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HIGHLIGHTS

® The proposed method has fast speed.

® The proposed method can efficiently remove outliers.

® The proposed method is very suitable to 3D reconstruction with UAVs.

® The proposed method can help SFM system to produce high-quality 3D model.

ARTICLE INFO ABSTRACT

3D reconstruction based on structure from motion is one of the most techniques to produce sparse point-cloud
model and camera parameter. However, this technique heavily relies on feature tracking method to obtain
feature correspondences, then resulting in a heavy computation burden. To speed up 3D reconstruction, in this
paper, we design a novel GPU-accelerated feature tracking (GFT) method for large-scale structure from motion
(SFM)-based 3D reconstruction. The proposed GFT method consists of GPU-based Gaussian of image (DOG)
keypoint detector, RootSIFT descriptor extractor, k nearest matching, and outlier removing. Firstly, our GPU-
based DOG implementation can detect thousands of keypoints in real-time, whose speed is 30 times faster than
that of the CPU version. Secondly, our GPU-based RootSIFT descriptor can compute thousands of descriptors in
real-time. Thirdly, our GPU-based descriptor matching is 10 times faster than that of the state-of-the-art
methods. Finally, we conduct thorough experiments on different datasets to evaluate the proposed method.
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Experimental results demonstrate the effectiveness and efficiency of the proposed method.

1. Introduction

3D reconstruction is an important topic in the fields of computer
vision and graphics due to its potential applications, such as virtually
reality [1], augmented reality [2], city-scale modeling [3], visualization
[4], image-based localization [5], cross-modal retrieval [6,7], pose es-
timation [8], change detection [9], object tracking [10,11], navigation
[12] and autonomous driving [13]. Thus, many 3D reconstruction
techniques have been proposed for various tasks. Among them, struc-
ture from motion (SFM) is one of the most famous techniques and has
been received wide attentions from the academic world and the in-
dustrial world. Generally, SFM is a collection of techniques including
feature tracking [14], camera calibration [15], pose estimation, motion
averaging [16], perspective-n-point (PnP) [17], registration [18], tri-
angulation [19] and bundle adjustment [20]. The SFM system can
produce sparse point clouds and camera parameters from the given

image collection.

With the increase of amount of image dataset, nowadays, the SFM
systems have been obtained significantly progress. For Instance, some
state-of-the-art SFM systems including incremental SFM architecture
and global SFM architecture can produce accurate 3D point clouds for
large-scale scenes [21,22]. However, these SFM systems are very time-
consuming. According to the newest survey made by Ozyesil et al. [23],
the quality of point cloud produced by COLMAP [22] is rank 1 among
the existing SFM systems, which can not only produce high-precision
camera parameters, but also can produce high-quality 3D model. But,
the COLMAP system has high computation time for large-scale out-
doors, even it was accelerated with parallel computing techniques.
Thus, various strategies have been made to reduce the computation
burden of the SFM systems. For example, Wu et al. [24] hold that
bundle adjustment is time consuming for large-scale scenes, thus, a
multicore bundle adjustment method has been proposed to optimize the
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initial point clouds to obtain compact point-clouds. David et al. [25]
proposed a discrete continuous optimization method for large-scale
structure from motion, in which the initial optimization step is done by
a discrete Markov random filed (MRF), and implemented in parallel
architecture. After a series of matrix factorization operations, this
system can produce point-clouds for the scene. Crandall et al. [26]
proposed large-scale SFM based on graph partitioning, in which a di-
vide and conquer mthod is used to partition the image data set into
smaller sets or components which are reconstructed independently.
Once the model of each independent sets is reconstructed, the model of
the whole scene can be obtained by combing them. Sweeney et al. [27]
proposed a distributed camera model for large-scale SFM, in which the
incrementally adding one camera at a time to grow the reconstruction is
replaced by a distributed camera, then the camera parameters can es-
timated in simultaneous, this can significantly reduce computational
cost.

Although some useful methods have been proposed to improve the
efficiency of 3D reconstruction based on SFM, however, 3D re-
construction is still time consuming according to the report of Saputra
et al. [28]. Particularly, the most time-consuming step in SFM is feature
tracking. To speed up 3D reconstruction, Zhang et al. [29] proposed an
effective non-consecutive feature tracking (ENFT) method for SFM-
based 3D reconstruction, the ENFT relies heavily on two-pass matching
to improve the precision of descriptor matching. However, the two-pass
matching has also high computational time under large-scale scenes
with repeating features. With the development of graphics process units
(GPUs), some time-consuming methods cloud be accelerated using
parallelization technique. For example, Sudipta et al. [30] implemented
KLT-GPU method with CUDA to improve the efficiency of original KLT.
Garcia et al. [31] implemented GPU-based k-nearest neighbor search
(KNN) to match high-dimensional feature descriptor.

Inspired by the thought of GPU-acceleration, in this paper, we
propose GPU-accelerated feature tracking (GFT) method for 3D re-
construction based on SFM. In the proposed method, we firstly paral-
lelize the Difference of Gaussian (DOG) operation [32] to accelerate
keypoint detection; Secondly, the RootSIFT descriptor extractor is
parallelized to get robust description for the selected keypoints;
Thirdly, the k nearest neighbor (KNN) method is parallelized to match
descriptors; Finally, the vector field [33] based method is utilized to
remove outliers from the initial matches, which will result in a set of
correct matches. Our work has a broad of interests to the 3D re-
construction, computer vision and computer graphics community since
many of the key steps in the proposed method are shared by other
methods, which can also be accelerated on the GPU.

The main contributions of this work are summarized as follows:

® A GPU-accelerated feature tracking method is proposed for large-
scale SFM, which significantly improve the efficiency of 3D re-
construction, in which the DOG keypoint detector and RootSIFT
descriptor extractor have been parallelized. As a result, the effi-
ciency of 3D reconstruction system can be significantly improved.
A novel mismatch removing algorithm based on vector field is
proposed to remove outliers from initial matches, which can effi-
ciently avoid the ambiguation of point clouds produced by the SFM
system.

We discuss various factors which may affect the performance of
feature tracking method, this can be as a guide to design an excellent
feature tracking method for large-scale 3D reconstruction based on
SFM.

The rest of this paper is organized as follows: the related work is
presented in Section 2. The proposed GFT method is presented in
Section 3. In Section 4, a comparative experiment is presented to
evaluate the proposed method. The conclusion and remarking com-
ments are presented in Section 5.
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2. Related work

In this section we will briefly review some existing works including
feature tracking and 3D reconstruction methods based on SFM tech-
nique to better understand the proposed GFT method.

2.1. Feature tracking

In the past decade, many feature tracking methods have been pro-
posed [30,31,34-45] for 3D reconstruction. One of the most famous is
Kanade Lucas Tomasi (KLT) [34-36] method, which uses optical flow to
track keypoints appeared in the next frame of video. To speed up KLT,
Sinha et al. [30,43] implemented KLT on graphics processing unit
(GPU), which is named as KLTGPU. However, the KLT-like methods are
easily to produce incorrect matches, these errors are unacceptable for
feature tracking in SFM and SLAM [40]. To improve the precision of
KLT-like methods, Myung et al [46] proposed to use inertial measure-
ment units (IMU) to assist KLT for reducing error accumulation. How-
ever, the KLT-like methods easily suffer from illumination and scale
changes, which can aggravate feature drifting in SFM [47,48] and
SLAM [49,50] under the outdoors.

Recently, feature tracking based on feature detection and matching
framework (DMF) have received wide attentions from the communities
of compute vision [37,41] and computer graphics [51]. For example,
Zhang et al. [37] proposed an efficient feature tracking algorithm for
non-consecutive frames for SFM, in which they use two-pass matching
to process the occlusions to avoid feature drifting. In order to improve
the robustness of feature tracking for simultaneous localization and
mapping (SLAM), Garrigues et al. [52] proposed a semi-dense point
tracking algorithm to produce dense trajectories for the mobile devices.
Lee et al. [39] proposed a hybrid feature tracking using optical flow to
detect distinctive invariant feature points for marker-less augmented
reality. In Bundler system, SIFT and BF method is used to detect and
match keypoints, resulting in a high computation time. Buchanan et al.
[53] proposed an interactive feature tracking (IFT) method, which use
KD-Tree and dynamic programming techniques to speed up feature
descriptors matching. Another purpose pursued by feature tracking
method is to obtain accurate feature correspondences. To achieve this
purpose, Zhang et al. [54] proposed to use epipolar geometry constraint
to remove outliers neared its epipolar line. Wu et al. [55] proposed to
use viewpoint-invariant patches (VIP) to match images with high re-
solution, then result in a collection of accurate matches. However, the
VIP feature is time consuming, thus, this can decrease the efficiency of
feature tracking. To improve time efficiency, the RANSAC procedure is
used to remove outliers, such as [56,57]. Lee et al. [39] proposed hy-
brid feature tracking (HFT) method for augmented reality, which use
multiple strategies including optical flow, RANSAC, epipolar constraint
to remove outliers, then result in a collection of correct matches.
Moreover, using a fast feature detector can accelerate the process of
feature tracking, for example, Zach et al. [58] propose to use SUFR
feature to replace SIFT to obtain a fast speed. Svarm et al. [59] pro-
posed a graph-theoretical approach to point tracking, and used
Gomory-Hu algorithm [60] to remove incorrect matches.

The most recently, feature tracking methods for mobile devices have
attracted wide attentions from computer vision community, one of the
most famous method is proposed by Garrigues et al. [61], which can
efficiently produce accurate and dense feature point trajectories in real-
time. With development of subspace learning theory, it provides a new
approach for research of feature tracking. For example, Poling et al.
[40] proposed a better feature tracking method through subspace
constraints (BFT) for jointly tracking a set of features, which enables
sharing information between the different features in the scene. The
experimental results made in [40] show that the proposed method can
utilized to track keypoints for both rigid and non-rigid objects. Jia et al.
[45] proposed a novel framework based on low-rank structures, termed
ROML, for feature tracking. ROML optimizes simultaneously a partial
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permutation matrix (PPM) for each image, and feature correspondences
are established by the obtained PPMs. Zhao et al. [62] hold that most
existing feature tracking methods are incapable of effectively modeling
and balancing the following three aspects in a simultaneous manner:
temporal model coherence across frames, spatial model consistency
within frames, and discriminative feature construction. To address this
problem, they proposed a robust feature tracking method based on
spatio-temporal multi-task structured output optimization driven by
discriminative metric learning.

Although, existing feature tracking methods as mentioned before try
to use the different strategies to improve the stability and efficiency,
respectively. Obviously, it would be better if the efficiency and stability
of feature tracking are considered at the same time, especially in large-
scale SFM system.

2.2. 3D reconstruction

In the past years, many 3D multi-view 3D reconstruction systems
based on SFM technique have been proposed. The existing SFM systems
can be roughly divided into two categories, namely incremental SFM
and global SFM.

For the former, Bundler is the most famous SFM system, which is
developed by Snavely et al. [63]. Bundler can reconstruct spare point-
cloud model and camera parameters from unordered image collections,
which consists of camera calibration, feature tracking, camera pose
estimation including relative pose and absolute pose, triangulation, and
bundle adjustment. In the Bundler system, the authors employ scale
invariant feature transform (SIFT) [32] to detect keypoints and com-
pute descriptors, and use brute-force matching (BFM) strategy to match
descriptors for image pairs. However, owing to the usage of SIFT and
BFM, the Bundler system has high computation burden especially in
large-scale 3D reconstruction with several thousands of images. This
problem has been pointed by the work of Agarwal et al. [64]. To save
the computation time for 3D reconstruction based SFM, Zach et al. [65]
exploited exploits speeded up robust features (SURF) to detect keypoint
and compute feature descriptor for feature tracking, and developed a
fast SFM system named ETH-3D. Many previous works have proved that
the speed of ETH-3D system is fast than that of Bundler [66]. Dong et al.
[67] proposed a robust markerless real-time camera tracking system
based on keyframe selection and recognition, named ACTS, for multi-
view 3D reconstruction. The ACTS system includes an offline module to
select features from a group of reference images and an online module
to match them to the input live vide in order to quickly estimate the
camera pose. Moreover, to accelerate the speed of feature tracking in
ACTS, the authors use parallelized-SIFT named SFITGPU [68], to detect
keypoints and compute descriptors for the selected keypoints. Later,
ACTS was extended to LS-ACTS for large-scale outdoor environments’
applications [54]. Based on Bundler, Wu et al. [69] developed a Visual
SFM (VSFM) system, which also uses SIFTGPU to detect keypoint and
compute descriptor in feature tracking for saving computational cost. In
addition to the promising speed, the VSFM system has an excellent
graphic user interface (GUI) to make operation easily, and can work
with the patch-based multi-view stereo system (PMVS) [70] to produce
dense 3D geometry of the scene. Ni et al. [71] proposed a novel algo-
rithm that solves the SFM problem in a divide and conquer manner by
exploiting its bipartite graph structure. Thus, the proposed HyperSFM
system use a hypergraph representation to recursively divide an SFM
system, in which finding edge separators yields the desired nonlinear
sub-problems.

For the latter, Moulon et al. [72] proposed a novel global calibration
approach based on the global fusion of relative motions between image
pairs for robust, accurate and scalable SFM. After an efficient contrario
trifocal tensor estimation, the authors define an efficient translation
registration method to recover accurate positions. Besides accurate
camera position, Moulon et al. use KAZE [73] feature to detect key-
points in feature tracking process, then resulting in a high-precision
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matching score, this can significantly improve the quality of 3D model.
Based on optimized viewgraph, Chris et al. [74] designed and im-
plemented an excellent SFM system, named Theia-SFM, to produce
compact and accurate point-cloud model for both indoor and outdoor
scenes. Based on the successes in solving for global camera rotations
using averaging technique, Kyle et al. [75] proposed a simple, effective
method for solving SFM problems by averaging epipolar geometries.
This method has two main insights. First. A simple method is proposed
for removing outliers from feature tracking by solving simpler low-di-
mensional sub-problems named 1DSFM. Second, these authors present
a simple, principled averaging technique to improve the robustness of
3D reconstruction system. With the development of depth-camera such
as Kinect, ASUS Xtion Pro, Intel RealSense and Matterport Pro, RGB-D
datasets are easily to capture, and are widely used in 3D reconstruction.
As a result, to effective use RGB-D datasets, Xiao et al. [76] developed
RGBD-SFM system to construct 3D geometry, in which owing to the
prior information, depth-map, is used, the quality of 3D model is sig-
nificantly improved. Sid et al. [77] held that the semantic information
can help to reconstruct complete 3D model. Based on this important
discovery, they proposed a semantic SFM (SSFM) system. To deal with
the moving objects in scene, Wang et al. [78] designed a dynamic SFM
system, which can detect scene changes from image pairs.

Up to now, most of SFM systems are require the points in scene must
be appeared in three views at least. In order to defend this drawback,
Zheng et al. [79] proposed to use structure-less resection for SFM. In
order to speed up the process of multi-view 3D reconstruction, Crandall
et al. [80] proposed to use discrete-continuous optimization for large-
scale SFM and implemented this system in parallel pipeline.

3. The proposed method

The pipeline of the proposed method is depicted in Fig. 1. For a
given image pairs, firstly, the DOG-GPU keypoint detector is used to
detect keypoints; Secondly, the RootSIFT descriptor extractor is used to
compute descriptor; Thirdly, the KNN is used to find matches for the
two descriptor sets; Finally, to remove mismatches, the VFC algorithm
is used, then the correct matches can be obtained. In the following
sections, we will describe how to implement the DOG keypoint de-
tector, RootSIFT descriptor extractor, and KNN on GPU device with
CUDA kernel.

3.1. Feature detection

The DOG detector is firstly introduce in [32], which is wide use in
various computer vision tasks. To locate a DOG keypoint for image I, as
shown in Fig. 2, the following steps are required: construct multiple-
scale spaces, keypoint localization, orientation assignment. One of the
most computational cost steps in DOG is to construct multiple-scale
spaces, in which too many convolutional operations should be con-
ducted.

Specifically, for a given image, I (x, y), the scale-space is defined as a
function, S(x, y, o), which is produced from the convolution of a vari-
able-scale Gaussian, G(x, y, 0):

Sk, y,0) =G, y, 0)=I(x,y) 1)
where * represents the convolution operation in x and y, and
1 242 /972
G(x, y,0) = e—x+y/27r
x,y,09) Py )

Then, the difference-of-Gaussian image, D(x, y, o), which can be
computed by the difference of two nearly scales:

D(X, Y, U) = (G(X, Y, ko‘)—G(x, Y, U))*I(x’ y) = S(x’ Y, ko')—S(x, Y, O')
3

Thus, the multiple-scale spaces, MSS(x, y, ¢), that is computed by
changing the values of k and o:
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Fig. 1. The pipeline of GPU-accelerated feature tracking.

MSS(x, y, 0) =

Stack (S (x, y, kig)—=S (x, , o))

G

where Stacky! (x) is the vertical connection of difference of Gaussian
image.

Therefore, parallelized convolutional operation is the most im-
portant step to accelerate DOG detector. As shown in Fig. 3, the con-
volutional operations are conducted in the multiple Blocks, which is a
GPU execution unit. We set the number of Block be 10, and each block
contain 20 threads. These can be changed according to the usage of
GPU device to achieve the best performance.

3.2. Descriptor extraction

It is well known that SIFT descriptor has more robustness than that
of SURF, BRIEF and ORB due to its main direction and histogram re-
presentation. Recently, RootSIFT [81] descriptor has shown better ro-
bustness than that of original SIFT descriptor. Thus, to improve the
quality of 3D models, the RootSIFT descriptor extractor is used to
produce a robust description for the selected DOG-GPU keypoint. Once
a DOG-GPU keypoint has been selected, as shown in Fig. 4, the feature
descriptor is computed as a set of orientation histograms on 4 X 4 pixel
neighborhoods. The orientation histograms are relative to the orienta-
tion DOG-GPU keypoint, the orientation data comes from the Gaussian
image closet in scale to the keypoint’s scale.

For a given keypoint, k(x, y), with respect to the SIFT descriptor,

Dg(dy,-++,dy2g), then the RootSIFT descriptor, Dy (dy,--,d1s), can be
computed by the following formula:
. Dy (i
Da= |
Zj 1D (]) (5)

Once, the RootSIFT descriptors have been computed, we can use
Hellinger distance [81] to measure the similarity of the two descriptors.

It should be noted that the number of Block is set to 20, and each Block
contain 128 threads. Each thread may compute one element of the de-
scriptor. Thus, the number of threads in Block is assigned to equal to that
of descriptor length. Once the keypoint is detected, then the descriptor
may be computed simultaneously by 128 threads. As a result, from key-
point detection to descriptor computing, the process has little latency.

Keypoint

Input Image Scale-Space

Localization

3.3. Feature matching

The purpose of descriptor matching is to measure the similarity of
two descriptors. In SURF and SIFT, the L2 distance is used to measure
the similarity of descriptors because the type of descriptors is float
number [32]. For binary descriptors, such as BRIEF and LDB, hamming
distance is used [82]. Here, we use a Hellinger kernel instead the L2
distance to measure the similarity between RootSIFT descriptors, re-
sults in a significant performance boost in process of feature tracking.

For two L1 normalized histogram, v, and v,, the Hellinger kernel
[81] can be defined as:

Hey) = X b

Where, > vl =1and vl > 0.
Thus, the similarity of two RootSIFT descriptors can be calculated

by the following formula:

(6)

Dy (v, vy)* = 2(1—H (vy, 1)) )

Specifically, we search for the two nearest neighboring features of k,
in I;; with respect to the Hellinger distance of the descriptor vectors
and denote then as N}, ; (k;) andN2, (k). Their corresponding descriptor
vectors are denoted as D(N}(k;)) and D(N?,(k,)) respectively. The
matching confidence between k, and N}, ; (k;) is defined as:

_ Dy(ky, +1(kz))2

Dy N (k))? ®

If ¢ < @, we assign k;4; = Ny (k;) and mark these detected key-
points as matched features. In our experiments, ¢ is set to 0.8.

3.4. Remove outliers

Matches by descriptors matching are often include some incorrect
matches, also called outliers, which can produce disambiguate point
clouds when it used in triangulation. To remove these outliers from
matches, various strategies have been proposed, such as RANSAC-based
method [83], statistics-based method [84], and ratio test [32]. How-
ever, these methods have intrinsic deficiency. For example, RANSAC-

Orientation DOG

Assignment Keypoint

Fig. 2. The pipeline of DOG keypoint localization.
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Parallel pipeline
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Fig. 3. Parallel image convolution.

based methods require the precondition that the number of inliers must
be greater than fifty percent. The statistics-based method heavily relies
on the matching results of its neighbor. The performance of ratio test
largely depends on the threshold.

Recently, the vector filed consensus-based method (VFC) [33] has
obtained an excellent performance, so we use VFC to remove mis-
matches. For a given set of observed input-output pairs
s={(xpy) EXX Y}, our purpose is to lean a mapping f: X — Y to
fit the inliers well. Thus, the likelihood can be defined as:

N
p(YIX, 8) = [ o0y lxn. )

n=1

©)]

Where 6 = {f, y?, 7%} is the set of unknown parameters. In this paper, we
use EM method to estimate the value of these parameters.

According to the vector-valued theory [33], the optimal function f
can be defined as:

N
F) =) @, xn)e

n=1 (10)
where ¢, is the coefficient.
The energy function of the VFC is defined as:
1 < 2
=— 1y, — I+ = 11113
#0)= 553 2 pal0p=f C)IP + S an

(a) Initial Mmcl:in (b) Final Matching

Fig. 5. Remove outliers using VFC-based method, the left figure is the result of
the BFM, the right figure is the result of VFC-based method.

Optimizing the formula (3) until convergence, we can obtain the
vector filed f and inlier matching set M = {nlp, > 7, n = 1,---,N}.

Fig. 5 presents the initial matching and final matching, in which the
former is generated by BFM method, the latter is generated by using
VFC method. We see clearly that the VFC method can remove outliers
very well.

-V N ) 0.65,+,0.57
JLAEAVd DR IR 0.38,++,0.52
allh Y Bl Ll 3t R 0.55,:+ ,0.67
N Rt ax X 0.38,+,0.53
f Y /'\A f /' N M 0.77,'",0.56
AR NPAE BV AL B 0.83.++ 0.75

X A7 0.68,:++ ,0.73

Run on GPU Device

(b) Image Gradients

(a) Input keypoints

(c) SIFT Descriptor (d) RootSIFT Descriptor

Fig. 4. RootSIFT descriptor.
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4. Experimental results

The proposed GFT method is developed in C+ +, Nvidia CUDA SDK
8.0 and OpenCV SDK 3.3. To assess the performance of the proposed
method, we have evaluated it on the Family dataset [85] and UAV
dataset, and make a comprehensive comparison with brute-force
matching (BFM) [63], ENFT [29], and MODS [86]. The ENFT is GPU-
based method, and implemented in OpenGL and CUDA. The others are
CPU-based methods.

4.1. How to set the number of threads

As we well known that the number of threads has impact sig-
nificantly on the computational cost. However, the number of threads is
not unchangeable, which depends on the usage of GPU device and the
desired performance. In this section, we will discuss how threads is
scheduled to achieve the best performance according to the test on the
Oxford dataset [87]. We firstly assign 128 threads to compute de-
scriptor for the selected keypoint because the RootSIFT has 128 bits. In
SFM-based 3D reconstruction, each image should have at least 10
keypoints that can be used to produce point clouds. According the
background of 3D reconstruction, the number of Blocks in feature de-
tection and descriptor computing is all set to be 10. Up to now, we only
need to determine the value of on parameter, namely thread used in
feature detection. According to the test on the Oxford dataset, aver-
aging computational cost of descriptor computing is 0.73s. Thus, to
achieve the best performance, the process of descriptor computing must
be finished in 0.73 s when the keypoint is located. Once the computa-
tion time of descriptor computing exceeds 0.73s, the parallel system
may have higher latency. To this end, we can determine the number of
threads in feature detection by the minimum delay theory.

Fig. 6 shows the latency of parallel system with different number of
threads, the system has the minimum latency when 20 threads is used
in the process of feature detection. As a result, we set the number of
threads in feature detection be 20 to achieve the best performance.

4.2. Evaluation on Family dataset

The Family dataset is constructed by Knapitsch et al [85], which is
the newest benchmark dataset for performance evaluation of 3D re-
construction based on SFM. The matches of each feature tracking
method are depicted in Fig. 7, in which the BFM has the minimum
number of matches. The number of matches of the ENFT is greater than
that of BFM; The matches of the MODS are greater than that of both

BFM and ENFT. The GFT method has the maximum number of matches.
In the process of experiment, we found that BFM the relies heavily on
the value of threshold which is used to decide the correct matches.

To assess the speed of each feature tracking method, we record the
computation time for these methods based on the testing on the Family
dataset. Fig. 8 shows the computation time of each method, in which
the BFM has the highest computation time, 22.3s; The proposed GFT
has the fastest speed, and is 20 times faster than that of BFM. As a
result, according to the experiment, we can find that the GFT has the
best performance on both matching confidence and speed.

Fig. 9 presents the point-cloud mode for the Family dataset, gen-
erally, this model is very dense. Thus, the GFT method is effective in
practice.

4.3. Evaluation on UAV dataset

The UAV dataset is constructed by PIX4D company, which is pub-
licly available dataset’ for performance evaluation of 3D reconstruction
based on SFM. The matches of each feature tracking method are de-
picted in Fig. 10 where the BFM has the minimum number of matches.
The number of matches of the ENFT is greater than that of BFM; The
matches of the MODS are the second place among these feature tracking
methods. The GFT method has the maximum number of matches. In the
process of experiment, we found that the ENFT method may produce
many incorrect matches when the image is rotated with more than 180
degrees. However, the GFT method has always produced a plenty of
correct matches even the image is rotated with more than 200 degrees.

We record the computation time for these methods based on the
testing on the Family dataset for fairly assessing the speed of each
feature tracking method. Fig. 11 shows the computation time for each
method, in which the BFM has the highest computation time, 31.3s;
The GFT has the lowest computational cost, 1.8s, which is 17 times
faster than that of BFM method.

We also reconstruct the point-cloud model for the UAV dataset,
which is depicted in Fig. 12, it can be seen that the shape of the pro-
duced model is very clear. Although, some small holes are appeared in
the reconstructed model, the point-cloud model is dense in the rich
texture areas.

1 https://support.pix4d.com/hc/en-us/sections/200591139-Example-
Datasets-Available-for-Download
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Fig. 7. Matches on the Family dataset. The first line is samples; the two last rows are matching results for each method.
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Fig. 8. Computation time of each method on the Family dataset.
4.4. Discussion 4.4.1. Speed
According to our experiments, the reasons that effects the speed of
As we known that speed and quality are two pursuits of goals from feature tracking can be summarized as follows:
the researchers of feature tracking method. Thus, in this section, we will
discuss what impact on the speed and accuracy of feature tracking. (1) The binary type descriptors have faster speed than that of float type

descriptors. For example, the speed of ORB descriptor has faster
speed than that of original SIFT descriptor implemented in [32], the
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BFM ~ ENFT

MODS S GFT

Fig. 10. Matches on the UAV dataset.

former is binary type, and the latter is float type.

(2) The longer of descriptor length, the speed is lower. SIFT descriptor
has 128 dimensions, the SURF descriptor has only 64 elements, thus
the speed of the latter is always faster than that of the former.

(3) The number of keypoints has also great influence on the speed of
feature tracking method. For instance, the ENFT [29] method has
variant speed when different local feature is used.

4.4.2. Accuracy
Similarly, the reasons that effects the accuracy of feature tracking
method can also be summarized as follows:

(1) The feature tracking method has high accuracy when the float type
descriptors are used.

(2) The longer of descriptor length, the feature tracking method has
high accuracy. According to our experiments, the ENFT with SIFT
feature has higher accuracy than it with SURF feature.
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Fig. 11. Computation time of each method on the UAV dataset.

Fig. 12. The sparse point-clouds of the UAV dataset.

(3) The matching strategy has also an important influence on the ac-
curacy of feature tracking method. For example, in RootSIFT de-
scriptor, the Hellinger distance is used to instead of L2 distance to
measure the similarity of two descriptors, then resulting in high
matching confidence.

5. Conclusion

In this paper, we proposed a GPU-accelerated feature tracking (GFT)
method for large-scale 3D reconstruction based on SFM. The proposed
GFT method consists of keypoint detection, descriptor computing, de-
scriptor matching and outliers removing. To deal with high-resolution
images, we use GPU-accelerated DOG detector to detect keypoint to
relieve computation burden. To get robust description for the selected
keypoints, the GPU-accelerated RootSIFT descriptor extractor is used,
which can not only speed up descriptor extraction, but also can produce
a robust description. Moreover, the vector filed-based procedure is used
to remove incorrect matches, this could efficiently avoid the ambi-
guation of 3D model. The proposed method is versatile and expansible,
which can be easily extended to other applications where feature
tracking method must be required. In the future, we will extend our
method to design an ultrafast and robust feature tracking method for 3D
reconstruction based on simultaneous localization and mapping.
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