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Abstract. This paper introduces NausicaaVR, a novel hardware/software
system designed to acquire and render intricate 3D environments, with
a particular emphasis on challenging and adverse contexts. In doing so,
we navigate the complex landscape of system calibration and render-
ing, while seamlessly integrating data from multiple sensors. We explore
the distinctive challenges inherent in adverse environments, juxtaposing
them against conventional automotive scenarios. Through a comprehen-
sive exposition of all constituent elements of the NausicaaVR system, we
offer transparent insights into the encountered obstacles and the intricate
decisions that were instrumental in surmounting them. This study seeks
to illuminate the developmental trajectory of NausicaaVR and analogous
systems, thereby furnishing a repository of knowledge and understanding
poised to benefit future research and the pragmatic implementation of
such cutting-edge technologies.

Keywords: Multi-Sensor Calibration · Real-time Rendering · Virtual
Reality.

1 INTRODUCTION

In a multi-sensor environment, perception and rendering play crucial roles in un-
derstanding and representing the surrounding world. With the advancements in
sensor technologies, such as cameras, lidar, radar, and depth sensors, the ability
to capture rich and diverse data about the environment has greatly expanded.
Multi-sensor perception involves the integration and fusion of data from multiple
sensors to generate a comprehensive understanding of the scene, including the
detection and tracking of objects, estimation of their poses and velocities, and
the creation of detailed 3D models. On the other hand, rendering in a multi-
sensor environment aims to create realistic and immersive visual representations
of the perceived scene, taking into account the different sensor modalities and
their respective characteristics. This involves techniques such as sensor fusion,
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data alignment, mapping, and rendering algorithms to generate accurate and vi-
sually appealing virtual representations of the environment. The combination of
multi-sensor perception and rendering enables applications in various domains,
including autonomous driving [6], virtual reality, augmented reality, and robotics,
where an accurate understanding and realistic visualization of the environment
are paramount.

Multi-sensor perception and rendering pose several challenges due to the
complexity of integrating data from multiple sensors and synthesizing a coherent
representation of the environment. Some of the key Challenges include:

– Data Fusion: Combining data from different sensors with varying charac-
teristics. The challenge lies in aligning and synchronizing the data streams,
handling differences in resolution, accuracy, and noise levels, and resolving
conflicts or inconsistencies between sensor measurements.

– Sensor Calibration: Accurate calibration of sensors is essential for achiev-
ing reliable multi-sensor perception. Ensuring that the sensors are properly
aligned, calibrated, and synchronized is a non-trivial task. Sensor calibra-
tion involves estimating intrinsic and extrinsic parameters, such as camera
intrinsics, lidar calibration, and sensor-to-sensor transformations.

– Occlusion and Sensor Limitations: Dealing with occlusions and han-
dling sensor limitations are important challenges in multi-sensor perception.
Occlusions can lead to missing or incomplete data, requiring techniques to
infer or reconstruct occluded regions. Moreover, sensor limitations, such as
limited field of view, range, or resolution, need to be considered to ensure
accurate perception and rendering of the environment.

– Real-time Performance: Multi-sensor perception and rendering systems
often operate in real-time applications such as robotics, autonomous vehi-
cles, or augmented reality. Achieving real-time performance while maintain-
ing accuracy and reliability is a challenge. Efficient algorithms, optimization
strategies, and hardware acceleration are necessary to meet the stringent
timing requirements.

With the above-mentioned objective in focus, we highlight the substantial
outcomes of our work as summarized below.

– a testbed architecture with multiple cameras and low-cost lidar sensors, de-
scribed in section 3.1

– an ad hoc method (Section 4) for registration of input data in a common
reference frame

The paper is organized into multiple sections focusing on related works in section
2, a description of the overall system-cum-architecture in section 3 followed by
calibration of lidars and cameras in section 4.

2 RELATED WORK

In this section, we aim to provide a comprehensive overview of existing liter-
ature, primarily focusing on two key aspects: the system framework and the
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spatio-temporal calibration of a multi-modal sensor system. Regarding the sys-
tem framework, we will explore previous works that have proposed various ar-
chitectures, designs, or methodologies for integrating multiple sensors within a
cohesive system. This includes studies that have investigated the fusion of data
from different modalities, the synchronization of sensor outputs, or the develop-
ment of algorithms for real-time processing and analysis.
Additionally, we will delve into the topic of spatio-temporal calibration in multi-
modal sensor systems. This area of research deals with the alignment and syn-
chronization of spatial and temporal data captured by different sensors. We will
examine different calibration techniques and algorithms proposed in the litera-
ture, along with their advantages, limitations, and potential applications.
System-Framework Visual sensors are essential components in maneuvering
operations across diverse scenarios, such as street navigation with automotive ve-
hicles [19], aerial navigation with drones [26], and marine operations in boats and
ships [17]. In recent years, rapid advancements in technologies such as sensing de-
vices, Artificial Intelligence (AI), and the Internet of Things (IoT) have sparked
significant transformations across various domains, leading to their widespread
adoption in diverse applications. Tonnis et al. [41] emphasized the increasing sig-
nificance of spatial sensor systems in cars, forming the basis for safety and driver
assistance systems. The authors present their developed visualization system for
spatial sensor data, incorporating various setups and visualization devices to
ensure precise spatial alignment and support the advancement of driver assis-
tance systems. Vu et al. [42] presented a multi-sensor-based approach for object
perception in automotive applications, addressing the detection, tracking, and
classification of objects while considering various classes. The proposed method
employs fusion techniques to combine information from lidar and camera sen-
sors, resulting in a more reliable representation of detected objects in real-life
scenarios.
Our literature research also revolves around marine maneuver and navigation,
aligning with our research project on a similar topic. However, our framework
takes a more generic approach, designed to accommodate variability with neces-
sary modifications. In the field of marine vessels, there has been active research
and development of technology-related autonomous ships ([36],[13]) to enhance
safety by mitigating human errors and improving working conditions through
reduced crew workload. One noteworthy application-oriented research and de-
velopment project is SmartKai [8], which is centered around creating a parking
system for ships at the harbor, employing lidar sensors. The project includes the
development of a smart user interface, enabling ship crews to effortlessly visu-
alize navigation data across various display platforms. Moreover, in a study by
[37], a camera-based visual sensing system is proposed to cater to maritime nav-
igation and reconnaissance applications, including obstacle avoidance and area
survey analysis.
Ruessmeier et al. [34] conceptualized and implemented an experimental maritime
testbed for sensor data fusion, communication technology, and data stream anal-
ysis tools. The setup is highly flexible and applicable in various research fields,
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including e-navigation and situational awareness generation. Brinkmann et al.
[3] introduced LABSKAUS, a maritime physical testbed/cyber-physical system,
offering maritime-specific components like a reference waterway, research boat,
and mobile bridge. The proposed architecture includes a data model, message
parser, wireless infrastructure, and a polymorphic interface, enabling the inte-
gration of various prototype designs within LABSKAUS. [21] discuss digital-
ization in marine vessels as a significant process directed toward autonomous
navigation, cost reduction, safety, and reliability. The authors point out that
the complete system consisting of advanced sensors, Artificial Intelligence, and
alternative display techniques (VR, AR) is a major requirement in the marine
intelligence system, but also pitches an enormous challenge for integration and
deployment. [29] proposed a simple hardware system and software architecture
for collecting the sensor data (non-visual) targeting autonomous surface vessels
(ASVs). Furthermore, a human-machine interface (HMI) is implemented as part
of the system.
A chronological trend of the ASV’s existing autonomy levels in marine vessels
and multi-agent control architecture from the perspective of ASVs is presented
in [35]. According to the authors, situation awareness that forms an integral
block of the navigation systems heavily relies on sensor fusion and the corre-
sponding data visualization. [38] presents a detailed review of the sensor and
AI technique for environment perception and awareness for autonomous ships.
[43] explores the use of AI techniques to integrate multiple sensor modalities
into a cohesive approach for autonomous ship navigation. The use of multiple
redundant sensors overcomes the limitations and vulnerabilities of the individual
sensor and the usage of advanced learning methodology addresses key areas of
detection and identification providing comprehensive situational awareness to be
effective in real-time maneuvering.
Multi-Sensor Calibration: In order to effectively integrate information (spa-
tially and temporally) obtained from multiple sensing modalities, it is essential
to represent them in a common reference frame. The problem of estimation
of the rigid body transformation between the multimodal sensory information
(camera and LiDAR) has been extensively studied in the past two decades [16],
[22], [30]. Despite recent developments, fusing multimodal sensory information
is still a challenging problem [33]. [23] proposed a framework tailored for global-
shutter camera and 3D LiDAR setups with fixed internal camera calibration
parameters and an unknown but constant time offset between the sensors. Ko-
daira et al.[18] proposed a segmentation-based framework to jointly estimate ge-
ometric and temporal parameters for calibrating a camera-LIDAR sensor suite,
achieving accurate real-time calibration without the need for calibration labels.
The primary limitation lies in its dependency on high-quality semantic segmen-
tation masks, which may impact calibration accuracy, particularly in scenar-
ios with compromised segmentation performance. Grammatikopoulos et al. [12]
presented a straightforward method to calibrate Lidar-camera systems using
AprilTag markers and a custom retro-reflective target. The approach achieves
geometric alignment and temporal synchronization, demonstrated on a four-
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camera mobile mapping system with integrated Velodyne Lidar for accurate
multi-camera point cloud texturing. A trihedral object’s geometric constraint is
employed to achieve a calibration through nonlinear square optimization of a
3D lidar-camera system in [11]. While the method does rely on minimal manual
input, it’s important to note that in scenarios involving irregular or complex
environments, the trihedral assumption may not remain valid. In such cases, the
method’s performance could decline, particularly if the initial plane region inputs
are significantly inaccurate. The research from [27] addresses the limitations of
traditional calibration methods by introducing a novel targetless, structureless
approach for spatio-temporal alignment between LiDAR and visible cameras on
robotic systems. Unlike methods assuming scene geometry, this approach accom-
modates various sensor configurations and environmental conditions, showcasing
accuracy in estimating spatio-temporal parameters.

This paper extends the work presented in [9] introduces a comprehensive
framework centered around affordable sensors. In contrast to existing methodolo-
gies, our approach inherently tackles the challenge of registering and calibrating
multi-modal data. This is particularly crucial given the issues of low resolution,
lidar data sparsity, and complex environmental conditions. We provide detailed
insights into the alignment of multi-modal data in Section 4, carefully considering
the aforementioned challenges. This is achieved through a combination of tai-
lored calibration objects and a streamlined algorithmic approach. Importantly,
we propose a calibration refinement procedure based on the photo-consistency
model as elaborated in section 4.3 that reduces the overall calibration errors and
ghosting artifacts induced by asynchronous data collection.

3 NAUSICAAVR-FRAMEWORK

The schematic diagram 1 offers a holistic view of our entire framework. Sub-
sequent sections provide in-depth elucidation of our framework, encompassing
the hardware configuration in section 3.1 and the proprietary software interface
section 3.2.

Our hardware configuration entails a multi-modal sensor system integrating
two Lidar scanners and four embedded color cameras, each equipped with fish-
eye lenses. To be precise, we employ Velodyne’s VLP-16 PUCK LITE lidar
scanners and Imaging Source cameras [14], which are purpose-built for operating
effectively in demanding environmental conditions.

3.1 Sensor System Configuration

The cameras as shown in Figure 1 are interfaced with NVIDIA Jetson embed-
ded hardware [25], running on the Linux Tegra OS. NVIDIA’s Jetson hard-
ware and its extensive software development kits (SDKs) also cater to Artificial
Intelligence (AI) applications, rendering them exceptionally well-suited for au-
tonomous machines and integrated systems. The captured video signals from
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Fig. 1: Hardware-Software System (from [9])

the cameras undergo H264 encoding, facilitating efficient transmission of the
resulting streams over a wired network to the server.

With the hardware acceleration capabilities of Jetson, the video stream is
rapidly encoded, enabling seamless transmission of HD-resolution data at 60fps.
The parameters of each individual camera sensor are optimally refined through
a manual process, leveraging information from the camera software development
kit (SDK) and tailored to suit the specific acquisition environment. Moreover,
the H264 encoding and streaming parameters are fine-tuned to capitalize on
the hardware encoding acceleration capabilities offered by Nvidia Jetson. These
carefully calibrated camera sensor data and encoding parameters are seamlessly
integrated using the GStreamer open-source multimedia framework pipeline, en-
abling efficient data transmission as UDP packets.

Concurrently, the individual lidars (VLP-16) proficiently stream real-time
3D point data as UDP packets via ethernet. Subsequently, an Intel core-i9 PC,
complemented with a powerful Nvidia GeForce RTX 3090 graphics card (24GB)
and running on the Windows 11 Platform, is designated to receive UDP packets
from each sensor for further processing and visualization. This setup enables the
system to execute data processing tasks with utmost precision and present a
comprehensive visualization of the acquired data.
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3.2 Software Configuration

The data that streams from both the lidars and cameras undergoes further pro-
cessing and visualization through our proprietary application framework. This
framework serves as a robust platform primarily dedicated to the real-time ren-
dering of lidar point clouds and the visualization of camera streams. Importantly,
it facilitates alignment operations for both lidar-lidar and camera-lidar data, a
crucial step that enables us to effectively map the geometric data extracted from
the 3D point cloud and the visual texture information derived from the camera
images. This intricate process culminates in the creation of a realistic rendered
view of the environment. Moreover, our framework extends its capabilities to
encompass remote visualization, achieved through MJPEG streaming accessible
via standard web browsers. This feature enables users to remotely view the ren-
dered data without the need for specialized software. Crucially, the framework
establishes a seamless communication channel between client applications and
the Server PC. This interaction is made possible through the utilization of net-
work socket connections and advanced API functionalities. This sophisticated
communication mechanism empowers clients to actively engage with the appli-
cation hosted on the server PC. It allows clients to virtually explore the scene
from various camera viewpoints, providing them with a dynamic and interac-
tive experience. Furthermore, the system facilitates the reception of essential
feedback, enhancing the interactivity and usefulness of the application.

4 SPATIO-TEMPORAL REGISTRATION OF LIDARS
AND RGB CAMERAS.

The calibration challenge involving Velodyne VLP16 is widely acknowledged
in the literature, as evident from studies like [1, 28, 20]. This challenge primar-
ily revolves around establishing 3D-2D correspondences between the LIDAR-
generated point cloud and RGB camera images. The complexity of this task is
influenced by several factors:

– LIDAR resolution: Determining the 3D position of a target point from
a point cloud relies on inferred information. Sparse point clouds pose more
difficulty in locating target points accurately. The more the latter is sparse,
the more difficult it is to find the target point.

– Sensor disposition: Since the target points need to be seen both from
the LIDAR and the camera, their relative position influences the sparsity of
the point cloud. As an example, in practical scenarios where the camera is
typically situated at a distance from the LIDAR and faces away from it, the
sampling on the target will be less dense.

– Environment conditions: In a controlled environment where LIDARs and
cameras are present, we have the flexibility to create customized configura-
tions that simplify the process of finding correspondences. As an illustration,
within an empty room, we could utilize the corner points located at the junc-
ture of walls and either the floor or ceiling.
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The challenges in our particular scenario include all the aforementioned fac-
tors. The VLP16’s limited vertical axis resolution and depth precision contribute
to the intricacy. Additionally, the spatial separation between cameras and LI-
DARs compounds the issue, often placing them at considerable distances. Fur-
thermore, the need for calibration in adverse environments, such as on a boat
over water, exacerbates the difficulties due to the lack of reference points. Given
the intricacies posed by these factors, our strategy entailed the development of
a custom-designed target. This target strikes a balance between portability and
visibility at a distance, as elaborated in the following section.

4.1 Calibration Target Design

We aimed to create a tangible target that could be consistently and automat-
ically detected in both point clouds and images. Simultaneously, it needed to
be simple to construct and lightweight to be usable with commercial drones.
The initial prototype took the form of a cusp, formed by the intersection of
three non-coplanar planar cardboard pieces (depicted in Figure 2, left). A simi-
lar approach was proposed in [4]. This design choice was based on the principle
that even incomplete sampling of the three planar regions would establish their
supporting planes and consequently the cusp point (the intersection of these
planes). However, although this method functioned to some extent, we observed
that the accuracy of the detected cusp point was compromised even at relatively
short distances. This inaccuracy stemmed from the precision of LIDAR values,
whereby fitting planes to a relatively small spatial region (approximately 100
points) could lead to multiple equally valid fitting planes due to the granularity
of measurements. As a result, the intersection of these planes defined a point
with a radius spanning several centimeters even when positioned just 3 meters
from the LIDAR.

Fig. 2: Left: preliminary version of the target; Right: refined target used with
our system (from [9]).

Our designed target strategically leverages the LIDAR’s most precise scan
directions, particularly the azimuthal direction, while remaining robust against
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Fig. 3: Example of how the target appears in the point cloud and in one of the
RGB images (from [9]).

issues like vertical low-frequency sampling and potential depth measurement in-
accuracies. The approach involves employing a straightforward 1m× 1m square
suspended from one corner, with its center serving as the target point (as illus-
trated on the right side of Figure 2). An example of the resulting point cloud is
shown in Figure 3. The subsequent procedure involves the following steps:

1. Fitting a Plane: A plane is fitted using the sampling points of the square.
2. Point Projection: The points are projected onto the fitted plane.
3. Point Cloud Rotation: The projected point cloud on the plane is rotated

to minimize the size of the 2D bounding box.
4. Target Identification: If the size of the bounding box falls within a pre-

determined tolerance from the expected dimensions of 1m× 1m, the center
of the bounding box is designated as the target point.

The described algorithm essentially performs a fitting of a fixed-size square on
the point cloud, using the bounding box as a cost function. Note that, in its
simplicity, this method has two useful qualities. It only needs a partial sampling
of the points along the sides in order to be detected. It is tolerant of errors in
in-depth measurement. This latter statement can be supported by sketching a
simple proof. Let us consider the scheme in Figure 5 showing the 2-dimensional
case. The actual supporting line (that is, the actual plane of the target) is L but
because of the imprecise depth values, we fit the point with line Lf . Let h be the
thickness of the slab of points that are supposed to be on the same line. We can
find the angle between the worst fitting line LF and L as αerr = arctan(h/0.5).
It follows that the projection of the point on this line will be erroneously scaled



10 S.Dutta et al.

Fig. 4: Left: Points on the target projected on their fitting plane. Right: Point
rotated to fit the (known) bounding box of the target (from [9]).

by cos(αerr), that is ∥pf∥ = ∥p∥ ∗ cos(αerr). Now, to put things in perspective,
consider that at 4 meters from the LIDAR, we can have a depth error around
0.03m, which gives an error of cos(arctan(0.03/0.5)) = 0.998, which means that
we can have the square shrunk at most by 2mm.

Fig. 5: Proof sketch that approximated depth measurement has limited effect on
the computation of the target size (from [9]).

Detecting the same target in the RGB images is an easier problem which is
solved with consolidated markers such as the Aruco markers [10].
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4.2 Calibration procedure

The calibration process involves showing the target to the LIDARs and cameras
until an adequate number of correspondences are accumulated for data align-
ment. During initialization, the user is prompted to indicate the point cloud re-
gion containing the target through a straightforward mouse click. Subsequently,
continuous tracking of the target within the point clouds is established.

Whenever the target is identified in both point clouds, a fresh 3D-3D cor-
respondence is gathered and used for point cloud alignment. Should the target
be located in at least one point cloud, its corresponding 2D point in the images
is sought. This leads to the creation of a 3D-2D correspondence for each image
where the target point is located.

In theory, just four 3D-3D correspondences are required for point cloud align-
ment, and the same number of 3D-2D correspondences are needed for each image.
However, the alignment’s efficacy is heavily reliant on the precision and distri-
bution of these correspondences. For instance, nearly quasi-collinear 3D points
can yield unstable point cloud alignment, while 2D points concentrated within a
small image area may result in inaccuracies. As such, the aforementioned simple
algorithm necessitates further elaboration to accommodate these intricacies.
Acquisition time. Given that our data is collected from various sources asyn-

Fig. 6: All the correspondences found between the image and the 3D geometry as
red dots. Selected correspondences are rendered with blue circles. The greyscale
version of the image is rendered in order to better highlight the correspondence
points (from [9]).

chronously, ensuring their simultaneous acquisition is not feasible, and often not
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the case. This becomes particularly problematic when the target is in motion,
as it can lead to erroneous correspondences.

To address this challenge, we determine the target’s speed and utilize its
position only when it exhibits extremely slow movement (e.g., 5 cm/s in our
tests). Furthermore, we evaluate the timestamps of point clouds and associated
data, discarding correspondences if the time interval between the point cloud
and the corresponding images surpasses a predefined threshold (e.g., 100 ms in
our experiments). These strategies are implemented to mitigate the impact of
asynchronous data acquisition from various sources.

Distribution of correspondences. For both 3D-3D and 3D-2D alignments,
it is imperative to possess a sparse set of correspondences. Additionally, these
correspondences should avoid configurations that could lead to degeneracy, such
as collinear points (for both types of alignments) or 3D points residing on a
single plane (specifically for 3D-2D alignment).

To achieve this, we leverage the progressive Poisson Sampling technique [7].
Commencing with an initially large disk radius R, we search for four samples
that maintain a minimum separation of R units. If these samples satisfy the non-
degeneracy criteria, the process is successful. If not, we reduce R by one-tenth
and repeat the procedure until a suitable set of samples is obtained or until the
process fails. Figure 6 visually depicts an instance of point selection within one
of the RGB frames using this method.

Fig. 7: Two images that overlap imprecisely create the illusion of fuzzy discon-
tinuities, like at the frame of the blue doors in the image.
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4.3 Calibration refinement

As previously mentioned, the asynchronous collection of point clouds and images
can adversely affect the quality of the calibration procedure by providing impre-
cise 3D-2D correspondences. This, in turn, leads to the occurrence of ghosting
artifacts, which become apparent when multiple images of the same geometry are
not precisely aligned (Figure 7 illustrates an example). To enhance the accuracy
of the registration process and minimize these ghosting artifacts, we propose an
output-sensitive procedure.

Our algorithm operates in pairs. It designates one camera as the reference
and adjusts the extrinsic parameters of the other camera (i.e., position and
orientation) to minimize ghosting. We assess the extent of ghosting using a
measure of photo-consistency, which evaluates the similarity in color assigned
by the two cameras to the same 3D surface points.

Fig. 8: The scheme shows the reference camera F and the camera to be fine-
aligned (M). The images are the actual feed from the physical camera and the
rendering with the current extrinsic parameters.

Figure 8 illustrates a common scenario in which two camera frusta overlap.
In this context, we will refer to one camera as the ’Fixed’ camera (denoted as
F ), which serves as the reference camera, and the other as the ’Moving’ camera
(denoted as M ), which we aim to align with the fixed camera. We use the
notation I(.) to represent the images captured by each respective camera. Both
cameras have a partial view of the environment, and their views intersect within
a region denoted as R (highlighted in blue in the figure).

Our approach involves texturing the region R by projecting the image I(F )
onto it, and subsequently rendering this textured region R from the perspective
of camera M. We will denote the set of pixels covered by the projection of R as
Rp. In an ideal scenario where the geometry is accurate, and the cameras are
perfectly aligned, the projection of the textured scene onto camera M should
perfectly match the actual image I(M) within the same portion of the image or
screen (assuming also perfectly Lambertian material).
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To quantify the disparity between the rendered image and the actual image,
we define an error function. This error function serves as a measure of how differ-
ent the rendering is from the actual image, allowing us to initiate a minimization
algorithm. This minimization algorithm adjusts the extrinsic parameters of cam-
era M as variables in order to improve the alignment between the two cameras.

We define our error function using a pixel-to-pixel color difference restricted
to Rp, that is, without considering the pixels not included in the rendering. Nat-
urally, such projection changes every time the extrinsic parameters are updated
but we are working on the assumption that this is a refinement of an existing
camera registration and hence that said change of Rp will be small. Therefore
we compute the initial projection and create a mask by dilating it by a certain
number of pixels (50 in our experiments). This is a way to restrict the amount
of camera movement in a neighborhood of the initial solution. Doing this will
tend to avoid local minima of the error function that would be found if Rp could
be in every portion of the screen. Please note that bounding the projection can
be seen as the output-sensitive alternative to directly apply upper and lower
bounds to the parameters (i.e. camera position and rotation).

The exact definition of our error function is given in Equation 1. N is the
total number of pixels, i and j identify the row and column of a pixel posi-
tion, Mask(i, j) is 1 if the pixel i, j is in the dilated region aforementioned,
colorDist(i, j) is the distance between corresponding pixels in the two images
and th is a threshold value. Note that the sum is counting how many correspond-
ing pixels in the masked region are closer than a threshold in color space. Hence,
the error function (Err) spans the range [N −Nm, N ], with Nm representing
the count of masked pixels, within a total of N pixels.

Fig. 9: A sampling of the iterations of the minimization procedure. The function
colorDist is mapped to the red channel, if the value is below a given threshold
(0.2 in this experiment) the pixel is rendered green.
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We tested several derivative-free minimization algorithms for Non-Linear
problems and found the most consistent results with the NEWUOA [32] imple-
mentation provided by the C++ library NLOpt [15] The evaluation of Err(M)
is carried out by harnessing the graphics hardware. We use a fullscreen quad
and provide the image I(M), the result of the rendering from M , and the mask.
The fragment shader computes colorDist and discards a fragment if the value is
below the threshold and the mask value is set 1. On the client side, we use the
OpenGL occlusion query mechanism to count how many fragments passed the
depth test, which in our case means how many where not discarded, which turns
out to be our Err function. Figure 10 show the same geometry as Figure 7 after
the fine registration step.

Err(M) = N −
∑
∀i,j

dist(i, j)×Mask(i, j)

dist(i, j) =

{
1 if colorDist(i, j) ≤ th

0 otherwise

(1)

Figure 9 shows some steps of the minimization process. The color of pixel
(i, j) encodes the value colorDist(i, j) on the red channel (remapped between 0
and 0.5) if it is greater than the threshold, and as green if it is lower than the
threshold and if Mask(i, j) == 1. Therefore, the amount of green pixels is the
result of the summation in Equation 1.

Fig. 10: A snapshot of the application with the same geometry as in Figure 7
after the fine registration step.

This procedure should be regarded as a supplementary tool aimed at en-
hancing registration through point-to-point correspondences, as described in
Section 4.2. Various scene-dependent parameters influence the final outcome.

One critical factor is the degree of dilation applied to the projection, denoted
as Rp. If this value is too large, the minimization process might become trapped
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in a local minimum. Conversely, if it is too small, there may be insufficient
improvement over the initial values.

Another crucial consideration is the precise definition of ColorDist. We cur-
rently employ the difference in the CIELab color space. However, it’s important
to note that this implicitly assumes that materials exhibit mostly Lambertian
properties, which may not always hold true.

Additionally, the threshold value Th wields significant influence. Setting it
too high may result in plateaus in the error function, effectively treating ev-
ery pixel as a good matching one. Conversely, setting it too low can lead to a
discontinuous error function, potentially causing local minima.

5 REAL-TIME ACQUISITION AND RENDERING
FROM LIDAR AND RGB CAMERAS.

In our experiments, we tailored the comprehensive system outlined in Section 3
to enable real-time acquisition and rendering of multi-sensor data. LIDARs and
camera feeds are combined at run-time to offer a free point-of-view rendering.
This real-time rendering is achieved through immediate point cloud tessellation
and projective mapping, as elaborated in the subsequent explanation.

Tessellation of the point clouds The challenge of defining a 2D surface from
a point cloud has a long history with various proposed solutions, as outlined in
a comprehensive survey by [2]. The inherent complexities of this problem, such
as sparsity and irregular sampling, often require the solver to make assumptions
about the nature of the sampled surface. However, in the case of LIDARs, where
sampling is partially dense and structured on a grid, it becomes both feasible and
reasonable to employ a predefined regular tessellation of the points, simplifying
the surface reconstruction process. Note that all of the above does not require
any processing on the CPU side, the data arriving from the LIDARs are sent
to the GPU as vertices, the tessellation pattern is static and for filtering the
triangles we use a geometry shader that discards the unwanted triangles.

Fig. 11: Snapshots of the textured geometry with the camera feeds shown at their
respective bottom right (from [9]).
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Fig. 12: Elongated triangles (in red) usually connect portions of surfaces that
are disconnected/different and hence automatically removed. The Left and right
images show the same data before and after the removal of triangles (from [9]).

Projecting RGB images The final geometry’s color is determined through
projective texturing [24]. This involves an initial rendering pass in which shadow
maps are created for each camera and then utilized in the subsequent rendering
pass to ascertain the visibility of each point from different camera perspectives.
It is important to note that certain regions in space may be covered by multiple
cameras. Consequently, an efficient method is required to merge their often dis-
tinct contributions effectively. In our approach, inspired by the work in [5], we
blend the contributions of each camera based on the cosine of the angle between
the projection direction and the surface normal. Additionally, we enhance image
blending in overlapping regions through an image equalization process utilizing
histogram matching [31].
Remote Rendering A realistic rendering of the environment is achieved through
the tessellated point cloud, followed by projective texturing based on the cam-
era’s vantage point. To maintain the quality of the rendered output, rendering
data is directly retrieved from the GPU’s framebuffer and processed as a stream
of JPEG images. The remote rendering process is enabled through a dedicated
MJPEG streaming network socket connection, separate from our standard client-
server communication. These MJPEG-encoded videos are then transmitted over
HTTP protocols, using a highly adaptable, multi-threaded, and computation-
ally efficient streaming framework. This setup allows clients to remotely view
real-time rendered content directly in a web browser. In addition to MJPEG
streaming, our application provides support for visualizing the rendered con-
tent as H.264 streams over the Real-Time Streaming Protocol (RTSP) using the
FFMPEG library [40].

6 CONCLUSION

We introduced an improved version of the system presented in [9] for real-time
acquisition and rendering of 3D scenes using low-cost LIDARs and RGB cam-
eras, dubbed NausicaaVR. NausicaaVR supports semi-automatic calibration,
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on-the-fly tessellation, and remote rendering, and it is built with a client-server
architecture.

While our system’s results were satisfactory for environmental awareness,
challenges remain to achieve immersive real-time rendering. One concern is the
precise alignment of data. Even with the improvement proposed in Section 4.3 of
this paper, spatiotemporal calibration of image and geometry remains sensitive
to the specific scene and sensor placements.

One approach worth considering is to project images onto the geometry,
even if there’s a slight misalignment, and then utilize learning algorithms to
minimize or eliminate the ghosting effect. This technique has been employed
successfully in related domains like denoising [39] and deblurring [44]. Another
obstacle to address is the absence of geometry in areas not captured by LIDAR.
These unscanned regions of the scene result in certain parts of the images being
projected onto the background as if they were located on the horizon.

One option is to use image segmentation and classification to find parts that
are not at the horizon and avoid projecting those pixels if there is no correspond-
ing geometry. This avoids the unpleasant anamorphic effect of misprojection but
leaves holes in the rendering. A more intriguing approach is to use image-based
techniques to complete the geometry from the existing sampling. In other words,
using simple proxy 3D elements for projecting the images. This method would
also require precise image segmentation of the images to avoid pixels belonging
to the background (e.g., the sky) being projected into such impostors.
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ibration via gaussian processes moving target tracking. IEEE Transactions on
Robotics 37(5), 1401–1415 (2021). https://doi.org/10.1109/TRO.2021.3061364

31. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer,
T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram
equalization and its variations. Computer vision, graphics, and image processing
39(3), 355–368 (1987)

32. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without
derivatives. In: Pillo, G.D., Roma, M. (eds.) Large-Scale Nonlinear Optimiza-
tion, Nonconvex Optimization and Its Applications, vol. 83, pp. 255–297. Springer
(2006)

33. Rehder, J., Beardsley, P., Siegwart, R., Furgale, P.: Spatio-temporal laser to vi-
sual/inertial calibration with applications to hand-held, large scale scanning. In:
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.
459–465 (2014). https://doi.org/10.1109/IROS.2014.6942599

34. Rüssmeier, N., Hahn, A., Nicklas, D., Zielinski, O.: Ad-hoc situational awareness
by optical sensors in a research port maritime environment , approved networking
and sensor fusion technologies (2016)



Title Suppressed Due to Excessive Length 21

35. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels:
Part i - a new detailed definition of autonomy levels. In: Bektaş, T., Coniglio, S.,
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