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Abstract: With the exponential growth of mobility data generated by IoT, social networks, and mobile
devices, there is a pressing need to address privacy concerns. Our work proposes methods to reduce
the computation of privacy risk evaluation on mobility datasets, focusing on reducing background
knowledge configurations and matching functions, and enhancing code performance. Leveraging
the unique characteristics of trajectory data, we aim to minimize the size of combination sets and
directly evaluate risk for trajectories with distinct values. Additionally, we optimize efficiency by
storing essential information in memory to eliminate unnecessary computations. These approaches
offer a more efficient and effective means of identifying and addressing privacy risks associated with
diverse mobility datasets.

Keywords: privacy; privacy risk; privacy risk assessment; mobility; re-identification; computation
improvements; risk; trajectory

1. Introduction

The extensive use of mobile devices equipped with location-tracking technologies,
such as GPS, has collected a great deal of location data, offering insights into users’ move-
ments over time and space. A trajectory, in its raw form, consists of a sequence of spatio-
temporal points that reveal the position of an object at specific times. Trajectories offer
valuable information about human mobility patterns, benefiting various sectors such as
security, urban planning, public transportation management, and disease prevention. How-
ever, using trajectory data also raises significant privacy concerns during data collection
and sharing.

Individuals using these technologies face significant risks due to potential data
breaches that can result in privacy violations. The collected data contain highly sensitive
and personal information, making it vulnerable to re-identification attacks. These attacks
aim to identify individuals or locations within trajectory datasets, posing a substantial
threat to privacy. A privacy assessment study in the context of mobility data indicates that
merely four spatio-temporal points can re-identify 95% of individuals in a low-granularity
trajectory dataset [1]. Notably, the top three locations in a path are sufficient to identify over
80% of individuals [2]. The disclosure of location data raises significant privacy concerns,
as it can be used to make intrusive inferences about individuals” habits, social behavior,
and even religious and sexual preferences [3].

Privacy risk assessment is a process aimed at understanding which individuals in the
data are at risk of privacy violations and quantifying the associated risk level. In Europe,
the General Data Protection Regulation (GDPR), and, similarly, in other countries such as with
the Lei Geral de Protegio de Dados (LGPD) in Brazil, establishes principles and requirements
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for the processing of personal data. These laws assign data controllers and processors
to handle data, ensuring data protection. One important step for data custodians is to
perform a quantitative privacy risk data assessment. Numerous privacy risk assessment
methodologies based on probability and frequency have been proposed for evaluating the
privacy risk across various data types [4-8].

One of the challenges in privacy risk assessment, especially concerning re-identification,
is the need to reduce the computational resources required for evaluating privacy risk.
One of the most accurate methods for privacy risk assessment is the simulation of back-
ground knowledge-based attacks. When simulating this type of attack, generating the
background knowledge representing the adversary’s knowledge about its victims is a par-
ticularly complex task, requiring substantial computational resources. As the adversary’s
knowledge expands, the computational complexity increases exponentially until half of the
maximum possible knowledge size. Previous studies, such as those by Pellungrini et al. [9]
and Naretto et al. [10], have explored using machine learning algorithms to mitigate this
computational load, particularly when new data become available. Both methods were
successful in significantly reducing the overall processing time. However, an initial compu-
tation of risk using combinations remains essential to establish the training dataset for their
approach, which means that the lengthy execution time is still a challenge that needs to
be addressed.

Due to the data size, the process becomes more complex when dealing with trajec-
tory data. Background knowledge related to trajectories often consists of sequences of
visited places or simply locations, representing places or visits the attacker is aware of
regarding the victim’s movement. As this knowledge grows, the number of potential back-
ground knowledge configurations to evaluate increases significantly. Each configuration
requires risk assessment, further adding to the overall complexity of the process. The
time required for this assessment depends on the dataset size, number of trajectories, and
trajectory length.

This work addresses computational challenges encountered in risk assessment analysis
using PRUDENce [11], a state-of-the-art privacy risk assessment framework for background
knowledge-based attacks. We aim to develop strategies to mitigate the computational
complexity of evaluating privacy risks in trajectory datasets. We explore the complexities
arising from the high computational demands of re-identification risk assessment. We
propose different computational improvements and optimization strategies to simplify the
risk assessment process, enhance computational efficiency, and facilitate more scalable and
accurate analyses.

Our contributions include validating the significance of low entropy and volatile
feature frequency to reduce computational complexity in re-identification risk assessment.
We explain how these factors impact re-identification risk and explore methodologies
for taking advantage of low-entropy characteristics to simplify risk assessment processes.
Additionally, we introduce optimization strategies to enhance computational efficiency
in re-identification risk assessment. These strategies include the avoidance of redundant
computations by storing background knowledge configurations and the optimization of
memory usage through the utilization of unique values.

Furthermore, we provide a thorough analysis of the results obtained from imple-
menting the proposed computational enhancements and optimization techniques, demon-
strating significant reductions in complexity. We also demonstrate how our proposed
optimizations can effectively reduce the execution time of the risk assessment process. This
improvement is particularly beneficial as it enhances the efficiency of the re-identification
risk assessment, allowing for faster trajectory data processing. By reducing execution time,
our optimizations contribute to improved scalability and usability of the risk assessment
methodology, making it more practical for real-world applications.

The paper is organized as follows. Section 2 presents the state of the art of privacy
risk assessment frameworks. Section 3 provides the data definitions regarding trajectories,
attacks, privacy risk assessment, and combination complexity. Section 5 presents the
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optimization techniques. Section 6 shows the experimental details and the results with a
final discussion. We conclude and plan future work in Section 7.

2. Related Work

Quantitative privacy risk assessment for mobility trajectory and other types of data is
a well-studied topic. Trabelsi et al.’s (2009) [4] approach involves recommending secure
configurations through a smart bootstrapping system, aiming to enhance understanding
and management of the risks associated with non-controlled data disclosure. The authors
utilized a probability-based approach, demonstrating that it is possible to reduce compu-
tation time by leveraging previously calculated risk values to predict future risk values.
Song et al. (2014) [6] propose a modification-based anonymization approach and evaluate
privacy risk based on the uniqueness of trajectory data. The authors employed a prob-
ability of re-identification based on sub-trajectories and demonstrated that, by reducing
the overall trajectory size—specifically, by removing the highest-risk sub-trajectories—the
re-identification risk is significantly decreased. In Achara et al. (2015) [5], their research
investigates the privacy implications of the list of apps installed by users on smartphones,
emphasizing the re-identifiability issue. Analyzing a dataset with 54,893 Android users
over 7 months, the study finds that merely four installed apps are sufficient for user re-
identification over 95% of the time. Remarkably, the complete list of installed apps is
unique for 99% of users, making it susceptible to tracking or profiling by services like
Twitter with access to this information. In [12], their proposed framework integrates run-
time risk assessment into information disclosure access control, utilizing disclosure risk for
decision-making. Access-control decisions are driven by the associated disclosure risk of
data access requests, and adaptive anonymization serves as a method for mitigating risks,
ensuring privacy preservation. Other studies in the literature explore re-identification risk
as a privacy measure within the realms of network and social media data [7,8].

In [7], the authors introduce a framework for assessing privacy and anonymity within
social networks and introduce a new re-identification algorithm aimed at anonymized
social network graphs. To demonstrate its effectiveness on real-world networks, they
showed that a third of users with accounts on both Twitter and Flickr can be re-identified
in the anonymized Twitter graph with a 12% error rate. Finally, ref. [8] showed that, based
on social media behavior, it is possible to re-identify passive web visits to the host. Their
method combines a public follower graph on social media with posting behaviors and
time-based inferences and proved to be efficient in re-identifying the users. Khalfoun et
al. (2021) [13] propose EDEN, selecting optimal Location Privacy Protection Mechanisms
using federated learning without exposing raw traces, demonstrating superior privacy vs.
utility tradeoff across real-world datasets. Silva et al. (2022) [14] introduce the Personal
Data Analyser, which employs automated data monitoring with Regular Expressions, NLP,
and machine learning to enhance privacy. Integrated into the PoSelD-on platform, it alerts
users to risks with crisp and fuzzy models validated through real-world use cases.

In this work, we adopted the PRUDEnNce framework introduced by Pratesi et al., as
elucidated in their seminal work [11] and previously presented in Section 6. PRUDEnce
was introduced as a system that deals with finding a balance between privacy risk and
data usefulness when sharing sensitive human activity data. This framework offers a
methodology for the computation of privacy risk in a data-driven fashion. At its essence,
PRUDERNCe revolves around the foundational principle of k-anonymity, wherein the privacy
risk assessment is linked to the dimensions of k-sets associated with each individual in the
dataset. The method checks out real privacy risks for users and ensures data quality for
those not at risk. Data providers can try different changes to strike the right balance between
privacy and usefulness. The practical effectiveness of PRUDEnce is shown with real
mobility data, exploring presence, trajectory, and road segment data formats. Our decision
to utilize PRUDEnNce was based on its flexible extension and suitability for trajectory data.

The computational intensity of PRUDEnce has prompted exploration into machine
learning approaches aimed at predicting privacy risk, thereby bypassing the need for



Appl. Sci. 2024, 14, 8014

4 0of 30

computationally exhaustive processes. Pellungrini et al. (2017) [9] present a swift and
adaptable method for estimating privacy risk in human mobility data. Their approach
involves training classifiers to link individual mobility patterns with different privacy risk
levels. Another important advancement in this field is the EXPERT framework, developed
by Naretto et al. (2020) [10]. This framework refines PRUDEnce by introducing a machine
learning methodology that proficiently forecasts privacy risk from sequential data. More-
over, the framework enhances the interpretability of these predictions by incorporating
methodologies such as SHAP [15] and LIME [16]. Another study proposed by Naretto et al.
(2023) [17] presents an optimization of EXPERT, the EXPHLOT. Authors use distinct time
series classifications, such as ROCKET and INCEPTIONTIME, to improve risk prediction
while reducing computation time.

While previous works focus on improving efficiency and reducing computational
demands for privacy risk assessment, these works often require an initial conventional
risk analysis to generate training data for the risk-predicting machine learning model. Our
proposal offers an approach that aims to enhance the computational risk algorithm. By
directly optimizing the risk assessment process, our methodology eliminates unnecessary
computation. This streamlined approach not only reduces the computational time but also
simplifies the overall risk assessment pipeline.

Our strategy for evaluating the maximum risk and reducing the computation time is
to select low-entropy trajectory features to target high-risk data and reduce the data used
to evaluate the risk. Pellungrini et al. (2017) [9] showed that entropy has an important
impact on predicting features/locations in machine learning models. The idea is that
location entropy is related to uniqueness, which is the main measure of anonymity. If
a user passes through high-entropy locations, where, therefore, many different people
pass through, the uniqueness of their mobility profile is lost as the general movement
blurs it. In EXPHLOT [17], authors show that they have the highest entropy locations,
evaluating only the lowest entropy locations. In this way, they focus on locations with
fewer individuals visiting, focusing on explaining high-risk predictions. In our work, we
reduced the computation time for maximum risk evaluation since it would yield the highest
risk values. We also went a step beyond checking not only location entropy but also time
entropy. Using different attacks and adversary knowledge sizes, we used the p-value and
Kolmogorov-Smirnov test [18,19] to prove the efficiency of using low-entropy values to
reduce maximum risk computation.

Our proposal introduces novel techniques to more efficiently identify and prioritize
high-risk trajectories. By leveraging insights from trajectory data characteristics, such as
inherent uniqueness and temporal dependencies, our algorithm can highlight trajectories
with elevated privacy risks.

3. Basic Concepts

This section provides an overview of the fundamental concepts related to trajectories
and location attacks. We introduce the PRUDEnNce framework, and discuss the computa-
tional complexity of combinations.

3.1. Trajectory

A trajectory, also known as a raw trajectory, is a sequence of spatio-temporal points,
defined in Definition 1. Each point, detailed in Definition 2, includes spatial coordinates and
a timestamp, referred to as trajectory features in this work. A segment of a trajectory is called
a sub-trajectory, as described in Definition 3, which can also be considered a trajectory.

Definition 1 (Trajectory). A trajectory T is a sequence of spatio-temporal points
T = (po(x0,Y0,t0), - -, Pn{Xn, Yn, tn)), where (x;,y;) are spatial coordinates, and t; represents
time, with ty < t; < ... < t, to maintain chronological order.
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Definition 2 (Point). A point p is a tuple (x,y,t), where x and y are spatial coordinates repre-
senting a location, and t is the time of the visit.

Definition 3 (Sub-trajectory). A sub-trajectory s of a trajectory T is an ordered sequence of
points from T, defined as s = (p;,, pi,, - - -, Pi, ), Where s contains at least one point but fewer than
all points of T.

In this work, we use the terms point or visit to refer to a single element of a trajectory,
while, by the term location I, we refer to the point’s spatial information. A subsequence of
locations (Definition 4) is an ordered list of locations. We denote by Uset = {u1,...,u,} the
set of the distinct individuals represented in the mobility dataset D, formally described in
Definition 5.

We use, in this work, the terms point or visit refer to an individual element of a
trajectory, while the term location | specifically denotes the spatial aspect of a point. A
subsequence of locations (Definition 4) is defined as an ordered sequence of locations. The
set User = Uy, ..., Uy, represents the distinct individuals captured in the mobility dataset D,
as outlined in Definition 5.

Definition 4 (Subsequence). Let L = {l1,15,...,1y} represent a set of locations. A se-
quence S = (s1,52,...,5m) is an ordered list of locations from L, where each location can appear
multiple times.

Asequence T = (t1,tp,...,t;) is called a subsequence of S (denoted T < S) if there are indices
1<i; <ip <+ <iy <msuch that

tj = si; for j=1,2,...,z.
This ensures that T maintains the order of S.

Definition 5 (Mobility Dataset). A mobility dataset D is a collection of trajectories,
D ={Ty,Ty,...,Tu}, where each T, represents the trajectory of a moving object u (1 < u < n).
For multiple-aspect trajectories, the dataset is represented as D = { MAT;, MAT», ..., MAT,}.

3.2. Risk of Re-Identification

Re-identification happens when an adversary successfully links the anonymized or
otherwise protected data of an individual with information available to them, whether
obtained publicly or through other means. In [20], the authors of the paper comprehensively
review terminology and the methodologies related to the risk of re-identification. There are
two principal manners to evaluate the re-identification risk: at the dataset and individual
levels. The dataset risk involves the proportion of records an adversary can re-identify from
a protected dataset. Our work focuses on reducing the computation time of individual
risk assessment.

The re-identification risk of an individual is articulated as the probability that a
particular sample record of an adversary is identified as corresponding to a specific in-
dividual in the dataset, influenced by the observation that risk exhibits non-uniformity
across the dataset, with rare combinations of sensitive attributes potentially leading to the
re-identification of individuals [21]. As defined in [22], where there are k possible combi-
nations of key attributes inducing a partition, the individual disclosure risk for a record
with the k-th combination is inversely proportional to the known population frequency F,
expressed as . In both risk measures, adversaries commonly employ the primary Data
Matching technique. This method centers on establishing connections between records,
aiming to identify those belonging to the same individual across different databases. Our
work aims to reduce the complexity of the re-identification risk computation within the
PRUDEnce framework.



Appl. Sci. 2024, 14, 8014

6 of 30

3.3. PRUDEnce Framework

PRUDEnce, a privacy risk assessment framework proposed by [11], is recognized
for its effectiveness in assessing privacy risks in trajectory data. It plays a crucial role in
helping data providers (DPs) make informed decisions while maintaining data quality. The
framework is designed to support GDPR compliance, with a particular focus on Article
25, which emphasizes data protection by design and default, aligning with the principles
of Data Protection Impact Assessments. PRUDEnce is not limited to a specific country
or jurisdiction, but it is primarily structured to comply with GDPR (European Union).
However, due to its adaptable nature, PRUDEnNce can be extended to assess privacy risks
in other legal contexts. PRUDEnce provides a universal methodology for privacy risk
assessment in any type of data.

PRUDERNCce assesses privacy risks in data sharing, particularly focusing on empirical
privacy risks during the transfer of raw personal data from the DP to the Service Developer
(SD). Background knowledge dimensions are crucial for evaluating potential privacy risks
and outlining external information accessible to potential attackers. This context-dependent
background knowledge impacts the effectiveness of privacy attacks.

Background knowledge represents an adversary’s knowledge subset regarding a user
u. The methodology evaluates privacy risks with varying levels of background knowledge,
from minimal to maximal knowledge, enabling responsible decision-making. Defining
attack models and background knowledge is critical, systematically balancing privacy risks
and data utility.

A background knowledge category refers to information known by an adversary about
the specific dimensions of an individual’s data. For instance, in mobility data, typical
dimensions include space, time, frequency of visiting a location, and probability of visiting a
location. The number of elements the adversary knows, the size of the background knowledge
configuration, is denoted by k. An example of a background knowledge configuration could
be the adversary knowing k = 3 points in the trajectory of an individual. An instance of
background knowledge represents specific information the adversary knows, such as a visit
to a specific location; we can see an example of background knowledge in Figure 1. In
Figure 1, we begin with a dataset containing trajectory data. In the example provided, the
attacker has knowledge of location sequences, with a knowledge size of 2. The second
table in Figure 1 illustrates the background knowledge instances generated from the input
dataset. Location information is combined in pairs (two by two) to represent the potential
knowledge an attacker might possess.

These concepts are formalized as follows, according [11], in Definition 6.

Definition 6 (Background Knowledge Category, Configuration and Instance). We consider
a background knowledge category, denoted as . Within this category, we define By, as a specific
configuration of background knowledge, where By belongs to the set B = By, By, ..., By. The value
of k indicates the number of elements within B that an adversary possesses. Each individual element
b that is part of By, represents a distinct instance of this background knowledge configuration.

B, — {({value1,...k,valuen(u)}> | Vu}

Let D be a database, D a dataset extracted from D as an aggregation of the data on
specific dimensions (e.g., an aggregated data structure and filtering on some dimension),
and D, and D, the subset of records corresponding to individual u within D; we establish
the likelihood of re-identification as follows in Definition 7 and in 2 in Figure 1.

Definition 7 (Probability of re-identification). Given an attack, we consider a function
matching(d, b) that determines whether a record d € D corresponds to the background knowledge
instance b € By. We then define a function M(D, b) = {deD | matching(d,b) = True}, which
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identifies all records in D that match b. The probability of re-identification for an individual u
within the dataset D is expressed as

PRD(d—u|b)—M(;)/b)|

which represents the chance of linking a record d € D to an individual u, given the instance b € By.

=27.592012, -48.545636;

1 -27.592012, |  2024-08-22 ! -27.593078, -48.545879
-48.545 :45:13. -27.5 , -48.545636;
48.545636 | 15:45:13.597550 q 27.592012, -48.545636;

J 27503078, | 2024-08-22 -27.509405, -48.540984
-48.545879 | 15:55:20.390092 ' -27.592012, -48.545636;

4 -27.509405, |  2024-08-22 -27.593020, -48.549992
-48.540984 | 15:58:37.039292 1 ] -27.593078, -48.545879;

q -27.503020, |  2024-08-22 EVALUATE ALL =27.592012, -48.545636
-48.549992 | 16:04:11.443928 BACKGROUND 1 ‘i;-‘f’:g‘u’;gv ‘23-:‘33;‘;:

2 -27.591145, 2024-08-22 k=2 KNOWLEDGE ZZLos0, —isaiee?
-48.505124  09:23:46.528795 CONFIGURATIONS 1 ] ;
-27.591098, | 2024-08-22 attack: -27.593020, -48.549992

2 -48.508393 | 10:45:09.028364 i 2 27599273, ~48.509020;

: :43:09 location B, — ] ocation,.__location, )}y | s -27.501098, -48.508393
sequence k= ( k ) I u
-27.592987,  2024-08-22 .
L -48.509348 | 23:28:36.039393 1000 27592987, ~48.509348;
1000 227599273, | 2004-08-22 -27.599273, -48.509020
-48.509020 | 23:34:57.903088
2
CALCULATE THE
PROBABILITY OF
RE-IDENTIFICATION
FOR EACH

3 INSTANCE

DETERMINE

I

EACH USER |M(D_ b) |

Risk(u, D) = max PRp(d = ulb) ! 7 03075, 40 34587 s
p; -27.592012, -48.545636; s
-27.599405, -48.540984
1 -27.592012, -48.545636; s
-27.593020, -48.549992
p -27.593078, ~48.545879; P
~27.592012, -48.545636
1 -27.593078, -48.545879; 6
-27.593020, -48.549992
P ~27.599405, -48.540984; s
1 033 ~27.593020, -48.549992
2 ~27.599273, ~48.509020; "2
2 05 ~27.591098, -48.508393
~27.592987, -48.509348;
1000 1 1000 -27.599273, -48.509020 !

Figure 1. Data flow in the privacy risk assessment within PRUDEnce.

The compatibility is expressed by a function matching(d, b), which indicates whether
or not a record d € D matches the instance b. The matching function depends on the back-
ground knowledge used during the attack. The PRUDEnce framework characterizes the re-
identification risk for an individual as the maximum probability of re-identification among
all instances within a background knowledge configuration, as defined in Definition 8 and
shown in Step 3 of Figure 1.

Definition 8 (Re-identification Risk or Privacy Risk). The re-identification risk, or privacy risk,
for a specific individual u, associated with a background knowledge configuration By, is determined
as the highest probability of re-identification, expressed as Risk(u, D) = maxPRp(d = u | b),

where b € By. This risk is bounded by a minimum threshold of ||%“‘| , which corresponds to a random

gquess within dataset D, and is Risk(u, D) = 0 when u is not present in D.

An individual may face various privacy risks, each corresponding to different con-
figurations of background knowledge used in an attack. Initially, an attack is formulated
and customized to use a specific category of background knowledge. Subsequently, a
range of background knowledge configurations is examined, denoted as {Bl, ., Bm}. For
each configuration By, all instances b within By are analyzed, along with their respective
probabilities of re-identification. Finally, the maximum probability of re-identification
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across all instances b within configuration By determines the privacy risk for the individual
in that specific context.

3.4. Location Attacks

In trajectory datasets, a “location attack” involves determining sensitive information
about individuals by analyzing their movement patterns and the locations they visit.

Various attacks have been proposed in the literature to exploit such vulnerabilities.
For instance, the location sequence attack, as outlined in works such as [9,23], involves
adversaries possessing knowledge of a subset of the locations visited by an individual
and the temporal sequence of these visits. Similarly, the visit attack, outlined in studies
like [3,24,25], requires adversaries to be privy to information about a subset of the locations
visited by an individual along with the specific times of these visits. For example, in a
trajectory dataset containing GPS coordinates or timestamps of individuals’ movements,
a location attack could involve analyzing this data to identify specific places individuals
frequently visit, such as their homes, workplaces, or other sensitive locations. By correlating
these patterns with additional information, such as social media posts or public records,
adversaries may be able to deduce private details about individuals, such as their daily
routines, habits, or interests.

3.4.1. Location Sequence Attack

In the location sequence attack, introduced in [9,23], the an adversary is aware of
a subset of the locations that the individual has visited and the temporal ordering of
the visits.

In the context of trajectory data privacy, a location sequence attack involves an adver-
sary possessing knowledge of a subset of the locations visited by an individual, as well as
the temporal ordering of these visits. For an individual s, the sequence of visited locations
L(Ts) is represented by the sequence of locations /; within T;.

The background knowledge category for a location sequence attack is formally defined
as follows.

Definition 9 (Location Sequence Background Knowledge). Let k be the number of locations I;
known by the adversary for an individual s. The location sequence background knowledge comprises
configurations based on k locations, denoted as By = L(Ts)[k|. Here, L(Ts)[k] represents the set of
all possible k-subsequences of the elements in set L(Ts).

In this context, the notation 2 < b indicates that a is a subsequence of b. Each instance
b € By is thus a subsequence of location X; < L(Ts) of length k. Given a record d in
the dataset D and the corresponding individual u, the matching function is defined to
determine the presence of a location sequence:

1, b=y L(T,)*

0, otherwise

evaluate(T,b) = { 1)
In this attack, the attacker knows that a person went, first, to a supermarket and then
to work, but they do not know when, only the sequence of places.

3.4.2. Visit Attack

In this attack, introduced in [3,9,24,25], an an adversary is aware of a subset of the
locations that the individual has visited and the time the individual visited these locations.
Let k be the number of visits vs. of an individual s known by the adversary. The visit back-
ground knowledge consists of configurations derived from k visits, formally represented as
By = T;s|k], where T;[k] indicates the set of all possible k-length subsequences within the
trajectory Ts.

Each instance b € By represents a spatio-temporal subsequence X; of length k. The
subsequence X; positively matches a given trajectory if the trajectory aligns with b in both
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spatial and temporal aspects. Formally, given a record d in the dataset D, the matching
function is defined as

1, V(ll’, ti) S b,EI(ldl., td,-) € d such that [; = ld,- Nt = td,-

0, otherwise

evaluate(T,b) = { 2)

In this attack, the attacker knows that, for instance, a person went, first, to a super-
market at 1 p.m. and after work at 2 p.m. They know the time when the person visited
the place.

In the next subsection, we will introduce the combinatorial problem.

4. Computational Complexity of Combinations

In addressing computational challenges, particularly in evaluating re-identification
risk, we encountered significant memory and complexity issues. These challenges primar-
ily arise from the high computational complexity of the risk evaluation process, which
is denoted by (’)((li") x N). Here, (li") represents the generation of background knowl-
edge configuration sets, where /en indicates the size of the trajectory, and N denotes the
number of matching operations required for each configuration. This complexity, as high-
lighted in [9,11], poses substantial difficulties, especially in scenarios involving empirical
privacy risk.

Re-identification risk via a background knowledge attack simulation requires ana-
lyzing the likelihood of identifying a specific user within a dataset, considering various
types of background knowledge for potential adversaries. However, the computational
complexity grows exponentially with the size of the trajectory and the number of potential
background knowledge instances.

The computational complexity of combinations denoted as (}) can be analyzed in
terms of factorials and depends on the values of # and k. The formula for combinations is

given by
ny n!
<k> ~ k!(n—k)!
The Binomial Coefficient Function

The binomial coefficient denotes the number of ways to choose k outcomes without
considering their order from a total of n possibilities. This concept is commonly recognized
as a combination. Figure 2 shows the binomial coefficient behavior according to n and k
values. Some important characteristics can be noticed.

The binomial coefficient curve has several key characteristics. It exhibits symmetry
around its peak due to the symmetry in the combinations formula C(n,k) = C(n,n — k),
where choosing k elements is equivalent to choosing n — k elements. Consequently, the
curve is symmetric around the middle point. The curve starts at 1 when k = 0 (choosing
0 elements) and ends at 1 when k = n (choosing all elements), reflecting the fact that there
is only one way to choose 0 elements (no choice) and one way to choose all 7 elements (all
elements are chosen).

The peak value of the curve occurs at the middle point, where k = 7 (rounded up
or down depending on whether # is even or odd). The number of ways to choose k
elements is maximized, leading to the highest binomial coefficient. However, the binomial
coefficient gradually decreases as k deviates from the middle point. This is because choosing
fewer elements as it moves away from the middle results in a decrease in the number
of combinations.

The binomial coefficient specifically represents combinations that do not consider
the order of elements. In contrast, permutations, where order matters, would result in a
different curve behavior. From a computational perspective, factorial computation can
be computationally expensive, especially for large values of n and k, leading to large
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intermediate values. However, optimizations can be applied to enhance efficiency in
computing binomial coefficients.

1x 104 Binomial Coefficient Curve for n=50
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Figure 2. Behavior 1 x 10 of binomial coefficient curve.

5. Privacy Risk Assessment: Advancements within the PRUDEnce Framework

This section proposes improvements within the PRUDEnce framework, particularly
on computing privacy risk assessment. As illustrated in Figure 3, we introduce several
advancements: Low Entropy, Cache Strategy, Break, Direct Evaluation, and Reuse. Each of
these techniques targets a specific aspect of the privacy risk assessment process. The Low
Entropy approach reduces the number of instances that require re-identification probability
evaluation. The Cache Strategy stores instance information in memory, minimizing redun-
dant calculations. The Break method stops the evaluation once an instance with maximum
risk is identified. Direct Evaluation bypasses risk computation when the trajectory contains
any feature with unique information. Finally, the Reuse technique applies the privacy risk
evaluation from the k — 1 analysis to the current k analysis if the previous risk is already at
its maximum.
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Figure 3. Privacy risk data flow and strategies relation.
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5.1. Relationship between Entropy, Feature Frequency, and Re-ldentification Risk

When analyzing data with entropy-applied trajectory feature frequency, such as lo-
cation or time, it becomes clear that features with lower entropy values also have lower
frequencies and pose a higher risk of re-identification for the individuals. This relation-
ship between entropy and frequency highlights several key factors contributing to the
increased risk.

Less frequent features tend to have a lesser impact on the overall uniqueness of the
data. With fewer instances, each occurrence becomes more significant in distinguishing
individuals within the dataset. Consequently, the aggregated data offer less anonymity;,
making it easier for adversaries to differentiate between individuals.

Regarding entropy, low-frequency features contribute less to the overall uncertainty
in the dataset because their probability of occurrence is low. In entropy calculations,
probabilities of rare events (e.g., visits to low-frequency locations) have less impact on
the overall entropy than probabilities of more common events. Therefore, low-frequency
features tend to have lower entropy, indicating less uncertainty in the distribution of visits.
While low-frequency features may be easier to predict due to their less variable and more
predictable nature, this predictability can increase the risk of re-identification.

Applying entropy to features highlights the heightened risk associated with low-
frequency data. These features, characterized by their low entropy, offer less anonymity
and increased predictability, making them more susceptible to re-identification.

5.1.1. Formal Proof

Here, we present formal proof regarding the correlation between the entropy of
features’ frequency distribution and the risk of re-identification.

Claim: trajectory features with low entropy in their frequency distribution are those
with low frequency, and they are more at risk of re-identifying the data owner.

Proof. entropy is a measure of uncertainty or randomness in a probability distribution. Let
x,i represent the i-th feature of record x, of dataset Drzle where N is the total number of
individuals. The Shannon Entropy [26] for feature x; is given by

N
E(x;) = — Z pu(Xyi = 0) logz Pu (xui = 0)
u=0
where p, (x,; = v) is the probability that individual u has a feature value vs. for x;
The probability p,(x,; = v) can be calculated based on its frequency:
FR(u,v) = [{xji|xji = vs.j = u}|

in individual u’s data divided by the individual data size N:

FR(u,v
pul(xyi =v) = %
Substituting p, (x,; = v) = % into the entropy formula, we obtain
N
FR(u,v) FR(u,v)
E(xi) = - Z N logZ N

u=0

For a feature with low frequency, FR(u,v) is small for all u = 0,..., N. Therefore, the
probability p, (x,; = v) is also small. In the low-frequency scenario, where the feature value
frequency is low, the probability p,(x,; = v) is also low, leading to a smaller contribution
to the overall entropy. This is because p, (x,; = v)log,(pu(x,i = v)) is close to zero when
pu(xy; = v) is small. Hence, the entropy E(x;) is lower for low-frequency features.

Conversely, in the high-frequency scenario, where the feature value frequency is high,
the probability p,(x,; = v) is higher. This results in a larger contribution to the overall
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entropy, as py(x,; = v)log, (pu(x,; = v)) is higher when p,(x,; = v) is larger. Hence, the
entropy E(x;) is higher for high-frequency features.

Base Case: we consider the case where vs. appears only once in the dataset. This means
that FR(u,v) = 1 for an individual u# and 0 for all others. The entropy calculation becomes

1 1 1 log, N
E(xj) = — <Nlog2 N> = — <N - (—log, N)) = gl\zl

Since S(u) is a finite positive number, IOgAZ]N is positive but small. Thus, E(x;) is low.

Inductive Step: we assume that, for a feature value vs. appearing k times in the dataset,
the entropy E(x;) is low. We must show that the entropy remains low if the feature x;
appears k + 1 times.

If vs. appears k + 1 times, the probabilities p,(x,; = v) will still be small because
FR(u,v) divided by N remains small. Thus, the term p,(x,; = v)log,(pu(x,; = v)) for
each u = 0,..., N will contribute a small value to the overall entropy.

With these small contributions, we see that the entropy E(x;) will increase slightly but
remain low because the additional term for the k + 1-th occurrence is small.

Therefore, by induction, features with low frequency have low entropy.

Conclusion: features with low entropy in their frequency distribution, indicating low
frequency, contribute less to the overall uncertainty. However, this also means that these
features are more unique. The uniqueness of these features makes it easier to re-identify
the data owners, as fewer individuals have these low-frequency features. This establishes
a link between local entropy and uniqueness in the data. Therefore, we have shown that
features with low entropy are indeed those with low frequency, and can pose a higher risk
of re-identifying the data owner. For this reason, we use entropy and frequency to reduce
the size of the background knowledge set when evaluating maximum risk and empirical
privacy risk across the entire dataset. [

5.1.2. Selecting Background Knowledge Configurations with Low-Entropy Trajectory
Features Frequency

The approach aims to enhance the identification of background knowledge instances
with heightened privacy risks in the dataset. It involves mathematical definitions and
procedures to systematically identify and retain instances that meet the specified criterion.

Definition 10 (Low-entropy Feature Set). Let x,; represent the i-th feature of record x, of
dataset DN_| where N is the number of individuals, and let E(x;) denote the entropy associated
with feature value x,; € Dylz\le. We define the set of low-entropy features Xiow-entropy 45

Xlow—entropy = {xui € Dilq\lzl | E(xi) < percentile(E(x,»), ?/)}/
where percentile(E(x;),vy) is the y-th percentile of the distribution of entropy values E(x;).

Definition 11 (Low-Entropy Selected Instances). If By is a set of subsets of DN_,, where each
b € By contains feature x,; € DN_,, then, for each b; € By (where j represents the j-th instance),

we define the selected background knowledge instances as
bj = {xu € bj | xui € Xlow—entropy}'
The set of all selected low-entropy subsets By entropy 1S defined as
Blow—entropy = {bj | bj € Bk}'

In Definition 10, the low-entropy Xjou —entropy feature set is created, selecting only the
feature values with the lowest values. All possible background knowledge configurations
By, are generated, but only instances containing the selected feature value in the 1% lowest
entropy results are selected for risk evaluation. Only the background knowledge instances
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b that contain feature values from Xjoy cntropy are retained for risk evaluation, as defined
in Definition 11. This ensures that the analysis focuses on instances featuring feature
frequency with low entropy, thereby improving privacy risk assessment by considering
most relevant and distinctive features from that specific dataset.

Given their infrequency or uniqueness within the dataset, low-frequency features
are prone to being distinctive or having limited occurrences. Consequently, background
knowledge instances containing such features are more likely to contribute to higher risk
values. We have the same or very similar maximum risk values as we compute all instances
of risk. As a result, including infrequent feature values in the background knowledge raises
the likelihood of identifying specific individuals.

This formal approach provides a systematic method for selecting background knowl-
edge instances containing low-entropy feature frequency, thereby enhancing the identifica-
tion of instances with heightened privacy risks in the dataset. By incorporating the reduced
background knowledge configuration into the risk assessment framework, we can formally
analyze how targeting low-entropy values in the background knowledge configuration can
lead to computational improvements in privacy risk assessment. This approach allows us
to focus computational efforts on configurations featuring low-entropy features, thereby
facilitating risk assessment and enhancing the accuracy of re-identification risk estimates.

5.1.3. Complexity Analysis

Reducing the number of instances to evaluate will reduce the computational complex-
ity. By reducing the number of instances, we decrease the number of matching operations,
leading to lower time and resource requirements.

To assess the risk, we simulated an attack by calculating all possible k-combinations of
information that an attacker might possess. For each combination of k points, we assumed
that the attacker utilized all these points to carry out the attack. This resulted in a high

computational complexity of O ((1‘;(“) x N ) because the framework created (") different

configurations of background knowledge and, for each configuration, it performed N
matching operations using the matching function. We supposed we could reduce the
number of combinations. In that case, we would also reduce the number of matching
operations, decreasing the value of N and lowering the overall complexity.

5.2. Optimizations

This section proposes optimization strategies to enhance computational efficiency
in re-identification risk assessment. We discuss approaches such as avoiding redundant
computation by saving background knowledge instances and utilizing unique values to
optimize memory usage.

5.2.1. Cache Strategy

We saved computational resources in the Cache Strategy by precomputing and caching
background knowledge instances. We leveraged this approach to optimize risk computation
efficiency while maintaining the PRUDEnNce framework’s accuracy.

Saving combinations in memory offers advantages such as computational efficiency,
time savings, resource conservation, scalability, dynamic updates, flexible risk analysis,
and improved response time. This approach avoids redundant calculations, enables
quick risk assessments for different instances, and conserves memory compared to re-
computing combinations. Overall, storing combinations in memory optimizes the risk
assessment processes.

The computation of privacy risks in trajectory data analysis often involves evaluating
multiple background knowledge instances for each user trajectory. However, this process
can be computationally intensive, especially with large datasets. We propose a novel
strategy to address this challenge that reduces redundant computations by precomputing
and caching background knowledge instances.

Our approach involves two main steps:



Appl. Sci. 2024, 14, 8014

14 of 30

1.  Precomputation: We generate and cache all background knowledge configurations for
each user trajectory. This step is performed once and requires computational resources
in advance, but it results in significant savings during subsequent risk computations.

2. Reuse: During risk computation, we retrieve precomputed instances’ risk value from
memory instead of generating background knowledge instances dynamically. This
eliminates the need for redundant computations and reduces the overall computa-
tional overhead.

By implementing this approach, we aim to simplify the risk assessment process and
improve the scalability of our trajectory data analysis.

The Original approach, proposed in PRUDEnce, involves dynamically computing
background knowledge instances for each user trajectory during risk computation. This
approach is straightforward but can be computationally inefficient, especially for large
datasets, as shown in Algorithm 1.

Algorithm 1 Risk computation with original approach

1: for each user trajectory fraj do

2 Compute all possible background knowledge instances with size k

3 for each background knowledge instance inst do

4 Compute risk for inst using matching function and update maximum risk
5 end for

6: end for

The proposed approach, named Cache, precomputes and caches background knowl-
edge instances, reducing redundant computations and improving computational efficiency,
as shown in Algorithm 2.

Algorithm 2 Risk computation with Cache approach

1: Precompute and cache all background knowledge instances

2: for each user trajectory traj do

3: Compute all possible background knowledge instances with size k

4 Compute the matching function for each instance and save the results in memory
5 for each background knowledge instance inst do

6: Compute risk for inst by accessing the matching value in memory

7 end for

8: end for

In the Original approach, the complexity of computing risks for all trajectories is
O ((1?:1) x N ) , as each trajectory requires matching function overall background knowl-
edge instances.

With the Cache strategy, the complexity is reduced to O ((ﬁ“)) for risk computation,
since the matching needs to be evaluated only once and retrieving the information from

memory is linear. Therefore, the overall complexity is significantly lower compared to the
Original approach.

5.2.2. Unique Values and Direct Evaluation

While saving combinations in memory brings several advantages, it also presents
challenges and considerations. One main issue is the potential for increased memory usage,
especially when dealing with large datasets or many combinations. Storing all possible
combinations can lead to high memory requirements, which may demand many system
resources.

The scikit-mobility library in Python (https://scikit-mobility.github.io /scikit-mobility /)
(accessed on 1 May 2023), introduces an improvement related to PRUDENCce risk assessment
and its computation, which we will call the Break approach. This improvement involves the


https://scikit-mobility.github.io/scikit-mobility/

Appl. Sci. 2024, 14, 8014

15 of 30

force_instances parameter. When using the Original approach and determining maximum
risk, if force_instances is set to false and a single maximum value is detected, indicating a
risk value of one, there is no need to assess additional background knowledge instances, as
can be seen in Algorithm 3. This is because the trajectory risk is already at its maximum.

Algorithm 3 Risk computation with original approach + Break

1: for each user trajectory traj do

2 Compute all possible background knowledge instances with size k

3 for each background knowledge instance inst do

4 Compute risk for inst using matching function and update maximum risk
5: if risk is equal to 1 then

6 break

7 end if

8 end for

9: end for

However, the Break approach relies on evaluating instances with high risk at the start
of the risk evaluation process to achieve significant performance improvement. Despite
this, it still involves computing more matching operations for each remaining instance.
To address this issue, we propose a strategy to evaluate the risk directly, thus reducing
the need to store background knowledge configurations in memory and eliminating the
necessity to calculate combinations and matching operations for all instances.

Claim: if a user’s trajectory contains at least one unique feature value, then the re-
identification risk for that wuser is one without calculating background
knowledge configurations.

Proof. let U denote the set of individuals, and D be the dataset. We consider a user
trajectory t,, with at least one unique feature value.

The re-identification risk PRp (u;|b) for the user trajectory t,, given a background
knowledge instance b, is defined as the probability of re-identification. If ¢, contains at
least one unique feature value, then at least one trajectory in D is identical to t,, resulting
in a risk of 1. This is because unique features ensure that no other trajectory in the dataset
matches f,,.

Therefore, the re-identification risk for a user trajectory with at least one unique feature
value is 1, without the need to calculate background knowledge configurations. This
optimization simplifies the risk assessment process and saves computational resources, as it
eliminates the necessity to consider background knowledge configurations for trajectories
with unique features.

This refinement ensures that computational resources are utilized efficiently while
maintaining privacy risk assessment integrity within the PRUDEnce framework.

The computational complexity of the PRUDEnce framework for evaluating privacy
risks is O((li”) x N), where len represents the trajectory size, k denotes the number of
elements in each background knowledge configuration, and N signifies the number of
matching operations for each instance. This complexity is used to evaluate the privacy risk
of a single user trajectory.

To compute the overall complexity across multiple user trajectories, each with poten-
tially different sizes, we need to consider the total number of trajectories and sum up the
complexities for each trajectory. Let M denote the number of user trajectories, and let len;
represent the size of the i-th trajectory. Then, the total complexity becomes

o<é <Z‘Zli) x N>
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However, when considering the reduced number of individuals that need their privacy
risk evaluated, the complexity becomes

O(é (lelzl") x N)

where M > L. This reduction is achieved by avoiding the computation for individuals
with trajectories containing unique features. This refinement ensures that computational
resources are utilized efficiently while maintaining privacy risk assessment integrity within
the PRUDEnce framework. [

5.2.3. Reuse Risk Value

Various knowledge levels are typically employed when assessing the empirical privacy
risk across a dataset’s user population. To enhance computational efficiency, we adopt a
strategy where risk information from the previous evaluation (at knowledge level x) is
reused for individuals whose data received a risk of one. This reuse principle extends to
the next knowledge level (x + 1), implying that individuals maintaining a risk of one for
knowledge level x will continue to exhibit the same maximum risk value for the subsequent
knowledge level, as can be seen in Algorithm 4.

Algorithm 4 Risk Computation with Reuse Approach

1: for each user trajectory traj do
2 if traj was evaluated for k — 1 then
3 if traj risk is 1 then
4: risk =1
5: else
6 Compute all possible background knowledge instances with size k
7 for each background knowledge instance inst do
8: Compute risk for inst using matching function and update maximum
risk
9: end for
10: end if
11: end if
12: end for

This approach proves advantageous, especially when dealing with considerable
datasets and multiple knowledge levels. By capitalizing on the consistency of risk values
across consecutive knowledge levels, redundant computations are avoided, facilitating the
risk assessment process.

Claim: for any set D, all combinations of x elements of S are also present in the
combinations of x + 1 elements of S.

Proof. we will prove this claim by mathematical induction.

Base Case (k = 1): for k = 1, the combinations of one element of S are just the elements
of S. The combinations of two elements of S (Cy) will be a subset of the combinations of
three elements of S (C3).

Inductive Step: We assume that all combinations of two elements of S are in C3. Now,
we consider the combinations of two elements of S (C;). To form C3, we can choose any
element x of S and combine it with each combination of two elements of S (C). So, for each
combination ¢ € C,, we can form a combination cx (where x is an element of S). Therefore,
all combinations of two elements of S extended by one more element x are in C3. This
implies that all combinations of two elements of S are in Cs.

By mathematical induction, we have shown that, for any finite set S, all combinations
of x elements of S are also in the combinations of x + 1 elements of S. [
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The next section will present the experimental results of implementing the proposed
strategies.

6. Experiments

With these experiments, we aimed to address the following research question: Is it
possible to reduce the computational complexity of privacy risk assessment? We evaluated our pro-
posal using three datasets in our experimental setup: Wi-Fi, Breadcrumbs, and Foursquare.
These datasets represent sources of trajectory information, each presenting unique charac-
teristics and challenges for privacy risk assessment. All datasets were preprocessed using
the scikit-mobility Python library (https://scikit-mobility.github.io/scikit-mobility / (ac-
cessed on 1 August 2023)). The experiments were conducted on a machine with 16 vCPUs
and 128 GB of RAM. The attacks used to execute the experiments were location sequence
and visit attacks.

6.1. Wi-Fi Dataset

The Wi-Fi dataset was created using user device associations with the wireless access
points within the university’s wireless network. Each access point is associated with its
geographic coordinates, indicating its installation location. To establish a connection, users
must undergo authentication using a unique identifier and password, which serves as
the key to access all university services. When a connection is established, a log file is
updated with information such as date, time, user ID, MAC address of the access point,
MAC address of the user’s device, and confirmation of a successful connection. The dataset
used in the experiment captures a single day’s log of 14,360 undergraduate students.

6.2. Foursquare Dataset

Our Foursquare dataset is composed of check-ins in NYC collected from 12 April 2012
to 16 February 2013, almost ten months. The dataset contains 227,428 check-ins. Each
check-in is associated with one user’s ID, timestamp in minutes, GPS coordinates (latitude
and longitude), and semantic meaning characterized by venue categories from Foursquare.
This dataset was authored by [27]. We compressed the data using a radius of 100 m. This is
the only dataset that we could not work with daily granularity due to its low density.

6.3. Breadcrumbs Dataset

The Breadcrumbs dataset [28] was created using data obtained during a campaign
conducted in Lausanne during the spring of 2018. Eighty participants were recruited
through the specialized unit Labex at the University of Lausanne. These participants
completed a survey containing personal questions and, after selection, were required to
sign a consent form. For our analysis, we utilized the GPS data.

6.4. Limitation

Applying the Original approach [11] to quantify privacy risk proved impractical with
our data in several scenarios during the experiments. Despite our attempts, the Original
approach led to indefinite runtime without producing results for some experiments. We
executed the experiments for 50 days. The ones that did not end by this time had their
execution time estimated based on the average time of the matching functions and the
number of matching functions that would need to be executed to compute the risk.

Due to this limitation, we adopted the Cache strategy to facilitate risk evaluation and
have the final results. We chose the Cache strategy to ensure that risk evaluation could
proceed without excessive computation time. This approach involves precomputing and
caching background knowledge instances, avoiding unnecessary recomputation during
risk assessment. Importantly, adopting this strategy does not alter the risk results; rather, it
optimizes computational efficiency by eliminating redundant computations.

Since the Cache approach produces the same results as the Original approach, given
that it does not alter the data but only avoids unnecessary computations, we could utilize
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the results from the Cache approach as equivalent to the Original ones. This allowed us
to compare their risk distribution curves effectively, indicating whether the optimizations
provided results consistent with the Original approach in order to validate them.

6.5. Selecting Background Knowledge Configurations with Low-Entropy Feature Frequency

To explore the impact of varying entropy thresholds, we considered a range of values
for the percentage threshold, denoted as 7%, from 10% to 50%. This range enabled us
to assess the effects of selecting more or less data to restrict the background knowledge
instances used to evaluate the risk.

We examined background knowledge configurations with knowledge sizes of 1 and
2, representing different levels of background knowledge available to an adversary. This
variation allowed us to investigate the influence of knowledge and background knowledge
on re-identification risk.

The features under consideration in our experiments were location and time. By
examining these features, we aimed to comprehensively evaluate the efficacy of targeting
low-entropy values in different dimensions of trajectory information. Incorporating these
variations into our experimental design enabled us to conduct a comprehensive analysis
of the impact of entropy-based filtering on privacy risk across multiple datasets, produc-
ing valuable insights into the effectiveness of this approach in reducing re-identification
risk computation.

To quantify the divergence in risk distributions between the two evaluation ap-
proaches, we used the Kolmogorov-Smirnov (KS) test [18] and p-value. The test compares
the distribution of a sample to a theoretical distribution to determine if significant differ-
ences exist. The Ks-statistics value and p-value from the ks test indicate whether the risk
distributions of the Original and proposed entropy methods are statistically different. A
low p-value suggests significant differences, while a high p-value suggests similarity. On
the other hand, a low statistics value suggests that the distributions are more similar, and a
high value suggests that values are different.

6.5.1. Wi-Fi

In the next experiments, we explored the analysis of the Wi-Fi dataset, which offers
data on user mobility based on Wi-Fi access point connections. Our primary objective was to
assess the distribution of re-identification risk and evaluate the potential impact of targeting
low-entropy and feature frequency in background knowledge configurations. Specifically,
we aimed to determine whether significant computational savings were achievable by
employing a reduced method if the risk assessment distributions remained comparable
between the conventional and reduced approaches. By conducting this analysis, we
aimed to improve the efficacy by leveraging specific features such as location and time
to enhance privacy risk assessment in Wi-Fi-based trajectory data. Through detailed
examination and comparison of risk distributions, we aimed to determine the feasibility
and benefits of optimizing the risk assessment process while maintaining the integrity of
privacy protection mechanisms.

In Tables 1 and 2, the first line compares re-identification risk distributions using
location frequency and lower entropy to reduce the background knowledge set with the
standard approach (knowledge size = 1). In Table 1, low p-values suggest significant
differences in re-identification risk distributions for the location sequence attack. Con-
versely, lower Ks-statistics values, in Table 2, represent a similar distribution. We used both
measures to analyze the similarity of the distributions.
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Table 1. Wi-Fi dataset: p-values for different attacks using location and time, comparing approaches.

Attack Type Feature k %

10 20 30 40 50
Location Sequence Location 1 361x1072 187x107% 127x1072 389x1071 805x1078
Visit Location 1 0.0030071 0.1253917 0.6209664 0.8893009 0.9930435
Location Sequence Location 2 0.0003552 0.4015571 0.9977175 0.9999999 1
Visit Location 2 1.0 1.0 1.0 1.0 1.0
Visit Time 1 0.0156405 0.2993241 0.8144727 0.9833140 0.9992201
Visit Time 2 1.0 1.0 1.0 1.0 1.0

Table 2. Wi-Fi dataset: Ks-statistics for different attacks using location and time, comparing ap-

proaches.
Attack Type Feature k Y%
10 20 30 40 50

Location Sequence Location 1 0.0867411 0.0665860 0.0481105 0.0347508 0.0246375
Visit Location 1 0.0152179 0.0099290 0.0063554 0.0048902 0.0036037
Location Sequence Location 2 0.0175428 0.0075378 0.0033200 0.0015002 0.0015002
Visit Location 2 58 x107° 585x107° 585x10° 585x107° 585x10°°
Visit Time 1 0.0131452 0.0082137 0.0053548 0.0038896 0.0031034
Visit Time 2 58x10°% 585x10% 585x10° 58 x10°® 585x%x10°°

Configurations with low-entropy locations in the Wi-Fi dataset with a knowledge
size equal to 1 and the location sequence attack may not accurately represent associated
risk levels when selecting only part of the instances. Only considering location with low
entropy frequency would not represent the correct risk value when the knowledge size
is 1. We can also notice that, as the percentage of low-entropy and location frequency
increases from 10% to 50% , the p-values increase, suggesting a higher degree of similarity
between risk assessments. It also means that we cannot represent the risk using small
percentage values.

The second line in Table 1 provides p-values for the location sequence attack, compar-
ing approaches using location as a feature, considering a knowledge value of k = 2. The
p-values indicate the statistical significance of differences in re-identification risk distribu-
tions between the standard and lower entropy/location frequency reduced background
knowledge set. For the location sequence attack, the p-values are relatively high, especially
at higher percentages of knowledge, suggesting a lack of significant differences in risk
distributions. p-values close to 1 indicate that the distributions are not very different.

The third line in Table 1 presents p-values for the visiting attack, comparing approaches
using location as a feature with a knowledge value of k = 1. The p-values are closer to 0 than
1, indicating a significant difference between risk assessments using reduced combinations
and those using the original formula considering all background knowledge. As the
percentage of low entropy and location frequency increases from 10% to 50%, the p-values
also increase, suggesting a higher degree of similarity between risk assessments. This
implies that we cannot accurately represent the risk using a few values and low-entropy
location frequency alone.

The Ks-statistics, in Table 2, presents the same results as discussed for p-values. We
have high statistics values, which means that the distributions are different, and the
percentage of low entropy decreases in the past, and the percentage value increases.

Background knowledge configurations targeting low-entropy locations in the Wi-Fi
dataset with a knowledge size of 1 and the visiting attack may not accurately represent
the associated risk levels when selecting only some instances. In this case, another feature
(or combinations of features) is likely responsible for the uniqueness of the background
knowledge set. Exclusively considering location with low-entropy frequency would not
represent the correct risk value. Furthermore, as the percentage of low-entropy and location
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frequency increases from 10% to 50% , the p-values also increase, suggesting a higher degree
of similarity between risk assessments. This reinforces the idea that we cannot accurately
represent the risk using only a few values and low-entropy location frequency.

Table 1’s fourth line presents p-values for various attacks using location to compare
approaches, considering a knowledge size k of 2 and a visit attack. The p-values remain
consistent across different percentages of low-entropy features (10% to 50%). For all
percentages, the p-values are consistently equal to 1 in the visit attack with knowledge
size 2, indicating the same results regardless of the percentage of low-entropy features
considered. The same can be observed in statistics results in Table 2; all values are equal to
zero, meaning that the distributions are very similar.

As the number of sets containing unique information, leading to maximum risk,
increases, it becomes more probable that one of the selected sets based on entropy and
location frequency will contain a location with the lowest entropy value. Consequently,
as the percentage of selected locations rises, so does the likelihood of selecting a set with
maximum risk. This underscores the importance of considering the knowledge size and
feature uniqueness when conducting risk assessment computation improvement using
entropy and frequency.

Table 1, in the fifth line, presents p-values for a visit attack using time, comparing
approaches. The p-values and knowledge size are calculated for various scenarios (denoted
by different percentages).

When the k value equals 1, the p-values are very low (close to zero) across different
percentages, demonstrating a significant difference in distributions. Similar to the location
experiments, the time shows a similar trend. When we increase the percentage value,
which means that we are considering possible low-entropy time values in the background
knowledge, the p-values go up because there are more chances of selecting sets with high
risk. The same observations can be seen with statistics values, the values close to 1 showing
the difference in the distributions. When we increase the percentage value, the statistics
values get closer to 0.

Table 1’s last line shows p-values for a visit attack, comparing approaches, and consid-
ering different percentages and knowledge size 2 for the background knowledge configura-
tion. In all scenarios presented in the table, the p-values are consistently 1. This suggests
that, regardless of the knowledge percentage used, there is no statistically significant differ-
ence in the distributions of re-identification risk between standard time values and lower
entropy time values. The same can be observed in statistics values, where all values are
very close to 0, meaning that the distributions are almost identical.

The overall analysis shows that, as the k size increases, the likelihood of encountering
more unique values also grows. Furthermore, the applicability of the lower entropy short-
cut is possible based on the uniqueness of the feature. This shortcut proves useful when
dealing with features characterized by many unique values distributed across trajectories.
Specifically, in the Wi-Fi dataset, where spatial and temporal data are densely populated
due to numerous individuals connecting simultaneously within a confined area, the time
and location information, when considered separately, tend to be less unique, as can be
seen in Figure 4, especially for small knowledge sizes. This dataset’s uniqueness arises
from locations representing access points where multiple individuals can connect simulta-
neously. However, what truly distinguishes behaviors is the sequence of events of locations
and time.

Table 3 shows that the Low-Entropy Percentile approach significantly reduces exe-
cution times for attacks on location and time features compared with the Original. For
location visit attacks (k = 1), execution times drop from 2314 days to between 333 and
1265 days, and, for k = 2, from 60,395 days to between 16,147 and 48,221 days. For time
visit attacks (k = 1), times decrease from 2300 days to between 279 and 1183 days, and,
for k = 2, from 66,150 days to between 14,333 and 50,564 days. The reductions are more
substantial for visit attacks than for location sequence attacks.
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Figure 4. Comparison of uniqueness of each feature in Wi-Fi dataset.

Table 3. Wi-Fi dataset: comparing execution time of the Original with the Low-Entropy Percentile

approach.

Feature Attack k Low-Entropy Percentile (%)
Original 10 20 30 40 50

Location Visit 1 2314d155633*  333d18:45:46* 578 d 14:04:24 * 823d06:47:46*  1047d18:24:01*  1265d06:3433 *
Location Visit 2 60,395 d 07:15:07 * 16,147 d 14:50:49 * 26,565 d 23:34:52 * 35,472 d 21:17:27 * 42,547 d 12:24:11 * 48,221 d 10:07:52 *
Time Visit 1 2300d11:18:24*  279d 14:02:02* 506 d 19:33:25 * 743 d 07:43:46 * 967 d1824:16* 1183 08:1530*
Time Visit 2 66150d1234:5%  14333d 11:20:50*  25392d 1857:42*  35380d 0418:53* 43,744 d 12:00:07* 50,564 d 22:53:36 *
Location  Location Sequence 1 20 d 21:13:00 3.d 00:10:10 5 d 04:56:02 7 d 09:07:40 9 d 10:58:54 11 d 09:30:32
Location  Location Sequence 2 9793 d 01:38:34 * 2622 d 15:51:25 * 4315 d 06:34:55 * 5762 d 05:53:01 * 6911 d 02:56:44 * 7824 d 13:56:32 *

d = days, * = estimated value.

The Break and Low-Entropy Percentile approach consistently reduces execution times
for all attack types compared to the Break method. Table 4 shows that, for location visit
attacks (k = 1), times drop from 141 days to between 117 and 132 days, and, for k = 2, from
420 days to between 261 and 375 days. For time visit attacks (k = 1), times decrease from
141 days to between 116 and 131 days, and, for k = 2, from 460 days to between 276 and
393 days. Location sequence attacks (k = 1) show reductions from 20 days to between 3
and 11 days, and, for k = 2, from 2224 days to between 679 and 1787 days.

Table 4. Wi-Fi dataset: comparing execution time of Break with Break and Low-Entropy Percentile.
Break and
Feature Attack k Low-Entropy Percentile (%)
Break 10 20 30 40 50

Location Visit 1 141d14:0020%  117d21:3556*  122d06:13:04%  126d04:30:50*  129d21:23:35*  132d 05:01:04 *
Location Visit 2 420d11:0030*  261d18:08:00*  299d04:57:55*  330d22:00:50*  356d05:17:00%  375d 10:04:31*
Time Visit 1 141d0928:44*  116d19:40:06*  120d22:5217*  124d1853:17*  128d01:43:16*  131d03:22:09*
Time Visit 2 460d1501:30*  276d10:08:00*  318d01:41:22*  351d01:3419*  375d17:50:05%  393d 17:07:11*
Location Location Sequence 1 20 d 09:33:00 3d 01:13:30 5d 03:45:08 7 d 06:02:21 9d 05:41:11 11 d 02:18:06
Location Location Sequence 2 2224d 04:56:55*  679d22:57:11* 1038 d 00:35:32*  1352d 15:14:34* 1593 d 03:25:48 * 1787 d 20:57:34 *

d = days, * = estimated value.

6.5.2. Breadcrumbs

Now, we present the analysis of the Breadcrumbs dataset. Our objective was to
examine the distribution of re-identification risk and explore the potential implications of
targeting low entropy and feature frequency within background knowledge configurations.
We aim to verify whether real computational benefits are achievable by adopting our low-
entropy approach, demonstrating that the risk assessment distributions exhibit similarity
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between the conventional and reduced methodologies. This analysis shows the efficacy of
leveraging specific features such as location and time to support privacy risk assessment in
breadcrumb trajectory data.

Table 5 presents p-values for various attacks using location and time-frequency with
lower entropy to reduce the background knowledge set compared with the standard ap-
proach and considering different k sizes. The p-values, all equal to 1, indicate no statistically
significant differences in the distribution of re-identification risk across different k sizes.
It implies that the location and time features are sufficiently unique, as seen in Figure 5,
to serve as filters for selecting background knowledge configurations prone to having
maximum risk. The same observation can be seen with statistics values in Table 6. All
values are zero, which means that the distributions are the same.

Table 5. Breadcrumbs dataset: p-values for different attacks using location and time, comparing

approaches.

Attack Type Feature k Percentage

10% 20% 30% 40% 50%
Location Sequence Location 1 1.0 1.0 1.0 1.0 1.0
Visit Location 1 1.0 1.0 1.0 1.0 1.0
Location Sequence Location 2 1.0 1.0 1.0 1.0 1.0
Visit Location 2 1.0 1.0 1.0 1.0 1.0
Visit Time 1 1.0 1.0 1.0 1.0 1.0
Visit Time 2 10 1.0 1.0 1.0 1.0

Table 6. Breadcrumbs dataset: Ks-statistics for different attacks using location and time, comparing

approaches.
Attack Type Feature k Percentage
10% 20% 30% 40% 50%
Location Sequence Location 1 0.0 0.0 0.0 0.0 0.0
Visit Location 1 0.0 0.0 0.0 0.0 0.0
Location Sequence Location 2 0.0 0.0 0.0 0.0 0.0
Visit Location 2 0.0 0.0 0.0 0.0 0.0
Visit Time 1 00 0.0 0.0 0.0 0.0
Visit Time 2 00 0.0 0.0 0.0 0.0
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Figure 5. Comparison of uniqueness of each feature in Breadcrumbs dataset.

Table 7 shows the reduction in execution times for different attacks on location and
time features using the Low-Entropy Percentile approach compared to the Original. For
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location features with visit attacks (k = 1), the Original time of 7 days decreases to between
0.98 and 3.91 days. For visit attacks (k = 2), the Original time of 69 days reduces to between
16 and 54 days. Similarly, for time features with visit attacks (k = 1), the Original seven
days decrease to between almost 1 and 3 days, while visit attacks (k = 2) reduce from
69 days to between 16 and 54 days. Location sequence attacks (k = 1) show a reduction
from 7 days to between almost 1 and 3 days, and, for k = 2, the time reduces from 69 days
to between 16 and 54 days. The Low-Entropy Percentile approach consistently reduces
execution times across all attacks.

Table 7. Breadcrumbs dataset: comparing execution time of the Original with the Low-Entropy
Percentile approach.

Feature Attack k Low-Entropy Percentile (%)
Original 10 20 30 40 50

Location Visit 1 7 d12:23:57 0d 23:37:37 1d17:29:53 2d12:13:42 3d 05:19:08 3d21:41:34
Location Visit 2 69d21:08:34* 16d08:16:3¢4 27d23:14:20 38d13:14:57 47d05:13:02 54 d 04:18:26 *
Time Visit 1 7 d 12:24:06 0d 23:37:46 1d17:30:03  2d12:13:56  3d 05:19:26 3d21:41:34
Time Visit 2 69d21:0835* 16d08:16:35 27d23:14:23 38d13:14:47 47d05:16:15 54d 04:18:20*
Location Location Sequence 1 7d 12:23:57 0d 23:37:36 1d17:29:50 2d12:13:44 3d 05:20:17 3d21:41:26
Location Location Sequence 2 69d21:08:22* 16d 08:15:24 27d23:13:08 38d13:14:22 47d05:13:11 54 d 04:18:45*

d = days, * = estimated value.

Table 8 demonstrates that the Break and Low-Entropy Percentile approach consis-
tently reduces execution times for all attack types compared to the Break method alone. For
location visit attacks (k = 1), times drop from 1 day 20 h to around 14 h. For visit attacks
(k = 2), times decrease from 1 day 11 h to around 33 h. For Time visit attacks (k = 1), times
were reduced from 13 h 45 min to around 15 min. For visit attacks (k = 2), times drop from
almost 14 h to between 37 and 39 min. Location sequence attacks (k = 1) show reductions
from 1 day 20 h to between 40 and 43 min, and, for k = 2, from 1 day 11 h to around 10 h.

Table 8. Breadcrumbs dataset: comparing execution time of Break with Break and Low-Entropy

Percentile.
Feature Attack k Low-Entropy Percentile (%)
Break 10 20 30 40 50

Location Visit 1  1d20:14:54 13:54:21 13:54:30 13:55:27  13:56:30  13:57:22
Location Visit 2 1d11:227:51 32:54:00 32:55:22  32:56:11  32:57:17  32:58:00
Time Visit 1 13:45:33 00:14:21  00:14:43  00:15:11  00:15:34  00:15:54
Time Visit 2 13:52:53 00:37:22  00:38:11  00:39:31  00:39:33  00:39:41
Location Location sequence 1 1d20:14:54 00:40:35 00:41:05 00:41:48 00:42:30  00:43:15
Location Location Sequence 2 1d11:27:51 (09:45:00 09:46:12  09:47:09 (09:48:24  09:49:23

d = days.

6.5.3. Foursquare

In the next experiments, we explored the examination of the Foursquare dataset. Our
primary aim was to analyze the distribution of re-identification risk and assess the potential
impact of targeting low entropy and feature frequency within background knowledge
configurations. We aimed to determine whether significant computational efficiencies were
possible by adopting a streamlined approach, provided that the risk assessment distribu-
tions demonstrated comparability between the conventional and reduced methodologies.
Through this analysis, we proved the effectiveness of leveraging specific features such as lo-
cation and time to improve the computation of privacy risk assessment in Foursquare-based
trajectory data.

Table 9 provides p-values for attacks using location values with lower entropy at a k
value of 1. All p-values indicate no statistically significant differences, with values of 1 for all
attack types. In both cases, location and time, p-values are 1 for all percentages, indicating no
significant variations in the risk distribution. The same observation can be seen with statistics
values in Table 10. All values are zero, which means that the distributions are the same.
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The successful performance of the time- and location-reduced set approach in the
Foursquare, as can be seen in Figure 6, and Breadcrumb, as shown in Figure 5, datasets
can be attributed to the high uniqueness in both dimensions. These datasets likely exhibit
diverse location and time values, making them suitable for re-identification risk computa-
tion mitigation strategies. The effectiveness of this method improves as the k size increases.
Increasing the granularity (larger k) for datasets with less unique information can enhance
the quality of the re-identification risk computation mitigation result.

Table 9. Foursquare dataset: p-values for different attacks using location and time, comparing

approaches.

Attack Type Feature k Percentage

10% 20% 30% 40% 50%
Location Sequence Location 1 1.0 1.0 1.0 1.0 1.0
Visit Location 1 1.0 1.0 1.0 1.0 1.0
Location Sequence Location 2 1.0 1.0 1.0 1.0 1.0
Visit Location 2 1.0 1.0 1.0 1.0 1.0
Visit Time 1 1.0 1.0 1.0 1.0 1.0
Visit Time 2 1.0 1.0 1.0 1.0 1.0

Table 10. Foursquare dataset: Ks-statistics for different attacks using location and time, comparing

approaches.
Attack Type Feature k Percentage
10% 20% 30% 40% 50%
Location Sequence Location 1 0.0 0.0 0.0 0.0 0.0
Visit Location 1 0.0 0.0 0.0 0.0 0.0
Location Sequence Location 2 0.0 0.0 0.0 0.0 0.0
Visit Location 2 0.0 0.0 0.0 0.0 0.0
Visit Time 1 0.0 0.0 0.0 0.0 0.0
Visit Time 2 0.0 0.0 0.0 0.0 0.0
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Figure 6. Comparison of uniqueness of each feature in Foursquare dataset.

Table 11 demonstrates that the Low-Entropy Percentile approach significantly reduces
execution times for all attack types compared to the Original method. For location visit
attacks (k = 1), times drop from 6 days to between 15 h and 3 days 7 h. For visit attacks
(k = 2), times decrease from an estimated 51,240 days to between 10,094 and 39,641 days.
For time visit attacks (k = 1), times reduce from 5 days 12 h to between 13 h and 2 days
16 h. For visit attacks (k = 2), times drop from an estimated 27,423 days to between 7681
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and 30,354 days. Location sequence attacks (k = 1) show reductions from 1 day 13 h to
between 3 and 19 h, and, for k = 2, from an estimated 30,023 days to between 5898 and
23,059 days.

Table 12 demonstrates that the Low-Entropy Percentile approach significantly reduces
execution times for all attack types compared to the Break method. For location visit attacks
(k = 1), times drop from 3 h 51 min to between 1 h 10 min and 2 h 8 min. For visit attacks
(k = 2), times decrease from 12 days 8 h to around 3 days 19 h. For time visit attacks (k = 1),
times reduce from 9 h 14 min to around 1 h. For visit attacks (k = 2), times drop from
25 days 3 h to less than 3 days. Location sequence attacks (k = 1) show reductions from 1 h
29 min to between 18 min and 1 h 3 min, and, for k = 2, from 7 days 7 h to around 2 days
7h.

Table 11. Foursquare dataset: comparing execution time of the Original with the Low-Entropy
Percentile approach.

Feature Attack k Low-Entropy Percentile (%)
Original 10 20 30 40 50
Location Visit 1 6 d 06:47:08 0d 15:43:13 1d 07:29:38 1d 23:06:18 2d15:22:10 3.d 07:28:55
Location Visit 2 51,240d 00:00:00* 10,094 d 05:08:37* 19,269 d 10:44:57 * 27,007 d 01:13:54* 33,839 d 02:03:27 * 39,641 d 04:36:32 *
Time Visit 1 5d12:13:19 0d 13:40:29 1d 02:50:54 1d 16:05:08 2d 03:17:10 2.d 16:20:52
Time Visit 2 27423d16:04:48*  7681d22:4546*  13,257d00:33:28*  20,222d 18:00:00* 26,018 d 14:16:43* 30,354 d 18:22:45*
Location  Location Sequence 1 1d 13:07:10 0d 03:53:55 0d 07:41:12 0d 11:34:05 0d 15:29:44 0d 19:26:50
Location Location Sequence 2 30,023 d 22:55:36 * 5898 d 14:19:11 * 11,089 d 04:50:01 * 15,697 d 02:44:33 * 19,623 d 12:54:34 * 23,059 d 20:04:34 *
d = days, * = estimated value.
Table 12. Foursquare dataset: Comparing execution time of Break with Break and Low-Entropy
Percentile.
Feature Attack k Low-Entropy Percentile (%)
Break 10 20 30 40 50
Location Visit 1 0d03:51:48 0d01:10:00 0d01:28:13 0d01:43:45 0d01:57:22 0d 02:08:09
Location Visit 2 12d08:03:21 3d18:13:14 3d18:40:56 3d18:5812 3d19:04:23 3d19:07:03
Time Visit 1 0d09:14:02 0d00:58:20 0d00:59:45 0d01:00:36 0d01:01:26 0d 01:01:55
Time Visit 2 25d03:46:50 2d22:27:40 2d22:4825 2d23:07:16 2d23:16:15 2d 23:19:30
Location Location Sequence 1  0d01:29:24 0d00:18:53 0d00:39:13 0d 00:47:09 0d 00:55:15 0d 01:03:27
Location Location Sequence 2 7d07:37:38 2d06:03:07 2d06:29:51 2d06:54:20 2d07:03:17 2d 07:08:42

d = days.

In summary, as the percentage increases, the accuracy of the risk assessment improves
correspondingly. A similar trend is observed with the k value, where larger k values yield
more accurate risk estimates. Regarding the types of attacks, the visit attack produced
more accurate results compared to the location sequence attack. Additionally, the use of
entropy on location or time showed varying results depending on the dataset’s unique
characteristics. These variations are closely linked to the uniqueness inherent in the data.

6.6. Cache

Although the entropy approach significantly reduced execution times, some values
still need to be improved for practical use. The Cache strategy can ensure the feasibility of
executing risk assessments efficiently. By leveraging the Cache strategy, we can substan-
tially reduce execution times, making the process more practical and manageable. This
method ensures that risk assessments can be conducted within reasonable time frames,
thereby enhancing the overall efficiency and effectiveness of the evaluation process.

Table 13 compares execution times for various attacks on location and time features
using the Original and Cache approaches across three different datasets: Wi-Fi, Foursquare,
and Breadcrumbs. For location visit attacks (k = 1), the Original approach’s execution
times are significantly longer than those of the Cache approach, with reductions from
2314 days to 12 h in the Wi-Fi dataset, from 6 days to 2 min in the Foursquare dataset,
and from 7 days to 2 min in the Breadcrumbs dataset. For visit attacks (k = 2), similar
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reductions are observed, with Original times decreasing from 60,395 days to 11 days (Wi-
Fi), 51,240 days to 3 min (Foursquare), and 69 days to 9 min (Breadcrumbs). For time visit
attacks (k = 1 and k = 2), the Cache approach consistently reduces execution times from
thousands of days to a few days or minutes across all datasets. Location sequence attacks
also show substantial reductions, with Cache times significantly shorter than Original
times across all datasets. The Cache approach effectively reduces execution times for all
attack types and datasets.

Table 13. Comparing the execution time of the Original and Cache approaches across different

sources.
Feature Attack k Wi-Fi Foursquare Breadcrumbs
Original Cache Original Cache Original Cache

Location Visit 1 2314 d 15:56:33 * 0d 12:32:48 6 d 06:47:34 0d 00:02:25 7 d 12:24:40 0d 00:02:27
Location Visit 2 60,395d07:15:07* 11d00:45:50 51,240d *04:08:24 0d03:11:26 69d21:21:32* 0d 00:09:44
Time Visit 1 2300 d 11:18:24 * 5d 21:52:28 5d 12:12:56 0d 00:02:27 7 d 12:24:54 0d 00:02:41
Time Visit 2 66,150d12:34:55* 12d 14:52:15 39,530d 04:45:22* 0d03:15:42 69d21:33:226* 0d 00:10:36
Location Location Sequence 1 20 d 21:13:00 * 0d 13:47:01 1d13:19:26 0d 00:02:20 7 d 12:24:42 0d 00:02:18
Location Location Sequence 2 9793 d 01:38:34 * 10d 08:23:16 30,023 d 22:55:32* 0d03:04:53 69d21:19:14* 0d 00:08:29

d = days, * = estimated value.

6.7. Reuse Risk Value

Table 14 provides results comparing the risk distribution between the current privacy
risk state and the application of the reuse approach. The reported p-values of 1 for all attacks
suggest that the distributions are statistically the same, thereby validating the effectiveness
of the reuse approach.

This implies that, after the reuse approach, the privacy risk state does not differ from
the initial state. The p-value of 1 indicates a lack of statistical significance, supporting that
the distributions are comparable. In other words, the reuse approach does not introduce
changes in the risk distribution, reinforcing its validity as a privacy-preserving strategy
across the three datasets.

Table 14. p-values for different attacks reusing risk evaluation from k — 1 results.

Attack Type k=2 k=3

Location Sequence
Visit
Location Sequence
Visit
Location Sequence
Visit

6.8. Unique Values and Direct Evaluation

The information provided in Table 15 indicates the number of user trajectories assigned
with a risk equal to one for each attack. For most attacks, there is a very high number of
directly evaluated risks equal to one. This suggests that directly assessing risk for attacks
with features having unique values is effective. The approach seems to work well in
scenarios where features contribute to the uniqueness of trajectories.

Location sequence attacks could have yielded better results. This could be attributed to
the need for more uniqueness in a location with a knowledge size of 1, making it challenging
to differentiate trajectories based on them. It aligns with the understanding that features
with less uniqueness may perform poorly in this direct risk evaluation approach. This
happens due to the nature of Wi-Fi data, where location information is not unique enough
with a knowledge size of 1, as shown in the previous experiments, to effectively differentiate
trajectories due to its dense characteristics.
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Table 15. Trajectories directly assigned with a risk of 1 per attack.

Attack Dataset %
Location Sequence Wi-Fi 3.68
Visit Wi-Fi 52.30
Location Sequence Breadcrumbs 100
Visit Breadcrumbs 100
Location Sequence Foursquare 99.88
Visit Foursquare 100

In conclusion, the direct risk evaluation approach appears promising for attacks
involving unique values, but its effectiveness varies depending on the feature’s unique-
ness in different datasets. The challenges observed with a location in the Wi-Fi dataset
highlight the importance of considering the feature’s nature when applying this risk
assessment approach.

6.9. Discussion

When comparing the reduction of the background knowledge configuration set size
using low entropy and feature frequency with the Cache strategies, if the wrong feature is
chosen to be used in the entropy approach, incorrect risk values might appear, impacting
the quality of the risk assessment. However, depending on the dataset size, the Cache
strategy or the Original evaluation form may not be feasible. Therefore, reducing the
background knowledge configuration set size using low entropy and feature frequency
should only be applied if the user encounters memory issues due to the huge size of
background knowledge configurations when attempting to save them in memory and
when the dataset has at least one feature that brings uniqueness to the trajectory.

Additionally, if the user faces memory limitations while trying to store all background
knowledge configurations in memory, reducing the configuration set size becomes nec-
essary to ensure the feasibility of the risk evaluation process. The decision to reduce the
background knowledge configuration set size should be made based on the specific char-
acteristics of the dataset, the available memory resources, and the desired level of risk
evaluation accuracy.

Time and space features play a crucial role in determining how many trajectories need
their risk computed, how many background knowledge instances require re-identification
risk evaluation, and in the quality of the risk assessment. It means that the more unique the
time, space, or a combination of both are in a dataset, the fewer trajectories will need risk
evaluation and the fewer background knowledge instances will require re-identification
probability assessment. This is because, if a trajectory contains unique features, it is
considered unique, and its re-identification risk is automatically set to the maximum (i.e., 1).
Similarly, if we identify a background knowledge instance that contains unique information,
we do not need to further evaluate its probability of re-identification, since it will also be
the maximum. It results in a significant improvement in time performance.

7. Conclusions and Future Work

Privacy risk assessment is a crucial aspect of any privacy-preserving process, which
involves understanding which individuals in the data are vulnerable to privacy violations
and quantifying the associated risk. One significant challenge in assessing risk is reducing
the computational processing associated with the adversary’s background knowledge set
size and risk assessment.

Most of the current works on privacy focus on Deferentially Private Machine Learning
techniques and/or federated learning approaches. In this work, we focus on privacy risk
assessment to increase the ability of researchers and practitioners to correctly understand
what kinds of risks are inherently present in the data they are using. With this work, we
hope to provide concrete solutions to enable efficient privacy risk estimation for human
mobility data.
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The main contribution of this article addresses the challenge posed by the computa-
tional complexity of privacy risk evaluation. We focused on potential methodologies to
mitigate this complexity, aiming to reduce the combination set and optimize code perfor-
mance for computing the highest risk trajectories. Leveraging the inherent uniqueness
of trajectory data, we aimed to minimize the size of the combination set and simplify the
risk evaluation process for trajectories with distinctive attributes. Furthermore, we en-
hanced computational efficiency by implementing strategies to store essential information
in memory, thereby minimizing the need for redundant computations.

As a result of the experiments, while the proposed optimization strategies showed
promise in enhancing computational efficiency and risk assessment accuracy, their ef-
fectiveness varied depending on the uniqueness of features within different datasets.
Understanding the nature of features is crucial in selecting appropriate risk assessment
approaches and optimizations. It is important to consider the trade-offs associated with this
reduction approach carefully. While it can help reduce memory constraints and improve
computational efficiency, it may also lead to information loss and potential inaccuracies in
risk assessment if crucial configurations are excluded due to the wrong approach choice.
The uniqueness of features should be evaluated in order to use those approaches.

The strategies outlined above are effective when dealing with datasets containing
unique data, such as trajectory datasets. However, challenges arise when the dataset is less
unique due to generalization and data protection measures. In such cases, the performance
of the direct risk evaluation approach, reduced memory saving and entropy, and frequency
are affected, highlighting the need for alternative strategies to address these challenges.
Our work has some limitations that could be the subject of future research: the definition
of a good set of attacks is still heavily human-dependent and does not take into account a
precise analysis of the resources needed by the adversary. Therefore, the simulated attacks
may be unrealistic. Selecting more realistic attacks may further improve the assessment
efficiency, by pruning unreasonable simulations.

Furthermore, future works using parallelization would be important for evaluating
such cases. Another open challenge is determining the optimal percentage value to use.
Selecting the percentage value for features with low entropy can impact the quality and
accuracy of the risk assessment.
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