
Capacitive Touch Sensing on General 3D Surfaces

GIANPAOLO PALMA, CNR - ISTI, Italy

NARGES POURJAFARIAN, Saarland University - Saarland Informatics Campus, Germany

JÜRGEN STEIMLE, Saarland University - Saarland Informatics Campus, Germany

PAOLO CIGNONI, CNR - ISTI, Italy

Fig. 1. Our computation fabrication method for multi-touch sensing on general 3D surfaces. (Left) 3D models with grooves to accommodate the touch sensor

conductors and the internal pipes to connect the surface lines with the touch controller. (Center) Photo of the 3D printed prototypes equipped with the touch

sensor grid made of enamelled unipolar solid copper conductor. (Right) An example of touch interaction with two fingers with the relative positions computed

on the 3D model.

Mutual-capacitive sensing is the most common technology for detecting

multi-touch, especially on flat and simple curvature surfaces. Its extension

to a more complex shape is still challenging, as a uniform distribution of

sensing electrodes is required for consistent touch sensitivity across the

surface. To overcome this problem, we propose a method to adapt the sensor

layout of common capacitive multi-touch sensors to more complex 3D sur-

faces, ensuring high-resolution, robust multi-touch detection. The method

automatically computes a grid of transmitter and receiver electrodes with

as regular distribution as possible over a general 3D shape. It starts with

the computation of a proxy geometry by quad meshing used to place the

electrodes through the dual-edge graph. It then arranges electrodes on the

surface to minimize the number of touch controllers required for capacitive

sensing and the number of input/output pins to connect the electrodes with

the controllers. We reach these objectives using a new simplification and

clustering algorithm for a regular quad-patch layout. The reduced patch

layout is used to optimize the routing of all the structures (surface grooves

Authors’ addresses: Gianpaolo Palma, gianpaolo.palma@isti.cnr.it, CNR - ISTI, Visual

Computing Lab, Pisa, Italy; Narges Pourjafarian, pourjafarian@cs.uni-saarland.de, Saar-

land University - Saarland Informatics Campus, Human-Computer Interaction Lab,

Saarbrücken, Germany; Jürgen Steimle, steimle@cs.uni-saarland.de, Saarland Univer-

sity - Saarland Informatics Campus, Human-Computer Interaction Lab, Saarbrücken,

Germany; Paolo Cignoni, paolo.cignoni@isti.cnr.it, CNR - ISTI, Visual Computing Lab,

Pisa, Italy.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 0730-0301/2024/7-ART103

https://doi.org/10.1145/3658185

and internal pipes) needed to host all electrodes on the surface and in-

side the object’s volume, considering the geometric constraints of the 3D

shape. Finally, we print the 3D object prototype ready to be equipped with

the electrodes. We analyze the performance of the proposed quad layout

simplification and clustering algorithm using different quad meshing and

characterize the signal quality and accuracy of the capacitive touch sensor

for different non-planar geometries. The tested prototypes show precise and

robust multi-touch detection with good Signal-to-Noise Ratio and spatial

accuracy of about 1mm.

CCSConcepts: •Computingmethodologies→ Shape analysis; •Human-
centered computing→ Interaction devices.

Additional Key Words and Phrases: capacitive touch sensing, geometry

processing, interactive surface

ACM Reference Format:
Gianpaolo Palma, Narges Pourjafarian, Jürgen Steimle, and Paolo Cignoni.

2024. Capacitive Touch Sensing on General 3D Surfaces. ACM Trans. Graph.
43, 4, Article 103 (July 2024), 20 pages. https://doi.org/10.1145/3658185

1 INTRODUCTION

The rapid advancement of capacitive touch sensing technology has

revolutionized how we interact with digital devices and interfaces.

While capacitive touch sensing has been widely implemented on

flat surfaces such as touchscreens, the growing demand for more

intuitive and immersive user experiences has led to exploring touch

sensing on 3D surfaces. Capacitive touch sensing on complex 3D

surfaces offers new possibilities for interaction and expands the

range of objects that can be transformed into interactive interfaces.

However, extending high-resolution, multi-touch sensing to 3D

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0002-1032-2092
HTTPS://ORCID.ORG/0000-0001-5298-6797
HTTPS://ORCID.ORG/0000-0003-3493-8745
HTTPS://ORCID.ORG/0000-0002-2686-8567
https://orcid.org/0000-0002-1032-2092
https://orcid.org/0000-0001-5298-6797
https://orcid.org/0000-0003-3493-8745
https://orcid.org/0000-0002-2686-8567
https://doi.org/10.1145/3658185
https://doi.org/10.1145/3658185

103:2 • Palma et al.

CBGCRGCTG

CTR

CRBCTB

Ci

Ri

 Transmit
Electrode

 Receive
Electrode

Transmit Electrodes (Tx)

R
e

ce
iv

e
 E

le
ct

ro
d

e
s

(R
x)

Fig. 2. (Left) Mutual capacitance touch sensing principle. (Right) Mutual

capacitance sensor grid.

surfaces poses several significant challenges that must be addressed

to ensure accurate and reliable touch detection. These challenges

are related to the complex geometry and irregular surfaces of 3D

objects, which can cause uneven electric field distribution, leading

to inconsistent touch sensitivity across different areas of the object

and affecting touch detection accuracy.

Capacitive Sensing Principles. Mutual capacitance sensing is the

most common technology for achieving high-resolution, multi-

touch detection on planar surfaces. This technique leverages the

capacitive coupling effect, which occurs when two conductive ob-

jects (the transmit and receive electrodes) are positioned in close

proximity. When an additional conductive object, such as the human

body, approaches the electrodes, it establishes a capacitive coupling

with the electrodes, causing a displacement of the current through

the body to the ground (left Figure 2). By measuring the reduction

in current at the receive electrode, the proximity of the body can be

accurately determined [Barrett and Omote 2010; Grosse-Puppendahl

et al. 2017].

A mutual capacitance touch sensor comprises two layers of con-

ductors: the transmitting electrodes and sensing electrodes - conven-

tionally called transmit electrodes (Tx) and receive electrodes (Rx).

These layers are electrically insulated from each other by a dielectric

material. The electrodes are arranged in a two-dimensional regular

grid pattern, creating intersecting points. These intersections yield

distinct touch-coordinate pairs, enabling the touch controller to

measure each intersection independently. Our current implemen-

tation uses a rectangular electrode layout formed by overlapping

straight lines (right Figure 2). Although this pattern is marginally

less efficient than the more commonly used diamond pattern, it is

easier to implement and fabricate. In mutual capacitance sensors,

it is essential to maintain a uniform spacing between electrodes to

achieve reliable and accurate touch detection. The spacing between

the transmit and receive electrodes influences the capacitance cou-

pling between them. If the spacing between the electrodes is not

uniform, it can lead to variations in the coupling capacitance at

different points on the sensor surface. These variations can result

in inconsistent or inaccurate readings.

Contribution. This paper presents a new computational fabrication

method to automatically arrange practical sensor grids on objects

with a general shape, enablingmulti-touch detection across their sur-

faces. The proposed method focuses on three design requirements

of a mutual-capacitive line pattern sensor. The first requirement is

to uniformly distribute the intersections of the sensing grid on the

surface, aiming to ensure precise and accurate multi-touch detection.

The second requirement is to minimize the number of capacitive

touch controllers for sensing the entire surface, reducing the com-

plexity and cost of the electronic hardware prototypes. The third

requirement is to minimize the number of internal pipes to connect

the sensor lines to the controllers to ensure a practical fabrication

process. To meet these requirements, our approach proposes a new

decomposition, simplification, and packing algorithm for the quad

patch layout of a quad mesh that aims for efficient sensor placement.

Our input is the watertight triangle mesh of the object to be en-

riched with multi-touch sensing. We compute a proxy geometry

using a quad meshing technique that preserves feature lines like

borders and sharp creases [Pietroni et al. 2021]. The isometry and

regularity properties of the quad meshing algorithm provide a uni-

form distribution of the electrodes’ intersection points on the surface.

Since a quad mesh contains singularities, we have to decompose it

into a layout of patches containing only regular arrangements of

quads that can be used for creating sensor grids. For this reason,

we compute a quad patch layout with the motorcycle graph algo-

rithm and further simplify it to get a coarse layout. Then, we pack

these patches into the rectangular region that the capacitive touch

controller can sense. This algorithm is designed to generate the

minimum number of regular clusters of close patches, optimizing

the continuity of the Tx-Rx field to reduce the number of controllers

and input/output conductors. Using the packed layout, we generate

the sensor grid mesh as the dual edge-graph of the quad mesh. This

edge mesh provides the information to arrange the transmit and

receive electrodes on the surface.

From this geometric arrangement, we define the 3D model for the

physical prototype by back-projecting the sensor grid mesh onto

the triangular mesh. We use the grid to generate the surface grooves

that are conduits to accommodate the line conductors on the surface.

Finally, we compute a routing of pipes that internally connect the

surface conductors with the controllers placed outside the object’s

volume. The physical prototype is 3D printed with a dielectric ma-

terial. The sensor conductors (made of enamelled unipolar solid

copper) are manually pulled inside the pipes and along the grooves

and connected to the capacitive touch controller. Since the proposed

technique is generic, we can extend it with straightforward modifi-

cations to more automatic and advanced fabrication processes based

on the simultaneous printing of dielectric and conductive materials.

We evaluated the 3D-printed prototypes by measuring the Signal-

to-Noise Ratio (SNR) and the spatial accuracy of the touch detection

in static and dynamic conditions. The test results show good SNR

values and an excellent spatial accuracy of about 1mm, with mini-

mum degradation for a few challenging surfaces with sharp features

and issues due to manual fabrication and assembly.

2 RELATED WORK

In this section, we place our contributions within three different

contexts: the creation of touch sensing objects with a general shape;

the quad patch decomposition of a 3D model; the cable routing

problem within a bounded 3D volume.

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:3

2.1 Touch Sensing

Touch is a natural way to interact with everyday objects and sur-

faces and can provide an intuitive and convenient user interface.

To enable touch sensing, a range of technologies has been devel-

oped, including optical methods such as frustrated total internal

reflection (FTIR) [Han 2005] and depth cameras [Harrison et al.

2011a; Palma et al. 2021; Wilson 2010], as well as acoustic [Har-

rison et al. 2011b; Michael C. Brenner 1985] and resistive meth-

ods [Sundholm et al. 2014]. Additionally, electric field sensing [Zim-

merman et al. 1995], impedance profiling [Sato et al. 2012], time-

domain reflectometry [Wimmer and Baudisch 2011], and electric

field tomography [Zhang et al. 2017] have been explored. Among

these technologies, projected capacitive sensing has emerged as the

most widely adopted method [Gray 2019; Grosse-Puppendahl et al.

2013]. This technology offers the advantage of high accuracy and

resolution in detecting touch events. There are various operating

modes of projected capacitive sensing, which have been reviewed

by Grosse-Puppendahl et al. [Grosse-Puppendahl et al. 2017]; we

refer to mutual-capacitance sensing technology, commonly used

for commercial touchscreens and detecting multiple simultaneous

touch contacts.

Touch Sensing on Everyday Objects. Researchers have developed a

variety of approaches to enable touch interaction on everyday ob-

jects and surfaces while preserving their distinct geometric, visual,

and tactile features. Inherently conductive objects can act as the

touch sensor [Sato et al. 2012]. A common approach for sensing

on a wider range of objects is to print a deformable touch sensor

on different materials using inkjet printing [Kawahara et al. 2013;

Khan et al. 2019; Pourjafarian et al. 2022] or screen printing [Olberd-

ing et al. 2014]. Moreover, existing objects can be enhanced with

a thin sensing layer through hydrography [Groeger and Steimle

2018], by spraying functional materials on the objects [Wessely et al.

2020; Zhang and Harrison 2018; Zhang et al. 2017], or by attach-

ing functional stickers or patches [Cheng et al. 2020; Klamka et al.

2020; Strohmeier et al. 2018]. Another approach involves creating

artificial skin with embedded tactile sensation for human-robot in-

teraction [Cannata et al. 2008; Mukai et al. 2008; Teyssier et al. 2021;

Tomo et al. 2018]. However, covering a large and highly irregular

surface with touch sensing remains challenging, in particular due

to the internal wiring and readout of the sensing electrodes.

Sensors in 3D Printed Objects. A stream of research investigates how

to embed customized sensors in 3D-printed objects, exploring sev-

eral sensing techniques. Examples include using optical fibers [Willis

et al. 2012], pipes routed inside the 3D objects [Savage et al. 2014],

or transmission of acoustic signals [Laput et al. 2015]. More recent

work has 3D printed conductive elements along with the object,

for instance, to integrate capacitive touch sensing [Burstyn et al.

2015; Schmitz et al. 2015, 2019], deformation sensing [Schmitz et al.

2017] and to integrate sensing into 3D printable metamaterial struc-

tures [Gong et al. 2021]. The field, however, still lacks a systematic

workflow for the design and fabrication of high-resolution multi-

touch sensors as suggested by [Götzelmann and Althaus 2016].

Building on this research, this work takes up the idea of seamless

integration of touch interfaces on complex geometries. It presents

a novel approach for designing and fabricating 3D printed objects

with integrated high-resolution multi-touch sensors.

2.2 Quad Patch Decomposition

Our proposed quad-patch decomposition method draws inspiration

from existing solutions for partitioning surfaces into quadrilateral

patches. The computation of a quad patch layout serves various

purposes, such as quad remeshing [Campen et al. 2015], high-order

surface approximation [Panozzo et al. 2011], isomorphisms between

meshes [Eppstein et al. 2008], and surface parameterization. For a

comprehensive overview of quad layout generation, please refer

to [Campen 2017]. A common approach for quad layout generation

involves tracing boundary lines over the surface using triangular

meshes accompanied by a cross-field as input [Campen et al. 2015;

Pietroni et al. 2016; Razafindrazaka et al. 2015]. Similar solutions

have been proposed for irregular and regular quad meshes, where

the tracing becomes a simple traversal of mesh edges across regular

vertices [Eppstein et al. 2008; Tarini et al. 2011]. Another class of

solutions [Pietroni et al. 2016; Razafindrazaka and Polthier 2017;

Razafindrazaka et al. 2015; Zhang et al. 2016] is based on creating

a graph of separatrices between irregular vertices, followed by a

simplification procedure formulated as a global binary optimization

problem to prune the set of all possible arcs. These solutions result in

an over-segmentation (for helical configuration, the graph converges

towards solutions with patches made by a single quad), leading to

highly complex layouts. On the contrary, our solution, starting

from a quad layout induced by a Motorcycle graph [Eppstein et al.

2008], proposes a pruning of edge chains using a global binary

optimization. This guarantees the creation of a simplified quad

layout by removing low-quality patches (such as strip and single

quad patches) and ensures a feasible design for the sensor grid on

the surface. Furthermore, we define a set of geometric operators to

improve the shape of the patches, similarly to [Myles et al. 2010],

The generalization of theMotorcycle Graph proposed in [Schertler

et al. 2018] allows a robust quad patch decomposition for UV map-

ping that is insensitive to local irregularities in quad-dominant

meshes. While the ultimate goal of our patch decomposition algo-

rithm remains the same, the generalized Motorcycle Graph gen-

erates patches that are non-isomorphic to a regular grid, as the

singularities can be incorporated inside the patches. A similar con-

straint on the singularities is proposed in [Wu et al. 2022] to cut

the surface into a single topological disk with a region-growing

procedure without any restrictions on the size of the disk shape.

Conversely, for our purposes, we require a decomposition into reg-

ular patches to create a regular grid of touch sensors for each.

2.3 Cable Routing in a 3D domain

Routing cables and pipes in a 3D domain helps create interactive 3D-

printed objects. Several solutions have been proposed to establish

electrical connections among electronic components attached to the

3D-printed object by fabricating conductive traces on its surface.

SurfCuit [Umetani and Schmidt 2017] lays out the electric parts and

traces on a 3D surface using a user-assisted geodesic algorithm start-

ing from the 2D circuit diagram. MorphSensor [Zhu et al. 2020b]

is a design tool that morphs existing sensor modules onto a 3D

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:4 • Palma et al.

Input Mesh Data Preparation Patch Decomposition Patch Packing Geometry Generation Fabrication
Section 4 Section 5.1 Section 5.2 Section 6 Section 7

Fig. 3. Processing pipeline. Starting from a triangle mesh, we compute a proxy quad mesh, cluster the quads in a coarse quad patch layout, and pack this

layout in the sensing regions of the touch controllers. Then, we compute the final geometry of the prototype, generating the surface grooves to accommodate

the sensor conductors and internal pipes to connect these conductors with the controllers. The final step is the physical fabrication of the prototype.

shape of a physical prototype. It involves assisted electronic compo-

nent arrangements and a manual drawing tool to create conductive

traces on the surface. Plain2Fun [Wang et al. 2018] allows for the

automatic design of circuit layouts onto the surfaces of scanned 3D

models of existing objects using geodesics on the surface. Other

solutions are based on printing the circuit on a 2D layout that is

deformed to adapt it to the 3D surface by thermoforming and copper

electroplating [Hong et al. 2021] or by computing flat structures

that self-morph into preprogrammed 3D shapes when triggered by

external heating [Wang et al. 2020].

Another approach, more similar to our solution, involves creating

internal pipes inside the 3D object to connect electronic components.

The most relevant work [Savage et al. 2014] is based on creating

internal paths using an A* search algorithm on a voxel representa-

tion of the object. It is followed by physical simulation with force

constraints to smooth the paths. The pipes are routed and smoothed

serially without any global optimization. The algorithm has been

used in several papers focusing on the construction of touch and

force sensors for interactive objects [Schmitz et al. 2015, 2019], aim-

ing to generate a limited number of internal pipes. Expanding this

approach to more complex layouts with a higher number of inter-

nal channels was only possible with the manual feedback from the

user [He et al. 2022]. On the contrary, our method can generate

a compact bundle of paths inside the object, avoiding that a path

prevents the creation of other ones. CurveBoards [Zhu et al. 2020a]

embeds the structure of a breadboard into the surface of a physical

prototype to generate pinholes on a 3Dmodel’s surface and establish

relative connections using quad meshing. In this case, generating

internal pipes is easier because they connect sets of close pinholes

along the same curve. Generating a few internal pipes is also used

to enhance deformable input devices with internal sensors [Bächer

et al. 2016].

Finally, there are solutions to generate internal pipes inside a vol-

ume to fabricate 3D-printed fiber optics automatically. One approach

involves generating a compact set of fiber optics paths between

two input surfaces to route light between them for sensing and

display [Pereira et al. 2014]. The algorithm optimizes light transmis-

sion by minimizing fiber curvature and maximizing fiber separation

while respecting constraints such as fiber arrival angle. However, it

does not impose any constraints on the containing volume of the

fibers. FibAR [Tone et al. 2020] proposes an automatic method to

generate a set of fiber optics inside an object, creating a constellation

of active markers on its surface for dynamic projection mapping.

The method is based on an iterative refinement of initial paths de-

fined as straight lines between the two endpoints. Nonetheless, the

iterative refinement process becomes less robust as the number of

routes to generate increases.

3 METHOD OVERVIEW

The input of our method is a watertight triangle mesh of the object

to augment with multi-touch sensing. The final goal is to create a

sensor grid on the mesh that is as regular as possible, enabling the

detection of multiple touch points on the surface of the 3D-printed

prototype. Following the capacitive sensor design guideline [Mi-

crochip 2012], we target a 7𝑚𝑚 spacing among the electrode lines

in the grid. To accommodate the sensor grid on the object, we need

to generate two types of traces: a grid of grooves on the surface to

accommodate the Rx and Tx lines of the capacitive touch controller

and a set of internal pipes to connect the electrode lines on the

surface to the touch controller through the object’s interior. We

propose the processing pipeline shown in Figure 3.

We start with a data preparation step (Section 4) that completes

two tasks. The first task detects and removes the critical surface

regions of the triangle mesh. The second task performs a quad

meshing to achieve as regular as possible quads, ensuring an average

edge length matching the desired spacing among the touch sensor

lines. In this way, we attain a more uniform distribution of the

intersection points of the sensor grid on the surface. The positioning

of the sensing grid is determined by the edges of the dual graph of

the quad mesh, which we refer to as the sensor grid mesh.

The quad mesh is the input for a new simplification and pack-

ing procedure for quad patch layout (Section 5). The main goal

is to compute the minimum number of clusters of quad patches

that, once packed into the rectangular sensing region of the touch

controller defined by its number of Rx and Tx lines, minimize the

number of required controllers and input/output pins. Initially, we

compute the quad patch layout of the quad mesh using a straight-

forward motorcycle graph algorithm. The simplest solution is a 2D

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:5

bin packing algorithm [Lodi et al. 2002], where each patch is packed

independently. However, it requires a number of input/output pins

to connect the electrodes of each patch on the surface and the touch

controller equal to the sum of the semi-perimeter of all patches.

We propose a new procedure based on two steps to achieve our

goal. The first step is a simplification method (Section 5.1) that

prunes edge chains in the motorcycle graph. This simplification re-

duces the number of patches, emphasizing eliminating small patches

composed of a quad strip or a single quad. During simplification,

we enforce the creation of regular patches where all the irregular

vertices are along the borders (all the internal points are regular

points). This constraint allows the dual-edge graph to transform

each patch into a regular grid. The second step is a greedy clustering

and packing procedure (Section 5.2) to partition the simplified quad

layout into the minimum number of clusters of adjacent patches,

preserving the continuity of the Tx-Rx field. These clusters can be

packed efficiently within the sensing region of the touch controllers,

minimizing both the number of pins and the number of required

controllers. The outcome of this procedure is the sensor grid mesh,

which indicates the electrode placement on the surface of the quad

mesh based on the constraints defined by the packing process.

The next stage involves generating the geometry of the prototype

for 3D printing (Section 6). Once the sensor grid mesh is projected

onto the triangle mesh, we carve the original geometry with grooves

to accommodate the Tx-Rx sensor lines. Then, since the packing

procedure potentially maps quad strips located far apart on the

surface to the same sensing line, we need to establish connections

among these strips in a serial way using only a single conductor. In

this way, we simplify the fabrication step without joining multiple

conductors of the same line by soldering. We generate internal

pipes within the object to link these strips with the touch controller.

While generating the pipes, we enforce two constraints: a curvature

constraint to facilitate the smooth passage of the conductors and

a minimum distance constraint among the pipes to prevent the

cross-talk effect between closely parallel lines.

The final step is the fabrication process (Section 7). The 3D pro-

totype is created by material jetting 3D printing using a plastic

dielectric material. Subsequently, we manually thread the copper

conductors through the grooves and internal pipes, following the

order shown by a visualization tool. Finally, we set up the hardware

boards, enabling touch sensing over the surface of the fabricated

prototype.

4 DATA PREPARATION

The data preparation involves two steps: i) the detection and re-

moval of the critical regions of the triangular mesh that cannot be

sensorized and ii) the quad meshing of the remaining surface.

The first step is identifying regions too thin to physically accom-

modate the sensor grid. We require a minimum object thickness

to ensure the proper arrangement of sensors made by conductors

with a diameter of 𝑑𝑤𝑖𝑟𝑒 . The thickness is the sum of two terms

𝑡𝑚𝑖𝑛 = 𝑑𝑠𝑒𝑛𝑠𝑜𝑟𝑠 + 𝑑𝑝𝑖𝑝𝑒𝑠 : the minimum depth 𝑑𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 4𝑑𝑤𝑖𝑟𝑒

required to host the two types of sensing lines (Rx and Tx) within

the grooves just below the surface (at different depths 𝑧𝑅𝑥 and 𝑧𝑇𝑥
to permit the physical creation of intersection between the lines)

keeping them isolated by the internal pipes; the minimum space

needed to create at least an internal pipe with diameters 𝑑𝑝𝑖𝑝𝑒𝑠 . Our

approach detects and removes surface areas with a thickness below

the threshold 𝑡𝑚𝑖𝑛 . Initially, we select faces of the input mesh that

have a vertex at a distance from the inner surface at depth 𝑡𝑚𝑖𝑛

above the threshold 𝑡𝑚𝑖𝑛 + 𝛼 , where 𝛼 is the voxel size used for

extracting the inner surface. We then eliminate isolated regions

with small areas or stretched shapes by applying the morphological

opening on the selected triangles. Removing these regions avoids

introducing additional border constraints that could lead to more ir-

regular vertices, low-quality quad remeshing, and fragmented quad

patch decomposition. Then, we compute smooth polylines to handle

jagged borders. We use the smooth polylines to cut out the critical

regions from the input triangle mesh. Additionally, we remove a

user-selected area, typically at the bottom of the object, for the exit

of the internal pipes connecting the electrodes with the controllers.

The second preparation step involves the quad remeshing of the

remaining triangle mesh (e.g., the portion of the original surface

that needs to be sensorized). We employ a state-of-the-art algorithm

[Pietroni et al. 2021] that ensures high-quality isometric, pure-quad,

conforming meshing while preserving feature lines such as borders

and sharp creases. The remeshing algorithm’s isometry and regu-

larity properties enable the generation of quads with more uniform

edge lengths, resulting in a sensor grid with evenly distributed line

intersections. Preserving feature lines is important for achieving a

high-quality quad mesh on the borders of the cut areas.

5 PATCH DECOMPOSITION AND PACKING

Starting from the quad remeshing, we compute a quad patch layout

decomposition using the motorcycle graph algorithm [Eppstein et al.

2008] to find a layout of regularly gridded patches that can host the

Tx-Rx sensor lines. The algorithm traces motorcycle particles along

the edges of the quad mesh spawned at each no-border edge around

the irregular vertices. Specifically, an internal irregular vertex with

a valence of deg(𝑣) ≠ 4 generates deg(𝑣) motorcycles (represented

by red and green vertices in Figure 4), while a border irregular

vertex with a valence of deg(𝑣) ≥ 4 generates deg(𝑣) − 2 particles
(represented by yellow vertices in Figure 4). The tracing is done

in parallel, and each motorcycle advances straight in a topological

sense. Amotorcycle stops when it reaches a vertex already visited by

another motorcycle or a mesh border. If two motorcycles collide in

the same regular vertex from orthogonal directions during the same

tracing iteration, we stop the motorcycle created by the irregular

vertex with higher valence. If they have the same valence, we stop

the motorcycle generated by the vertex with the higher index. The

output is a partition of the mesh in regular rectangular patches with

all the irregular vertices located on the border (Figure 4a and 4d).

As discussed in [Eppstein et al. 2008], the resulting partition

of the motorcycle graph algorithm is an over-segmentation, and

computing a partition with the minimum number of patches is

an NP-complete problem. A well-defined approach to reduce the

number of patches is to trace a smaller number of motorcycles

𝑛 = ⌈deg(𝑣)/2⌉ for each irregular valence-deg(𝑣) vertex, ensuring
that no two consecutive incident edges of the irregular vertex re-

main unused. However, the selection criteria for determining which

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:6 • Palma et al.

(a) (b)

(c)

(d) (e)

(f)

Fig. 4. Starting from the irregular vertices, the motorcycle graph algorithm computes a quad patch layout (Figures 4a and 4d blue: T-vertex, green: deg(3) , red:
deg(5) , yellow: irregular border). As described in Section 5, we reduce the number of patches and the over-segmentation (Figure 4b and 4e). In the bottom

(Figure 4c and 4f), we show some not-optimal quad layouts generated by motorcycle tracing using 𝑛 = ⌈deg 𝑣/2⌉ particles for each irregular vertex; while

coarser than the plain motorcycle output, they present problematic issues (quad strips, single quad patches or a higher number of patches).

edges to use around each irregular vertex significantly impact the

quality of the final quad layout partition, specifically in terms of

the number of patches and their shape quality, as shown in Fig-

ures 4c and 4c. Our objective is to avoid the creation of a partition

with quad strips or single quad patches, as they require a higher

number of input/output pins concerning the covered area. These

low-quality patches arise from singularity configurations generated

by the quad meshing algorithm. The first configuration involves

a quad with two irregular vertices on the diagonal, each having a

different valence (typically 5 and 3). This configuration generates a

single quad patch and two quad strips (as shown in Figure 4a). The

second configuration produces a quad strip (as depicted in Figure

4d) due to the misalignment of two irregular vertices. This misalign-

ment originates from the singularity alignment term within the

patch-side tessellation process described in [Pietroni et al. 2021],

which may not be satisfied in specific shape configurations because

it is modelled as a soft constraint.

To minimize the number of patches and improve their shape qual-

ity, we propose a new simplification algorithm for the quad patch

layout generated by the motorcycle graph (Figure 5a). The algo-

rithm prunes edge chains generated by the motorcycle particles by

solving a global Integer Linear Program (ILP) followed by an energy

optimization to improve the shape quality of the patches (Section

5.1 and Figure 5b). Once the patch layout has been simplified, we

pack the patches within the rectangular sensing region defined by

the number of Tx and Rx lines of the capacitive touch controller

(Section 5.2). The objective is to establish a mapping function of

each patch inside the sensing region that preserves the adjacencies

between patches as much as possible. We tackle this problem by

solving the global assignment of the Tx and Rx roles to each patch

side, aiming to minimize discontinuities between adjacent patches.

Subsequently, we employ a greedy approach to cluster the quad

patches, ensuring the minimum number of clusters is created to re-

duce the total number of input/output pins (Figure 5c). Each cluster

must have a bounding rectangle that does not exceed the size of

(a) (b) (c) (d)

Fig. 5. Quad patch decomposition and packing at the different stages of

the procedure described in Section 5: (a) patch layout by the motorcycle

graph; (b) patch layout after the simplification algorithm in Section 5.1; (c)

clustering of the patch layout; (d) packing of the cluster into the sensing

region of the controllers.

the sensing region. Finally, we pack the clusters within the sensing

region, optimizing the placement to reduce the overall number of

required capacitive touch controllers (Figure 5d).

5.1 Quad Patch Layout Simplification

Using the paths generated by the motorcycles, we build the relative

tracing graph𝐺 = ⟨𝑉 = 𝑉𝑠 ∪𝑉𝑡 , 𝐸⟩. The set𝑉 contains the irregular

vertices𝑉𝑠 and the T-vertices𝑉𝑡 generated by a motorcycle collision

with the path of another motorcycle or with the mesh border (blue

vertices in Figure 4). The set 𝐸 contains an edge for every pair

of vertices in 𝑉 connected by a chain of edges of the quad mesh

visited by a single motorcycle or two motorcycles after a head-on

collision. In the first case, the edge connects an irregular vertex

and a T-Vertex, and we assign it a multiplicity weight𝑚𝑖 = 1. In

the second case, it connects two aligned irregular vertices, and we

assign it a multiplicity weight𝑚𝑖 = 2. Each edge stores its list of

edges within the quad mesh as a half-edge list. Additionally, we

define a per-vertex multiplicity 𝑐𝑖 to handle loops around the same

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:7

Fig. 6. (Left) Example of patch decomposition by the motorcycle graph. The

figure shows the irregular vertices (𝑣0 ...𝑣5) and the T-vertices (𝑣6 ...𝑣9) with

the relative orthogonal weights 𝑏𝑖 . (Right) Tracing graph created by the

motorcycles. The figure shows the generated edges (𝑒0 ...𝑒8) with the relative

weight 𝑎𝑖 . The edges 𝑒1, 𝑒4, 𝑒5, 𝑒6, 𝑒8 have multiplicity𝑚𝑖 = 2, while edges

𝑒0, 𝑒2, 𝑒3, 𝑒7 have𝑚𝑖 = 1.

irregular vertex. This multiplicity is 𝑐𝑖 = 2 if there exists an edge

𝑒𝑖 = ⟨𝑣 𝑗 , 𝑣𝑘 ⟩ such that 𝑣 𝑗 = 𝑣𝑘 , and 𝑐𝑖 = 1 otherwise.

For every T-vertex 𝑣𝑖 ∈ 𝑉𝑡 , we assign the orthogonal edge that

led to its generation, corresponding to the graph edge where the

motorcycle collided during the tracing process. Additionally, we

compute the orthogonal weight 𝑏𝑖 for each T-vertex, defined as the

quad edge distance from the close vertex along the orthogonal edge.

Specifically, 𝑏𝑖 represents the shortest distance from the T-vertex to

the next corners of the two patches created by 𝑣𝑖 . To compute this

distance, we navigate the half-edge list of the internal perimeter

of these patches in opposing order (one counterclockwise and the

other clockwise) starting from 𝑣𝑖 . Furthermore, we compute the

orthogonal weight 𝑎𝑖 for each edge 𝑒𝑖 . If the edge 𝑒𝑖 is connected

to a T-vertex, the weight 𝑎𝑖 equals the orthogonal weight 𝑏𝑖 of the

T-vertex. If the edge connects two irregular vertices, the weight 𝑎𝑖
is set to the maximum value of 𝑏𝑖 among all the T-vertices. Figure 6

shows an example of patch decomposition and the relative tracing

graph with the orthogonal weights.

ILP Graph Reduction. We use the tracing graph 𝐺 as input for a

binary ILP problem to prune its edges. The objective is to minimize

the number of quad patches created by the graph, preserving a

regular quad partition and removing as many quad strips and single

quad patches as possible. Let 𝑥𝑖 ∈ {0, 1} be a binary variable for the

edge 𝑒𝑖 in 𝐺 , where 𝑥𝑖 = 0 means that the edge is pruned in the

final layout, and 𝑥𝑖 = 1 indicates that is kept. We set the following

minimization problem:

min

∑︁
𝑒𝑖 ∈𝐸

𝑤𝑖𝑥𝑖 (1)

where the edge weights𝑤𝑖 are defined in equation 9 in the following.

To model different requirements, we employ three sets of linear

constraints. The first set of constraints encodes the idea of using

𝑛 = ⌈deg(𝑣)/2⌉ incident edges for each irregular deg(𝑣) vertex to

produce a valid partition with fewer quad patches. These constraints

are defined as follows: ∑︁
𝑒𝑖 ∈𝐸

𝑚𝑖𝑥𝑖 ≥ 𝑡 (2)

∀𝑣 ∈ 𝑉𝑠
∑︁

𝑒𝑖 ∈𝐼 (𝑣)
𝑐𝑖𝑥𝑖 ≥

⌈
deg(𝑣)

2

⌉
(3)

∀⟨𝑒𝑖 , 𝑒𝑖+1⟩ | 𝑒𝑖 , 𝑒𝑖+1 ∈ 𝐼 (𝑣) 𝑥𝑖 + 𝑥𝑖+1 > 0 (4)

Specifically, equation 2 constrains the minimum number of edges in

the simplified layout to be at least 𝑡 to ensure a regular quad patch

partition. The value of 𝑡 is defined as:

𝑡 =
∑︁

𝑣𝑖 ∈𝑉𝑠𝑖

⌈
deg(𝑣)

2

⌉
+

∑︁
𝑣𝑖 ∈𝑉𝑠𝑏

⌈
deg(𝑣) − 2

2

⌉
(5)

where 𝑉𝑠𝑖 represents the internal irregular vertices and 𝑉𝑠𝑏 repre-

sents the irregular vertices on the border (𝑉𝑠 = 𝑉𝑠𝑖 ∪𝑉𝑠𝑏). Equation
3 enforces the minimum number of edges to be selected for each

irregular vertex. Equation 4 ensures that at least one edge must be

used in the final layout for every pair of consecutive incident edges

on an irregular vertex. The operator 𝐼 (𝑣𝑖) ⊂ 𝐸 returns the set of

incident edges for the vertex 𝑣𝑖 ordered counterclockwise.

The second set of constraints focuses on a specific issue that

frequently affects the final quality of the patch layout: single quad

patches. For this situation, we model the edge selection around a

single quad patch with two irregular vertices of different valence

on the diagonal (as shown in the right inset):

𝑥𝑖 + 𝑥 𝑗 = 1

𝑥𝑘 + 𝑥𝑙 = 1

𝑥𝑖 − 𝑥𝑘 = 0

𝑥 𝑗 − 𝑥𝑙 = 0

(6)

These constraints choose between

merging the single quad with the left

patches (by removing the edges 𝑒𝑖
and 𝑒𝑘 in the right inset) or the right

patches (by removing the edges 𝑒 𝑗
and 𝑒𝑙 in the right inset). In this way,

we can remove the single quad patch

without creating dangling T-vertices.

The third set of constraints deals with the T-vertices to ensure a

valid patch layout after the pruning process (see the right inset):

𝑥 𝑗 − 𝑥𝑖 ≥ 0 (7)

The constraint prevents the creation of a dan-

gling T-vertex. If the edge 𝑒𝑖 is selected in the

final layout and it creates a T-vertex on the

edge 𝑒 𝑗 then we force the selection of 𝑒 𝑗 . This

constraint could be removed by applying an

additional tracing procedure starting from

all the created dangling T-vertices at the end

of the ILP solving. The additional tracing procedure can generate

a new quad strip, as shown in the last three cases in Figure 4f, not

ensuring the creation of a better quality layout. The constraint can

be relaxed, allowing for the pruning of the orthogonal edge 𝑒 𝑗 while

preserving edge 𝑒𝑖 , if there exists an edge 𝑒𝑘 that can be reached by

the dangling T-vertex with a single tracing step (as shown in the

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:8 • Palma et al.

Fig. 7. Example of an edge swap operation. We obtain a new layout with a

lower patch shape energy by deleting the edge 𝑒0 and adding the edge 𝑒1 to

the patch layout on the left. In this case, the operation reduces the energy

of a value ΔE = E(𝑃1) + E (𝑃2) − E (𝑃3) − E (𝑃4) = 0.527.

right inset). In such cases, the tracing step is considered safe since

it does not result in additional quad strips, and we substitute the

constraint with the new one:

𝑥𝑘 + 𝑥 𝑗 − 𝑥𝑖 ≥ 0 (8)

Finally, we address the quad strip patches created by two mis-

aligned irregular vertices, introducing a soft constraint in the mini-

mization problem defined in Equation 1. This constraint is based on

the weight𝑤𝑖 assigned to each edge, given by the equation:

𝑤𝑖 = 1 − 𝑎𝑖

𝑎𝑚𝑎𝑥 + 1
(9)

where 𝑎𝑚𝑎𝑥 is the maximum orthogonal weight 𝑎𝑖 over all the edges.

The purpose of this weight assignment is to prefer the removal of

edges with T-vertices resulting in narrow patches, such as the quad

strip illustrated in Figure 4d. We opt for a soft constraint to avoid

an unsolvable problem for some graph configurations.

Patch Geometric Optimization. To ensure the solvability of the ILP

problem, the output patch layout may contain more edges than the

minimum number defined by 𝑡 (Equation 5). These additional edges

are introduced by the inequalities in Equations 2 and 3. Setting

these constraints to strict equalities often makes the ILP solver

unable to find a feasible solution formore complex shapes. Therefore,

to further improve the quality of the layout, we proceed with a

classical greedy geometric optimization. The main objective is to

modify the patch layout through a sequence of local operations

to decrease the energy by modifying the patches’ size. The total

energy of the partition is defined as the sum of the energies of all

the individual patches. For each patch 𝑃 , the energy is computed

using the following equation:

E(𝑃) = P(𝑃)A(𝑃) max

(
S(𝑃), 1

S(𝑃)

)
(10)

where P, A, and S are the perimeter, the area, and the shape ratio

(width-to-height ratio) operators. The energy takes into account

both the compactness of the patch and its shape ratio. Its minimiza-

tion encourages the creation of larger, square-shaped patches while

preventing small and elongated ones. This approach aims to reduce

the input/output pins required for the patches, which is proportional

to their semi-perimeter.

Fig. 8. Example of merge operation of the patches 𝑃1 and 𝑃2 in the new

one 𝑃6. In this case, the operation reduces the energy of a value ΔE =

E(𝑃1) + E (𝑃2) − E (𝑃6) = 1.72.

The geometric optimization process consists of two iterative steps,

each aimed at reducing the partition energy until further improve-

ment is not possible. In the first step, we define the Edge Swap
operator to identify a sequence of swap operations to invert the

selection state of some edges in the tracing graph𝐺 . At each itera-

tion, we gather all the feasible potential swap operations on pairs

of consecutive edges ⟨𝑒𝑖𝑒 𝑗 ⟩, belonging to the same irregular vertex

𝑣 , but with opposite selection states. A swap operation is feasible

if it meets three conditions: the edge to be deselected should have

a multiplicity𝑚 = 1 (it creates a T-vertex), its deselection should

not result in the creation of dangling T-vertices, and the operation

must not violate the constraint outlined in Equation 4. For each

potential swap, we evaluate the energy changes ΔE introduced in

the sizes of the affected patches. In Figure 7, ΔE is calculated as

ΔE = E(𝑃1) + E(𝑃2) − E(𝑃3) − E(𝑃4), where 𝑃1 and 𝑃2 represent

the patches that are removed by the swap, and 𝑃3 and 𝑃4 denote

the newly created ones. Then, we sort the potential operations by

energy change and perform the one with the maximum energy de-

crease (with the maximum ΔE). We prioritize the swaps that result

in the most significant energy reduction.

In the second step, we apply a series of split and merge opera-

tions. We define two types of operators: the Merge operator and
the Split&Merge operator. The Merge operator joins two adjacent

patches if their corners over the shared side coincide (Figure 8). This

operation reduces the number of patches by one. The Split&Merge
operator divides a patch by tracing a set of particles from the se-

lected side for the split to the opposite one. We generate a particle

for each T-vertex and no-corner irregular vertex along the selected

side. Then, it merges the adjacent patches on the split side using the

same condition of theMerge operator. The Split&Merge operator can
reduce the number of patches by one if the merge operations can be

applied to all the adjacent patches on the selected side for the split.

Otherwise, it only reduces the energy while keeping the number

of patches constant. We refer to these two versions as Symmetric
Split&Merge (Figure 9a) and Asymmetric Split&Merge (Figure 9b),
respectively. The optimization process begins by collecting a list

of all Merge and Split&Merge operations that can be performed on

the layout. We select and perform the operation that maximizes the

decrease in energy, defined as the difference between the energy

of the removed patches and the energy of the newly created ones.

Finally, we update the adjacency information in the layout and the

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:9

(a) Symmetric Split&Merge

(b) Asymmetric Split&Merge

Fig. 9. Example of Split&Merge operations. (a) Symmetric Split&Merge of
the patch 𝑃3. In this case, the operation reduces the energy of a value ΔE =

E(𝑃3) + E (𝑃4) + E (𝑃6) − E (𝑃8) − E (𝑃9) = 1.81. (b) Asymmetric Split&Merge
operation of the patch 𝑃2. In this case, the operation reduces the energy of

a value ΔE = E(𝑃0) + E (𝑃2) + E (𝑃3) − E (𝑃5) − E (𝑃6) − E (𝑃7) = 1.94.

list of operations. We iterate the process until no further operations

can be performed.

5.2 Patch Layout Packing

In this stage, we generate the sensor grid using the edges of the dual

graph of the quadmesh.We propose a greedy procedure to assign the

sensing role (Tx or Rx) to each line of the sensor grid. The procedure

is composed of two steps: the clustering of the quad patches of

the simplified layout that, preserving the adjacency among the

patches, reduces the total number of input/output pins; the packing

of the computed clusters inside the sensing regions of the minimum

number of capacitive touch controllers. Before the procedure, if a

patch exceeds the dimensions of the sensing region of the touch

controller, we split it into multiple patches, avoiding the creation of

quad strips or single-quad patches.

The procedure starts pre-assigning the sensing roles (Tx or Rx) to

each side of the quad patches to minimize role cuts among adjacent

patches. A role cut occurs when two adjacent patches have different

role assignments on their shared side, generating orthogonal Tx-Rx

fields. Since each cut introduces an additional conductor to connect

the grid electrodes to the touch controllers, we can decrease the

required input/output pins by minimizing the length of these cuts.

To solve the pre-assignment, we formulate a simple ILP problem.

We define two binary variables for each quad patch, 𝑥𝑖0, 𝑥𝑖1 ∈ {0, 1}.
These variables represent the role assignment for a pair of oppo-

site sides of the patch, where 𝑥𝑖 𝑗 = 1 indicates that the grid lines

orthogonal to the corresponding sides are transmitters and 𝑥𝑖 𝑗 = 0

indicates receivers. For each patch, we constrain the two variables

to have opposite values 𝑥𝑖0 + 𝑥𝑖1 = 1. Let 𝑆 be the set of all pairs

of adjacent patches ⟨𝑃𝑖 , 𝑃 𝑗 ⟩𝑙𝑘 . For each pair, we define a binary cut

variable 𝑠𝑙𝑘
𝑖 𝑗

= 𝑥𝑖𝑙 ⊕ 𝑥 𝑗𝑘 equals to the exclusive OR between the

variables of the adjacent sides of the two patches. Here, 𝑙 and 𝑘 rep-

resent the indices of the adjacent sides of the two patches (modulo

two). The variable 𝑠𝑙𝑘
𝑖 𝑗

indicates whether the shared edge between

the two patches is a cut (i.e., when 𝑥𝑖𝑙 and 𝑥 𝑗𝑘 have opposite values)

or not. The assignment problem is defined as a minimization of the

weighted sum of the cut variables:

min

∑︁
∀⟨𝑃𝑖 ,𝑃 𝑗 ⟩𝑙𝑘 ∈𝑆

𝑤𝑖 𝑗𝑠
𝑙𝑘
𝑖 𝑗 (11)

where 𝑤𝑖 𝑗 is the length of the shared edge between the adjacent

patches defined as number of shared quad edges. The objective is to

minimize the total length of the sensing role cuts.

We use the sensing role pre-assignment in a greedy clustering

procedure to create the smallest number of clusters, each with a

bounding rectangle contained in the sensing region of the touch

controller. For each patch, we compute its largest potential cluster

through an iterative method that, in each iteration, adds an adjacent

patch to the current cluster border. The next patch to insert into

the cluster must satisfy three conditions. The first condition allows

adding the patch if at least one edge shared with an adjacent patch

on the cluster border is not a role cut. With this condition, we can

create uninterrupted sensor lines across the border edges, reducing

the number of input/output pins by one for each adjacent quad edge

that is not a role cut. The second condition checks if adding the patch

would not result in a bounding rectangle of the cluster exceeding

the size of the sensing region. The third condition checks if adding

the patch does not create an overlap collision with other patches

inside the cluster. Among the patches that meet these requirements,

we add the patch with the maximum number of shared non-cut

edges on the adjacent border to the cluster. This selection criterion

maximizes the removal of input/output pins. Given the potential

clusters, each one generated by a patch, we keep the cluster with

the maximum number of removed input/output pins, mark all the

patches belonging to the cluster as visited, and restart the method

using only the not-visited patches. This method concludes when all

patches are successfully assigned to a cluster.

The final step involves packing the computed clusters within the

sensing region of the touch controllers. We use a simple raster-based

texture packing algorithm. Given a texture with dimensions corre-

sponding to the maximum number of Tx and Rx lines, we aim to

pack the clusters in the minimum number of controllers while mini-

mizing empty space. The algorithm starts by sequentially packing

the clusters in the sensing region of the first controller, following

a descending order based on the cluster area. When no more clus-

ters can be accommodated in the current controller, the algorithm

allocates a new one and restarts the process using the remaining

unpacked clusters. The packing position inside the sensing regions

is computed by minimizing modifications to the top and right hori-

zons before and after inserting the cluster. This energy change is

computed using two lists that store all the free space in the texture

along its rows (from left to right) and columns (from bottom to top).

To achieve better packing efficiency, we compute the best position

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:10 • Palma et al.

Clustering Packing

27

19
9

25

8

10

2
21

3

6

30

13

12

4

0

15

14

16

1
2

3

6
8

9

10

19

21

25

27

30

711

17

24

22

18

20

23

26

0

4

5
12

13
14

15

16

2023

26

28

29

28

29 1

7

11

17

18

22

24

5

Fig. 10. Starting from the 31 patches obtained on the Bunny model with

the method in Section 5.1, the algorithm in Section 5.2 creates 7 clusters

and packs the clusters in 3 touch controllers with 21 Tx and 12 Rx.

for each cluster by evaluating a set of transformed versions. These

transformations include ±90◦ rotation (if the rotated cluster remains

within the sensing region), 180
◦
rotation, vertical and horizontal

flipping, and their combinations. Figure 10 shows the clustering and

the packing results for the Bunny using 3 touch controllers with 21

Tx and 12 Rx.

6 GEOMETRY PROTOTYPE GENERATION

The clustering and packing of the quad patch layout into the sens-

ing regions of the capacitive touch controllers provide us with the

information needed to compute the position of the sensor electrodes

on the surface. For each controller, we create an independent sensor

grid using the dual graph of the mesh, which we refer to as the

sensor grid mesh. Each intersection in the grid represents a quad

in its dual form. Within each controller, we create an electrode for

each line (transmitters and receivers) consisting of one or more poly-

line segments on the surface. We divide the electrode whenever it

crosses an edge between two quads mapped in consecutive positions

along the line but not adjacent along this edge in the mesh. Since

the sensing controllers require a single conductor for each line, we

need two types of traces to place the sensor on the surface: surface

grooves to accommodate the conductors on the surface and internal

pipes to connect each line to the controller and the segments of the

same line in series through the object’s volume.

The first step involves projecting the sensor grid mesh onto the

triangular mesh. We move each vertex of the sensor grid mesh to

the nearest point on the triangle mesh, and we apply an iterative

refine procedure to create smoother polylines for each line segment.

Specifically, we perform Laplacian smoothing while keeping the

vertices on the cross between the transmitter and receiver lines fixed.

We then reproject the smoothed vertices onto the triangulated sur-

face. Finally, we simplify and refine the polylines to adapt them to

the underlying triangulation. We generate the grooves with a proce-

dural method that uses different depths, denoted as 𝑧𝑡𝑥 and 𝑧𝑟𝑥 , for

transmitters and receivers, respectively. The two depths allow us to

create the intersections between Tx and Rx (the sensing points) with

the physical arrangement of the sensors just beneath the surface.

For each polyline in the sensor

grid mesh, we extrude a rectan-

gular profile with a snapping

mechanism to hold the physi-

cal conductors on the surface

still. In the inset figure, the red

detail illustrates the arrange-

ment of the electrodes at dif-

ferent depths, while the green

detail focuses on the snapping

mechanism. To determine the

orientation of the profile, we

use the vector connecting each vertex of the polyline with its closest

point on the inner surface at distances 𝑧𝑡𝑥 for the transmitters and

𝑧𝑟𝑥 for the receivers.

Then, we generate two types of pipes with diameters 𝑑𝑝𝑖𝑝𝑒 for

each sensor line: exit pipes and intra-pipes. The exit pipes connect

the electrodes on the surface with the touch controller. They extend

from the starting point of the first groove of each line to a point

inside the exit region selected by the user (typically located at the

bottom of the object). The potential endpoints are precomputed and

evenly distributed around the centre of the exit region. They are

assigned to each pipe during the routing process to form a compact

cluster around the centre. The intra-pipes are required to connect

the different grooves in the same line in series. Each intra-pipe

connects the end of a groove to the starting point of the next one. To

prevent conflicts with the surface grooves, the pipes are generated

inside the volume of the inner surface 𝐼 of the triangle mesh at a

distance 𝑡𝑚𝑖𝑛 . Consequently, we project all the start and end points

of the grooves onto the inner surface 𝐼 , establishing the initial edge

for all the pipe paths, which remains unchanged throughout the

subsequent processing steps.

The routing of the pipes is computed using Dijkstra’s algorithm

on the graph constructed from the edges of the solid voxelization

of the volume of the inner surface at 𝑡𝑚𝑖𝑛 . This graph is enhanced

by incorporating the endpoints of the grooves and the edges con-

necting them at the 4-nearest voxelization vertices. We perform a

voxelization with an edge length equal to 𝑑𝑝𝑖𝑝𝑒 to ensure that the

pipes do not intersect during path generation. Before routing, we

reevaluate the order in which the conductors must traverse the dif-

ferent grooves belonging to the same line in series. The objective is

to minimize the conductor length while preserving the intersections

between the transmitter and the receiver.

The routing method proceeds by handling one path at a time:

it extracts a path, removes the used vertices from the graph, and

continues extracting the following path. Our approach aims to gen-

erate paths as close as possible to the centre of the volume, thereby

preventing a pipe from obstructing the generation of other pipes

due to the proximity to the surface. To meet this requirement, we

focus on two aspects. The first aspect involves the distance function

𝐿 used in Dijkstra’s algorithm between the current vertex 𝑛𝑖 and an

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:11

unvisited one 𝑛 𝑗 :

𝐿(𝑛𝑖 , 𝑛 𝑗) = ∥𝑛𝑖 − 𝑛 𝑗 ∥2
𝑎

𝑤 𝑗 + 𝑎
(12)

where 𝑤 𝑗 is the shortest distance from the unvisited node to the

bounding inner surface 𝐼 . This function reduces the distance for

points farther from the border, attracting the path closer to the

centre. The time-dependent constant 𝑎 determines the speed of this

attraction effect. During the routing of the exit pipes, we increase 𝑎

to relax the routing constraint within the centre of the volume, as

the previously generated pipes should have already occupied this

region. In particular, we set 𝑎 =
√
𝑘 , where 𝑘 is the generation order

index of the current path.

The second aspect concerns the order in which the paths are

generated. We begin by routing the exit pipes, followed by the intra-

pipes. Within each group, we first compute the pipe with the longest

path. To approximate the path length, we use the shortest path tree

computed from the centre of the exit region to the endpoints of the

polylines for all sensor lines. For an exit pipe, we consider the length

of the path connecting the root of the tree to the start point of the

pipe. For an intra-pipe, we consider the shortest path connecting

the two endpoints of the pipe on the shortest path tree.

While the start and end points of the intra-pipes are well-defined,

determining the endpoint for the exit pipe requires selecting from

the candidate points generated around the centre of the exit region.

For the path generation of each exit pipe, we get the set of not-

assigned exit points on the border of the regions containing the

ones already assigned to the previously generated pipes. Then, we

compute the shortest paths from each of them to the start point of the

pipe. We select the path generated by the exit point that minimizes

the sum of the path length and its distance from the barycenter of the

already assigned exit points. Both distances are normalized by the

longest path length and the farthest exit point distance, respectively.

The objective is to choose the exit point that not only results in

the shortest path but also minimizes the spread of the exit points,

thereby creating a compact cluster. See the supplemental materials

for the figures of the compact clusters of exit points at the bottom

of the processed models.

The final step involves smoothing the generated paths with an

iterative procedure by alternating Laplacian and Bilaplacian smooth-

ing. Bilaplacian smoothing prevents small curvature radii along the

path, particularly near the fixed endpoints, which could pose chal-

lenges during the physical pulling of the sensor conductors (Figure

11). Given the set of paths, each one 𝐶 𝑗
defined as a polyline of

ordered vertices 𝐶 𝑗 = {c𝑖 }, the procedure in Algorithm 1 computes

the Laplacian vector l, the Bilaplacian vector h, and two repulsive

forces for each vertex c𝑖 in the path. The first force fA guarantees

a minimum distance between the pipes, defined as a multiple 𝛼 of

the pipe diameter 𝑑𝑝𝑖𝑝𝑒 , preventing cross-talk among the sensor

lines. This force is applied from the closest points of neighboring

pipes. The force magnitude for each close point is the displacement

to move it at least at the minimum distance from the vertex 𝑐𝑖 . The

second repulsive force fB confines the position of the paths within

the inner volume 𝐼 . This force is applied from the vertices of 𝐼 with

a magnitude equal to the displacements to move the center of the

pipes at least at a distance 𝑑𝑝𝑖𝑝𝑒 from the boundary. With these

Algorithm 1 Pipe smoothing

Input:
𝐶 ← {𝐶0, ...,𝐶𝑛 | 𝐶 𝑗 ← {c𝑖 }} ⊲ Input pipe paths

𝐼 ⊲ Inner boundary surface

𝛼 ← 2 ⊲ Scale factor for min distance between paths

𝛽 ← 3 ⊲ Weight for bilaplacian vector

𝜆 ← 0.1 ⊲ Displacement weight

Procedure:
for 𝑡 ← 1, 1000 do ⊲ Smoothing iteration

for all 𝐶 𝑗 ∈ 𝐶 do ⊲ For each path

for all 𝑐𝑡
𝑖
∈ 𝐶 𝑗 do ⊲ For each vertex in the path

l𝑖 ← (c𝑡𝑖+1 + c
𝑡
𝑖−1)/2 − c

𝑡
𝑖

h𝑖 ← (l𝑖+1 + l𝑖−1)/2 − l𝑖
𝐴𝑖 ← {a ∈ 𝐶𝑘 | (𝑘 ≠ 𝑗) ∧ ∥c𝑡

𝑖
− a∥ < 𝛼𝑑𝑝𝑖𝑝𝑒 }

𝐵𝑖 ← {b ∈ 𝐼 | ∥c𝑡𝑖 − b∥ < 𝑑𝑝𝑖𝑝𝑒 }

fA𝑖 ←
∑︁
a∈𝐴𝑖

(𝛼𝑑𝑝𝑖𝑝𝑒 − ∥c𝑡𝑖 − a∥)
(c𝑡
𝑖
− a)

∥c𝑡
𝑖
− a∥

fB𝑖 ←
∑︁
b∈𝐵𝑖

(𝑑𝑝𝑖𝑝𝑒 − ∥c𝑡𝑖 − b∥)
(c𝑡
𝑖
− b)

∥c𝑡
𝑖
− b∥

f𝑖 ← (fA𝑖 + fB𝑖)/(|𝐴𝑖 | + |𝐵𝑖 |)
if 𝑡 ≡ 0 (mod 2) then
c𝑡+1
𝑖
← c𝑡

𝑖
+ 𝜆(l𝑖 + f𝑖)

else
c𝑡+1
𝑖
← c𝑡

𝑖
+ 𝜆(f𝑖 − 𝛽h𝑖)

Fig. 11. Smoothing of the pipes without Bilaplacian (left) and with Bilapla-

cian term (right). The Bilaplacian prevents the creation of small curvature

radii near the endpoints of the path. The first edge in the path stays fixed

during the smoothing process to avoid conflicts with surface grooves.

vectors, the procedure computes the displacement to update the

position of each point c𝑖 . The magnitude of the update at each itera-

tion is determined by the displacement weight 𝜆. For all the tested

models in the paper, we use 1000 iterations in the smoothing proce-

dure with parameters 𝛼 = 2, 𝛽 = 3, and 𝜆 = 0.1. The final paths of

the pipes serve as the basis for generating their geometry, achieved

through the extrusion of a circular profile along the paths.

7 PROTOTYPE SETUP

We generate the geometry of the final prototype by performing a

boolean difference operation between the triangle mesh and the

shapes of the grooves and internal pipes. For the 3D printing of

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:12 • Palma et al.

the prototypes, we employ a material jetting 3D printer (3DSystem

ProJet MJP 2500 Plus) based on the use of two materials: a plastic

dielectric material (VisiJet M2R-WT) for the object and a wax-based

support material (VisiJet M2 SUP). The support material is removed

in post-processing using a warm oil bath. We create a hollow in-

terior within the object to ensure more effective support removal,

particularly in the internal pipes. It involves generating a thin shell

inside the object, leaving some openings at the bottom of the object.

This hollow interior speeds up and facilitates wax melting within

the internal pipes.

The 3D printed prototype is equipped with conductors of enam-

elled unipolar solid copper of diameter 𝑑𝑤𝑖𝑟𝑒 = 0.5mm. These con-

ductors are manually placed in the grooves by pressing them from

the outside and inside the pipes using a nylon probe for pulling.

Despite the absence of a solid dielectric material to separate the

transmitters and receivers at their intersections, copper wires with

an enamelled coating ensure no short circuits between the con-

ductors. We begin by placing the conductors for the transmitters,

which are positioned at a greater depth from the surface, followed

by the placement of conductors for the receivers. We employ a sim-

ple visualization tool to display the order in which each conductor

must be pulled along the correct sequence of grooves and internal

pipes generated for its sensor line. The lack of robust and acces-

sible automatic technologies capable of printing simultaneously

dielectric and conductive materials is the reason behind the manual

procedure for placing the sensor conductors on the 3D-printed proto-

types. The existing 3D printing solutions have two main drawbacks.

Fused Deposition Modeling (FDM) technology relies on conductive

PLA filaments doped with graphite or infused with copper, which

have higher resistivity (ranging from 15Ω · cm to 6 × 10−3Ω · cm)

than common capacitive sensor materials like Indium Tin Oxide

(7.5×10−4Ω ·cm) or copper (1.62×10−6Ω ·cm). The higher resistivity

makes them less suitable for capacitive sensing. Additionally, even

the most conductive filaments face issues during nozzle extrusions

due to printing temperature, printing speed, and retraction. These

issues can cause conductive material smearing, compromising the

sensor lines’ electric insulation. A more promising approach is the

Multi Jet Fusion technology [Wittkopf et al. 2019] with a jettable

conductive agent, although it requires further study on the precision

of the electric insulation properties.

After the fabrication of the sensor, the transmit and receive elec-

trodes are connected to the touch controllers. Although various com-

mercially available touch controllers can be selected, we employed

the Muca breakout board
1
, featuring the FocalTech FT5316DME

capacitive touch controller. This touch controller supports up to 21

transmit (Tx) and 12 receive (Rx) lines. For designs requiring more

Tx and Rx lines, we use two or more touch controllers that are read

sequentially. Serial communication between the touch controller

and the host processor is established using a two-wire interface

based on the I2C protocol. We used a Teensy 4.1 microcontroller

board to communicate with the touch controllers. The raw mutual

capacitance values, with a 16-bit resolution, were transmitted to a

PC by USB communication at a scan rate of 10Hz. We calibrate each

touch controller by subtracting the background noise at the system

1
https://muca.cc/

startup. It is achieved by averaging the capacitive values sensed in

the first 2 seconds without touch interaction.

7.1 Touch Points Computation

To compute and visualize the touch information on the 3D models,

we have implemented a simple real-time tool to display the raw

values sensed by the touch controllers on the quad proxy geometry,

along with the interpolated version of these data to calculate the

relative touch points on the triangle mesh. For the last task, we

use a simple algorithm to compute continuous touch positions on a

touch surface. Starting from the dual-edge graph of the quad mesh,

we project all its vertices onto the surface of the triangle mesh,

inheriting both the position and surface normal. Each vertex receives

the raw value from the corresponding quad in the proxy geometry.

Then, we apply a simple blob detection algorithm on the vertices

of the dual graph, using a local maximum-minimum thresholding.

Finally, for each blob, we compute the centroid of the positions and

normals of its vertices and perform a ray marching procedure to

determine the relative position in the triangle mesh. The computed

touch positions (up to five simultaneously) are displayed on the

triangle mesh surface in real-time.

8 RESULTS

In this section, we present results for two different aspects. The first

involves the patch decomposition and packing algorithm, showcas-

ing data from various stages of the proposed algorithm (Section 8.1).

We also evaluate the number of conductors and touch controllers

needed to sensorize the prototypes (Section 8.2) for different in-

put parameters. The second aspect focuses on the quality of the

touch sensing, defined as Signal-to-Noise Ratio (SNR) (Section 8.3),

and the spatial accuracy (Section 8.4), evaluated on the fabricated

prototypes. These estimations were performed directly on the raw

quantized capacitive values sent by the touch controllers without

any software noise estimation and removal. Section 9 provides a

discussion of the obtained results, outlines the limitations of the

proposed solution, and suggests potential future extensions.

8.1 Touch Sensing Prototypes

We tested the proposed algorithm on 3D models with different sizes

and features. Figure 12 displays the intermediate results of the var-

ious steps of the algorithm, illustrating the progression from the

initial triangle mesh to the final model ready for printing and sen-

sorization. Table 1 contains data regarding each processing step. We

always use the same parameters for all the results in the paper. In

the proxy quad mesh computation, we used the isometry weight 0.3

(defined in [Pietroni et al. 2021]) to guarantee a uniform distribution

of Tx-Rx intersection on the surface and an average edge length

closer to 7mm. In the patch decomposition and packing, we use the

footprint of the Muca board (21 Tx and 12 Rx). In the generation

of the final model, we used a wire diameter 𝑑wire = 0.5mm and a

pipe diameter 𝑑pipe = 3𝑑wire to facilitate a smooth pulling of con-

ductors inside the prototype. For the models Bunny, Max Planck,

Sphere A, Sphere B, and Cube, we fabricated the relative sensorized

prototypes, as shown in Figure 1. The accompanying video in the

supplemental materials demonstrates real-time interactions with

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:13

Input Data Prep. Patch Packing Pipes Output

B
u
n
n
y

M
a
x
P
l
a
n
c
k

F
e
r
t
i
l
i
t
y

K
i
t
t
e
n

S
p
o
t

S
p
h
e
r
e
A

C
u
b
e

Fig. 12. Results for each input model through the various steps of the algorithm. From left to right: the input triangle mesh, the proxy quad mesh, the patch

decomposition of the quad mesh, the packing of the patch decomposition along with the corresponding sensor grid mesh, the internal pipes generated to

connect the sensors on the surface with the controllers, and the final mesh ready to be printed and sensorized.

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:14 • Palma et al.

Table 1. Processing data for the tested model. For each model, the table includes: the number of triangles in the input mesh (Size Tri) and the number of

quads in its proxy geometry (Size Quad); the size of the bounding box in millimeters; statistics on the distances between adjacent intersections in the sensor

grid (mean, standard deviation, minimum, and maximum distance); the number of patches in the decomposition after Motorcycle Graph computation (M.G.),

ILP graph reduction (ILP), and patch geometric optimization (GOPT); the count of geometric optimizations, including Edge Swap (S), Merge (M), Asymmetric
Split&Merge (ASM), and Symmetric Split&Merge (SSM); the number of clusters; the count of used touch controllers after cluster packing with the relative

occupancy term; the number of internal pipes generated, reported as exit-pipes (Exit) and intra-pipes (Intra); and the meters of unipolar copper wires used to

sensorize the 3D printed prototype on the surface (Surf.) and in the internal pipes (Pipes).

Model Mesh size BBox size Intersection dist. N. Patches N. Geom. Opt. N. Clusters Controllers N. Pipes Conductors
Tri / Quad mm 𝜇 (𝜎) [min,max] M.G. / ILP / GOPT S / M / ASM / SSM N. / Occup. Exit / Intra Surf. / Pipes m

Bunny 56K / 450 120 × 118 × 92 7.55 (1.34) [3.8, 12.84] 90 / 33 / 31 7 / 1 / 2 / 1 7 3 / 0.6 86 / 64 6.56 / 10.14

Max Planck 54k / 420 70 × 120 × 90 6.98 (1.33) [3.21, 10.02] 81 / 34 / 31 1 / 2 / 3 / 2 4 3 / 0.56 88 / 31 5.66 / 8.25

Fertility 146k / 664 150 × 115 × 59 6.44 (1.28) [3.26, 12.45] 118 / 42 / 37 0 / 4 / 1 / 1 10 4 / 0.66 120 / 102 8.23 / 17.7

Kitten 37k / 326 65 × 100 × 59 6.66 (1.42) [2.37, 10.39] 60 / 22 / 18 7 / 3 / 0 / 1 4 2 / 0.65 62 / 28 4.26 / 5.16

Spot 5.8k / 445 60 × 108 × 110 6.68 (1.33) [3.2, 9.83] 120 / 41 / 38 5 / 3 / 5 / 0 5 3 / 0.59 90 / 62 5.75 / 9.57

Sphere A 1218 / 447 100 × 85 × 100 7.61 (1.17) [3.99, 12.15] 24 / 8 / 8 1 / 0 / 0 / 0 5 3 / 0.59 83 / 27 6.46 / 7.33

Sphere B 1218 / 149 50 × 42.5 × 50 6.51 (0.82) [4.51, 9.07] 18 / 8 / 6 3 / 0 / 1 / 2 2 1 / 0.59 30 / 15 1.84 / 1.44

Cube 12 / 245 50 × 50 × 50 7.14 (0.0) [7.14, 7,14] 5 / 2 / 2 0 / 0 / 0 / 0 2 2 / 0.49 49 / 0 3.32 / 2.11

Table 2. Time processing data for the tested models. For each model, the

table includes the time needed for the mesh preparation in Section 4 (Prep.),

the patch decomposition and packing in Section 5 (Patch & Packing), the

generation of surface grooves and internal pipes in Section 6 (Grooves &

Pipes), and the time to compute boolean operations to create the final

printable model (Booleans).

Model Prep. Patch & Packing Grooves & Pipes Booleans
s s s s

Bunny 419 4.7 360 752

Max Planck 416 3.3 209 490

Fertility 426 6.6 392 2060

Kitten 354 3.5 143 415

Spot 412 2.2 222 668

Sphere A 7 0.9 279 460

Sphere B 6 0.7 34 80

Cube 8 0.6 62 150

these prototypes during different sessions. Figure 1 provides an

example of interaction using two fingers with the Bunny proto-

type. Table 2 reports the processing time of the main steps of the

algorithms, where most of the time is taken by the quad meshing

in the data preparation and the boolean operations for generating

the prototype to print. Computations were performed on a laptop

with an Intel(R) Core(TM) i9-9980HK CPU clocked at 2.40GHz and

32 GB of RAM. We used [Gurobi Optimization 2018] as ILP solver,

libIGL for computing geometric booleans [Zhou et al. 2016], and

OpenVDB for offset surface extraction [Museth 2013].

8.2 Patch Decomposition and Packing Performance

We assessed the robustness of the patch decomposition and packing

algorithm from two different perspectives. In the first aspect, we

conducted tests using various quad meshes of the same model, in-

creasing the isometry weight (Figure 13). The results suggest that a

higher isometry ensures a more uniform distribution of intersection

points on the surface, leading to improved packing performance in

terms of the number of touch controllers and internal pipes.

For the second aspect, we evaluated the improvements intro-

duced by the quad patch layout simplification procedure presented

in Section 5.1. The patch decomposition and packing procedures

consist of four different steps: motorcycle graph computation (MG),

ILP graph reduction (ILP), patch geometric optimization (GOPT),

Isometry N.quad Intersection dist. N.controllers N.pipes
0.01 534 6.95 (1.65)[1.67, 13.15] 4 / 0.53 170 (107/63)

0.1 487 7.26 (1.41)[2.53, 11.14] 3 / 0.63 145 (95/50)

0.2 461 7.44 (1.45)[2.61, 14.39] 3 / 0.61 145 (94/51)

0.3 450 7.55 (1.34) [3.8, 12.84] 3 / 0.6 150 (86/64)

Fig. 13. Packing results using different quad meshes with increasing isom-

etry weight: (left) 0.01; (center) 0.1; (right) 0.2. The table below presents,

for each meshing, the number of quads, statistics on the distance between

adjacent Tx-Rx intersections (mean, standard deviation, minimum, and

maximum values), the count of used touch controllers with the relative

occupancy term, and the total number of internal pipes, also reported as

exit-pipes and intra-pipes. The table also includes results for the case with

an isometry weight of 0.3, as presented in Figure 12 and Table 1.

and final packing (PACK). We tested three reduced pipelines by

omitting the ILP and GOPT steps (MG+PACK, MG+GOPT+PACK,

MG+ILP+PACK). Figure 14 reports the results of these tests, which

can be compared with the complete pipeline presented in Figure 12

and Table 1. We also compare the result obtained by applying a

state-of-the-art rectangular bin packing algorithm [Lodi et al. 1999]

to the motorcycle graph decomposition (MG+BINPACK). The pro-

posed pipeline can significantly reduce the number of internal pipes

while slightly increasing the number of used controllers and the

relative wasted spaces.

8.3 Signal-to-Noise Ratio

We conducted a systematic evaluation to assess the quality of touch

sensing on general 3D surfaces. We identified the most demanding

regions for touch sensing on the Bunny and Cube prototypes. These

regions include those with the closest and farthest conductors from

the controllers, areas near topological cuts among patches mapped

on the same controller, regions located on the boundary of patches

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:15

Pipeline N. patches N.controllers N. pipes
MG+BINPACK 81 2 / 0.83 369 (66/303)

MG+PACK 81 3 / 0.56 137 (88/49)

MG+GOPT+PACK 33 3 / 0.56 135 (94/41)

MG+ILP+PACK 34 3 / 0.56 132 (80/52)

MG+ILP+GOPT+PACK 31 3 / 0.56 119 (88/31)

Fig. 14. Packing results using different processing pipelines. From left to

right: MG+BINPACK; MG+PACK; MG+GOPT+PACK; MG+ILP+PACK. For

each test, the table below includes the number of patches before the packing

procedure, the number of touch controllers used after packing with the

relative occupancy term, and the total number of internal pipes reported as

exit and intra-pipes. The table also presents results for the complete pipeline

(MG+ILP+GOPT+PACK) as shown in Figure 12 and Table 1.

Fig. 15. The intersections on the green quads are the base points used to

measure the SNR on the Cube and Bunny prototypes. A complete overview

of all the measuring points is available in the supplemental materials.

mapped on different touch controllers, areas near the singularities

of the mesh, and regions with sharp edges. We also included more

standard, ’easy’ regions in the middle of a regular patch mapped

on a single controller (locally isomorphic to a regular grid) for a

comprehensive comparison. For each region, we placed the rela-

tive measuring point at the close Tx-Rx line intersection. Figure 15

illustrates the distribution of some SNR measuring points for the

two tested prototypes. Supplemental materials accompanying this

document display the positions of each measuring point.

Sensing performance was evaluated by touching the sensor on the

measuring point 10 times with the index finger at intervals of at least

1 second and computing the Signal-to-Noise Ratio (SNR) using the

raw capacitance values acquired by the Muca controller. We use the

formula proposed in [Davison 2010] (Equation 13) to compute the

SNR, where 𝜇𝑛𝑇 and 𝜎𝑛𝑇 represent the mean and standard deviation

values when there are no touch events, while 𝜇𝑇 denotes the mean

value during touch contact. For robust touch sensing at an industrial

level, the SNR threshold should ideally be at least 15; a minimum of

7 is absolutely required [Davison 2010].

Table 3. Signal-to-noise ratio on the Bunny and Cube prototypes under

different touch conditions: (Single) single touch, (2-touches Rx) 2 touches

with the second finger on the same Rx line, (2-touches Tx) 2 touches with

the second finger on the same Tx line, (3-touches) 3 touches with the second

and third fingers on the same Rx and Tx lines. The red text highlights tests

with an SNR below the threshold of 15. The light grey background indicates

tests requiring more than two trials due to SNR inconsistency.

Cube

Single 2-touches Rx 2-touches Tx 3-touches
C1 Tx4 Rx4 62.4 / 82.7 24.5 / 27.5 113.9 / 141.0 35.7 / 48.3

C1 Tx0 Rx6 55.5 / 36.9 11.3 / 11.8 29.9 / 32.0 11.5 / 13.3

C1 Tx0 Rx4 47.2 / 55.5 14.6 / 15.1 49.8 / 54.5 18.5 / 37.9

C1 Tx12 Rx1 38.2 / 48.9 13.1 / 15.4 36.6 / 43.8 16.0 / 18.4

C1 Tx6 Rx2 40.6 / 54.3 12.7 / 17.4 28.5 / 37.8 19.6 / 29.8

Bunny

Single 2-touches Rx 2-touches Tx 3-touches
C0 Tx19 Rx11 38.0 / 52.3 18.5 / 19.9 36.3 / 38.1 13.0 / 25.8

C0 Tx3 Rx10 58.4 / 66.8 23.7 / 28.8 32.4 / 36.8 39.1 / 39.1

C0 Tx3 Rx3 38.6 / 43.3 18.7 / 19.7 36.0 / 47.1 22.2 / 24.8

C0 Tx7 Rx9 53.8 / 67.1 12.2 / 28.8 54.8 / 77.4 26.8 / 44.9

C0 Tx6 Rx4 66.8 / 81.1 13.7 / 18.4 126.7 / 159.5 49.9 / 106.9

C0 Tx1 Rx2 54.1 / 67.5 22.8 / 23.1 54.6 / 74.7 54.4 / 76.9

C0 Tx17 Rx9 115.1 / 124.8 23.1 / 35.5 55.0 / 65.2 35.2 / 39.5

C1 Tx20 Rx1 136.8 / 728.2 27.2 / 29.2 280.7 / 321.4 109.2 / 120.6

C1 Tx15 Rx6 26.2 / 35.1 18.1 / 19.1 27.5 / 32.2 27.0 / 49.6

C1 Tx9 Rx9 136.5 / 146.4 30.0 / 31.4 55.9 / 73.7 227.5 / 302

C1 Tx10 Rx3 55.2 / 60.3 21.4 / 38.4 52.8 / 61.6 53.1 / 54.0

C1 Tx3 Rx7 70.7 / 145.1 37.7 / 66.1 101.8 / 161.0 40.9 / 56.9

C1 Tx16 Rx3 110.7 / 111.7 48.6 / 50.1 72.3 / 77.4 56.7 / 65.7

C1 Tx5 Rx7 41.5 / 61.7 23.7 / 32.0 62.4 / 69.6 24.2 / 48.7

C2 Tx0 Rx1 63.7 / 72.1 32.1 / 32.8 52.8 / 57.1 30.9 / 34.3

C2 Tx8 Rx8 32.5 / 35.3 12.9 / 15.4 27.4 / 29.5 10.4 / 13.5

C2 Tx6 Rx5 122.8 / 129.2 64.0 / 71.1 83.3 / 92.8 86.5 / 124.6

C2 Tx4 Rx0 72.0 / 85.6 15.8 / 16.6 44.1 / 45.8 30.9 / 30.7

𝑆𝑁𝑅 =
|𝜇𝑛𝑇 − 𝜇𝑇 |

𝜎𝑛𝑇
(13)

For each measuring point, we conducted four tests with different

touch conditions: single-touch, simultaneous touchingwith a second

finger on the same TX line, touching with a second finger on the

same RX line, and touching with three fingers with the second and

third fingers on the same Tx and Rx lines. In the case of multi-

touch input, secondary and tertiary fingers were positioned on

the respective TX or RX lines at three intersections from the base

measuring point. We performed each test twice. We conducted

additional tests for a few points that exhibited low consistency

between the SNR values of the first two trials (usually one value

below 15 and the other above 15). The low consistency could be

explained by slight variations in the gap distance between Tx and

Rx lines due to the manual fabrication, particularly on the border of

regions where conductors bend to enter inside the volume of the

object.

Table 3 summarises the SNR values for all the tested points. For

each test, we report the values of both measures. For low consistency

points, highlighted in grey, we present the maximum and minimum

values over all the trials. The data of each trial are reported in the

supplemental materials.

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:16 • Palma et al.

Fig. 16. The fixed paths (green lines) and points (yellow points) used to

test the spatial accuracy on the Cube and Bunny prototypes. A complete

overview of all the tested paths and points is available in the supplemental

materials.

8.4 Spatial Accuracy

We evaluated the spatial accuracy of our approach under two distinct

conditions: touching a fixed point and traversing a fixed path on

the surface. Using the Bunny and Cube prototypes, we defined a

set of ground truth fixed points and paths on the corresponding 3D

models chosen to sample challenging regions in the 3D shape for

touch sensing. Figure 16 shows some selected points and paths (see

the supplemental materials for a more detailed visualization).

Fixed points were distributed across both convex and concave

regions, close to the singularities of the sensor grid, on borders

between controllers, on the cut between patches mapped on the

same controller, along sharp edges and corners, and, for the sake of

a comprehensive comparison, inside a regular patch mapped on a

single controller. The paths were designed to run parallel to the Tx

or Rx lines, cross diagonally over sensor lines, and follow the borders

between controllers and sharp edges. We also formulated paths that

span different controllers and patches, covering all possible Tx-Rx

field directions (TxTx, RxRx, and TxRx). For the fixed point, the test

protocol involved touching it for at least 2 seconds, recording all

the positions computed, while the path involved moving the index

finger along it at a constant speed, as shown in the accompanying

video. Touch positions were computed throughout the tests using

the procedure outlined in Section 7.1 without further processing.

Small physical spherical and cylindrical reliefs were added to the

surface of the sensorized prototypes during the 3D printing process

to facilitate precise finger placement during the test. These reliefs

provided both visual and haptic feedback. Real-time raw visualiza-

tion of the computed touch points on the triangle mesh surface

further enhanced feedback during the test. The reliefs used for the

tests are visible in the accompanying video. Each test case included

five trials, calculating the distance error of each recorded touch point

from the ground truth. We compute the statistics of the distance

error over all the touched points of each trial independently (mean

errors, min and max values, mean absolute deviation, standard de-

viation, variance, root mean square error). Tables 4 and 5 present

the aggregate statistics of the error distance over all five trials in

millimeters for the fixed points and the paths with respect to the

ground truth data. Figure 17 displays the results of two tests. Please

refer to the supplemental materials for a comprehensive overview

of all the tested points, paths, and acquired trials.

Table 4. Spatial accuracy error for the tests with the touch of a fixed point.

For each test case, the table reports the average error, the minimum and

the maximum error, the mean absolute deviation, the standard deviation,

the variance, and the RMS error in millimeters of the recorded touched

positions with respect to the ground truth.

Cube

Fixed points 𝜇 Min Max MAD 𝜎 𝜎2 RMSE
3-cornerChipBorder1 2.37 0.90 4.18 0.67 0.80 0.70 2.52

3-cornerChipBorder2 1.93 0.94 3.19 0.42 0.53 0.30 2.01

4-chipBorderSharp 0.83 0.11 2.43 0.44 0.55 0.33 0.99

4-inside 0.60 0.33 0.95 0.15 0.17 0.07 0.65

4-sharpInside 0.57 0.38 0.76 0.07 0.09 0.01 0.58

Bunny

Fixed points 𝜇 Min Max MAD 𝜎 𝜎2 RMSE
3-chipBorder1 0.80 0.30 1.63 0.36 0.42 0.21 0.93

3-chipBorder2 0.98 0.69 1.26 0.12 0.14 0.02 0.99

3-chipBorder3 0.59 0.33 0.91 0.12 0.15 0.02 0.61

3-patchBorder1 0.70 0.20 1.05 0.22 0.25 0.07 0.75

3-patchBorder2 0.64 0.32 0.92 0.15 0.18 0.03 0.66

3-patchBorder3 0.79 0.55 1.04 0.10 0.13 0.02 0.81

4-chipBorder1 0.73 0.33 1.03 0.17 0.20 0.05 0.77

4-chipBorder2 0.57 0.39 0.78 0.08 0.10 0.01 0.58

4-chipPatchBorder 1.70 0.91 2.79 0.44 0.55 0.41 1.82

4-farthestPoint1 0.37 0.17 0.65 0.10 0.13 0.02 0.40

4-farthestPoint2 0.50 0.31 0.68 0.08 0.10 0.01 0.52

4-inside1 0.59 0.41 0.78 0.08 0.10 0.01 0.60

4-inside2 0.91 0.59 1.27 0.16 0.20 0.04 0.94

4-inside3 0.83 0.43 1.21 0.19 0.23 0.06 0.87

4-inside4 1.44 1.11 1.83 0.17 0.21 0.05 1.46

4-inside5 0.53 0.23 0.90 0.17 0.20 0.05 0.57

4-patchBorder1 0.56 0.28 0.90 0.16 0.19 0.04 0.59

4-patchBorder2 0.82 0.46 1.36 0.21 0.27 0.08 0.87

4-patchBorder3 0.37 0.14 0.61 0.12 0.14 0.02 0.40

4-patchBorder4 0.62 0.36 0.96 0.15 0.18 0.04 0.65

4-patchBorder5 0.62 0.14 1.29 0.27 0.34 0.13 0.71

5-chipBorder1 1.06 0.41 1.69 0.25 0.31 0.10 1.10

5-chipBorder2 1.14 0.26 1.93 0.40 0.48 0.24 1.24

5-chipBorder3 0.86 0.45 1.18 0.16 0.20 0.04 0.89

5-patchBorder1 0.57 0.20 0.96 0.18 0.22 0.05 0.61

5-patchBorder2 0.45 0.20 0.71 0.13 0.15 0.02 0.48

Fig. 17. Visual results of the spatial accuracy tests: (left) touch of a sin-

gle point with mean error 0.55mm (RMS 0.61); (right) touch during the

movement along a path with mean error 0.56mm (RMS 0.71). The colored

spheres show the touch points acquired during the five trials. Each trial has

a different color. The semi-transparent black geometry shows the ground

truth position of each test.

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

Capacitive Touch Sensing on General 3D Surfaces • 103:17

Table 5. Spatial accuracy error for the tests with the movement of the

finger along a path. For each test case, the table reports the average error,

the minimum and the maximum error, the mean absolute deviation, the

standard deviation, the variance, and the RMS error in millimeters of the

touched positions along the path with respect to the ground truth.

Cube

Paths 𝜇 Min Max MAD 𝜎 𝜎2 RMSE
chipBorderSharpTxRx 1.15 0.02 3.77 0.60 0.76 0.60 1.38

chipBorderSharpTxTx 1.00 0.02 3.24 0.58 0.72 0.52 1.23

chipCrossDiagTxRx 1.30 0.04 3.82 0.88 1.00 1.01 1.64

chipCrossDiagTxTx 1.40 0.03 5.19 0.88 1.13 1.31 1.80

chipCrossParallTxTx 1.36 0.04 3.16 0.63 0.78 0.64 1.57

chipCrossParallTxRx 0.99 0.03 5.32 0.60 0.90 0.81 1.35

insideDiagCrossSharp 0.93 0.01 2.94 0.62 0.75 0.63 1.20

insideParallTx 0.59 0.02 2.01 0.40 0.50 0.26 0.78

insideParallCrossSharpRx 0.83 0.00 3.62 0.64 0.80 0.70 1.16

insideParallSharpTx 0.96 0.09 2.34 0.51 0.62 0.40 1.14

Bunny

Paths 𝜇 Min Max MAD 𝜎 𝜎2 RMSE
chipBorderTxRx 0.99 0.09 3.25 0.46 0.63 0.42 1.19

chipBorderRxRx 1.10 0.03 3.90 0.62 0.82 0.70 1.38

chipBorderTxTx 0.92 0.06 3.75 0.49 0.66 0.45 1.14

chipCrossDiagRxRx 0.98 0.06 2.10 0.46 0.55 0.32 1.13

chipCrossDiagTxRx 1.06 0.05 3.20 0.64 0.80 0.65 1.33

chipCrossDiagTxTx 0.83 0.08 1.94 0.39 0.48 0.23 0.96

chipCrossParallRxRx 0.56 0.04 2.06 0.31 0.44 0.21 0.72

chipCrossParallTxRx 0.76 0.07 4.18 0.61 0.91 0.91 1.19

chipCrossParallTxTx 0.59 0.04 1.89 0.30 0.38 0.15 0.70

insideDiag1 1.43 0.03 3.87 0.72 0.89 0.81 1.68

insideDiag2 1.42 0.04 3.85 0.67 0.85 0.74 1.66

insideParallRx 0.91 0.01 2.77 0.51 0.62 0.40 1.11

insideParallTx 0.98 0.04 4.29 0.71 0.96 0.94 1.38

patchBorderTxRX 0.85 0.07 2.43 0.48 0.60 0.43 1.04

patchBorderRxRx 0.85 0.02 2.98 0.50 0.67 0.45 1.08

patchBorderTxTx 0.90 0.03 3.06 0.57 0.73 0.62 1.17

patchCrossDiagRxRx 0.66 0.03 2.07 0.34 0.45 0.20 0.80

patchCrossDiagTxRx 0.77 0.02 2.03 0.43 0.53 0.28 0.93

patchCrossParallRxRx 1.36 0.06 4.77 0.92 1.17 1.44 1.80

patchCrossParallTxTx 1.40 0.10 3.49 0.54 0.69 0.49 1.57

patchCrossParallRxTx 0.48 0.01 2.19 0.34 0.44 0.20 0.65

9 DISCUSSION

The quality estimation on the fabricated prototypes, reported in

Table 3 for SNR and in Tables 4 and 5 for spatial accuracy, demon-

strates precise and robust touch detection. It is further confirmed

by the interaction sessions in the accompanying video, which show

stable and accurate multi-touch sensing.

SNR Analysis. The estimated SNR consistently remains above the

threshold of 15 [Davison 2010] for robust touch sensing at an in-

dustrial level, with very few cases having values close to or slightly

below this threshold. The sensors exhibit high robustness in single-

touch (Single) and double-touch scenarios with a second finger on

the same Tx line (2-touches TX). Analysis of the raw data reported in

the supplemental materials confirms the expected decrease in capac-

itive values during multi-touch scenarios. Few critical tests occur in

touch conditions with a second finger on the same Rx line (2-touches

Rx and 3-touches). The general trend is to achieve better SNR with

3 touches compared to the configuration with only a second finger

on the same Rx line. In the 3-touch configuration, the finger on the

Tx line contributes to a reduction in the standard deviation of the

background noise during the no-touch event, leading to increased

SNR values. In future works, an extensive study of this behavior is

suggested, which could be attributed to hardware and fabrication

aspects such as grounding issues, small vibrations of conductors on

the surface during touches, and electromagnetic interference of the

wires inside the internal pipes with the sensors on the surface. For

example, the automatic creation of prototypes using dual-material

3D printing, as reported in Section 7, could serve as a solution to

make SNR evaluation free from these fabrication issues.

Spatial Accuracy Analysis. The tests indicate an average error of

0.84mm for fixed points (RMSE 0.88 mm) and 0.97mm for paths

(RMSE 1.22mm), with only two tests showing error values above or

close to 2mm. Analyzing the results, we do not observe any accuracy

degradation dependent on the mapping of sensors from different

controllers on the surface. The sole factor contributing to degrada-

tion is the extreme curvature configuration of the surface. In the

Cube prototype, the most critical regions are the corners and paths

that run along or cross a sharp edge. Lower accuracy performances

in these cases are attributed to the suboptimal positioning of sen-

sor intersections, which are too far from the touch point on the

sharp feature (~5mm), hindering the detection of capacitive varia-

tion with sufficient strength. The geometry around these features

also prevents placing the finger on the surrounding sensor inter-

sections with a sufficient footprint to register reliable capacitive

variation. Future solutions may involve forcing the placement of

sensor conductors and intersections on the main feature lines of the

geometry using dual quad meshing approaches to overcome this

limitation. In the Bunny prototype, the most critical touch points

are in highly concave regions, where the occlusion of surrounding

geometry makes physically touching these areas more challenging

without unintentionally touching other regions of the prototype.

Future Work. The excellent touch sensing results open new avenues

for future work to enhance and expand the fabrication design of

sensors and the subsequent software layer for data interpolations.

Specifically, our method can be easily extended to enable the auto-

matic fabrication of the physical prototype using more advanced

technologies for the simultaneous printing of dielectric and con-

ductive materials. This extension reduces the fabrication time of

the prototypes, especially avoiding the manual pulling procedure

of the conductors. For example, for the Bunny, we spent 31 hours

for the 3D printing by material jetting, 4 hours for the cleaning of

the support material, and 24 hours (not continuous) for the man-

ual wire pulling. Additionally, we can generalize our approach for

creating sensors with a diamond pattern using mid-point subdivi-

sion algorithms for quad meshing. On the hardware side, another

possible extension is defining a standard pin layout at the bottom

of the prototype to enable the rapid connection of different objects

to the same touch-sensing board. It involves forcing the internal

pipe generation to assign each touch controller line to the same po-

sition in the pin layout across the different objects. More advanced

solutions can also be based on selecting multiple exit regions for

the conductors to allow a more flexible generation of the internal

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

103:18 • Palma et al.

pipes. Finally, we can explore approaches based on machine learn-

ing for the interpolation procedure of the raw sensor data. These

approaches could be more robust against background noise and the

curvature of the geometry, enabling a more precise computation of

touch points in highly concave regions.

10 CONCLUSION

We present a novel computational fabrication solution to enable

mutual capacitive multi-touch sensing on a general 3D object by

automatically generating a regular sensor grid on its surface. The

method aims to distribute touch sensing points (intersections of the

sensor grid) as uniformly as possible, minimizing the number of

used touch controllers and exit conductors needed to connect to

these controllers. Our proposed method is based on a new patch

decomposition and packing approach for quad patch layouts derived

from quad meshing of the input triangle mesh. It is followed by a

procedure to compute the final model, preparing it for 3D printing

while defining a robust solution for generating internal pipes to

connect the sensor grid on the surface with the touch controllers

placed outside the object. The 3D printed prototype is equipped with

sensor conductors through a manual procedure and connected to

touch-sensing hardware to enable the computation of touch points

in the continuous space defined by the triangle mesh surface. Tests

on the touch sensing quality, conducted on physical prototypes,

demonstrate a robust multi-touch detection with high SNR values

and spatial accuracy. The average touch position error over all

the tests falls in the 0.37 - 2.37 mm range. Areas with the worst

SNR and spatial accuracy are sharp features and highly concave

regions where better sensor placement and advanced interpolation

procedures could further improve the results.

ACKNOWLEDGMENTS

The authors thank Alessandro Muntoni for the help with the mate-

rial jetting 3D printing. The models used in the paper are courtesy

of the Stanford 3D Scanning Repository, the AIM@SHAPE Shape

Repository, and Keenan Crane. This research was partially funded

by the German Research Foundation (DFG project 425869111 within

the Priority Program SPP 2199 Scalable Interaction Paradigms for

Pervasive Computing Environments).

REFERENCES

Moritz Bächer, Benjamin Hepp, Fabrizio Pece, Paul G. Kry, Bernd Bickel, Bernhard

Thomaszewski, and Otmar Hilliges. 2016. DefSense: Computational Design of

Customized Deformable Input Devices. In Proceedings of the CHI Conference on
Human Factors in Computing Systems (San Jose, California, USA). ACM, New York,

USA, 3806–3816. https://doi.org/10.1145/2858036.2858354

Gary Barrett and Ryomei Omote. 2010. Projected-capacitive touch technology. Infor-
mation Display 26, 3 (2010), 16–21.

Jesse Burstyn, Nicholas Fellion, Paul Strohmeier, and Roel Vertegaal. 2015. Printput:

Resistive and capacitive input widgets for interactive 3D prints. In IFIP Conference
on Human-Computer Interaction. Springer International Publishing, Cham, 332–339.

https://doi.org/10.1007/978-3-319-22701-6_25

Marcel Campen. 2017. Partitioning Surfaces Into Quadrilateral Patches: A Survey.

Computer Graphics Forum 36, 8 (2017), 567–588. https://doi.org/10.1111/cgf.13153

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Parametriza-

tion. ACM Trans. Graph. 34, 6, Article 192 (nov 2015), 12 pages. https://doi.org/10.

1145/2816795.2818140

Giorgio Cannata, Marco Maggiali, Giorgio Metta, and Giulio Sandini. 2008. An em-

bedded artificial skin for humanoid robots. In IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems. IEEE, USA, 434–438.
https://doi.org/10.1109/MFI.2008.4648033

Tingyu Cheng, Koya Narumi, Youngwook Do, Yang Zhang, Tung D. Ta, Takuya Sasatani,

Eric Markvicka, Yoshihiro Kawahara, Lining Yao, Gregory D. Abowd, and HyunJoo

Oh. 2020. Silver Tape: Inkjet-Printed Circuits Peeled-and-Transferred on Versatile

Substrates. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 4, 1 (March 2020), 1–17. https://doi.org/10.1145/3381013

Burke Davison. 2010. Techniques for robust touch sensing design. Technical Report.
AN1334 Microchip Technology Inc. 53 pages.

David Eppstein, Michael T. Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Motor-

cycle Graphs: Canonical Quad Mesh Partitioning. Computer Graphics Forum 27, 5

(2008), 1477–1486. https://doi.org/10.1111/j.1467-8659.2008.01288.x

Jun Gong, Olivia Seow, Cedric Honnet, Jack Forman, and Stefanie Mueller. 2021.

MetaSense: Integrating Sensing Capabilities into Mechanical Metamaterial. In The
34th Annual ACM Symposium on User Interface Software and Technology. ACM, New

York, NY, USA, 1063–1073. https://doi.org/10.1145/3472749.3474806

Timo Götzelmann and Christopher Althaus. 2016. TouchSurfaceModels: Capacitive

Sensing Objects through 3D Printers. In Proceedings of the 9th ACM International
Conference on PErvasive Technologies Related to Assistive Environments. ACM, New

York, NY, USA, 1–8. https://doi.org/10.1145/2910674.2910690

Tony Gray. 2019. Projected Capacitive Touch. Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-98392-9

Daniel Groeger and Jürgen Steimle. 2018. ObjectSkin: Augmenting Everyday Ob-

jects with Hydroprinted Touch Sensors and Displays. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (Jan. 2018), 1–23.
https://doi.org/10.1145/3161165

Tobias Grosse-Puppendahl, Yannick Berghoefer, Andreas Braun, Raphael Wimmer,

and Arjan Kuijper. 2013. OpenCapSense: A rapid prototyping toolkit for pervasive

interaction using capacitive sensing. In IEEE International Conference on Pervasive
Computing and Communications (PerCom). IEEE Computer Society, Washington,

DC, USA, 152–159. https://doi.org/10.1109/PerCom.2013.6526726

Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer, Oskar

Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith. 2017. Find-

ing Common Ground: A Survey of Capacitive Sensing in Human-Computer In-

teraction. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Denver, USA). ACM, New York, NY, USA, 3293–3315. https:

//doi.org/10.1145/3025453.3025808

LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http://www.

gurobi.com

Jefferson Y. Han. 2005. Low-cost Multi-touch Sensing Through Frustrated Total Internal

Reflection. In Proceedings of the 18th Annual ACM Symposium on User Interface
Software and Technology (Seattle, WA, USA). ACM, New York, NY, USA, 115–118.

https://doi.org/10.1145/1095034.1095054

Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. 2011a. OmniTouch: Wearable

Multitouch Interaction Everywhere. In Proceedings of the 24th Annual ACM Sym-
posium on User Interface Software and Technology (Santa Barbara, California, USA).

ACM, New York, NY, USA, 441–450. https://doi.org/10.1145/2047196.2047255

Chris Harrison, Julia Schwarz, and Scott E. Hudson. 2011b. TapSense: enhancing finger

interaction on touch surfaces. In Proceedings of the 24th annual ACM symposium
on User interface software and technology. ACM, New York, NY, USA, 627. https:

//doi.org/10.1145/2047196.2047279

Liang He, Jarrid A. Wittkopf, Ji Won Jun, Kris Erickson, and Rafael Tico Ballagas.

2022. ModElec: A Design Tool for Prototyping Physical Computing Devices Using

Conductive 3D Printing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4,
Article 159 (dec 2022), 20 pages. https://doi.org/10.1145/3495000

Freddie Hong, Connor Myant, and David E Boyle. 2021. Thermoformed Circuit Boards:

Fabrication of Highly Conductive Freeform 3D Printed Circuit Boards with Heat

Bending. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (Yokohama, Japan). ACM, New York, NY, USA, Article 669, 10 pages. https:

//doi.org/10.1145/3411764.3445469

Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook, Cheng Zhang, and Gregory D.

Abowd. 2013. Instant Inkjet Circuits: Lab-Based Inkjet Printing to Support Rapid

Prototyping of UbiComp Devices. In Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing (Zurich, Switzerland). ACM, New

York, NY, USA, 363–372. https://doi.org/10.1145/2493432.2493486

Arshad Khan, Joan Sol Roo, Tobias Kraus, and Jürgen Steimle. 2019. Soft Inkjet Circuits:

Rapid Multi-Material Fabrication of Soft Circuits Using a Commodity Inkjet Printer.

In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (New Orleans, LA, USA). ACM, New York, NY, USA, 341–354. https:

//doi.org/10.1145/3332165.3347892

Konstantin Klamka, Raimund Dachselt, and Jürgen Steimle. 2020. Rapid Iron-On User

Interfaces: Hands-on Fabrication of Interactive Textile Prototypes. In Proceedings of
the CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA).
ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376220

Gierad Laput, Eric Brockmeyer, Scott E. Hudson, and Chris Harrison. 2015. Acous-

truments: Passive, Acoustically-Driven, Interactive Controls for Handheld Devices.

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Comput-
ing Systems (Seoul, Republic of Korea). ACM, New York, NY, USA, 2161–2170.

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

https://doi.org/10.1145/2858036.2858354
https://doi.org/10.1007/978-3-319-22701-6_25
https://doi.org/10.1111/cgf.13153
https://doi.org/10.1145/2816795.2818140
https://doi.org/10.1145/2816795.2818140
https://doi.org/10.1109/MFI.2008.4648033
https://doi.org/10.1145/3381013
https://doi.org/10.1111/j.1467-8659.2008.01288.x
https://doi.org/10.1145/3472749.3474806
https://doi.org/10.1145/2910674.2910690
https://doi.org/10.1007/978-3-319-98392-9
https://doi.org/10.1145/3161165
https://doi.org/10.1109/PerCom.2013.6526726
https://doi.org/10.1145/3025453.3025808
https://doi.org/10.1145/3025453.3025808
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1145/1095034.1095054
https://doi.org/10.1145/2047196.2047255
https://doi.org/10.1145/2047196.2047279
https://doi.org/10.1145/2047196.2047279
https://doi.org/10.1145/3495000
https://doi.org/10.1145/3411764.3445469
https://doi.org/10.1145/3411764.3445469
https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/3332165.3347892
https://doi.org/10.1145/3332165.3347892
https://doi.org/10.1145/3313831.3376220

Capacitive Touch Sensing on General 3D Surfaces • 103:19

https://doi.org/10.1145/2702123.2702414

Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional packing

problems: A survey. European Journal of Operational Research 141, 2 (2002), 241–252.

https://doi.org/10.1016/S0377-2217(02)00123-6

Andrea Lodi, Silvano Martello, and Daniele Vigo. 1999. Heuristic and Metaheuristic

Approaches for a Class of Two-Dimensional Bin Packing Problems. INFORMS
Journal on Computing 11, 4 (1999), 345–357. https://doi.org/10.1287/ijoc.11.4.345

James J. Fitzgibbon Michael C. Brenner. 1985. Surface acoustic wave touch panel system.

US Patent US4644100A.

Microchip. 2012. Sensor Design Guidelines. Retrieved April 25, 2024

from http://ww1.microchip.com/downloads/en/DeviceDoc/FAQs%20-%20Sensor%

20Design%20Guidelines.pdf.

Toshiharu Mukai, Masaki Onishi, Tadashi Odashima, Shinya Hirano, and Zhiwei Luo.

2008. Development of the Tactile Sensor System of a Human-Interactive Robot

“RI-MAN”. IEEE Transactions on Robotics 24, 2 (2008), 505–512. https://doi.org/10.

1109/TRO.2008.917006

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages. https://doi.org/10.1145/2487228.

2487235

Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin. 2010. Feature-Aligned

T-Meshes. ACM Trans. Graph. 29, 4, Article 117 (jul 2010), 11 pages. https://doi.

org/10.1145/1778765.1778854

Simon Olberding, Michael Wessely, and Jürgen Steimle. 2014. PrintScreen: fabricating

highly customizable thin-film touch-displays. In Proceedings of the 27th annual ACM
symposium on User interface software and technology. ACM, Honolulu, Hawaii, USA,

281–290. https://doi.org/10.1145/2642918.2647413

Gianpaolo Palma, Sara Perry, and Paolo Cignoni. 2021. Augmented Virtuality Using

Touch-Sensitive 3D-Printed Objects. Remote Sensing 13, 11 (2021), 20 pages. https:

//doi.org/10.3390/rs13112186

Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo Cignoni. 2011.

Automatic Construction of Quad-Based Subdivision Surfaces Using Fitmaps. IEEE
Transactions on Visualization and Computer Graphics 17, 10 (oct 2011), 1510–1520.
https://doi.org/10.1109/TVCG.2011.28

Thiago Pereira, Szymon Rusinkiewicz, and Wojciech Matusik. 2014. Computational

Light Routing: 3D Printed Optical Fibers for Sensing and Display. ACM Trans. Graph.
33, 3, Article 24 (jun 2014), 13 pages. https://doi.org/10.1145/2602140

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini.

2021. Reliable Feature-Line Driven Quad-Remeshing. ACM Trans. Graph. 40, 4,
Article 155 (jul 2021), 17 pages. https://doi.org/10.1145/3450626.3459941

Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Roberto, and Paolo Cignoni.

2016. Tracing Field-Coherent Quad Layouts. Computer Graphics Forum 35, 7 (oct

2016), 485–496. https://doi.org/10.1111/cgf.13045

Narjes Pourjafarian, Marion Koelle, Fjolla Mjaku, Paul Strohmeier, and Jürgen Steimle.

2022. Print-A-Sketch: A Handheld Printer for Physical Sketching of Circuits and

Sensors on Everyday Surfaces. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (New Orleans, LA, USA). ACM, New York, NY, USA, Article

270, 17 pages. https://doi.org/10.1145/3491102.3502074

Faniry H. Razafindrazaka and Konrad Polthier. 2017. Optimal base complexes for

quadrilateral meshes. Computer Aided Geometric Design 52-53 (2017), 63–74. https:

//doi.org/10.1016/j.cagd.2017.02.012

Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. PerfectMatching

Quad Layouts for Manifold Meshes. Computer Graphics Forum 34, 5 (2015), 219–228.

https://doi.org/10.1111/cgf.12710

Munehiko Sato, Ivan Poupyrev, and Chris Harrison. 2012. Touché: Enhancing Touch

Interaction on Humans, Screens, Liquids, and Everyday Objects. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA).
ACM, New York, NY, USA, 483–492. https://doi.org/10.1145/2207676.2207743

Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George Fitzmaurice, and Björn Hart-

mann. 2014. A series of tubes: adding interactivity to 3D prints using internal

pipes. In Proceedings of the 27th Annual ACM Symposium on User Interface Soft-
ware and Technology (Honolulu, Hawaii, USA). ACM, New York, NY, USA, 3–12.

https://doi.org/10.1145/2642918.2647374

Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018. Generalized

Motorcycle Graphs for Imperfect Quad-Dominant Meshes. ACM Trans. Graph. 37, 4,
Article 155 (jul 2018), 16 pages. https://doi.org/10.1145/3197517.3201389

Martin Schmitz, Mohammadreza Khalilbeigi, Matthias Balwierz, Roman Lissermann,

Max Mühlhäuser, and Jürgen Steimle. 2015. Capricate: A Fabrication Pipeline

to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In

Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology (Charlotte, NC, USA). ACM, New York, NY, USA, 253–258. https:

//doi.org/10.1145/2807442.2807503

Martin Schmitz, Jürgen Steimle, Jochen Huber, Niloofar Dezfuli, and Max Mühlhäuser.

2017. Flexibles: Deformation-Aware 3D-Printed Tangibles for Capacitive Touch-

screens. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA). ACM, New York, NY, USA, 1001–1014. https:

//doi.org/10.1145/3025453.3025663

Martin Schmitz, Martin Stitz, Florian Müller, Markus Funk, and Max Mühlhäuser. 2019.

Trilaterate: A Fabrication Pipeline to Design and 3D Print Hover-, Touch-, and

Force-Sensitive Objects. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (Glasgow, Scotland Uk). ACM, New York, NY, USA, 1–13.

https://doi.org/10.1145/3290605.3300684

Paul Strohmeier, Jarrod Knibbe, Sebastian Boring, and Kasper Hornbæk. 2018. zPatch:

Hybrid Resistive/Capacitive eTextile Input. In Proceedings of the Twelfth International
Conference on Tangible, Embedded, and Embodied Interaction (Stockholm, Sweden).

ACM, New York, NY, USA, 188–198. https://doi.org/10.1145/3173225.3173242

Mathias Sundholm, Jingyuan Cheng, Bo Zhou, Akash Sethi, and Paul Lukowicz. 2014.

Smart-Mat: Recognizing and Counting Gym Exercises with Low-Cost Resistive

Pressure Sensing Matrix. In Proceedings of the ACM International Joint Conference
on Pervasive and Ubiquitous Computing (Seattle, Washington). ACM, New York, NY,

USA, 373–382. https://doi.org/10.1145/2632048.2636088

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.

Simple Quad Domains for Field Aligned Mesh Parametrization. ACM Trans. Graph.
30, 6 (dec 2011), 1–12. https://doi.org/10.1145/2070781.2024176

Marc Teyssier, Brice Parilusyan, Anne Roudaut, and Jürgen Steimle. 2021. Human-Like

Artificial Skin Sensor for Physical Human-Robot Interaction. In IEEE International
Conference on Robotics and Automation. IEEE, USA, 3626–3633. https://doi.org/10.

1109/ICRA48506.2021.9561152

Tito Pradhono Tomo, Massimo Regoli, Alexander Schmitz, Lorenzo Natale, Harris

Kristanto, Sophon Somlor, Lorenzo Jamone, Giorgio Metta, and Shigeki Sugano. 2018.

A New Silicone Structure for uSkin—A Soft, Distributed, Digital 3-Axis Skin Sensor

and Its Integration on the Humanoid Robot iCub. IEEE Robotics and Automation
Letters 3, 3 (2018), 2584–2591. https://doi.org/10.1109/LRA.2018.2812915

Daiki Tone, Daisuke Iwai, Shinsaku Hiura, and Kosuke Sato. 2020. FibAR: Embedding

Optical Fibers in 3D Printed Objects for Active Markers in Dynamic Projection

Mapping. IEEE Transactions on Visualization and Computer Graphics 26, 5 (2020),
2030–2040. https://doi.org/10.1109/TVCG.2020.2973444

Nobuyuki Umetani and Ryan Schmidt. 2017. SurfCuit: Surface-Mounted Circuits on

3D Prints. IEEE Computer Graphics and Applications 37, 3 (2017), 52–60. https:

//doi.org/10.1109/MCG.2017.40

Guanyun Wang, Fang Qin, Haolin Liu, Ye Tao, Yang Zhang, Yongjie Jessica Zhang,

and Lining Yao. 2020. MorphingCircuit: An Integrated Design, Simulation, and

Fabrication Workflow for Self-Morphing Electronics. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 4, 4, Article 157 (dec 2020), 26 pages. https://doi.org/

10.1145/3432232

Tianyi Wang, Ke Huo, Pratik Chawla, Guiming Chen, Siddharth Banerjee, and Karthik

Ramani. 2018. Plain2Fun: Augmenting Ordinary Objects with Interactive Functions

by Auto-Fabricating Surface Painted Circuits. In Proceedings of the Designing Interac-
tive Systems Conference (Hong Kong, China). ACM, New York, NY, USA, 1095–1106.

https://doi.org/10.1145/3196709.3196791

Michael Wessely, Ticha Sethapakdi, Carlos Castillo, Jackson C. Snowden, Ollie Hanton,

Isabel P. S. Qamar, Mike Fraser, Anne Roudaut, and Stefanie Mueller. 2020. Sprayable

User Interfaces: Prototyping Large-Scale Interactive Surfaces with Sensors and

Displays. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.1145/3313831.3376249

Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed optics:

3D printing of embedded optical elements for interactive devices. In Proceedings
of the 25th Annual ACM Symposium on User Interface Software and Technology
(Cambridge, Massachusetts, USA). ACM, New York, NY, USA, 589–598. https:

//doi.org/10.1145/2380116.2380190

Andrew D. Wilson. 2010. Using a depth camera as a touch sensor. In ACM International
Conference on Interactive Tabletops and Surfaces (Saarbrücken, Germany). ACM, New

York, NY, USA, 69–72. https://doi.org/10.1145/1936652.1936665

Raphael Wimmer and Patrick Baudisch. 2011. Modular and Deformable Touch-sensitive

Surfaces Based on Time Domain Reflectometry. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology (Santa Barbara, Califor-

nia, USA). ACM, New York, NY, USA, 517–526. https://doi.org/10.1145/2047196.

2047264

Jarrid A. Wittkopf, Kris Erickson, Paul Olumbummo, Aja Hartman, Howard Tom, and

Lihua Zhao. 2019. 3D Printed Electronics with Multi Jet Fusion. NIP & Digital
Fabrication Conference 35, 1 (2019), 29–33. https://doi.org/10.2352/ISSN.2169-4451.

2019.35.29

Kui Wu, Marco Tarini, Cem Yuksel, James McCann, and Xifeng Gao. 2022. Wearable 3D

Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World

Objects. IEEE Transactions on Visualization and Computer Graphics 28, 9 (2022),

3180–3192. https://doi.org/10.1109/TVCG.2021.3056101

Sen Zhang, Hui Zhang, and Jun-Hai Yong. 2016. Automatic Quad Patch Layout Extrac-

tion for Quadrilateral Meshes. Computer-Aided Design and Applications 13, 3 (2016),
409–416. https://doi.org/10.1080/16864360.2015.1114399

Yang Zhang and Chris Harrison. 2018. Pulp Nonfiction: Low-Cost Touch Tracking for

Paper. In Proceedings of the CHI Conference on Human Factors in Computing Systems
(Montreal, QC, Canada,). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/

3173574.3173691

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

https://doi.org/10.1145/2702123.2702414
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1287/ijoc.11.4.345
http://ww1.microchip.com/downloads/en/DeviceDoc/FAQs%20-%20Sensor%20Design%20Guidelines.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/FAQs%20-%20Sensor%20Design%20Guidelines.pdf
https://doi.org/10.1109/TRO.2008.917006
https://doi.org/10.1109/TRO.2008.917006
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/1778765.1778854
https://doi.org/10.1145/1778765.1778854
https://doi.org/10.1145/2642918.2647413
https://doi.org/10.3390/rs13112186
https://doi.org/10.3390/rs13112186
https://doi.org/10.1109/TVCG.2011.28
https://doi.org/10.1145/2602140
https://doi.org/10.1145/3450626.3459941
https://doi.org/10.1111/cgf.13045
https://doi.org/10.1145/3491102.3502074
https://doi.org/10.1016/j.cagd.2017.02.012
https://doi.org/10.1016/j.cagd.2017.02.012
https://doi.org/10.1111/cgf.12710
https://doi.org/10.1145/2207676.2207743
https://doi.org/10.1145/2642918.2647374
https://doi.org/10.1145/3197517.3201389
https://doi.org/10.1145/2807442.2807503
https://doi.org/10.1145/2807442.2807503
https://doi.org/10.1145/3025453.3025663
https://doi.org/10.1145/3025453.3025663
https://doi.org/10.1145/3290605.3300684
https://doi.org/10.1145/3173225.3173242
https://doi.org/10.1145/2632048.2636088
https://doi.org/10.1145/2070781.2024176
https://doi.org/10.1109/ICRA48506.2021.9561152
https://doi.org/10.1109/ICRA48506.2021.9561152
https://doi.org/10.1109/LRA.2018.2812915
https://doi.org/10.1109/TVCG.2020.2973444
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1145/3432232
https://doi.org/10.1145/3432232
https://doi.org/10.1145/3196709.3196791
https://doi.org/10.1145/3313831.3376249
https://doi.org/10.1145/2380116.2380190
https://doi.org/10.1145/2380116.2380190
https://doi.org/10.1145/1936652.1936665
https://doi.org/10.1145/2047196.2047264
https://doi.org/10.1145/2047196.2047264
https://doi.org/10.2352/ISSN.2169-4451.2019.35.29
https://doi.org/10.2352/ISSN.2169-4451.2019.35.29
https://doi.org/10.1109/TVCG.2021.3056101
https://doi.org/10.1080/16864360.2015.1114399
https://doi.org/10.1145/3173574.3173691
https://doi.org/10.1145/3173574.3173691

103:20 • Palma et al.

Yang Zhang, Gierad Laput, and Chris Harrison. 2017. Electrick: Low-Cost Touch Sensing

Using Electric Field Tomography. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA). ACM, New York, NY, USA,

1–14. https://doi.org/10.1145/3025453.3025842

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-

ments for solid geometry. ACM Trans. Graph. 35, 4, Article 39 (jul 2016), 15 pages.
https://doi.org/10.1145/2897824.2925901

Junyi Zhu, Lotta-Gili Blumberg, Yunyi Zhu, Martin Nisser, Ethan Levi Carlson, Xin

Wen, Kevin Shum, Jessica Ayeley Quaye, and Stefanie Mueller. 2020a. CurveBoards:

Integrating Breadboards into Physical Objects to Prototype Function in the Context

of Form. In Proceedings of the CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/

3313831.3376617

Junyi Zhu, Yunyi Zhu, Jiaming Cui, Leon Cheng, Jackson Snowden, Mark Chounlakone,

Michael Wessely, and Stefanie Mueller. 2020b. MorphSensor: A 3D Electronic

Design Tool for Reforming Sensor Modules. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. ACM, New York, NY, USA,

541–553. https://doi.org/10.1145/3379337.3415898

Thomas G. Zimmerman, Joshua R. Smith, Joseph A. Paradiso, David Allport, and Neil

Gershenfeld. 1995. Applying Electric Field Sensing to Human-computer Interfaces.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA). ACM/Addison-Wesley, New York, NY, USA, 280–287.

https://doi.org/10.1145/223904.223940

ACM Trans. Graph., Vol. 43, No. 4, Article 103. Publication date: July 2024.

https://doi.org/10.1145/3025453.3025842
https://doi.org/10.1145/2897824.2925901
https://doi.org/10.1145/3313831.3376617
https://doi.org/10.1145/3313831.3376617
https://doi.org/10.1145/3379337.3415898
https://doi.org/10.1145/223904.223940

	Abstract
	1 Introduction
	2 Related Work
	2.1 Touch Sensing
	2.2 Quad Patch Decomposition
	2.3 Cable Routing in a 3D domain

	3 Method Overview
	4 Data preparation
	5 Patch Decomposition and Packing
	5.1 Quad Patch Layout Simplification
	5.2 Patch Layout Packing

	6 Geometry Prototype Generation
	7 Prototype Setup
	7.1 Touch Points Computation

	8 Results
	8.1 Touch Sensing Prototypes
	8.2 Patch Decomposition and Packing Performance
	8.3 Signal-to-Noise Ratio
	8.4 Spatial Accuracy

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

