, Tired,
Aching. They are related to how unpleasant, in terms of task
execution, they are. While in the Normal state the robot will
complete the task, Tired represents an intermediate state. The
permanence in the state Aching will stop the execution of the
task.

Reinforcement learning is used to choose the best transition
matrix (corresponding to a given mode) when a different state
is reached. For each performed action it is associated a value,
according to the output of the current roboception soft sensor,
and a reward that is bound to the quality of the gesture. The
robot behavior, after the training phase, will be the result of a
trade-off between the pleasantness of the performed movements
and states driven by the current values. Since the active state
is strongly dependent on the previous actions, the movement
is chosen according to the instant reward and according to the
past actions given the rewards attributed by the teacher in the
evaluated performances.

The training process has been iterated for one thousand epochs
Each epoch is started with state Normal and Mode 1. The exe-
cution is run considering the transition matrices of the different
modes. The epoch is stopped when a convergence in State value is
obtained (if the variance in values is less than 0.005) or when the

state Aching is experienced for a long period, for this experiment
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Fig. 7. Statistics for Cluster occurrence in the three modes, a set of 10000 iterations has been performed. For each mode a third of the iterations have been considered.
Fig. 8. Statistics of Transition Matrix, Current and Pain in the three modes.
Fig. 9. Statistics of reinforcement learning.
etup ten seconds. In this latter case, the execution is abandoned
nd a reward of −100 is attributed. The strong negative reward
et the robot learn that it cannot stand a strong unpleasant
oboception for a long time and it has to act in alternative ways.
n Fig. 9, the evolution of some parameters during the train is
hown. In Fig. 9(a) the value of time length of a training episode
s shown. The first episodes have a lower a time length while
he duration is increased during the train, the plot shows how
he robot adjusts the mode to avoid an early stop for the task
ue to a prolonged negative state. In Fig. 9(b), it is shown the
urrent roboception during the episode, averaged with all the
alues, in the training process. The first portion of the episode
s typically characterized by an unpleasant roboception that is
voided with the actions that the system learns to apply. The
nd of the task shows a lower current roboception value. In
ig. 9(c), is shown the reward during the episodes. There is a first
10
peak related with high rewards at the initial step of the training,
these rewards also require a strong effort in terms of current.
Then a valley is present when the unpleasant roboception is
reduced, choosing instead lower current movements. At the end,
an increasing reward is shown when the selected movements
well balance negative roboception and collected rewards.

An evolution of how current roboception is processed during
train is shown in Fig. 10. The figures are related to episodes
during the training, the state of the robot is plot in blue and can
assume three possible values, the current roboception is plot in
red and ranges from zero and one. The states have labels reported
in Table 10 where a lower current roboception corresponds to
a Normal state (state 1); a higher value of current roboception
corresponds to a Tired state (state 2) and a higher pain is the
Aching state that is state 3. The red plot’s value shows how the
roboception can rise with exponential growth. The higher values
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Fig. 10. Sample of current roboception evolution during an episode.
Fig. 11. Working modes during training episodes.
Table 10
States according to the value of current roboception.
Current roboception Current State

[0.0, 0.3[ Normal : The current roboception is not high
and the activity can be carried on

[0.3, 0.8[ Tired : The current roboception is neither
too low or too high, a prolonged flow of
current can be critical

[0.8, 1.0] Aching: The current roboception is too high,
if this value is unchanged for a long time,
the robot can suffer permanent damage.

of the roboception are avoided since, for the experimental setup,
a long permanence with the strongest values of the roboception
would produce an immediate stop of the task and a global neg-
ative reward. While in 10(a) the maximum is not reached, in
Figs. 10(b) and 10(c) a saturation of the roboception is obtained,
the change in the working mode, according to the training phase,
allows the reduction of the roboception along the task execution.

In Fig. 11 are shown the same episodes of Fig. 10, where
he working mode is plotted. The working modes are related
o the use of electrical current, thereof more painful (1), mixed
ode (2) and a relaxed mode (3). Typically, the working mode
corresponds to the usage of actions with higher current. When

he plot has a peak downward (reaching the value 1) the pain
s, typically, going to increase. The other modes, two and three,
abeled asMixed or Relaxing are, in general, bound to a decrease in
he value of the pain and, therefore, to an increase in the reward.
ith blue color are plotted the modes, the switching among

hese modes allows to modulate the current and, therefore the
oboception. In red is plotted the reward that changes according
o the selected mode.

The values are initialized to zero and the value is corrected

ccording to the training evolution. The value changes and, as

11
Table 11
Average and σ value of Q π (s, a) for the working modes and the pain state. The
values are evaluated across 1000 epochs.

Mode 1 Mode 2 Mode 3
(High current) (Mixed) (Relaxing)

Normal 1.40 ± 0.27 1.41 ± 0.27 1.49 ± 0.24
Tired 0.22 ± 0.37 0.24 ± 0.34 0.41 ± 0.22
Aching −7.38 ± 3.88 −7.39 ± 3.90 −3.13 ± 3.96

shown in Fig. 12 tend to converge towards a limit value. The
training is stopped either when the number of iteration is reached
or when the maximum variance of the three values, in the last
twenty samples, is less than one above one thousand. State Nor-
mal has a value that is positive, state Tired has a value that is
negative and then slightly positive. The value of the Aching state
is strongly negative at the beginning, given by the fact that a set of
the episode are terminated with a −100 reward. During training,
the change of mode allows the robot to escape from states with
a negative reward and complete the task within one of the other
states. In general, since this state is the most painful, the value is
negative.

The value of average and σ of the Q π (s, a) in one thousand
training epochs, is shown in Table 11. For the obtained values,
the best choice is to act according to the Mode 3, that is relaxing
and the value of pain is limited. In any case, the actions’ selection
allows the robot to choose also other modes that will provide
different evolution and different rewards. The preferred choice
with the Relaxing mode brings to a limitation in pain and in the
recovery after painful roboceptions.

The values of the single states are: Normal has a value of 1.47
with a sigma equal to 0.25, the Tired state has a value of 0.38
with a sigma of 0.24 and the Aching state has a value of −3.67
with a sigma of 3.47.
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Fig. 12. Evolution of the State Value during a training epoch, the initial negative
minimum value is due to episodes that are interrupted with a strongly negative
reward, during the training the mode selection allows to increase the collected
reward and, consequently, the states value.

Fig. 13. Quiver Plot of the change in Mode and State in the training, the values
have been normalized for each couple (State, Action).

To synthesize the evolution of the state, according to the
hosen action, it is shown the quiver plot in Fig. 13. It can be
een that there is a tendency to migrate from the mode with High
urrent and the Mixed mode, towards the Relaxing mode. It is a
general tendency to reach the right part of the graph. At the same
time, from the Aching state there is a tendency to go towards the
state with a higher value, such as Tired and Normal. In general,
since greedy policy allows any action, a generic action is allowed,
although the training enables the system to escape to the most
painful situation and continue the task with acceptable levels of
unpleasant roboception while maximizing the reward.

6. Conclusion

The assumption of this work is that a robot, aware of its
body and able to interpret physical sensations, can be more
12
effective in the accomplishment of tasks while maintaining its
well being. Loosely inspired by human beings’ biology, we pro-
posed an artificial somatosensory system to synthesize the robot’s
body information and make it improve its behavior selecting
good choices that take into account task aims and robot em-
bodiment. The system was modeled focusing on a specific robot,
the NAO Aldebaran, even if the model is easily adaptable to
different robotic platforms and the architecture can be enriched
with hardware monitoring functions.

The behavior of the robot depends on a cognitive architecture.
The robot’s motivation is influenced by its cognitive and phys-
iological urges and the latter are tightly bound to the specific
physical status of the robot.

The experimental results summarize the costs associated to
different movements and the motivation that influences the
choices of an artificial dancer in different ‘‘physical’’ conditions.
We analyzed the roboception of motor current, that resemble a
pain ‘‘sensation’’ and the values of the ‘‘energy’’ values that can
be bound to a ‘‘hunger’’ sensation.

Substantial differences between a human being somatosen-
sory system a robotic entity have been highlighted, especially
for low-cost consumer robot, equipped with elementary sensors
designed to monitor several basic parameters. A relevant point
for the robot is the perception of their internal state that, together
with other processes tied to a cognitive dimension, can play a key
role in the emergence of high-level emotions.
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