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Abstract

Identifying technologies is a key element for mapping a domain and its evolu-
tion. It allows managers and decision makers to anticipate trends for an accurate
forecast and effective foresight. Researchers and practitioners are taking advan-
tage of the rapid growth of the publicly accessible sources to map technological
domains. Among these sources, patents are the widest technical open access
database used in the literature and in practice.

Nowadays, Natural Language Processing (NLP) techniques enable new meth-
ods for the analysis of patent texts. Among these techniques, in this paper we
explore the use of Named Entity Recognition (NER) with the purpose to identify
the technologies mentioned in patents’ text. We compare three different NER
methods, gazetteer-based, rule-based and deep learning-based (e.g. BERT),
measuring their performances in terms of precision, recall and computational
time.

We test the approaches on 1,600 patents from four assorted IPC classes as
case studies. Our NER systems collected over 4,500 fine-grained technologies,
achieving the best results thanks to the combination of the three methodolo-
gies. The proposed method overcomes the literature thanks to the ability to
filter generic technological terms. Our study delineates a valid technology iden-
tification tool that can be integrated in any text analysis pipeline to support
academics and companies in investigating a technological domain.
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1. Introduction

The analysis and observation of technologies is a fundamental part of techno-
logical management, especially for planning R&D policies by governments and
companies (Yoon and Park, 2005). Given the present pace of innovation, market
actors need a deeper understanding of a technological domain, to mitigate the
uncertainty typical of the digital ages (Robinson et al., 2013).

In the literature there exists many methods for technological mapping and
forecasting, that can help decision makers in predicting core and emerging tech-
nologies (Huang et al., 2020), diffusion of technologies (Daim et al., 2006),
convergence (Karvonen and Kässi, 2013) and portfolio analysis (Ernst, 2003).
Patents are among the best source of information to reach these goals (Joung
and Kim, 2017) because they contain rich technical details. Anyway, they are
also among the most complex textual sources to analyse automatically because
of the mix of technical and juridical jargon.

A patent provides the technical description of an invention in a sufficiently
clear and complete manner to enable a person skilled in the art (i.e. someone
having the relevant technical information publicly disclosed at the time of the
invention) to replicate the invention without any additional creative activity
(Art. 83 EPC) (Lidén and Setréus, 2011). A patent is designed to disclose
the minimum content that makes understandable and reproducible the inven-
tion. The use of juridical jargon makes the document legally binding, eligible
to protect the invention.

Patent texts create a barrier to the access to one of the widest technical open
access resources. It is believed that between 70% and 90% of the information
about technologies can only be found in patents (Asche, 2017). Patent analysis
is a valuable approach for deriving information about an industry or technology
for forecasting (Daim et al., 2006), competitive analysis (Thorleuchter et al.,
2010), technology trend analysis (Tseng et al., 2011), and for avoiding infringe-
ment (Yu and Zhang, 2019). This information may be obtained by the use of
either bibliometric analysis and text mining. The former involves the analysis
of meta-data, such as citations, assignee, inventors, and International Patent
Classification classes (Cho and Kim, 2014). The latter aims to extract rele-
vant information from unstructured text, that includes title, abstract, claims,
state-of-the-art description, and other records (Tseng et al., 2007).

Given the complexity of patent texts, bibliometric analysis is more common
in literature since it involves the analysis of well organized and structured data,
more easily processable than unstructured data. However, the analysis of meta-
data is not able to capture the detailed technical content of patents (Kuhn
et al., 2020; Righi and Simcoe, 2019). As affirmed by Vicente-Gomila et al.
(2021), text mining enhances traditional measures based on bibliometric data
in forecasting technological change.

Recently it has been shown that text mining is more effective than metadata
analysis for measuring novelty and impact of a patent. In Arts et al. (2021), the
authors use text mining techniques to identify new technologies and measure
patent novelty, detecting uni-grams (single word, well-known as keywords), bi-
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grams and tri-grams (two or three consecutive words, also called keyphrases) in
title, abstract, or claims of a patent. They consider as emerging technologies a
word or a words combination appearing for the first time in the text, achieving
remarkable results with generic keywords and keyphrases. Other studies involve
text mining from patent for identifying emerging technologies (Ranaei et al.,
2020; Zhou et al., 2020; Porter et al., 2019; Jang et al., 2021; Sarica et al., 2020)
or exploring the convergence phenomena among technological fields (Gustafsson
et al., 2015; Song et al., 2017). At the state-of-the-art, text mining techniques
for technological analysis focus on generic terms and not on specific ones for in-
vestigating the technological change. This is a limitation given the quantity and
quality of technical information contained in patents, therefore novel approaches
are needed to enable these contents.

In this paper, we use Natural Language Processing (NLP) to recognize the
technologies mentioned in a patent, thus overcoming this gap in literature. We
reach this goal by solving a well known task in NLP called Named Entity Recog-
nition (NER). NER systems are widely used to extract general entities (such
as persons’ names, cities, dates and times), but there is still a lack of tools
able to extract technically relevant information (Fantoni et al., 2013; Chiarello
et al., 2018a, 2021, 2020). We measured the performances of three different
NER methods in terms of precision, recall and computational time.

The three methods we tested are gazetteer-based, rule-based and distribu-
tional NER. Gazetteer-based and rule-based NER exploit pre-defined lists of en-
tities (gazetteer) or rules-driven experts systems. Distributional NER exploits
machine learning approach. In the present paper we use the state-of-the-art for
entity extraction, the Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018).

The tool for identifying technologies from text proposed in our work has two
main contributions. It contributes to the field of scientometrics and technology
analysis, overcoming the gap in literature related to the analysis of patents for
understanding the technological change. It gives a contribution to practitioners,
especially policy makers and companies, by supporting them in patent analysis
to recognize emerging technologies, map technological convergence or investigate
the content of a patent.

The results of this work show how the methods we propose extract 4, 731
technologies in a set of 1, 600 patents with a precision about 40%. We analyse
in detail all methods proposed and show that some are more fit to search for
small numbers of specific entities (gazettes), whereas others are more effective
in gathering large numbers of technologies with less control over which they
retrieve (rules, distributional methods).

The most novel result of our work is that it provides a first attempt to
recognize technologies from texts, avoiding the collection of technological-related
terms that are not technologies, such as function, user, advantage or drawback
entities. Moreover, this paper extracts each type of technologies, overcoming
the gap existing in literature, that is focused only on the collection of emerging
technologies.

The paper is structured as follows, in Section 2 we describe the state-of-the-

4



art and propose a more precise definition of technology, in order to have a solid
framework for the evaluation. In the following section, we present all the data
and the methodologies we use. Afterwards, we present the results in Section 4
and finally draw conclusions and describe future steps.
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2. State-of-the-art

2.1. Patent Analysis with Natural Language Processing Techniques

Patent analysis has been involved in both academic and industrial disciplines
for different purposes. Scholars are generally interested in the analysis of patent
data for identifying and studying new radical innovation and paradigm shifts.
Whereas, industry actors are focusing also on incremental innovation, namely
technical modifications on existing technologies (Sternitzke, 2010). Keeping this
in mind, we attempt to provide the readers a comprehensive view of the state-
of-the-art in patent analysis for both academic and industrial perspective.

Patent analysis techniques are capable of performing a wide range of tasks,
vital from both legal and managerial perspectives (Liu et al., 2011; Yoon and
Kim, 2011). Abbas et al. (2014) revise the literature on patent analysis iden-
tifying several purposes of the organization in analyzing intellectual property,
among which there are novelty identification, technological forecast, technolog-
ical road map and so on. Prior and current works have relied on two main
approaches for the analysis of big amounts of patent data: bibliometric analysis
and text mining, as affirmed in several works (Abbas et al., 2014; Li et al., 2019;
Small et al., 2014).

The former comprehends a wide range of techniques focused on the anal-
ysis of structured data, such as patent assignee, inventor, citation, Interna-
tional Patent Classification (IPC) or Cooperative Patent Classification (CPC).
Literature provides a plethora of indicators developed using patent meta-data
for a specific purpose. For example, the number of patent applications, back-
ward/forward citations and the number of non patent literature (NPL) citations
are used for analysing technological diffusion (Chang and Fan, 2016; Magee
et al., 2016). Co-inventors, co-citations, NPL citations and IPC co-classification
are such metrics based on meta-data for identifying technological convergence
(No and Park, 2010; Karvonen and Kässi, 2013; Cho and Kim, 2014) or emerg-
ing technologies (Small et al., 2014; Breitzman and Thomas, 2015; Kyebambe
et al., 2017; De Rassenfosse et al., 2013).

Despite the large adoption by academics and practitioners, the bibliometric
patent analysis has important limitations. Citation analysis is able to capture
prior art but lacks the detail to reflect the technical content of each patent
(Kuhn et al., 2020). On the other hand, patent classification is able to reflect
the subject matter of the document, but patent classes are too broad to capture
the detailed technical content of each document (Righi and Simcoe, 2019). Arts
et al. (2021) illustrate and validate the improvement of text mining metrics over
traditional measures (based on bibliometric data) for capturing the innovation
phenomenon using patents.

Text mining aims to extract the information contained in unstructured data.
A branch of text mining is the automatic processing of the human language
(natural language in jargon) in written form, for a range of applications, such as
machine translation, document classification, question answering, named entity
recognition (Pennington et al., 2014). This stream of study is called Natural
Language Processing (NLP).
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One of the simplest algorithms in NLP is the Bag-of-Words (BoW), that
is a representation of a set of documents (namely corpus) that describes the
occurrence of words within each document. Hofmann et al. (2019) use BoW
for measuring the text-based similarity between patents in order to generate
technology-related network data that retraces elapsed patterns of technological
change. An improvement of BoW model is weighting the word occurrences with
the commonly used term frequency inverse document frequency (tf-idf) (Salton
et al., 1983). In Niemann et al. (2017), a tf-idf BoW aims to structuring patent
text to identify patterns of change over time.

This representation of the textual content of a patent is not useful for cap-
turing the latent semantic of the document. Latent Semantic Analysis (LSA)
and Singular Value Decomposition (SVD) are two of the dimensionality reduc-
tion techniques used in the literature for overcoming this issue. In Magerman
et al. (2010), the authors involve LSA for grasping similarities between patent
and publication text documents. In Park et al. (2015), a patent similarity index
based on LSA is developed for exploring potential R&D collaboration partners.
SVD is involved by Han and Sohn (2015) to provide a concept of distance be-
tween a document and its backward or forward cited patents in terms of claims.

While the aforementioned NLP methods aim to compare the similarity be-
tween a set of patents, Latent Dirichlet Allocation (LDA) is employed in liter-
ature to extract topics and technological trends. LDA is a popular model used
in the field of information retrieval from text corpora, developed in Blei et al.
(2003). The primary benefit of LDA is predicting the future technological top-
ics of specific firms (Suominen et al., 2017). In Kim et al. (2015), the authors
apply LDA algorithm to identify a vacant technology clusters using patent doc-
uments. In Song and Suh (2019), the authors aim at identifying the convergence
trajectory for safety technology development via topic modeling techniques.

Recently, the attention of NLP literature has focused on word embedding
algorithms, these are able to represent words as dense vectors of real numbers.
Unlike LSA and LDA, which also focus on estimating continuous representations
of words, word embedding methods use an artificial neural network to repre-
sent words. In Mikolov et al. (2013b), the authors show that word embedding
outperforms the LSA algorithm for preserving linear regularities among words
and have greater computational efficiency than LDA with large text corpora
(Mikolov et al., 2013a). Xu et al. (2019) use word embedding to automatically
extract technical intelligence from news. Word2vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) are two recent and popular word embedding
methods for analysing patent documents. In Lee et al. (2020a) the authors use
word2vec developing a product landscape analysis in order to identify potential
technology opportunities across multiple domains. In Trappey et al. (2019), a
system based on word2vec is used for retrieving the best related patents of a
target document aiming at analysing patent evolution in solar power technology.
In Sarica et al. (2020), GloVe is applied to vectorize the patent terms and estab-
lish their relationships in a unified vector space for representing the technology
semantic network. In Li et al. (2018), the authors propose a machine learning
method for patent classification based on word embedding.
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The recent advances in NLP research lead to develop a new class of tech-
niques for representing words and phrases, called transformers (or contextual
word embedding). In fact, word embeddings have several limitations, among
others, these methods generate the same single vector for a given word, beyond
the context in which the word appears. Transformers overcome this issue fac-
torizing a word or a phrase based on the textual context. One of the most
famous algorithm falling in this class is Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018), which is trained on millions
of Wikipedia pages. In Caragea et al. (2020), a BERT-based model is used on
a dataset of patent abstracts and patent applications for building a taxonomy
of Financial Technology (FinTech). Beltagy et al. (2019) fine-tune a BERT
model based on scientific articles, called SciBERT, for processing the text of
this huge amount of data makes available from scientific communities. The
model is largely used in literature for many purposes, also related to the study
of technological phenomena Zhang et al. (2021).

In Lee and Hsiang (2020), the authors fine-tune with about 2 millions of
patents a pre-trained BERT model, called PatentBERT by the authors. Specif-
ically,the authors use the model for classifying the patent documents based on
the International Patent Classification. Recently, PatentBERT is adopted as a
comparison in various patent analysis-based studies. For example, Hain et al.
(2022) develop a new method to create vector representations of patent text
for measuring the patent-to-patent similarity, and compare their performance
with PatentBERT model. Similarly, Choi et al. (2022) propose an automated
patent classification model for patent landscaping and compare the classification
performance of their model with PatentBERT.

2.2. Technologies Identification with Named Entity Recogntion

In this paper, we apply Natural Language Processing techniques for technol-
ogy identification and mapping. We use a branch of NLP, namely Named Entity
Recogntion (NER). This is an Information Extraction technique that aims at
recognizing unstructured text information units (e.g. foods, person names, com-
panies, geographical entities) (Nadeau and Sekine, 2007). The NER methods
used in the literature are:

1. gazetteer-based NER uses knowledge base resources (or gazette in jargon),
consisting of lists of known instances (Pawar et al., 2012), to map mentions
of entities within texts to knowledge base resources (e.g. Wikipedia). It
is a fast and accurate approach for NER. The gazette-based NER is a
semi-supervised method since list creation usually requires manual effort
and domain-specific knowledge;

2. rule-based NER uses regular expressions and morphosyntactic information
to express knowledge based systems able to extract a certain type of entity
(Jiang et al., 2011). This system is unsupervised and top-down, and falls
into the class of expert systems;

3. distributional-based NER uses manually annotated documents (training
set) to train machine learning algorithms (Quinlan, 1986). These methods
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are the-state-of-the-art in many fields of Natural Language Processing, but
they require a large amount of effort to collect and annotate large data-set.

The evaluation of a NER system is one of the most important tasks in the
literature for comparing different text mining methods. The key metrics used in
the evaluation process are precision, recall and f-score. For further information
about these fundamental metrics, we recommend to read the work of Tsai et al.
(2006).

In the literature, there are various works that are able to achieve great results
for the identification of named entities. In (Lee et al., 2020b), the authors aim
to recognize biomedical entities for obtaining a f1 score of 89.61 for diseases,
94.26 for drugs and 78.58 for genes and proteins. In a similar manner, in (Fan
et al., 2020), the authors achieve a level of f1 equals to 75.37 for the extraction of
events and location names. Both techniques used contextual word embeddings
(i.e. BERT).

On the contrary, to the best of our knowledge, the literature on NER sys-
tems for technology extraction is poor. In Jang et al. (2021), the authors aim
at structuring textual information as a cornerstone of a lexical database for
technology-related information, based on the patent data. Similarly, Sarica et al.
(2020) develop a technology semantic network (TechNet) using natural language
processing techniques to extract terms from massive patent texts. TechNet sup-
ports a wide range of applications, e.g., technical text summaries, search query
predictions and relational knowledge discovery in the context of engineering
and technology. Furthermore, these two articles construct a lexical database of
technology-related words but they do not recognize a given technology in the
patent text.

The most similar work is a pre-printed article (Hossari et al., 2019) focused
on the extraction of Artificial Intelligence technologies. However, the authors
give only qualitative criteria for evaluating their results. The state-of-the-art is
mainly focused on the identification of emerging technologies and not established
ones, exploiting patent classification (i.e. IPC code classes) (Kay et al., 2014;
Gustafsson et al., 2015; Song et al., 2017) or using textual data with greedy
methods, extracting generic terms and not only technologies.

For example, Ranaei et al. (2020) analyse the emergence of technologies
using three text-based approaches: tf-idf metrics for capturing technological
changes, LDA for evaluating the emerging topics, text-based score developed
by Porter et al. (2019) and Carley et al. (2018). The authors found that the
three different methods provide somewhat distinct perspectives improving the
understanding of technological change. Despite the remarkable results of their
work, it includes not only technologies but also technology-related terms, such
as defective, immune, delay fluorescence.

While a training set for entities like chemical molecules and biomedical terms
has been built to train corpus-based classifier, this is not true for technologies.
This forces to manually evaluate the precision of the NER system, reviewing
the list of extractions to filter out non-technologies. For what concerns recall, in
absence of a training corpus, the grain of the extracted entities is the key element
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to consider for evaluating it. Linguistically, we can refer to technologies using
an abstract wording (e.g. device or system) or specific wording (e.g. water proof
smart watch or visual software modeling editor). For a balanced identification
of technological content in a patent corpus, it is important to avoid both the
extraction of too generic and too specific technologies. Taking into account too
generic technologies causes the risk that no technological change and evolution
pattern would be identified by the patent analysis. For what concerns the
extraction of too fine grained technologies, it is important to avoid collecting
sub-systems instead of technologies.

In a recent paper, Giordano et al. (2021) involve gazetteer-based and rule-
based system for identifying technologies from a set of 300,000 patents related
to C4ISTAR, a defence related domain, for analysing the convergence phenom.
They reached a precision of 35.39%, collecting about 1, 000 different technolo-
gies. However, the purpose of the authors is different from that of our article
for three main reasons. First, the authors focused on the study of technological
convergence phenomena and not on developing a NER methods able to extract
technologies from the text. This different purpose of Giordano et al. (2021)
leads to a lack of measurement testing their NER method. In fact, the authors
only evaluated the precision of their method without calculating the recall or
providing information about the time they spent to recognize technologies from
the text. Second, Giordano et al. (2021) avoid to use state-of-the-art of NER
system, namely distributional method, based on contextual word embeddings,
but they only applied gazetteer-based and rule-based NER. As discussed before,
these methods suffers some limitation, related to the recall measurement.

2.3. The Concept of Technology

As suggested by Nadeau and Sekine (2007), the use of NLP techniques for
technology identification and mapping requires a formal definition of technology,
precise enough to allow discerning these entities and comprehensive enough to
include all of them. Therefore, we review several definitions from dictionaries
and literature, reported in Table 1, to highlight the main characteristics of this
entity and to identify what are the elements for which an entity can be classified
as a technology.

The reported definitions in Table 1 convey different aspects, each relevant
to this concept, the most insightful elements are:

(A) the technical means or in general the technical systems (Wikipedia, Waight
2014; Volti 2005; Ramanathan 1994);

(B) the anthropocentric view, related to the creation and the use of technol-
ogy by human-kind (Wikipedia, Carroll 2017; Waight 2014; Volti 2005;
Ramanathan 1994);

(C) the application of knowledge and science thanks to the skills of many in-
dividuals, who cooperate themselves to develop a technical system (Cam-
bridge dictionary, Carroll 2017; Volti 2005; Ramanathan 1994);

(D) the purpose to solve practical problems and to perform a function (Carroll
2017; Waight 2014; Volti 2005).
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We had the need for an operative description enabling us to define our scope
and perform an efficient and strict selection of entities identifying a technology.
Therefore, we attempt to distill all the multiple perspectives aforementioned
into a comprehensive summary, as follows:

Definition 1. A technology is a technical mean or in general a technical system
(A) created by human-kind (B) through the application of knowledge and science
(C) in order to solve a practical problem or perform a function (D).

With this definition we do not have the ambition to define in a complete and
exhaustive way such a broad and complex concept. Our aim is indeed to clarify
the main characteristics of a technology in order to be able to distinguish the
relevant information among the amount of data extracted with NLP techniques
from patents.
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Source Definition

Cambridge
dictionary

(The study and knowledge of) the practical, especially indus-
trial, use of scientific discoveries.

Wikipedia Technology (“science of craft”, from Greek τϵχνη, techne, “art,
skill, cunning of hand”; and −λoγια, -logia)1 is the sum of tech-
niques, skills, methods, and processes used in the production of
goods or services or in the accomplishment of objectives. [...] It
can be the knowledge of techniques and processes, or it can be
embedded in machines to allow for operation.

(Carroll, 2017) Technology is “something that is always inherently intelligent
enough either to function and to be used to function; anything
devised, designed, or discovered that serves a particular pur-
pose; [and] the knowledge that is used for a purpose, without
itself necessarily being translated into something physical or ma-
terial that does (e.g., instructional methodologies in education,
processes, ideas)”.

(Waight, 2014) Technology is delineated as something that “improves and
makes life easier, the artifacts which function to accomplish
tasks, and the representations of advances in civilization”.

(Volti, 2005) Technology is “a system created by humans that uses knowledge
and organization to produce object and techniques for attain-
ment of specific goals”.

(Ramanathan,
1994)

Technology is the manifestation of four elementary and interact-
ing components: technoware, related to the tangible and palpa-
ble parts (i.e. tools and systems);humanware, related to the hu-
man resources who, with their knowledge and skills, produce,
use and express the technoware; orgaware, referred to effec-
tive organizational practices, linkages, and related arrangements
needed to make the best use of technoware and humanware; and
inforware, that represents the accumulation of knowledge by hu-
man beings related to the other 3 components.

Table 1: Definition of technology
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3. Methodology

We employed NLP systems to identify technologies in the title, abstract,
claim and state-of-the-art description of the patents. We developed three dif-
ferent approaches based on gazetteer, rules and distributional methods. In this
section, we describe each of them and outline their advantages and drawbacks.
Throughout the rest of the paper, in order to ease the reading, we will occa-
sionally refer to the items (technologies in our case) we extract as entities.

3.1. Data Collection

We set the experiment employing four case studies to measure the perfor-
mance of the different methods proposed in this paper. The database chosen for
retrieving the patent documents is the Erre Quadro S.r.l.2 one. The database
contains over 90 million patents and includes high quality bibliographical and
legal status patent information from leading industrialized and developing coun-
tries. The Erre Quadro database was chosen due the fact that it indexes patents
from different European and International databases, e.g., European Patent Of-
fice (EPO) and World Intellectual Property Organization (WIPO). The method
we proposed may also be replicate using other patent database, such as United
States Patent and Trademark Office (USPTO), EPO or WIPO.

In literature, the common strategies for retrieving patents are based on key-
words (Maghrebi et al., 2011), patent classification systems (e.g. International
Patent Classification system, IPC) (Ozcan and Islam, 2017) or their combination
(Park et al., 2013). We defined three retrieving principles in order to simplify
the measurement task:

• Perform a IPC-based searching strategy: The IPC is a hierarchical
classification of patents based on the technological area. Each classifica-
tion code is composed of 7 characters. The first character is a letter, it
is called section, and indicates the technical field. Then, there are two
numbers, called class, that indicate the subject matter of the patent. The
next letter constitutes the subclass, i.e. the units in which the classes are
divided. Afterward, there is the File Index classification (FI), a three-
digit number (IPC subdivision symbol) and/or one letter (file discrimina-
tion symbol), that represents a main group or subgroup and indicates the
theme of the patent (OECD, 2009). We decided to perform an IPC search
because this classification well determines the boundary of each class, as
established in the Strasbourg Agreement of 1971. So, since we aim to
develop a system for automatically recognizing technologies in a given
technological field, having well-defined technological domains eases mea-
suring how much our extraction system is precise (precision) and complete
(recall).

2Available: https://www.errequadrosrl.com/, Accessed: July 28, 2021.
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• Select the first 5 digits for each IPC: The number of digits selected
for each IPC class is 5 for a balanced identification of technological con-
tent, avoiding to consider too generic or too fine grained technologies as
explained in Section 2;

• Collect different IPC section: We choose to consider different IPC
sections (namely first letter of the IPC code) for performing the most
extensive and exhaustive comparisons among the various methods. In
fact, the section is the broadest patents classification level.

We selected the following IPC codes:

• A63F 3/00 Board games, Raffle games;

• C23C 2/00 Hot-dipping or immersion processes for applying the coating
material in the molten state without affecting the shape;

• E04B 5/00 Floors; Floor construction with regard to insulation;

• H04J 1/00 Frequency-division multiplex systems.

Whereas the chosen subclass codes are the following:

• A63F CARD, BOARD OR ROULETTE GAMES;

• C23C COATING METALLIC MATERIAL;

• E04B GENERAL BUILDING CONSTRUCTIONS;

• H04J MULTIPLEX COMMUNICATION.

We searched for the higher diversity in terms of languages and domains.
We selected cases where the inventions is user-centered (A63F, E04B) or not
(C23C, H04J); where technical subject matter may represent a product (A63F),
an apparatus (H04J) or a process (C23C, E04B); where technical subject matter
may be a physical device (A63F, C23C, E04B) or an electronic/software system
(H04J). The selection process is fundamental for identifying difference among
the methods developed in this study and understanding which biases are embed-
ded in each one. For each selected IPC code, we retrieved also the patents set of
the relative subclass (e.g. the subclass of A63F 3/00 class is A63F). These data
will be fundamental for training the distributional NER system as we explain
later in this Section. The subclass is more general than the complete IPC code
and includes diversified patents, so it can help in the identification of different
technologies. This leads to improve the models with reference to the recall,
but it may produce minor losses regarding the precision. We will show this is
not a dramatic drawback, indeed for one of the methods it leads to a small
improvement for both measures.

In the rest of the paper, we refer to the complete IPC code as IPC group
and the related IPC subclass as IPC category to avoid misinterpretations.
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For each IPC category and IPC group we selected 400 patents. Regarding
the IPC category, we chose this number to have a data-set that is a good fit
for the training of the models. On average we found patents to contain around
300 sentences. A classical benchmark data-set for NER (Tjong Kim Sang and
De Meulder, 2003) contains around 14,000 sentences for training, therefore we
selected this amount of patents in order to reach a comparable amount. We
gather a larger number of sentences closer to 100,000 from our patent set. In-
deed, we need to compensate the lower precision of rules as opposed to human
tagging: a larger amount of sentences helps us average out part of the imper-
fections in the data.

We chose 400 patents for the IPC group as well for the sake of comparison.
Although we analyse as well the number of entities extracted, our focus is on
a fair comparison among the methods. We need to make sure that we do not
give an advantage to the trained methods by providing them broader sets of
technologies, thus we need IPC categories and IPC groups to be equal in number.
Moreover, this does not pose any limitation on the patent set validity.

3.2. Extraction methodologies

3.2.1. Gazetteer

The gazetteer based method is the simplest available, and it consists in using
gazettes of technologies. For the selection of the sources we relied on the work
by Giordano et al. (2021) that uses freely available online sources:

• Wikipedia : the Wikipedia contributors list a set of emerging and po-
tentially disruptive technologies3. It contains 397 different technologies.
In Bonaccorsi et al. (2020), it is demonstrated that Wikipedia’s list of
emerging technologies has a degree of coverage in the range 90%–95%
with respect to academic journals, consultancy reports and specialized
blogs;

• O*NET 4: it is an occupational framework developed by the U.S. Depart-
ment of Labor which is made of 974 occupations classified on the basis of
the Standard Occupational Classification (SOC) system and their cor-
responding skills, knowledge, abilities and technologies. The framework
includes 30,173 different technologies. O*NET divides those technologies
in (i) 21,267 machines and equipment (70.48 %) and (ii) 8,906 information,
communication and software technologies (29.52 %).

The use of gazettes allows us to work in a controlled environment, where one
can know in advance the detectable type of entities. Therefore, given the gazette
source and specifications, we focus only on a particular kinds of technologies.

This solution is extremely fast to deploy and can be used to inspect sev-
eral thousands of documents in very short time. Looking for the flaws of this

3Available: https://en.wikipedia.org/wiki/List of emerging technologies, Accessed: July
28, 2021.

4Available: https://www.onetonline.org/, Accessed: July 28, 2021.
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approach, the biggest one is the difficulty in gathering high quality gazetteer
containing large numbers of technologies. The cleansing of a gazetteer is per-
formed by highly trained people, so such a process is hard to scale to several
thousands of entities.

Furthermore, the gazettes used in our paper aim to identify only a part of
technologies mentioned in patents. The Wikipedia list contains only emerg-
ing technologies. These last are well defined in literature and have five main
characteristics: (i) radical novelty, (ii) relatively fast growth, (iii) coherence,
(iv) prominent impact, and (v) uncertainty and ambiguity (Rotolo et al., 2015).
The O*NET gazette derives from an occupational framework. So, it includes
the technologies related to job occupations with a coarse-grained level of detail,
mentioning only the commercially available technologies. Moreover, there is an
unbalanced focus on information and software technologies (more than 20 % of
the total), reflecting the current situation of job landscape, where the digital
transformation had large effects (Frey and Osborne, 2017).

Beyond this, gazetteer are hard to adapt to different contexts, as demon-
strated also in biomedical domain by Odat et al. (2015). Patents are an ex-
tremely broad data-set with all possible kinds of technologies and a gazette able
to cover this variegated type of knowledge would need to contain a vast amount
of entities, hard to develop and to maintain as well. Furthermore, the gazetteer
NER suffers from ambiguity (Carlson et al., 2009), where words like python can
have different meanings (e.g. an animal or a programming language) depending
on the context.

Given the above considerations, pre-built gazettes aims to minimize (i) the
human effort in listing all possibly technologies, and (ii) the machine time to rec-
ognize technologies in text. However, we believe this methodology will extract
a smaller number of entities with some blurred technologies.

3.2.2. Rules

The second family of NER systems we employed is based on rules. In a
general sense, this means we define morphosyntactic patterns that identify the
presence of a technology in a patent text. This type of extraction can be made
in several ways and there is literature about it (Hearst, 1992; Roller et al., 2018;
Chiarello et al., 2018b). This methodology, if properly adapted to each case,
turns out to be quite effective especially in terms of coverage.

Let us first make a short premise to introduce these methodologies. We will
use the hypernym/hyponym relation indicating more and less abstract concept.
An example of such relation is the one between phone and smartphone. Indeed
whenever something is identified as a smartphone it can be identified also as a
phone and at the same time there are phones that are not smartphones.

We use two different rule-based methods:

• Extractor 4.0 : regular expressions for extracting technologies 4.0 devel-
oped in Chiarello et al. (2018b);

• Hearst regular expressions for searching hypernym/hyponym relation
(Roller et al., 2018).
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The first rule-based approach consists of a list of automatically generated
regular expressions aimed at extracting Industry 4.0 terms. Regular expressions
are pattern matching queries that can be built to match virtually any pattern.
More complex patterns require for more complex queries and this poses a limit
to the generality they can achieve. Nevertheless, the list built in (Chiarello
et al., 2018b) contains about 1,600 expressions and covers several different cases,
making it a valuable extraction tool.

We expect an high application field dependence due to the fact this approch
was originally developed for Industry 4.0. On the other hand, the flexibility
of regular expressions and the data driven way used to develop them give this
approach good generality, therefore we expect it to show higher recall than
gazetteer.

The rules based on hypernym/hyponym relation instead are derived from
Hearst (1992), it builds upon the methodology that assigns to each word its
role in the sentence (Petrov et al., 2012), e.g. nouns, indicated as NOUN or
adjectives as ADJ.

We search for NOUN tokens and then we use fixed patterns as described
in Hearst (1992) to select the surrounding specifiers. These patterns are devel-
oped to match hypernym/hyponym pairs. However, they do not automatically
identify technologies. we add a step to find the technologies, indeed, we keep
only pairs including one of the following words as their hypernym: technology,
machine, device, apparatus, mechanism, sensor, network, system, unit.

The words we select identify general terms that are hypernyms to large
families of technologies. To choose them, we used the work from Jang et al.
(2021) where the authors define words such as system, unit, device, apparatus
and so on as high level concepts in terms of automotive technology.

The choice of words introduces a bias into this methodology making it lean
towards more machinery and tools based fields. This will affect its ability to
perform in certain IPC groups.

We expect a decrease in precision in the use of rules compared to the
gazetteer, since we use not too strict patterns to extract a relevant amount
of entities. On the other hand, the recall of our method, namely the fraction of
technologies extracted, is supposed to increase.

3.2.3. Distributional methods

We train several distributional NER models, using BERT (Devlin et al.,
2018) to obtain contextual word embeddings, a 2 layer bidirectional Long Short
Term Memory (LSTM) on top of the embeddings and conditional random fields.

This architecture is similar to the one from Peters et al. (2018) and it leads
to near state-of-the-art performance on NER benchmarking datasets such as
CoNLL-03 data-set (Tjong Kim Sang and De Meulder, 2003). Moreover, these
models need to be trained on tagged data. This is done using the set of patents
extracted from the categories for each IPC.

For each IPC group, namely A63F 3/00, C23C 2/00, E04B 5/00 and H04J
1/00, and for both rules extractor, namely Extractor 4.0 and Hearst, we build
a different extractor based on distributional methods. Each of these methods
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will be called Dist Hearst or Dist 4.0 respectively. Notice how we omit the
IPC group name to ease the notation and in the rest of the paper we will always
explicitly state which IPC group is under study.

Let us describe the pipeline used to build each extractor. We proceed as
follows:

1. We select a IPC group and a NER method;

2. We take the associated IPC category, for example A63F for A63F 3/00,
as described at the beginning of this Section;

3. We annotate the patents in this IPC category using the method we se-
lected;

4. We save the output which is now a set of sentences with tagged technolo-
gies;

5. We train the distributional model on this set of sentences;

6. Finally, we use this trained model to extract from the IPC group we
selected in the first step.

Beyond this approach, for both Hearst and Extractor 4.0, we train one model
following the same steps outlined above with the difference that each of the
category associated with an IPC group is substituted with a patent set built
randomly selecting 100 patents from each of the IPC category. The models
obtained will be called Dist Hearst All and Dist 4.0 All . Summing up:

• Dist 4.0 is the distributional method using the Extractor 4.0 NER trained
on IPC cateogry;

• Dist Hearst is the distributional method using the Hearst NER trained
on IPC cateogry;

• Dist 4.0 All is the distributional method using the Extractor 4.0 NER
trained on a set of 100 randomly selected patents from each of the IPC
category;

• Dist Hearst All is the distributional method using the Hearst NER
trained on a set of 100 randomly selected patents from each of the IPC
category.

Our hypothesis is that the wider range of technologies available in the higher
level IPC, together with the adaptability of rule based methodologies, will lead
to a high quality training set. In turn the generalization skills of contextual
word embedding should be able to make use of a data-set encompassing such
knowledge in order to learn from it in a proficient way. We believe that, once
trained, these models can be used in the IPC groups to extract an higher number
of technologies compared to rules.

We expect an improvement in recall, whereas it is hard to make predictions
about precision, since the more general IPC group could be both an improve-
ment or a drawback for this point of view.
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We decided to not manually check the training set for constructing the dis-
tributional methods for two reasons. First of all, the manual check is time
consuming and expensive: it requires a domain expert to read each technology
extracted by the rule-based NER carefully. Second, we aim at observing the
achievable levels of precision and recall of distributional methods in condition
of low effort in terms of time and cost.

In parallel, we did not perform any information based cleaning (e.g. tf-
idf filtering) for two reasons. First, custom pre-processing would influence the
results. Second, this process would require an assessment on how it is performed
(per IPC, per corpora, per method, etc.). In addition, just like manual filtering,
it constitutes a large effort on its own. However, we believe that this might be
useful for improving a model performance in future works.

The implementation of the distributional methods was done using the Python
package Flair, developed in (Akbik et al., 2018). The training is performed on
a Quadro RTX 6000 with 24 gigabytes of memory. We kept the same parame-
ters over all experiments, the batch size is fixed at 64, for the recurrent neural
network we use a hidden size of 256 which we found to be good for all cases, as
embeddings we use BERT-base and a learning rate of 5 ∗ 10−3 for the training
that lasted 20 epochs5. The high computational cost of the experiments limited
our possibility to make an exhaustive hyper-parameters search. We tried some
preliminary experiments changing learning rate that didn’t lead to significant
variations in performance and we thus chose a single set of parameters for all
models. In the rest of this work we identify which approach among the several
tested is best and in future works, focusing on a single model we will optimize
it further through a large set of possible parameters.

3.3. Performance Evaluation

The list of technologies recognized by our NER systems was manually checked
to compute precision and recall. In literature, the results of several NLP tasks
have traditionally been evaluated using human subjects (Belz and Reiter, 2006)
or using previously annotated data (Lee et al., 2020b). As discussed in Section
2, in the technological domain there is a lack of annotated documents. For these
reasons, we rely on human evaluation in a manner similar to Giordano et al.
(2021). The validation was performed in a straightforward way by two PhD stu-
dents in Smart Industry at the University of Pisa. We provided both students
with a table containing the list of extracted entities for each IPC group (the
same for both students). The assignment was ”Read each extracted entity and
decide whether the entity is a technology or not in the context where it appears,
comparing each entity with the Definition 1 of technology, provided in Section
2.3.”. The output of the extractions with manual check will be made available
upon publication.

5While we can not make the code available we are very open to discuss the implementation
upon contact.
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We remark how this task is itself complex, since all the entities, even those
that are not technologies in a strict sense, belong to close semantic fields. Several
ambiguous cases are found, for example high frequency signal, which to a non
expert might appear as a technology, is physical behaviour. According to the
Definition 1, one can see that this example is too generic. On the contrary the
similar entity high frequency signal interface is a example of technology and
the noun ”interface” helps us to disambiguate it with respect to the physical
behaviour.

This case demonstrates how the human validation is itself very challenging.
Indeed, from an algorithmic perspective, the two aforementioned entities are
extremely similar, since they differ in only one word, while being mostly com-
posed of rare words, making it hard to infer that the fourth one is what makes
the difference (Bernier-Colborne and Langlais, 2020).

For understanding the degree of agreement among the independent observers
who assess the completed list of the technologies we calculated inter-rate agree-
ment using the Fleiss’ Kappa (Fleiss, 1971). We selected a sample of 300 tech-
nologies and provided the 5 authors of this study the same instructions de-
scribed above for evaluating whether the entity extracted by our algorithm is
a technology or not. We stress the fact that the 5 authors have a different
background (1 Mechanical Engineer, 2 Management Engineers, 1 Mathemati-
cian and 1 Aerospace Engineer) and experience (1 Professor, 1 Researcher, 3
PhD students), adding value to the evaluation of the technologies because it is
carried out by experts from different perspectives. The inter-rate agreement is
0.516 and the authors give the same rating for the 50.30% of the technologies in
the sample. Moreover, we found that 4 authors agree on an additional 29.00%
of the samples and the remaining 20.70% meet the agreement of only 3 out
of 5 authors, highlighting how complex is evaluating what could be defined as
technology.

Several studies in literature offer rules of thumb for interpreting the inter-
rate agreement. Many authors agree that an inter-rate agreement value greater
than 0.50 is the target condition to be confident on the results (Landis and
Koch, 1977; Fleiss et al., 1981; Regier et al., 2013). It is possible to reach
higher values with more complex evaluations. For example, Zhang et al. (2020)
attempt to build a fine-grained entity annotation corpus of clinical items, manu-
ally annotating more than 10, 000 clinical records in five rounds. In each round,
100 records are randomly selected, and the inter-rate agreement is calculated:
the initial value of 0.40 increased step by step reaching 0.94 at the fifth round
(Zhang et al., 2020). In our case, we perform one review round, reaching 0.516
of inter-rate agreement. This result, higher than the initial value presented in
Zhang et al. (2020), shows a moderate but confident agreement.

We are aware an iteratively process of annotation can help in improving
the inter-rate agreement, especially for engineering a system able to recognize
technologies in textual data. However, our goal is first to demonstrate that is
possible to use NER methods for extracting technologies from textual data and
to identify which NER system perform better than others.
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4. Results

In Sections 4.1 to 4.3, we provide insights about the performances of the dif-
ferent approaches used to extract technologies from patents, we analyse qualities
and flaws of each method and we study how they work together. In Section 4.4,
using the four IPC groups outlined in Section 3.3, we describe how our meth-
ods allow researchers and practitioners to map a given knowledge domain. The
Table 2 summarise the different methodologies, to which we refer from now on
as reported in the column Method.

Type Method Explanation

Gazetteer
Wikipedia List of emerging technologies from Wikipedia.
O*NET List of technologies from the occupational framework O*NET.

Rules
Extractor 4.0 Regular expressions for extracting technologies 4.0.
Hearst Regular expressions for searching hypernym/hyponym relation.

Distributional

Dist 4.0 Distributional method using the Extractor 4.0 NER trained on each IPC cateogry using BERT.
Dist Hearst Distributional method using the Hearst NER trained on each IPC cateogry using BERT.
Dist 4.0 All Distributional method using the Extractor 4.0 NER trained on all the IPC cateogries using BERT.
Dist Hearst All Distributional method using the Hearst NER trained on each IPC cateogries using BERT.

Table 2: Summary of methods per types with explaination

4.1. Performance of Technological Named Entity Recognition

The total number of unique entities extracted by our NER systems is 12, 572
in a set of 1, 600 patents. After the human validation process described in Sec-
tion 3.3, the portion of entities that are considered technologies by the revision
is 38 % (4, 731 different technologies).

This score is in line with the similar work of Giordano et al. (2021), which
attempts to identify technologies from 300,000 patents on defence sector, reach-
ing an overall precision of 35.39 % and collecting 1, 090 different technologies.
However, the score is low if compared with other NER systems; but, as men-
tioned in Section 2.2, the absence in literature of a training set for technologies
negatively affects the performance of the extraction systems.

Let us report insights about the number of technologies per patent. The
median of extractions per patent is 81 technologies (counted with repetition)
and 10 distinct ones. So, on average per sentence there are 0.35 technologies
and 0.04 distinct ones. This means that, one needs to read about 3 sentences
to encounter a technology and about 25 sentences for a new unseen one in a
patent.

These numbers, although only averages, highlight that patents are generally
densely populated with technologies while only containing few unique ones. The
difficulty of technologies extraction emerges: this tasks requires to cherry-pick
the few interesting ones within each patent.

Based on the work of Chiarello et al. (2018a), we use the following metrics
for the evaluation of the whole technologies extraction process:

• Training time: time needed to create the statistical model using the train-
ing set in the distributional-based NER;
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• Extraction time: time needed to extract the entities on the patent set;

• Precision: number of technologies that a system correctly detected in tex-
tual data divided by the total number of entities identified by the system;

• Relative recall : proportion that the NER system retrieves of the total
technologies retrieved by all systems together for a given IPC group.

In particular, we measure the precision and recall based on the human val-
idation. As described in 3.3, evaluating the recall is a challenging task for a
domain where an annotated corpus in not available, as in our case. For this
reason, we relied on relative recall, instead of traditional recall. Sampson et al.
(2006) define relative recall as the proportion that any NER system retrieves
of the total technologies retrieved by all systems considered to be working as a
composite.

For the scope of this paper, these metrics allow us to consider both the
effectiveness (Precision and Relative recall) and efficiency (Training time and
Extraction time). The latters are evaluated for a good reproducibility of our
work. The training time is suitable for researchers and practitioners who want
to develop their own distributional NER methods for recognizing technologies
in textual data. The extraction time mainly helps practitioners that want to
apply our NER methods for their own purposes and textual information. In
general, the measures of training and extraction time allow to better estimate the
duration of the analysis and plan the related tasks. Big data technologies, such
as Hadoop and Spark, can be easily integrated with the proposed methodology,
resulting in a time reduction in the training of distributional methods or in the
extraction of technologies from the text. These frameworks are widely adopted
in current academic and business landscape, however they requires expertise
and knowledge to set up the architectures to process the data.

In Table 3 we compare all the metrics across all methodologies and IPC
groups. We report also the number of unique entities automatically extracted
in a patent set (Found) and the number of distinct entities considered as tech-
nologies after the manual review (Correct). These values were used in the com-
putation of Precision and Relative Recall. In the next paragraph, we describe
and discuss each class of methods presented in section 3.

4.1.1. Performance of Gazetteer-based NER

The gazettes achieve the highest precision over all tasks, as shown in Table
3. They are hand crafted and thus this result is not unexpected. However, they
provide a smaller number of entities when compared to the other methodologies,
as the recall points out.

The O*Net gazette is the most consistent method in terms of found tech-
nologies (Correct) across different IPC groups. As pointed out in Section 3, this
result is due to its structure, where almost all descriptions (70.48%) contain
names of machines and equipment. It behaves more coherently than rules-based
approaches or distributional methods, though at the cost of a lower amount of
retrieved technologies (Correct).
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IPC
Training
Time

Extraction
Time

Method Found Correct Precision
Relative
Recall

F1

A63F 3/00

-

3s O*Net 286 148 0.517 0.152 0.235
Board Games 2s Wikipedia 27 13 0.481 0.013 0.024

732s Extractor 4.0 547 284 0.519 0.292 0.373
348s Hearst 398 216 0.543 0.222 0.315

900m
1,720s Dist 4.0 771 378 0.490 0.388 0.433
1,714s Dist Hearst 2,362 743 0.315 0.764 0.446

500m
1,729s Dist 4.0 All 732 375 0.512 0.385 0.439
1,721s Dist Hearst All 1,063 414 0.389 0.425 0.406

C23C 2/00

-

3s O*Net 302 178 0.589 0.318 0.413
Coating solutions 2s Wikipedia 31 10 0.323 0.018 0.034

745s Extractor 4.0 865 123 0.142 0.220 0.172
353s Hearst 274 96 0.350 0.171 0.229

600m
1,702s Dist 4.0 301 118 0.392 0.211 0.274
1,685s Dist Hearst 791 183 0.231 0.327 0.270

500m
1,706s Dist 4.0 All 305 127 0.416 0.227 0.294
1,702s Dist Hearst All 605 171 0.283 0.305 0.293

E04B 5/00

-

3s O*Net 283 184 0.650 0.399 0.494
Floors construction 2s Wikipedia 17 5 0.294 0.015 0.028

771s Extractor 4.0 494 71 0.144 0.211 0.171
376s Hearst 313 62 0.198 0.185 0.191

500m
1,858s Dist 4.0 267 76 0.285 0.226 0.252
1,837s Dist Hearst 548 86 0.157 0.256 0.194

500m
1,811s Dist 4.0 All 254 81 0.319 0.241 0.275
1,849s Dist Hearst All 442 79 0.179 0.235 0.235

H04J 1/00

-

5s O*Net 248 174 0.702 0.071 0.128
Multiplex systems 3s Wikipedia 22 13 0.591 0.005 0.010

1,010s Extractor 4.0 1,332 528 0.396 0.215 0.278
527s Hearst 1,019 640 0.628 0.261 0.368

800m
2,674s Dist 4.0 1,634 930 0.569 0.379 0.455
2,671s Dist Hearst 3,132 1,651 0.527 0.673 0.591

500m
2,583s Dist 4.0 All 1,597 906 0.567 0.369 0.447
2,563s Dist Hearst All 1,373 680 0.495 0.277 0.355

Table 3: Performance of proposed NER systems

The Wikipedia gazette has lower performances in terms of Relative Recall
than the other methods. The amount of found technologies (Correct) is lower
than 15 per IPC group. However, we may consider that Wikipedia gazette
includes only 397 different technologies, while O*Net has more than 30,000
technologies. Although the sizes of two gazettes differ by more than 2 orders
of magnitude, the number of Found and Correct technologies differs only by
an order of magnitude. This may be due to the fact that the technologies in
O*NET are indicated with commercial names, rare to find in patents.

4.1.2. Performance of Rule-based NER

The effectiveness of rule-based NER is domain dependent. Both Hearst and
Extractor 4.0 suffer a performance loss on the IPC groups C23C 2/00 and E04B
5/00 in terms of both precision and recall. In general, all rule-based methods
perform better on H04J 1/00 than on any other IPC group. These results may
be explained by the design of those methods:

(i) Extractor 4.0 developed by Chiarello et al. (2018b) aims at identifying In-
dustry 4.0 technologies, by definition referred to ”cyber-physical-system”
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(Lu, 2017), that are more related with electronic and software technolo-
gies, as in the case of H04J 1/00 (Frequency-division multiplex systems)
and also for A63F 3/00 (Board games, Raffle games);

(ii) Hearst method derived from Hearst (1992) was designed to recognize mod-
ular technologies, namely technologies structured in parts, sub-parts, sys-
tems, devices and so on.

Therefore, IPC groups like C23C 2/00 and E04B 5/00, rooted in processes
and constructions, are farther apart from the focus of these tools. Whereas
H04J 1/00 and A63F 3/00 better fit the features of Hearst and Extractor 4.0,
as confirmed by the performance over these IPC groups. These results may
reflect the biases embedded in our methods that uphold the choice to select
different case studies (IPCs), as explained in Section 3.

4.1.3. Performance of Distributional NER

Different behaviours demonstrated by the distributional methods root on
different reasons we explain hereinafter.

The performance of the rules-based methods reflects on the performance of
the distributional models trained on them. That is, if the rules perform worse
on a certain IPC group the distributional methods will behave the same way.
However, we notice an improvement of the precision in IPC group C23C 2/00.
This is likely due to higher precision and recall of the extractions in the IPC
category. Indeed, we are not able to understand which patterns lead to a decision
about a technology selection since distributional methods are inherently hard
to explain (Pedreschi et al., 2019).

Let us now underline the most unexpected behaviours in Table 3. The
high number of technologies found by Dist Hearst in H04J 1/00 is noteworthy.
In general this group has higher number than all others in terms of retrieved
technologies (Correct), the highest number of extracted entities (Found) among
IPC groups, and the highest precision (Precision) among the others as well.
One more characteristic of this IPC is that, even though Extractor 4.0 and Dist
4.0 detect a comparable amount of entities (1, 332 and 1, 634, respectively),
Extractor 4.0 achieves this with a lower precision. Such a behaviour is not easy
to interpret given the black box nature of distributional models (Pedreschi et al.,
2019).

One more general trend is that rules, particularly Hearst, are only partially
outperformed by distributional methods. The recall is higher in some IPC
groups (H04J 1/00 and A63F 3/00) than in the others. However, the time
consumption is about three times longer than Hearst (without considering the
training time).

The recall of distributional methods is what makes it worth training them.
Despite they do not provide improvements in terms of precision, they increase
the recall in all IPC groups. This means that they are able to recover a larger
amount of technologies in the same amount of text. This difference depends
on the strictness of rules, which only identify specific patterns, opposed to the
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flexibility of distributional methods, that, though highly data dependent, can
learn to identify any pattern.

One more information conveyed by Table 3 is that the methodology devel-
oped by training on a merged set of patents, Dist Hearst All and Dist 4.0 All,
are also a valid approach. Indeed, they achieve similar precision and recall, they
are often within 0.05 variation in precision and 0.1 variation in recall over all
IPC groups (except for H04J 1/00) compared to the respective Dist method
despite being trained only once.

Regarding the time costs, Dist Hearst All and Dist 4.0 All provide a faster
method since they need to be trained only once with a training time equal to
500 minutes, instead of one time in each IPC groups, where the overall time
of the training is 2,800 minutes (900 for A63F 3/00, 600 for C23C 2/00, 500
for E04B 5/00 and 800 for H04J 1/00). Furthermore, the performance of these
methods is good on all IPC groups, though partially worse than those trained
in the respective categories, Dist Hearst and Dist 4.0.

4.1.4. Performance of Global vs Local Training for the Distributional Methods

Looking at Table 3 as a whole we see that the differences in precision and
recall of distributional methods among IPC groups support the choice to select
a diversified data-set, as we will further investigate in this section.

One limitation of our work is that we trained distributional models on a
tagged data-set created using rules. For example, Dist Hearst was trained on
a data-set tagged by Hearst, thus one can expect a large overlap between the
technologies found by Hearst on the IPC category A63F and by Dist Hearst on
the IPC group A63F 3/00.

IPC Dist Hearst Category Hearst (%)

A63F 3/00 743 307 (41)
H04J 1/00 1,651 330 (20)
C23C 2/00 183 48 (26)
E04B 5/00 86 26 (30)
Total 2,264 589 (26)

Dist 4.0 Category Extractor 4.0 (%)

A63F 3/00 378 177 (47)
H04J 1/00 930 233 (25)
C23C 2/00 118 43 (36)
E04B 5/00 76 23 (30)
Total 1,198 298 (25)

Table 4: Performance of Global vs Local Training

We provide a measure of the fact that though this dependence exists, there
is a limited overlap between the technologies we found in the categories and
those we found in the IPC groups. In Table 4, we show for both Dist Hearst
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and Dist 4.0 how many (in absolute and percentage values) of the technologies
found in the groups by distributional methods (Dist Hearst, Dist 4.0) are also
found by the rules in the IPC categories (Category Hearst, Category Extractor
4.0).

As we can see for all IPCs and for all methods, a large portion of the extrac-
tions in the IPC group was not previously found in the IPC category, indeed,
in all cases less than 50% and in several cases below 30% of the entities were
found by the rules. This supports the validity of our methodology, in particular,
it makes the training effort worthy. In this table we can find as well better per-
formances in IPC group H04J 1/00, the reasons are the same as outlined above
and they depend on biases of the algorithms related to the patent IPC groups.

4.2. Quantitative Comparison of the proposed NER

Table 5 shows the number of shared technologies per pair of NER systems,
the diagonal of the table reports the number of technologies found by each
extractor.

We expect that the maximum number of technologies contained in the
patents, though this amount is unknown, influences the level of intersection
among different methodologies. Therefore, as a general remark, Table 5 can
indicate the complementarity among the methodologies.

The distributional methodologies show a good level of intersection among
them because of the high number of extracted entities and the training processes
executed on similar data. Each of them has a stronger intersection with the rules
used to build their respective training data. For example, the number of shared
entities is 377 for the pair Dist Hearst and Hearst and 203 for Dist Hearst and
Extractor 4.0. Therefore, the rules used to tag the training data of the distri-
butional approaches leads to higher intersection between the respective couple
of methods. In addition, the distributional methods appear consistent because
they are trained on the same data-set, albeit tagged differently. Therefore, they
register high intersection values.

O*Net 454
Wikipedia 3 22

Extractor 4.0 38 9 660
Hearst 73 6 86 922
Dist 4.0 51 10 311 206 1,211

Dist Hearst 130 11 203 377 565 2,303
Dist 4.0 All 50 9 253 192 658 532 1,158

Dist Hearst All 68 4 100 209 318 573 339 1,051

O*Net Wikipedia Extractor 4.0 Hearst Dist 4.0 Dist Hearst Dist 4.0 All Dist Hearst All

Table 5: Pairwise comparison of proposed NER methods

On the contrary, methods based on gazetteer show little overlap with other
methodologies. As a meaning of example, the O*Net gazetteer retrieves a sig-
nificant amount of entities, though lower than the rules, but only shares a little
part of them with the other methods. O*Net and Dist Hearst register an appar-
ently high overlap, i.e., 130 over 454 technologies found by O*Net. However this
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number is not as meaningful as it may appear at first given the large quantity
of technologies found by Dist Hearst.

One of the leads that can be inferred from Table 5 is that a combination
of different methodologies results in a higher number of retrieved technologies.
Indeed, a large amount of technologies are only found by specific methodologies,
though there is a non negligible part of shared entities. This supports our initial
claim: a blended extractor, resourcing to a suite of approaches, is a viable
solution and appears to be the best one.

Cases Gazetteer Rules Distributional Amount Examples

1 ✓ 2,870

aircraft, air motor, antenna feeder,
card game machine, card shuffler,
digital assistant, digital cable,
optical transport network, computer hard drive,
radio access node, ram memory, reactor pump,
relay system, remote control bar, rf circuit

2 ✓ 749

adsl transceiver, air vent, air vent hole,
antenna port, integrate circuit lead frame,
information communication technology, pentium ii,
pc network station, proximity detector,
record playback apparatus, repeater, rfid tag,
robot gun, satellite broadcast center, server machine

3 ✓ 285

air lift pump, alarm system, conveyor system,
allen wrench, ball valve, bridge crane,
external hard drive, fire alarm system, flowmeter,
ground table, pressure transducer, refrigeration unit,
roulette wheels, smoke detector, tape recorder

4 ✓ ✓ 639

airplane, antenna, central processing unit,
access terminal, adsl, barcode, bluetooth,
cellular network device, coaxial cable,
lte network, magnetic tape, smart tv,
touchscreen, transistor, tv camera

5 ✓ ✓ 80

boiler, centrifuge, computer workstation,
control valve, disk, earphone, freezer,
mass storage device, motorcycle, optical filter,
plasma screen, truck, vacuum chamber, web server,
wireless communication system

6 ✓ ✓ 17

air conditioner, air knife, decoiler, deflector,
hemodynamic monitor, inclinometer,
microsoft windows, pacemaker, php,
pointing device, radiant heater, signal generator,
track ball, water jet cutter, wearable computer

7 ✓ ✓ ✓ 91

defibrillator, desktop computer, card reader,
forklift, javascript, linux, mainframe computer,
microprocessor, optical sensor, pager, robotic arm,
router, slotmachine, touch screen, workstation

Table 6: Quantitative Comparison of the different NER systems Note: The table shows how
many entities are found by each subset of the technologies, the first three columns indicate
which families are considered in each row and the fourth the number of entities found by them,
finally the fifth shows some examples belonging to the respective group of extractors.

Table 6 reports the number of entities found by each subset of methods. The
technologies identifies by more than one approach are counted only in the cases
that contains all those methods. For example, microsoft windows is found by
rules and gazetteer, so it is counted in the sixth case and not in the second nor
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in the third.
The highest intersection is between rules and distributional methods. It may

depend on the fact that these two methods provide the most numerous among
all extractions.

A large share of the extractions performed by the gazettes are only found
by them (285), underlining again the ability of this solution to provide few high
quality results, as expected by a humanly curated algorithm.

The least intersection is among Rules and Gazetteer (17), while the amount
of technologies shared by all methods is higher (91). Therefore, we can infer that
when a technology is found by both Gazetteer and Rules than it is also found
by Distributional methods. A consequence of this analysis is that one could
consider giving up rules for the sake of simplicity, whereas gazetteer appear to
provide good improvements compared to how much information they recover.

In Table 6 we also report a qualitative comparison among the technologies
found by different families of methodologies. We provide a number of exam-
ples of the the extractions to underline how different methodologies are highly
complementary.

Some very specific technologies (e.g., air lift pump) are only found by gazetteer,
whereas other simpler ones either only by rules (e.g., air vent), or only by distri-
butional methods (e.g., air motor). There is also an opposite pattern, that is a
general entity found by the rules and by distributional methods (e.g., antenna)
is then generalized through the latter, identifying new entities (e.g., antenna
feeder), though not all of them (e.g., antenna port).

This example highlights again how each methodology is helpful to the final
goal of technologies identification and that a blended solution using all the
strategies we attempted would be the best.

We can notice also that the technologies detected by all methods (last row
of Table 6) belong in large part to electronics, as expected by the strongest
performance all solutions have on IPC group H04J 1/00.

In addition, the extracted entities present all types of morphological pat-
terns. Among the examples reported in Table 6 we find:

• pentium ii, linux, javascript: proper nouns;

• truck: common noun;

• vacuum chamber, air conditioner: noun + noun;

• fire alarm system, card game machine: noun + noun + noun;

• digital assistant, smart tv: adjective + noun;

• remote control bar: adjective + noun + noun;

• computer hard drive: noun + adjective + noun;

• integrate circuit lead frame: adjective + noun + adjective + noun.

28



We remark that beyond the few examples we reported in Table 6, inspecting all
the extractions, we have seen that for entities shorter than three words we find
all patterns in large numbers and high quality, for entities that are 4 words long
or more, they are rarer but keep a consistent quality.

4.3. Efficiency of the NER Systems

We conclude the quantitative analysis of the results discussing on the effi-
ciency of the NER systems. Figure 1 reports the number of correctly found
technologies in each IPC group by each method versus the time it took to per-
form the extraction.

Figure 1: Number of Correct Technologies vs Extraction Time for IPC group

In general, all the methodologies are coherent with reference to extraction
time. The gazettes are the fastest approach, Extractor 4.0 and Hearst are
placed as second best, and all the Dist methodologies appear to be the slowest.
These results are consistent with the number of technologies each solution finds,
though not directly dependent.

A question that comes to mind looking at these results is whether the value
provided by distributional methods is worth their extra time cost. Different
approaches can be used for different tasks. In the case of emerging technologies
mapping, distributional methods can lead to better performances, since on av-
erage they are able to find more technologies. For mapping more stable sector,
gazetteer approaches can be more efficient, since they require less manual revi-
sion. In cases of high level studies involving large corpora of patents (Arts et al.,
2021; Jang et al., 2021; Giordano et al., 2021), the distributional approach can
make the time costs prohibitive for tagging the technologies in the text, while
adding a limited amount of significant information. Indeed, a broader limita-
tion of Distributional methods is the higher effort in development phase than
Gazetteer or Rules.
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Beyond time consumption, Figure 1 shows another interesting fact. The
performance of the distributional methodologies depends on the performance of
the method they are based on, as observable by the horizontal components of the
figure. We discussed above on the reasons for this dependence, here we want to
highlight the magnitude. For instance, Dist Hearst depends on Hearst. Indeed,
whenever Hearst retrieves a larger number of technologies (Correct) in a class
with respect to another, a larger improvement in the number of technologies
found by Dist Hearst is registered. To see this, we notice how between IPC
groups A63F 3/00 and H04J 1/00 there is an increase of 423 in the number
of Correct for Hearst, while for Dist Hearst the increase is 908, and a similar
behaviour happens whenever Hearst increases. This is relevant since it hints that
larger experiments could lead to a strong gain in terms of collected technologies.
In addition, as previously mentioned, the better performance of Hearst in A63F
3/00 and even more in H04J 1/00 are due mainly to the set of words we use
as general technologies’ hypernyms, which are a good match for these two IPC
groups related to tools and machinery. On the contrary, for IPC groups C23C
2/00 and E04B 5/00, dealing with processes, the chosen words perform more
poorly.

4.4. Benchmarking trough Comparative Assessment

In this section, we attempt to compare our methodologies to previous studies
in literature. As discussed in Section 2, Jang et al. (2021) develop a method
to extract technological information from textual data of patents, aiming at
investigating a given technological domain. Keeping in mind the different goals
between this work and our analysis, we replicate their methodology. So we show
a qualitative comparison on the extractions obtained with the two approaches
(i.e., our methodologies and the one in Jang et al. (2021)) . Note that we only
replicate the part of the work from Jang et al. (2021) that can be compared to
ours, namely the vocabulary construction, and that we did not perform human
evaluation on this set of technologies.

We analysed the most recurring technologies and the number of patents
where they were found for each IPC group to compare the type of the extracted
technologies and their frequency. Figure 2 reports the results of our approach
and Figure 3 depicts the ones obtained through the method developed in Jang
et al. (2021).

Our approaches are able to identify field specific technologies. For example,
in Figure 2 we can find valve in C23C 2/00 (in the top right chart), defined as
”Hot-dipping or immersion processes for applying the coating material in the
molten state without affecting the shape” which involves working with liquids;
or clip in E04B 5/00 (in the bottom left chart), described as ”Floors; Floor con-
struction with regard to insulation” and thus involving constructions. Anyway,
some entities were found in other less suited IPC groups. For instance, level,
which is a good match for E04B 5/00 (in the bottom left chart), was found also
in 71 patents of A63F 3/00 (in the top left chart). However, since the revi-
sion performed manually takes into account field specificity in this IPC group
it was removed. These results can prove the validity of choosing diversified IPC
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Figure 2: Top 20 frequently technologies for each IPC group using our approach

groups and the generality of the methods we propose, which are able to detect
field specific items though with different performances on different IPC group.
Some general entities are found as well in many IPC groups and they may be
not informative. As a meaning of example, computer is listed in three charts in
Figure 2 since it is found in all IPC groups except C23C 2/00. However, those
general terms can not be removed a priori because they do represent technolo-
gies although in a very general sense. The loss of term specificity in some cases
and the extraction of too general technologies are both limitations of our work
which we intend to further investigate in the future.

The IPC group H04J 1/00 registers the highest value of occurrences, the
second is A63F 3/00 and last are C23C 2/00 and E04B 5/00. The large margin
of H04J 1/00 can be explained with the biases in the methodologies we employ,
as already discussed.

The terms reported in the charts of Figure 3, such as steel in C23C 2/00
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Figure 3: Top 20 frequently found entities for each IPC group using the approach of Jang
et al. (2021)

(in top right chart) and base station in H04J 1/00 (in bottom right chart),
appear very general. Comparing Figure 3 and Figure 2, we can highlight the
specificity of the technologies detected in most IPC groups by our solution (e.g.
brick in E04B 5/00 and pump in H04J 1/0). This behaviour is due to the
higher specificity we impose on our methods, using the words shown in Section
3, system, unit, device, apparatus and so on. A direct implication of this aspect
is the difference in the number of occurrences of words, since more specific terms
appear more rarely than more general ones. Indeed, the number of occurrences
is always lower for our extractions except for IPC groups H04J 1/00, where
the top 20 extractions are more general for our methods as well and thus the
occurrences are closer. The solutions therefore differ in terms of generality and
specificity of lexical information extracted. Let us remark how this difference is
not negative for neither of the works, indeed it pushes each one towards its goal
and does not make an alternative one of the other.
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In Figure 3, we find as well terms that don’t represent technologies. Words
like player in A63F 3/00, support in E04B 5/00, comprise in C23C 2/00 and
number in H04J 1/00 are not technologies on their own. Indeed, the goal of Jang
et al. (2021) is to develop a lexicon of technology related terms. So that the
identification of player in the patents of the IPC group A63F 3/00 concerning
board and raffle games is a good result from their point of view. Anyway, this
results does not fit our goal of identifying technologies. These considerations
motivates the large difference in the type of terms.

The compared analysis underlines the choices made by the two works and so
the respective purposes. Let us use an example to show how these two method-
ologies can be used in combination for different aspects of the same problem.
The studies on the evolution of technological domain require a wide perspective
enabling a high level analysis of the changes it undergoes over time. In these
cases, Jang et al. (2021) is able to create a broad map of the concepts used in
the description of the relevant entities. The analysis on targeted technologies
over selected sets of patents demands for a fine grained approach. Thus, our
proposed methodologies are more suited for an in-depth study on a certain tech-
nology. Therefore, we believe these two solutions can work in parallel towards
the challenging goal of technology-related information extraction from patents.
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5. Conclusions

Our work offers a viable Named Entity Recognition system based on rules,
gazetteer and machine learning techniques. The system attempts to extract
technologies from patent documents, providing quantified metrics to compare
the approaches developed in this paper. These metrics are based on tradi-
tional measures, namely precision and recall. We estimate the time to perform
each extraction to support researchers and practitioners in understanding ad-
vantages and limitations of our system. We test our method using four case
studies collected with patent classification system-based (IPC) search strategy.
For each field of analysis, we show the ability of the NER system in unveiling
the most cited technologies. The proposed method may be a valid technology
identification tool that can be integrated or used in conjunction to other text
analysis pipelines to support academics and industrial actors in investigating a
technological domain.

Our system is able to collect 4, 731 technologies from 1, 600 patents. The
paper outperforms previous literature in terms of precision and recall (Giordano
et al., 2021). Moreover, we compare the results of the technology extraction
process with the work of Jang et al. (2021). Our paper allows to analyse a
technological domain with a fine grained level, avoiding the noise brought by
generic terms. As pointed out in section 4, the NER system enables us to identify
an average of 0.35 technologies per sentence (approximately 1 technology every
3 sentences) and a median of 10 distinct technologies per patent. Therefore,
technologies are not rare words in patents if compared with other recognizable
entities, such as users (Chiarello et al., 2018a), advantages/drawbacks (Chiarello
et al., 2017), affordances (Chiarello et al., 2019) and biases (Melluso et al., 2021).

From an academic point of view, the methodologies proposed in this paper
may benefit other streams of literature regarding technological forecasting. The
technology extractor may be used in conjunction with the current methods for
the fostering of emerging technologies. In their seminal work, Porter et al.
(2019) use text mining and a R&D emergence indicator based on four criteria
for mapping the pathways of emerging technologies: novelty, persistence, growth
and community. However, the method proposed by the authors recognizes as
technologies also terms that may not be defined as such. Our paper may be
used in the work of Porter et al. (2019) to extract technologies and calculate its
emergent indicator (called EScores by the authors). The technology extractor
can be of interest to the identification of emerging technologies in synergy with
other text analysis methods. For example, in (Ranaei et al., 2020), the authors
may apply our method to perform LDA and tf-idf to evaluate technological
emergence in two case studies. Our study could improve the results of the
NER system proposed by Giordano et al. (2021) and Melluso et al. (2020)
for extracting technologies in the study of convergence. Indeed, the authors
demonstrate how the identification of technologies before analysing technological
convergence is a valuable method to improve the precision of the results.

From an industrial point of view, the system developed in this paper may
improve the analysis of technological domains to map the landscape and fore-
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cast the diffusion of technologies. Traditional methods for the identification of
competitors and partners using paper documents may benefit from our system
to include additional information in the analysis. For example, a technology ex-
traction process may be involved in the text mining pipeline of Vicente-Gomila
et al. (2017) to consider the competitors also from a technological point of view.
Fareri et al. (2020) use text mining to identify industry 4.0 technologies and
estimating the impact of the fourth industrial revolution on the work force of
a multinational company. Similarly, practitioners may employ the method de-
veloped here for the analysis of technological competences to assess the need of
re-skilling or up-skilling at company level.

After mentioning the possible applications, let us outline the limitations of
our work. The strongest limitation lies in the precision our models achieve.
Although we manage to extract a large number of technologies, only about 40%
of the entities we extract are identified as correct by the manual evaluation,
while in other fields (Fan et al., 2020) higher performances are achieved. The
low value can be understood considering two main aspects. First, we did not use
any manually tagged gold training set because, to the best of our knowledge,
there are no examples of such a set for patents. We resource to gazettes and
rules to create a data-set. This solution for developing a training set poses
difficulties to improve beyond a certain threshold. The development of a gold
set is a challenge for future work that we intend to tackle hopefully learning from
the findings of this one. In parallel, we also mention the absence of a proper
evaluation of the recall. Though the large number of technologies we extracted
and doubled checked makes us confident that we do manage to extract a non-
trivial share of the knowledge available in the patents we analyse, its time cost
prevents us from a manual evaluation of the recall.

The second limitation is posed by the absence of extensive research on the
topic. Indeed, the NER solutions in other fields are the product of several works
relying on one another. For our case, besides few exceptions (Sarica et al., 2020;
Jang et al., 2021), which are still not entirely in line with what we do, and very
few works that are closely related (Giordano et al., 2021), the methodology still
needs refinement. However, our job poses a strong and structured starting point
for such a development which we intend to try and further investigate.

We also remark that relying on search and retrieval of patent records from
patent database may influence the results because of the access conditions of the
database. Indeed, there are not many examples of freely available databases.
Excepting very few (notably, Freepatentsonline6), most patent databases require
licensing or give a limited access. And this is probably one of the sources of
boundaries in this line of research.

The third limitation is the use of a specific and not too extensive set of
patents, generally information extraction from these documents are more ex-
tensive (Arts et al., 2021). The choice of a smaller number of patents was made
on purpose to be able to manually evaluate the entire set of extractions and

6Available: https://www.freepatentsonline.com/, Accessed: July 28, 2021
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to have a contained range of possibilities in order to achieve a good assessment
of all positive and negative sides of our work. Note also that, though not too
large, the set of patents is carefully constructed, as described in Section 3 in
order to balance between a controlled setting and a variegated one. Different
IPC groups, with different types of technologies and applications, allow us to
assess which aspects of the text are properly caught by our extractors and which
instead are not.

The fourth limitation is the constrained numbers of pre-trained BERT mod-
els used for constructing the NER distributional methods and type of documents
used as textual corpus. In the article we observe that the distributional meth-
ods reach a higher level of performance if compared to other ones. However, we
only use the BERT model pre-trained with Wikipedia pages that is not specific
for the technological phenomena analysis. In future, we will try to use Patent-
BERT (Lee and Hsiang, 2020) and compare its performance with those reached
by our methods for the task of technological entity recognition. Moreover, we
tested our approach only on patents, but there are other types of text where our
methodology could be used, such as the scientific papers. Patents and scientific
publications share several aspects: they are both technical documents, they de-
scribe new ideas with the purpose to spread the acquired knowledge, they use
rare words and specific vocabulary as the evolution of every field of knowledge
imposes a continuously renewing lexicon. This creates a level of similarity among
these two text corpora which we speculate would make our solution extendable
to the one we did not attempt yet. In future investigations, it might be possible
to use this different corpus of text (i.e. scientific articles) with a distributional
NER method fine-tuned with the SciBERT model (Beltagy et al., 2019), that
is demonstrated to be more suitable for this particular type of documents.

The future steps we intend to tackle are those that would allow overcoming
the limitations mentioned above. First of all, the attempt to create a golden
set from the work we did so far to develop more effective and precise models.
One possible method for saving time and cost in the creation of training set
using rule-based NER is a human evaluation of the training set in the form
of Active Learning. The expert checks the quality of a sample of the initial
training dataset obtained with the rule-based NER (i.e., 30% of the training
dataset can be used) and remove terms that are not technologies. Then, the
distributional NER is trained on the sample of the training dataset for a quality
check. The quality of the distributional method is then measured, if it reaches an
acceptable quality we stop the training, otherwise the same methodology can be
re-applied on more data until a certain degree of training data quality is reached.
Afterwards, the development of a test set will enable a more precise assessment
of the recall of our systems. We are also interested in an expert developed
baseline, indeed, to the best of our knowledge, an accurate assessment of how
well humans can identify technologies in patents is still missing in literature.
Finally, new experiments on larger patent sets or on different data sources (e.g.,
scientific papers) can be carried out. For the design of future experiments this
work suggests that a multi-domain model working on different IPC classes is
the road to follow since we see limited advantages at a high cost from training
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IPC focused models.
More in general, we believe there is a large amount of valuable knowledge

in patents that is hardly extracted with the right level of detail and that is
awaiting to be found.
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