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Abstract. Due to domain shift, deep learning image classifiers perform
poorly when applied to a domain different from the training one. For
instance, a classifier trained on chest X-ray (CXR) images from one hos-
pital may not generalize to images from another hospital due to variations
in scanner settings or patient characteristics. In this paper, we introduce
our CROCODILE framework, showing how tools from causality can fos-
ter a model’s robustness to domain shift via feature disentanglement,
contrastive learning losses, and the injection of prior knowledge. This
way, the model relies less on spurious correlations, learns the mechanism
bringing from images to prediction better, and outperforms baselines
on out-of-distribution (OOD) data. We apply our method to multi-label
lung disease classification from CXRs, utilizing over 750000 images from
four datasets. Our bias-mitigation method improves domain generaliza-
tion and fairness, broadening the applicability and reliability of deep
learning models for a safer medical image analysis. Find our code at:
https://github.com/gianlucarloni/crocodile.
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1 Introduction

Domain shift bias is the problem of machine learning (ML) models performing
not consistently across in-distribution (ID) and out-of-distribution (OOD) data.
The former are independent and identically distributed (i.i.d) to the data on
which the model was trained. Conversely, data are OOD when their distribution
essentially differs from the source one, such as chest X-rays (CXR) coming from
a different hospital than the training one [18,7,28]. Traditional ML models still
tend to rely on spurious correlations seen during training for predicting the out-
come and spectacularly fail when those shortcut associations are not present in
OOD data, for instance, due to variations in scanner settings, image artifacts,
or patient demographics [6,20,1,8]. For this reason, the field of domain general-
ization (DG) has searched for ways to make deep learning (DL) models learn
robust features that could generalize better to unseen domains [11,13,25,29].
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Fig. 1: A causal view on classifying medical images I coming from different do-
mains D for the presence of diseases Y. By applying the latent causal intervention
(hammer), the backdoor path through the spurious features is cut off.

Conceptually, we could think of a set of features that causally determine
the outcome and are invariant to shifts in non-relevant attributes, as well as
a separate set of features that are spuriously correlated with the outcome but
do not have a causal effect. Some works have proposed using tools from causal
inference to achieve this disentanglement [26,21,12]. The common idea is that
using the causal instead of the spurious features would allow a model to learn
the underlying mechanism and be more robust on new data. However, these
efforts try to model domain shifts implicitly, with a scope limited to the disease
prediction task, disregarding the wealth of information on possible domain shifts
from different source data sets.

In this work, we advance this causal/spurious feature disentanglement on a
cross-domain level by leveraging information from different datasets in a con-
trastive learning setting. We conceive a domain prediction branch along the
disease-prediction branch to instill domain awareness into the model’s represen-
tations. Moreover, we propose a new way to inject background medical knowl-
edge, effectively designing a task prior to guiding learning and fostering DG.

2 Methodology

We define a structural causal model (SCM) [15] for medical image classification
in Fig 1. Given the input images I, such as CXRs, and the disease classifica-
tion Y, we obtain two sets of features via feature extraction. We denote Fca

y

the causal features that truly determine the outcome (e.g., the patchy airspace
opacification typical in pneumonia). Similarly, we denote Fsp

y the spurious fea-
tures, determined by data bias’s confounding effect, which are unrelated to a
disease (e.g., metal tokens on the image corners). Ideally, Y should be caused
only by Fca

y , but is naturally confounded by Fsp
y , as both types of features usu-

ally coexist in medical data. Unfortunately, conventional models tend to learn
the correlation P (Y|Fca

y ) via the shortcut (backdoor) path Fca
y ← I → Fsp

y → Y
instead of the desired Fca

y → Y. As we detail next, we exploit the do-calculus
from causal theory [16] on the causal features to block the backdoor path, es-
timating P (Y|do(Fca

y )). Following the same idea, we conceive two other sets of
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features extracted from I, this time concerning the trivial task of predicting
from which source domain come the data D: Fca

d would be the features that are
relevant to distinguish different domains, and Fsp

d the confounding features.

2.1 Disease-branch and Domain-branch
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Fig. 2: CROCODILE involves two branches to learn robust, invariant features
for predicting the labels from medical images (e.g., multi-label findings from
CXRs) while disregarding confounding features. We disentangle causal features
determining the label from spurious features associated with the label due to
domain shift. We exploit images from multiple domains in a contrastive learning
scheme and propose a new way to inject prior knowledge. Best seen in color.

We present our overall framework in Fig 2. A disease prediction branch learns
to extract useful image features to predict the medical finding (e.g., pneumoth-
orax or atelectasis in a CXR), regardless of the different domains. On another
parallel branch for domain prediction, the image features that are useful for
the trivial task of predicting the domain the images come from are learned (re-
gardless of the different diseases). The architecture is trained end-to-end. Each
branch involves a feature extraction backbone followed by a block to enhance
features via channel- and spatial- attention [14]. Then, a Transformer network
[24] with a modified cross-attention mechanism yields not only the usual set A of
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attention scores relevant to the task but also its complementary set 1−A, thus
encoding disentangled causal and spurious feature embeddings, Qca and Qsp,
respectively. Finally, three classifiers connect the features Q to the classification
logits z. In the following sections, we design specific contrastive learning losses
and introduce a novel way to inject prior knowledge about the medical task.

2.2 Feature Disentanglement and Causal Intervention

For each branch, we need to make Qca and Qsp capture the authentic and trivial
aspects from the input samples. To achieve the correctness of the predictions,
we impose two cross-entropy (CE) loss terms, LCE,y and LCE,d, over the classi-
fication logits zy and zd from the causal features Qca

y and Qca
d , supervised by the

disease labels y and domain labels d, respectively. To make Qsp features encode
the trivial patterns that are unnecessary for classification, we push its predictions
z̄y and z̄d evenly to all respective categories. We define the uniform classifica-
tion losses LKL,y and LKL,d as the KL-divergence between the spurious features
and the respective uniform distribution (yu or du). To alleviate the confound-
ing effect, we implement the backdoor adjustment by performing a latent causal
intervention [21,12]: we stratify the spurious features appearing from training
data and pair the causal set of features with those stratified spurious features to
compose the intervened graph. This way, we fit the concept of borrowing from
others (i.e., "if everyone has it, it is as if no one has it"). We impose CE losses
Lbd
CE,y and Lbd

CE,d between the logits ẑy and ẑd obtained from the corresponding
intervened features Qbd and the same ground-truth label for the causal features.
This way, we push the predictions of such intervened images to be invariant and
stable across different stratifications due to shared causal features. Practically,
we approximate this operation with an intra-batch shuffling of Qsp followed by
random sampling (with 0.3 drop probability) and addition to Qca. By combining
the supervised CE loss, the KL loss, and the backdoor CE loss for each branch,
we obtain the two following equations:

Ly = −(λ1 y
⊤log(zy)︸ ︷︷ ︸
LCE,y

+λ2 KL(yu, z̄y)︸ ︷︷ ︸
LKL,y

+λ3 y
⊤log(ẑy)︸ ︷︷ ︸
Lbd

CE,y

) (1)

Ld = −(λ4 d
⊤ log(zd)︸ ︷︷ ︸
LCE,d

+λ5 KL(du, z̄d)︸ ︷︷ ︸
LKL,d

+λ6 d
⊤ log(ẑd)︸ ︷︷ ︸
Lbd

CE,d

) (2)

2.3 Contrastive Learning

To attain cross-domain robustness, we posit there should also exist an align-
ment between the causal features that determine the disease and the spurious
features for the domain prediction task. And the converse should also be true. For
instance, we want the regions of the image that determine the presence of pneu-
monia to be unrelated to what contributes to discerning different domains (e.g.,
spurious metal tokens). Conversely, the image aspects determining which domain
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Fig. 3: Our Relational Scorer stratifies and concatenates every combination of
causal and spurious features across both tasks. With a fully connected layer and
a consecutive sigmoid(·), it maps each pair to a relational score between 0 and
1. We use an MSE loss regressing the relational scores to the ground truth. The
model learns to compare the four sets of disentangled features. Best in color.

the image comes from should be unrelated to what determines disease prediction.
However, we are interested in measuring the relational alignment rather than the
structural similarity of the representations. Matched (mismatched) pairs should
"inform" ("repel") each other. Therefore, inspired by the concept of learning
to compare [22,3], we design a new module named Relational Scorer (RS) to
learn which image representations’ pairings are semantically related and which
are not (Fig 3). Our RS stratifies and combines each possible cross-branch pair-
ing p ∈ P = {Qca

y ×Qca
d ∪Qca

y ×Qsp
d ∪Qsp

y ×Qsp
d ∪Qsp

y ×Qca
d } and then maps

them to a relational score between 0 and 1. We use an MSE loss regressing the
relational scores r to the ground truths rGT : matched pairs have a similarity of
1, and the mismatched pair have a similarity of 0. Although this problem may
seem to be a classification problem with label space {0, 1}, we are predicting
relation scores, which can be considered a regression problem (with rGT ∈ {0, 1}
generated by construction). We set the ground truth to 1 for the Qca

y -Qsp
d and

Qsp
y -Qca

d pairings, and 0 otherwise. The resulting regression loss term is:

LRS = −λ7

|P |∑
i=1

(ri − rGT
i )2 (3)

Moreover, we conceive other loss terms to enforce consistency/separation of
medical image representations in a contrastive setting at a batch level:

– L=
y : samples exhibiting a common radiological finding should lie close in

disease-causal feature space Qca
y , regardless of the source domain.
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– L ̸=
y : samples exhibiting different radiological findings should lie close in

disease-spurious feature space Qsp
y , regardless of the source domain.

– L=
d : samples from the same dataset should lie close in domain-causal fea-

ture space Qca
d , regardless of the diseases.

– L ̸=
d : samples from different datasets should lie close in domain-spurious

feature space Qsp
d , regardless of the diseases.

We implement each of such terms via an MSE loss between the representation
Q of each sample in the batch and the corresponding average representation Q̃
of samples with the same/different label:

Lbatch
y = −(λ8

∑
y∈Y

(Qca
y − Q̃ca

y )2︸ ︷︷ ︸
L=

y

+λ9

∑
y∈Y

(Qsp
y − Q̃sp

not(y))
2

︸ ︷︷ ︸
L̸=

y

) (4)

Lbatch
d = −(λ10

∑
d∈D

(Qca
d − Q̃ca

d )2︸ ︷︷ ︸
L=

d

+λ11

∑
d∈D

(Qsp
d − Q̃sp

not(d))
2

︸ ︷︷ ︸
L̸=

d

) (5)

where Y and D are the possible disease and domain labels seen in the batch. To
compute those losses correctly, we design a custom sampler favoring consistent
batches where the class prevalence is respected.

2.4 Injecting Prior Knowledge

Motivated by the high interclass similarity and hierarchical structure of CXR
findings [19,27], we propose a new method to inject prior (medical) knowledge
into the model to guide its learning (Fig. 4). Differently from solutions as con-
ditional training [17], which rely on data, our proposal is desirable to capture
semantic priors without relying on data. We define a causal graph representing
the relationship between the CXR findings and propose a novel formulation of
the causality map concept [5,4] to model the co-occurrence of CXR findings in
the images. As we have seen, each Qca

y representation has shape nc×h, where nc

is the number of classes (e.g., nine CXR findings) and h is the hidden dimension
of the embeddings. After normalizing Qca

y by their global maximum batch-wise,
they lie in the range 0-1, and we interpret their values as probabilities of the
CXR findings to be present in the image. Indeed, given two embeddings Qi and
Qj , to compute the effect of the former on the presence of the latter, we estimate
the ratio between their joint and marginal probabilities as:

P (Qi|Qj) =
P (Qi, Qj)

P (Qj)
≈

(maxh Q
i
h) · (maxh Q

j
h)∑

h Q
j
h

,∀i, j ∈ 1 ≤ i, j ≤ nc (6)

thus obtaining the relationships between embeddings Qi and Qj , since, in gen-
eral, P (Qi|Qj) ̸= P (Qj |Qi). By computing these quantities for every pair i, j, we
obtain the nc×nc map Cy. We interpret asymmetries across estimates opposite
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Fig. 4: Causal graphical model among the CXR findings of interest (blue) and
the ground-truth causality map defined from that graph. Gray boxes represent
additional findings or risk factors (not investigated in this study) that might be
associated with the desired ones.

the main diagonal in Cy as causality signals between their activation. Accord-
ingly, the representation of a CXR finding causes the activation of another when
P (Qi|Qj) > P (Qj |Qi), that is Qi → Qj . We design our Task-Prior loss as an
MSE loss to push the causality map Cy obtained from the learned representa-
tions to the ground-truth causality map CGT

y defined over CXR findings:

LPrior
y = −λ12(Cy − CGT

y )2 (7)

Overall, the training objective of our CROCODILE framework is defined as
the sum of the losses defined in Equations 1, 2, 3, 4, 5 and 7:

LTOT = Ly + Ld + LRS + Lbatch
y + Lbatch

d + Lprior
y . (8)

3 Experimental Setup

We classify eight radiological findings (plus the No finding class) from frontal
CXR images of four popular data sets in both ID and OOD settings. After
cleaning, the number of images for each set is: 112110 for ChestX-ray14 [27],
183453 for CheXpert [9], 95452 for PadChest [2], and 365737 for MIMIC-CXR
[10]. For the first dataset, we create the Lung opacity class as OR logic across
the consolidation, effusion, edema, pneumonia, and atelectasis classes. We resize
the images to 320× 320 and adjust their contrast in 0-255. For ID experiments,
we combine images of ChestX-ray14, CheXpert, and PadChest, split them into
80-20% train and validation sets, and assess the multi-label classification per-
formance via the area under the ROC curve (AUC) and the average precision
(AP) scores for each category and their average. We test the best-performing ID
model on the external, never-before-seen MIMIC-CXR dataset to evaluate OOD
generalization abilities. In all the experiments, we adopted ResNet50 backbones,
Adam optimizer, learning rate of 1e-6, batch size of 12, and trained the model in
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early-stopping on an Nvidia A100 GPU with 64 GB memory. We compare to a
regular ResNet50 architecture, a ResNet50 version of Nie et al. [12] correspond-
ing to discarding domain-branch and task-prior information from our method,
our method without contrastive learning (CL) (LRS , Lbatch

y , Lbatch
d ), and our

method without the task prior (TP) (Lprior
y ).

4 Results and Conclusion

The results of our ID and OOD investigations (Table 1) reveal our method is be-
hind its ablated versions and [12] on i.i.d. data (ID) while is the best-performing
model on the external never-before-seen data (OOD). This important result
points to a necessary trade-off between in-domain accuracy and out-of-domain
robustness on real-world data, supporting recent work [23]. Notably, our method
is the most effective in reducing the ID-to-OOD drop in performance. By lever-
aging causal tools, disentanglement, contrastive learning, and prior knowledge, it
learns a better mechanism from image to prediction, relies less on spurious corre-
lations, and breaks the boundaries across domains. Our bias-mitigation proposal
is general and can be applied to tackle domain shift bias in other computer-aided
diagnosis applications, fostering a safer and more generalizable medical AI.

Finding ResNet50 Nie et al. [12] Ours w/o CL Ours w/o TP Ours
In-distribution (ID) data

Atelectasis 65.74/24.98 76.81/30.04 77.13/30.26 77.07/30.37 77.04/30.37
Cardiomegaly 81.53/51.21 92.43/56.56 92.92/56.60 92.29/56.20 92.27/56.17
Consolidation 69.74/8.71 80.89/13.85 80.62/14.10 81.13/13.82 81.10/13.86
Edema 77.34/17.62 88.49/23.01 88.21/22.53 88.73/22.02 88.72/22.05
Effusion 77.69/51.26 88.68/56.31 89.08/56.46 88.92/56.65 88.93/56.65
Lung opacity 69.81/39.27 81.20/44.62 81.20/44.66 80.60/44.10 80.55/44.08
No finding 68.75/68.08 80.14/73.46 79.68/73.47 79.38/73.22 79.35/73.22
Pneumonia 67.76/20.74 78.05/26.13 79.15/25.73 77.65/24.86 77.63/24.85
Pneumothorax 78.86/32.78 89.87/38.17 90.25/37.69 88.79/37.02 89.86/37.03
Mean [↑] 73.02/34.96 84.06/40.24 84.25/40.17 83.95/39.81 83.94/39.81

Out-of-distribution (OOD) data
Atelectasis 62.79/31.56 74.02/36.69 74.11/36.63 74.15/36.89 74.18/36.83
Cardiomegaly 61.43/31.84 71.44/36.22 71.86/36.42 72.82/37.16 72.80/37.17
Consolidation 66.41/7.20 77.01/11.97 77.38/12.53 77.46/12.13 77.80/12.07
Edema 74.04/36.12 84.52/40.48 83.95/40.46 85.43/41.43 85.39/41.45
Effusion 75.10/59.66 86.16/64.60 86.04/64.87 86.01/64.85 86.49/64.99
Lung opacity 56.92/28.52 67.86/33.49 67.43/33.10 68.30/33.83 68.31/33.85
No finding 67.39/63.72 78.53/68.66 78.72/68.99 78.78/69.02 78.74/69.05
Pneumonia 53.64/7.47 63.96/12.29 64.62/12.52 65.01/12.76 65.03/12.80
Pneumothorax 64.72/12.39 74.89/16.76 75.41/17.65 75.48/17.70 76.11/17.72
Mean [↑] 64.71/30.94 75.38/35.68 75.50/35.91 75.94/36.20 76.09/36.21
ID-OOD drop 11.38/11.50 10.33/11.33 10.38/10.60 9.54/9.07 9.35/9.04
Table 1: AUC/AP scores obtained on ID and OOD data. The drop is in percent.
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