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Abstract. While deep learning excels in many areas, its application in
medicine is hindered by limited data, which restricts model generaliz-
ability. Few-shot learning has emerged as a potential solution to this
problem. In this work, we leverage the strengths of meta-learning, the
primary framework for few-shot learning, along with diffusion-based gen-
erative models to enhance few-shot learning capabilities. We propose a
novel method that jointly trains a diffusion model and a feature extrac-
tor in an episodic-based manner. The diffusion model learns conditional
generation based on each episode’s support samples. After updating its
parameters, it generates additional support samples for each class. The
augmented support set is used to train a feature extractor within a pro-
totypical meta-learning framework. Notably, we propose a weighted pro-
totype computation based on the distance between each generated sam-
ple and the original class prototype, i.e., derived solely from the orig-
inal support samples. Evaluations on two tumor characterization tasks
(prostate cancer aggressiveness and breast cancer malignity assessment)
demonstrate our approach’s effectiveness in improving prototype rep-
resentation and boosting classification performance. Find our code at:
https://github.com/evapachetti/meta_diffusion.
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1 Introduction

Deep learning (DL) models in medical imaging hold significant promise for clini-
cal applications. However, insufficient data makes the training phase challenging,
often resulting in inaccurate and unreliable models for real-world use. A promis-
ing solution to this data scarcity problem is few-shot learning (FSL) [5,6], which
aims to enable practical DL model training in data-limited scenarios, such as
medical imaging [2,13,28]. One of the most popular frameworks for addressing
FSL is meta-learning. Meta-learning involves two main objectives: an inner ob-
jective related to a specific classification task (or episode) and an outer objective
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where the model learns to distinguish data more generally. This approach, also
known as episodic training, enhances the model’s ability to learn robust features,
improving generalization, an essential property in data-scarce domains.

Within meta-learning, a popular technique is the prototype-based approach
[19]. In each episode, the idea is to calculate a prototype for each class based on
the few training examples available in that episode (known as the support set).
New images within the episode (query samples) are then classified by measuring
their distance to each class prototype. Various techniques have been proposed
to enhance prototype informativeness. Cao et al. [1] leveraged the similarity be-
tween classes to calibrate prototypes of new classes using base classes learned
beforehand. He et al. [9] introduced a transformer-based module to extract more
informative prototypes. Zhang et al. [26] tackled the problem of low-informative
prototypes utilizing prior knowledge and pre-trained features obtained from com-
plete prototypes of well-represented classes.

Another strategy employed in literature to enhance prototype informative-
ness involves using generative models. Zhang et al. [27] proposed a prototype
meta-hallucination approach to generate more informative prototypes by hallu-
cinating additional support samples. Specifically, they meta-trained a Variational
Autoencoder (VAE) [16] to learn the distribution of inter-sample differences and
synthesized newly labeled samples by fusing the sampled inter-sample difference
and each given support sample. However, VAEs often struggle with capturing
the full complexity of images due to their reliance on a Gaussian-distributed
latent space, leading to blurry or imprecise image generation [3,12] and, thus, to
less meaningful prototypes.

In recent years, the emergence of diffusion-based models has resulted in gen-
erative models exhibiting unprecedented capabilities [15,17]. Indeed, diffusion
models overcame the limitations provided by generative models such as VAEs
and Generative Adversarial Networks (GANs) [7], including the need for estima-
tion of intractable the normalizing constant of the probability function, the need
for network constraints, and the training instability, leading to the generation of
more realistic and informative samples that closely resemble actual data.

In this work, we leverage the power of Denoising Diffusion Probabilistic Mod-
els (DDPMs) [20,10] to enhance prototype informativeness in a prototypical
meta-learning framework for few-shot medical image classification. Specifically,
we propose a training method integrating real and synthetic data within a joint
episodic training process between the DDPM and a feature extractor. Support
samples are provided to train a conditional DDPM during each episode, which
then hallucinates additional data samples for each class. These synthetic samples
supplement the limited actual data available for prototype construction. Further-
more, we implement a dynamic weighting mechanism to ensure the synthetic
samples enhance rather than confuse the model. This method calculates weights
for the synthetic samples based on their proximity to the original data-derived
prototype. By integrating actual and synthetic data with dynamic weighting, we
aim to forge more reliable prototypes, thereby enhancing classification perfor-
mance in low-data scenarios.
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2 Methods

2.1 Proposal
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Fig. 1: Illustration of the proposed approach for a single episode. Each episode
consists of a support set and a query set. All support samples are provided
to the DDPM for conditional training, guided by the class embedding. The
DDPM parameters are updated to generate M additional support samples for
each class. The augmented support and query sets are fed through a feature ex-
tractor to compute feature maps. These maps are then processed by a dedicated
feature representation module, whose function depends on the chosen prototyp-
ical framework (e.g., average pooling for ProtoNet). The weighting module (Fig.
2) adjusts the augmented support embeddings based on their similarity to the
original prototype. The original and generated support embeddings, weighted
accordingly, are averaged to compute the augmented prototype for each class.
A distance calculation between query embeddings and augmented prototypes
follows. Finally, classification is achieved using a softmax distribution over these
computed similarities.

We provide a detailed overview of our proposed strategy in Fig. 1. As a
first step, to provide the DDPM with prior knowledge, we pre-train it on an
unlabeled dataset to perform unconditioned generation. This step aims to equip
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Fig. 2: Representation of the weighting module for augmented prototype estima-
tion. For clarity, we depicted the weighting module functioning for a single class
and a single generated sample.

the model with an understanding of the invariant features in the anatomical
structures regardless of the specific class. Following this pre-training step, we
perform a joint episodic training between the DDPM and a convolutional feature
extractor. Within each episode, consisting of a support set (containing N images
per class) and a query set, we utilize the entire support set as input to the pre-
trained DDPM to train it on performing conditioned generation leveraging the
class embedding, as proposed by Ho et al. [11]. After updating its parameters,
we employ the DDPM to generate M additional support samples for each class.
These synthetic samples are added to the support set and used to train the
feature extractor.

Especially during the initial training phase, the DDPM’s synthetic samples
may not match the quality and detail of the real support images. This dis-
crepancy can result in less accurate prototypes. To address this challenge, we
propose a weighting module (see Fig. 2) that implements a dynamic weighting
approach when constructing prototypes. We define Sc “ tpx1, y1q, . . . , pxN , yN qu

as the support set of class c, containing only the original support samples, and
rSc “ tpx̃1, y1q, . . . , px̃M , yM qu the support set containing only generated samples
of that class. Given a feature extractor fϕ, we calculate the real prototype, i.e.,
built on the original support samples only as follows:

pc “

ř|Sc|

i“1 fϕpxiq

|Sc|
. (1)

The weight for a generated support sample x̃c
j of class c is provided by calculating

the reciprocal of the Euclidean distance between the generated support sample
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embedding fϕpx̃c
jq and the class prototype computed on the original support

samples pc:

αc
j “

1

dpfϕpx̃c
jq,pcqq

. (2)

Finally, the prototype for the class c is calculated as follows:

p̃c “

ř|Sc|

i“1 fϕpxiq `
ř| rSc|

j“1 α
c
jfϕpx̃jq

|Sc| `
ř| rSc|

j“1 α
c
j

. (3)

After calculating the final prototypes for each class, we measure the Euclidean
distance between each query sample and the corresponding prototypes. Finally,
we apply the softmax function to these distances to predict the class labels for
the query samples.

2.2 Model details

Generative model. Traditional DDPMs corrupt data through a finite number
of noise steps and train a sequence of probabilistic models to reverse each step
of this noise corruption. Unlike the classical approach, we adopt a continuous
diffusion approach proposed by Song et al. [21]. This method employs a con-
tinuous noise-perturbation process modeled by stochastic differential equations
(SDEs). A reverse-time SDE describes the inverse diffusion process from noise to
image, and samples can be generated by solving this equation using numerical
SDE solvers [21]. In our experiments, we described the diffusion process using a
sub-variance-preserving SDE [21] and employed the Euler-Maruyama numerical
solver [14] for image generation.

Prototypical framework. We evaluated our approach leveraging three well-
known prototypical meta-learning frameworks: Prototypical Network (ProtoNet)
[19], Meta Deep Browninan Distance Covariance (Meta DeepBDC) [24] and Co-
variance Network (CovNet) [23]. These methods all share the common principle
of constructing a class prototype by averaging the embeddings of the support
samples belonging to that class. Classification is then performed by measur-
ing the distance between the embedding of each query sample and all class
prototypes. However, they diverge in their approach to feature representation:
ProtoNet utilizes a basic first-order representation via average pooling, CovNet
leverages a second-order representation with the covariance matrix, and Meta
DeepBDC goes beyond pairwise relationships by considering the joint distribu-
tion between features through the computation of the BDC matrix.

2.3 Experiments

We evaluated our approach on two tumor characterization tasks: prostate can-
cer aggressiveness (PI-CAI dataset [18]) and breast cancer lesion classification
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(BreakHis dataset [22]). For prostate cancer, we classified tumors based on four
(2-5) prognostic scores defined by the International Society of Urological Pathol-
ogy (ISUP) [4]. We pre-trained our DDPM on all available benign lesions (11202
images) from PI-CAI dataset. Then, we performed episodic supervised learn-
ing using all cancerous lesions (1611 training, 200 validation, 238 testing from
a total of 2049). In breast cancer classification, we used images from various
magnifications (40X, 100X, 200X; 6090 images total) for DDPM unconditioned
pre-training and focused on 400X magnification images (1475 training, 165 vali-
dation, 183 testing from a total of 1819) for episodic training, performing binary
classification (benign vs. malignant).

We evaluated our approach using k-shot classification tasks (k P t1, 2, 3, 4, 5u)
for each prototypical framework. We investigated the effect of generating one, two
or three synthetic support samples per class to improve prototype informative-
ness. The training process involved 100 epochs, each with 50 meta-training and
50 meta-validation episodes. We assessed performance using mean and standard
deviation (STD) of Area Under the ROC Curve (AUROC) across 50 meta-testing
episodes. We employed a ResNet-18 for feature extraction, with a learning rate
of 10´4 and weight decay of 10´2, trained using AUC margin loss [25] and the
Proximal Epoch Stochastic optimizer [8]. For the DDPM, we utilized a learning
rate of 20´4 and 400000 steps for training, with 1000 noise scales (variance from
0.1 to 20) during image generation. The training phase was conducted using the
negative log-likelihood loss function and the Adam optimizer.

3 Results and Discussion

Our experimental results (Table 1 and Table 2) demonstrate that generating
synthetic support samples improves performance (AUROC) across all three pro-
totypical methods for both classification tasks. On the prostate cancer aggres-
siveness classification task, ProtoNet benefits the most, achieving an AUROC
increase of over 11% (from 0.634 to 0.749) in the 5-shot setting with two synthetic
samples per class. On the other hand, for breast lesion classification, CovNet ex-
hibits the most considerable absolute improvement (15%, from 0.514 to 0.664) in
the 4-shot setting with three synthetic samples, even though ProtoNet achieves
the highest AUROC (0.785) with three synthetic samples in the 5-shot setting.

Figure 3 visually explores the relationship between the number of synthetic
support samples and AUROC performance. Interestingly, the results indicate
that performance gains are not always monotonic. This implies that adding
more synthetic samples may not always yield the best results. For example, the
CovNet model on the BreakHis dataset achieves its peak AUROC with a single
synthetic support sample in the 1-shot setting. Adding more synthetic samples,
in this case, actually leads to decreased performance. This behavior may be
due to low-quality image generation (e.g., images lacking features of the desired
class), which the weighting method failed to mitigate. However, this phenomenon
is also evident in baseline configurations (without adding synthetic data), where
increasing the number of support samples (e.g., from 1-shot to 2-shot) does
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Table 1: Mean and STD (in brackets) of AUROC across 50 meta-test episodes
on the PI-CAI dataset (prostate cancer aggressivenes classification).

Framework K-shot Baseline +1 support +2 support +3 support

ProtoNet

1-shot 0.527 (0.067) 0.578 (0.087) 0.564 (0.065) 0.628 (0.094)
2-shot 0.570 (0.080) 0.599 (0.088) 0.597 (0.072) 0.631 (0.066)
3-shot 0.590 (0.074) 0.595 (0.133) 0.610 (0.104) 0.634 (0.067)
4-shot 0.609 (0.067) 0.594 (0.084) 0.677 (0.088) 0.698 (0.083)
5-shot 0.634 (0.095) 0.678 (0.091) 0.749 (0.089) 0.616 (0.087)

Meta DeepBDC

1-shot 0.579 (0.061) 0.580 (0.058) 0.660 (0.124) 0.658 (0.084)
2-shot 0.600 (0.062) 0.598 (0.049) 0.563 (0.094) 0.660 (0.046)
3-shot 0.595 (0.068) 0.627 (0.070) 0.637 (0.082) 0.646 (0.090)
4-shot 0.612 (0.044) 0.538 (0.093) 0.656 (0.065) 0.664 (0.077)
5-shot 0.632 (0.099) 0.646 (0.076) 0.662 (0.039) 0.667 (0.073)

CovNet

1-shot 0.503 (0.041) 0.527 (0.057) 0.552 (0.064) 0.570 (0.048)
2-shot 0.529 (0.045) 0.558 (0.052) 0.560 (0.080) 0.585 (0.059)
3-shot 0.575 (0.075) 0.588 (0.043) 0.652 (0.074) 0.619 (0.065)
4-shot 0.580 (0.032) 0.599 (0.081) 0.619 (0.087) 0.623 (0.068)
5-shot 0.602 (0.053) 0.610 (0.044) 0.626 (0.083) 0.631 (0.080)

Table 2: Mean and STD (in brackets) of AUROC across 50 meta-test episodes
on the BreakHis dataset (breast lesion classification).

Framework K-shot Baseline +1 support +2 support +3 support

ProtoNet

1-shot 0.588 (0.197) 0.572 (0.163) 0.618 (0.212) 0.655 (0.205)
2-shot 0.651 (0.186) 0.674 (0.252) 0.678 (0.160) 0.762 (0.151)
3-shot 0.644 (0.176) 0.679 (0.210) 0.718 (0.163) 0.698 (0.178)
4-shot 0.665 (0.163) 0.679 (0.199) 0.740 (0.165) 0.762 (0.140)
5-shot 0.724 (0.151) 0.732 (0.145) 0.778 (0.159) 0.785 (0.158)

Meta DeepBDC

1-shot 0.524 (0.194) 0.514 (0.212) 0.544 (0.208) 0.539 (0.216)
2-shot 0.524 (0.204) 0.536 (0.213) 0.562 (0.198) 0.576 (0.198)
3-shot 0.589 (0.187) 0.591 (0.179) 0.609 (0.196) 0.633 (0.170)
4-shot 0.534 (0.181) 0.537 (0.205) 0.575 (0.203) 0.632 (0.178)
5-shot 0.594 (0.181) 0.625 (0.176) 0.578 (0.190) 0.666 (0.180)

CovNet

1-shot 0.506 (0.143) 0.536 (0.131) 0.495 (0.226) 0.534 (0.199)
2-shot 0.516 (0.103) 0.560 (0.179) 0.590 (0.187) 0.618 (0.191)
3-shot 0.512 (0.062) 0.513 (0.083) 0.579 (0.140) 0.643 (0.224)
4-shot 0.514 (0.154) 0.578 (0.175) 0.611 (0.158) 0.664 (0.175)
5-shot 0.532 (0.103) 0.549 (0.084) 0.589 (0.168) 0.642 (0.187)

not always lead to improved performance. For example, in Table 2, the Meta
DeepBDC model demonstrates a decrease in AUROC of approximately 5%when
transitioning from a 3-shot to a 4-shot setting. This could be due to redundant
information or poor-quality samples.

To qualitatively assess our proposed approach’s performance, we compare
real and synthetic MRI images of prostate cancer in Figure 4, representing each
classification category. To the untrained eye, the synthetic images closely resem-



8 E. Pachetti

Baseline + 1 + 2 + 3

0.55

0.60

0.65

0.70

0.75

A
U

R
O

C

(a) ProtoNet, PI-CAI
1-shot
2-shot
3-shot
4-shot
5-shot

Baseline + 1 + 2 + 3
0.54

0.56

0.58

0.60

0.62

0.64

0.66

(b) Meta DeepBDC, PI-CAI
1-shot
2-shot
3-shot
4-shot
5-shot

Baseline + 1 + 2 + 3
0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

(c) CovNet, PI-CAI
1-shot
2-shot
3-shot
4-shot
5-shot

Baseline + 1 + 2 + 3

0.60

0.65

0.70

0.75

A
U

R
O

C

(d) ProtoNet, BreakHis
1-shot
2-shot
3-shot
4-shot
5-shot

Baseline + 1 + 2 + 3

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
(e) Meta DeepBDC, BreakHis

1-shot
2-shot
3-shot
4-shot
5-shot

Baseline + 1 + 2 + 3
0.50

0.53

0.55

0.58

0.60

0.62

0.65

(f) CovNet, BreakHis
1-shot
2-shot
3-shot
4-shot
5-shot

Fig. 3: Illustration of classification performance in terms of AUROC as the num-
ber of synthetic support samples per class increases. Best viewed in color. (a)
ProtoNet with PI-CAI; (b) Meta DeepBDC with PI-CAI; (c) CovNet with PI-
CAI; (d) ProtoNet with BreakHis; (e) Meta DeepBDC with BreakHis; (f) CovNet
with BreakHis.

ble the shape and features of the prostate, though they tend to show slightly
more noise compared to real images. A comprehensive evaluation by a radiology
expert is necessary to verify the presence of features associated with each classi-
fication. Nonetheless, our preliminary findings suggest that incorporating these
synthetic images into the class prototype computation enhances classification
performance, positioning our approach as a promising task-agnostic method for
tumor characterization in data-limited scenarios. In future work, we will inves-
tigate how improvements in image quality and feedback from radiology experts
can further boost the effectiveness of our approach.

4 Conclusion

In this work, we combined the strengths of meta-learning and diffusion-based
generative models to tackle tumor characterization in low-data scenarios. Our
novel approach involves jointly training a diffusion model and a feature extractor
within an episodic framework, utilizing the generation of synthetic support sam-
ples to enhance the creation of more informative prototypes. Additionally, we
introduced a dynamic weighting mechanism that adjusts based on the similarity
between generated samples and the original prototype of the same class, helping
to mitigate the impact of generating poor or uninformative images, particularly
during the early training stages. Preliminary experiments across various proto-
typical frameworks and two tumor characterization tasks demonstrate the ef-
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Fig. 4: Examples of real and synthetic MRI images of prostate cancer categorized
by ISUP grade. (a) ISUP 2 real image; (b) ISUP 3 real image; (c) ISUP 4 real
image; (d) ISUP 5 real image; (e) ISUP 2 synthetic image; (f) ISUP 3 synthetic
image; (g) ISUP 4 synthetic image; (h) ISUP 5 synthetic image.

fectiveness of our method in improving classification performance. Future work
will focus on enhancing image generation quality and incorporating feedback
from radiology experts to better assess the presence of class-related features in
synthetic images.
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