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Abstract
The mental lexicon is a complex cognitive system representing information about the words/concepts that one knows. Over 
decades psychological experiments have shown that conceptual associations across multiple, interactive cognitive levels 
can greatly influence word acquisition, storage, and processing. How can semantic, phonological, syntactic, and other types 
of conceptual associations be mapped within a coherent mathematical framework to study how the mental lexicon works? 
Here we review cognitive multilayer networks as a promising quantitative and interpretative framework for investigating the 
mental lexicon. Cognitive multilayer networks can map multiple types of information at once, thus capturing how different 
layers of associations might co-exist within the mental lexicon and influence cognitive processing. This review starts with 
a gentle introduction to the structure and formalism of multilayer networks. We then discuss quantitative mechanisms of 
psychological phenomena that could not be observed in single-layer networks and were only unveiled by combining multiple 
layers of the lexicon: (i) multiplex viability highlights language kernels and facilitative effects of knowledge processing in 
healthy and clinical populations; (ii) multilayer community detection enables contextual meaning reconstruction depending 
on psycholinguistic features; (iii) layer analysis can mediate latent interactions of mediation, suppression, and facilitation for 
lexical access. By outlining novel quantitative perspectives where multilayer networks can shed light on cognitive knowledge 
representations, including in next-generation brain/mind models, we discuss key limitations and promising directions for 
cutting-edge future research.

Keywords Cognitive modelling · Multilayer networks · Multiplex networks · Cognition · Knowledge modelling · Cognitive 
data science

Introduction

The mental lexicon is a complex system where knowledge 
of the words and concepts one knows can be represented 
as units that are combined and associated across multiple 
levels (Aitchison, 2012). For example, phonemes combine 
to form words, words combined in sentences express ideas, 
and sentences in narratives give rise to stories (Litovsky 
et al., 2022; Vitevitch, 2019). Focusing on the level of 
units of words (which provide meaning even in isolation), 
deeper knowledge can be expressed by linking together 
units that are associated in some way. Words can be asso-
ciated in many ways (Aitchison, 2012; Fillmore, 2006; 
Zock & Biemann, 2020). For example, words may share 
meaning (Steyvers & Tenenbaum, 2005), sound similar 
(Vitevitch, 2008), be syntactically related (Semeraro et al., 
2022), bring other words to mind (De Deyne et al., 2013), 
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represent objects with similar semantic or visual features 
(Kennington & Schlangen, 2015), be written similarly 
(Siew & Vitevitch, 2019), or evoke the same set of emo-
tions and affective states (Mohammad & Turney, 2013). 
These are only some of the many ways in which words 
can be associated (Aitchison, 2012; Baronchelli et al., 
2013; Stella, 2020; Vitevitch, 2019) and give structure to 
the knowledge that one has that can be expressed through 
language.

Decades of research in psycholinguistics and cognitive 
science have examined how the words and concepts in the 
mental lexicon are acquired, stored, processed, and retrieved 
(Aitchison, 2012; Collins & Loftus, 1975; Kumar, 2021; 
Kumar et al., 2022; Zock & Biemann, 2020). Importantly, 
it has been shown that the structure and organization of the 
words and concepts associated in some way in the mental 
lexicon influence a wide variety of linguistic and cognitive 
phenomena, such as word confusability (Vitevitch, 2019), 
picture naming (Castro & Siew, 2020; Castro & Stella, 2019; 
Castro et al., 2020), and memory recall patterns for both 
neutral (Kenett et al., 2017; Kumar et al., 2020) and emo-
tional information (Dover & Moore, 2020; Fatima et al., 
2021).

The structure and organization of the words and con-
cepts associated in some way in the mental lexicon can be 
influenced by various factors, including psychedelic drugs 
(Rastelli et al., 2022), and how creative (Kenett & Faust, 
2019; Kenett et al., 2018), expert (Koponen, 2021) or curi-
ous (Zurn & Bassett, 2018) an individual is. All these find-
ings converge on one point: Understanding the structure and 
organization of knowledge in the mental lexicon is important 
for shedding light on a number of phenomena. Understand-
ing the structure and organization of knowledge in the men-
tal lexicon requires a framework that is quantitative (Siew 
et al., 2019), interpretable (Rudin, 2019), and human-centric 
(Bryson & Theodorou, 2019). This framework must: (i) be 
capable of producing inferences and comparable measure-
ments regulated by mathematical equations and theoretical 
models (Castro & Siew, 2020; Christensen & Kenett, 2023; 
Zemla et al., 2020) (quantitative); (ii) map results to outputs 
through an internal representation of knowledge available to 
researchers, unlike most black-box machine-learning knowl-
edge models (Fatima et al., 2021) (interpretable); and (iii) 
be grounded in psychological theory and large-scale data-
sets in order to account for the complex nuances of human 
psychology rather than make abstract inferences that are of 
little value to psychologists (Benedek et al., 2023; Wulff 
et al., 2019; Zaharchuk & Karuza, 2021). An artificial intel-
ligence that categorizes individuals using binary labels like 
“aphasic” or “healthy” without identifying the severity of 
their language impairments, nor considers their ability to 
acquire, retain, and produce new knowledge would not be 
human-centric (Castro et al., 2020).

In the present review, we advance the idea of using mul-
tilayer networks to model and understand the structure and 
organization of knowledge in the mental lexicon. We review 
recent cutting-edge advancements and insights obtained in 
psychology by adopting the quantitative framework of mul-
tilayer networks, specifically in terms of: (i) detecting the 
presence and structure of a language kernel within the cogni-
tive reflection of language in the mind, i.e., the mental lexi-
con, and assessing the impact of such a kernel for enhanced 
language acquisition in toddlers, children, and teenagers 
(Citraro et al., 2023; Stella et al., 2017; Stella et al., 2018); 
(ii) multiplex network structure unveiling different recall 
strategies from semantic memory among individuals charac-
terized by different clinical impairments in the aphasia spec-
trum (Baker et al., 2023; Castro & Stella, 2019; Castro et al., 
2020), different creativity levels (Stella & Kenett, 2019) and 
high/low levels of Openness to Experience (Samuel et al., 
2023); (iii) multiplex networks identifying the presence of 
an interplay/interaction mechanism between semantic relat-
edness and phonological similarities in the mental lexicon, 
whereas combining these types of conceptual associations 
gives rise to shortcuts between semantic themes (clusters 
of concepts with similar meanings) and phonological com-
munities (clusters of concepts with similar sounds) (Citraro 
& Rossetti, 2020; Levy et al., 2021).

Across all these research directions, multilayer networks 
can conveniently provide structure to conceptual similarities, 
without the need for resorting to a predetermined underly-
ing vectorial space (e.g., in the Global Vectors for Word 
Representation model, GloVe, one would need to fix a priori 
the dimensions of vectors representing words, an arbitrary 
choice that makes it difficult to assess cognitive differences 
between vector representations of words in a 50-dimensional 
or a in 300-dimensional vectorial space). The main advan-
tage of multilayer networks is their ability to provide dif-
ferent layers of structured associations between the same 
or different sets of nodes/entities (e.g., combine semantic 
and phonological associations between concept forms). This 
advantage translates into the necessity of carefully select-
ing these layers, possibly by following cognitive theories 
and models (Aitchison, 2012; Dóczi, 2019) from decades of 
research in cognitive science and psychology.

This review outlines how a careful selection of semantic, 
syntactic, and phonological layers, previously tested in sepa-
ration when modelling the mental lexicon (Castro & Siew, 
2020; Siew et al., 2019), can both unveil and reconstruct 
phenomena of relevance from a cognitive perspective, such 
as language spurts in toddlers (Citraro et al., 2023; Stella, 
2019; Stella et al., 2017), influence mechanisms between 
personality traits, creativity, and recall in fluency tasks 
(Samuel et al., 2023; Stella & Kenett, 2019), mechanisms 
of failing word retrieval in people affected by disorders from 
the aphasia spectrum (Baker et al., 2023; Castro & Stella, 
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2019), and also glean insights into the structural organiza-
tion of conceptual similarities in-between phonological and 
semantic aspects of words (Citraro & Rossetti, 2020; Levy 
et al., 2021). This review outlines, discusses, and organizes 
such findings in view of relevant research about the men-
tal lexicon and language processing (Dóczi, 2019; Hills & 
Kenett, 2022).

Whereas other recent approaches in quantitative psychol-
ogy have started using single-layer networks to model indi-
vidual aspects of the mental lexicon (Hills & Kenett, 2022; 
Kumar et al., 2022; Siew et al., 2019), multilayer networks 
represent a more general framework, a new direction that is 
importantly capable of encompassing in interpretable ways 
multiple aspects of language processing in a single model, a 
key requirement for addressing decades of cutting-edge psy-
chology research pointing out how the mental lexicon and 
language processing work in highly multidimensional and 
complex ways (Bock, 1996; Dell et al., 2014; Vukić et al., 
2020). This review thus appeals to cognitive and psychol-
ogy researchers trying to learn more about how multilayer 
networks might be a powerful framework for modelling their 
multidimensional research data or for gaining more quantita-
tive insights into the structure and organization of the mental 
lexicon across multiple layers.

Noticeably, the insights provided by multilayer networks 
are different from other important results obtained from neu-
ral networks or other computational approaches in computa-
tional psychology (Dell et al., 1997; McClelland & Elman, 
1986; Rosenblatt, 1958) in that the network structure in 
multilayer networks provides direct, interpretable access to 
the organization of conceptual associations without requir-
ing training data or iterative updates of model weights. We 
further discuss this difference in the next section.

Cognitive multilayer networks differ from artificial 
neural networks

Networks are a convenient and powerful way to study and 
visualize complex systems made of multiple interacting 
units (Berlingerio et al., 2011; De Domenico, 2022). Start-
ing from graph theory, a subfield of mathematics dealing 
with units (called nodes) and links between them (called 
edges), network science has evolved as its own “applied” 
branch (Berlingerio et al., 2011; Newman, 2010). Network 
science, for example, studies social networks, where nodes 
are people and links are social interactions (Freeman, 2004), 
or transportion networks, where nodes are places and links 
are connections between them (Newman, 2010), and so on. 
Similarly, in “neural networks” the units are “neurons” or 
information-processing units, and the links are the informa-
tion being transferred (Piloto et al., 2022).

In psychology, another type of “network” that has been 
seen in numerous eras, including present-day deep-learning 

networks (Piloto et al., 2022), is the artificial neural network 
(ANN), also sometimes called a connectionist model or par-
allel distributed processing (PDP) model (see the works by 
Rosenblatt (1958), Grossberg (1972), and Rumelhart et al. 
(1986)). These mathematical models, inspired by the way 
that neurons in the brain work, are often implemented as 
computer programs to simulate some sort of cognitive pro-
cesses (e.g., Rumelhart et al., 1986). In these networks, 
nodes represent idealized or simplified neurons that can be 
arranged in layers. Nodes/artificial neurons from one layer 
can be linked to others in other layers. As opposed to cogni-
tive networks, in ANNs, each node can “fire” and pass on 
activation to nodes in another layer, for example, multilayer 
perceptrons (Gardner & Dorling, 1998).

Although many of the above ANN models have multiple 
layers in the network, the nodes in these models are better 
described as processing units rather than representational 
units. In ANNs, information is represented by the patterns 
of activation that are distributed across a layer of nodes (with 
different patterns representing different concepts). In con-
trast, the multilayer networks we describe in this review use 
individual nodes to represent pieces of information (such 
as individual phonemes, words, etc.), with links connect-
ing nodes if those pieces of information are related in some 
way (Levy et al., 2021; Stella, 2018). Thus, these multilayer 
networks form a map of different types of knowledge (Hills 
& Kenett, 2022; Vukić et al., 2020).

Cognitive processing can be modelled on such networks 
by a random walk or the diffusion of “activation” across the 
network (Abbott et al., 2015; Chan & Vitevitch, 2009; Kenett 
& Austerweil, 2016; Siew, 2019; Vitevitch & Mullin, 2021), 
but without endowing nodes with any ANN-like processing 
power. A central tenet of network science – the structure 
of the network influences cognitive processing (Siew et al., 
2019; Vitevitch & Mullin, 2021) – further distinguishes the 
multilayer networks we describe here from ANN models 
of the mental lexicon (e.g., the TRACE model of speech 
perception; McClelland & Elman, 1986). Although both 
are “multilayer networks” and are used to model the mental 
lexicon, artificial multilayer neural networks focus on brain-
inspired distributed processing of knowledge (Gardner & 
Dorling, 1998; McClelland & Elman, 1986; Rumelhart et al., 
1986), whereas cognitive multilayer networks reconstruct 
and represent the structure of associative knowledge. We 
will use “multilayer network” in the latter connotation for 
the remainder of this review.

Review outline

We discuss recent work from multiple fields to show how 
multilayer networks are a quantitative, interpretable, and 
human-centric framework that can connect several disparate 
disciplines interested in modelling knowledge. Multilayer 

1983Psychonomic Bulletin & Review (2024) 31:1981–2004



networks are a cutting-edge approach to explore how knowl-
edge is processed simultaneously across multiple levels. 
We outline three recent research developments where the 
ability to combine different layers of associative knowl-
edge highlights phenomena that would be otherwise lost in 
single-layer network analyses or through other modelling 
approaches like word embeddings (Rudin, 2019). We dis-
cuss key limitations of this framework and review potential 
approaches for future research in cognitive modelling (Hills 
& Kenett, 2022; Siew et al., 2019; Vitevitch & Mullin, 2021) 
and cognitive neuroscience (Poeppel & Idsardi, 2022; Zaha-
rchuk & Karuza, 2021). Combining evidence from fields as 
diverse yet interconnected as cognitive psychology, com-
plexity science, and computer science, our review identifies 
concrete innovative ways in which multilayer networks can 
advance our understanding of cognition.

Evidence for the multilayered nature 
of the mental lexicon

Despite the name, the mental lexicon is not a simple dic-
tionary (Dóczi, 2019; Hills & Kenett, 2022; Kumar, 2021; 
Kumar et  al., 2022; Vitevitch, 2019; Zock & Biemann, 
2020). Concepts in the mental lexicon are not recalled in 
alphabetical order and the recollection of an item is not inde-
pendent of other concepts associated with it (Kenett et al., 
2017; Kumar et al., 2020). Aitchison (2012) used the Lon-
don tube train system as a metaphor for the mental lexicon, 
where stations represent linguistic units and are connected 
according to a layout of channels of different lengths. This 
analogy resonates with the concept of a complex network, 
although the exact specification of structure, function, and 
dynamics in the mental lexicon is more sophisticated (Dóczi, 
2019). Even though the mental lexicon might not be a net-
work itself, some of its associative features might be accu-
rately modelled by network science (Hills & Kenett, 2022).

Many research findings indicate that information rep-
resented in the mental lexicon is inherently multi-layered: 
Phonological, semantic, and syntactic aspects of language 
can simultaneously interact and influence language retrieval 
and processing (Castro & Siew, 2020; Dell et al., 1997; Zock 
& Biemann, 2020). In healthy populations, the interaction of 
multiple types of linguistic interactions in the mental lexicon 
is highlighted by the phenomenon of the tip of the tongue 
(Zock & Biemann, 2020), where an individual is aware 
of the semantic features of a word but cannot produce it. 
This tip-of-the-tongue state is characterized by a failure to 
retrieve phonological information, whereas semantic acti-
vation seems to be intact (Brown, 1991; Peng et al., 2022). 
Another example of faulty retrieval is known as a mala-
propism (Fay & Cutler, 1977; Peng et al., 2022), where a 
similar sounding word is retrieved for another semantically 

appropriate one (e.g., “dancing a flamingo” instead of “danc-
ing a flamenco”). The faulty interaction between semantic 
and phonological information of words can also explain the 
increase of mixed errors in people with aphasia in a picture-
naming task (Dell et al., 1997).

Evidence for the multilayered nature of the mental lexi-
con also comes from facilitative effects in word production 
like priming (Aitchison, 2012; Kenett et al., 2017; Kumar 
et al., 2020), i.e., when lexical retrieval is facilitated by cues 
related to target words. Morphological content (e.g., “dog” 
containing phonemes \d\, \o\and \g\), synonym similarities 
(e.g. “character” and “nature” being synonyms), and syntac-
tic relationships (e.g., being a certain part of speech) were 
found to facilitate lexical retrieval through priming indi-
cating the simultaneous interplay between phonological, 
semantic, and syntactic layers of the mental lexicon (Bock, 
1996; Dóczi, 2019).

These findings motivated the formulation of the so-
called cognitive linguistic theory (García Mayo et al., 
2013), of serial lexical access (Dell et al., 1997) and of 
cobweb theory (Aitchison, 2012), which all argue that 
language production depends on a network of interacting 
layers of the mental lexicon, including individual pho-
nemes, word meaning, and sentence structuring. Given 
the interaction of various types of information in the 
lexicon, the framework of multilayer networks becomes 
a natural way of analyzing the structural and dynamical 
complexity of the mental lexicon.

From single‑layer to multilayer networks 
as models of cognition

Complex networks represent the structure of pairwise con-
nections between interacting entities (Newman, 2018). Con-
nections are usually called links or edges, and the interacting 
entities are usually called nodes or vertices. A single-layer 
complex network represents only one type of relationship 
between nodes. Instead, both “multiplex” and “multilayer” 
networks include multiple types of relationships between 
nodes (Boccaletti et al., 2014).

For the sake of an easier visualization and to fully char-
acterize the mathematics of such multilayer/multiplex net-
works, usually nodes are organized in sub-groups called net-
work layers (De Domenico et al., 2015; Santoro & Nicosia, 
2020), which identify specific aspects of the pairwise inter-
actions between individual nodes. A single network layer is 
composed of a specific type of interaction between nodes 
(Stella et al., 2017). Links connecting nodes from the same 
network layer are called intra-layer links. Links connecting 
any two nodes from different network layers are called inter-
layer links (Boccaletti et al., 2014).
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Whereas single-layer networks can account only for one 
type of associative link, for example, syntactic relation-
ships (Corrêa et al., 2020), the main advantage of multi-
layer networks is the ability to combine multiple types of 
associations within a single model (Battiston et al., 2020; 
Boccaletti et al., 2014; De Domenico et al., 2013; Kivelä 
et al., 2014). The presence of multiple aspects or layers of 
associations can give rise to phenomena greatly different 
from single-layer networks, such as the presence of feedback 
loops across layers (Kovács et al., 2021; Kumar et al., 2020), 
changes in the centrality of individual nodes when multiple 
interactions are simultaneously present (Bianconi, 2018), or 
the emergence of patterns of connectedness undetectable in 
the individual layers (Battiston et al., 2020; Battiston et al., 
2014).

Both “multilayer” and “multiplex” networks have mul-
tiple network layers and represent multiple types of inter-
actions, but these two terms are not synonyms (Bianconi, 
2018; De Domenico et al., 2013; Kivelä et al., 2014). Multi-
layer networks represent a more general category of complex 
networks, whereas multiplex networks are a more specific 
network model because they feature node alignment (Battis-
ton et al., 2020). Node alignment means that the same set of 
nodes are found in every network layer, with the same node 
being connected across layers. The presence of explicitly 
weighted intra-layer connections characterizes full multiplex 
networks. Although Collins and Loftus (1975) discussed the 
idea of multilayer phonological/syntactic networks of con-
ceptual associations in the 1970s, Cong and Liu (2014) were 
the first to implement a multilayer representation of lan-
guage representing syntactic and phonological relationships 

between Mandarin words. Importantly, Martinčić-Ipšić and 
colleagues (2016) extended the multilayer formalism to 
Croatian and English, highlighting several structural simi-
larities between the two languages, which differ in terms of 
the allocation of syllables across words.

Without node alignment, multilayer networks can feature 
different sets of nodes across layers, see Fig. 1 (left). One 
layer might feature phonemes, linked to a layer of words by 
several interlayer links expressing how phonemes occur in 
words. Words might also be linked to another layer express-
ing their semantic features, the latter being connected by 
intra-layer links expressing antonyms. Featuring different 
nodes across different layers makes the mathematics describ-
ing multilayer networks considerably more advanced than 
the mathematics behind multiplex networks (Bianconi, 
2018; Boccaletti et al., 2014). Whereas a multiplex network 
can be described with matrices, multilayer networks require 
the use of tensors to represent them (for more details, see De 
Domenico et al., 2013; Kivelä et al., 2014).

Multilayer networks featuring node alignment are called 
multiplex networks [80]. Node alignment requires the same 
set of nodes to be replicated across all layers of a multiplex 
network (see also Fig. 1, right, where alignment is repre-
sented by dashed lines). Even if a node is disconnected on 
one layer of a multiplex network, but highly connected on 
another layer, the node has to appear in both layers. All the 
replicas of a given node represent different aspects of the 
same entity; for example, a phonological word form engag-
ing in phonological relationships on a given layer and a lexi-
cal representation of the same word involved in conceptual 
associations on another layer (Stella, 2020; Stella et al., 

Fig. 1  Examples of a multilayer language network (left; Cong & Liu, 
2014) and of a multiplex network (right; Stella et al., 2017). If inter-
layer connections were all unweighted, the multiplex network would 
be an edge-colored graph with three colors (free associations, seman-

tic overlap, and phonological similarities). The multilayer language 
network maps semantic features and phoneme occurrence in words. 
Node alignment, the replication of the same set of nodes across lay-
ers, is a feature characterizing multiplex networks
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2018). Replica nodes identify the so-called physical node, 
for example, in the above example the phonological form 
and the lexical representation are replicas identifying the 
same word/physical node (Battiston et al., 2014; De Domen-
ico et al., 2013; Kivelä et al., 2014). Figure 1 provides an 
example of a multilayer language network, analogous to 
pioneering work by Cong and Liu (2014), and a multiplex 
lexical network, analogous to pioneering work by Stella and 
colleagues (2017).

The layered structure of multilayer and multiplex net-
works enables the possibility of including both seman-
tic and phonological features of linguistic units. For 
instance, Fig. 1, left, identifies semantic features and pho-
neme occurrences of words (Martinčić-Ipšić et al., 2016), 
whereas Fig. 1, right, maps semantic overlap, phonological 
similarities, and free associations between words (Stella 
et al., 2018). Notice that in multiplex networks it is only 
the type of interactions among nodes that changes across 
layers, whereas multilayer networks allow for a more 
flexible structure with the possibility of different types 
of nodes across layers. Notice also that in the absence of 
explicitly weighted intra-layer links, multiplex networks 
become edge-colored graphs (Battiston et al., 2020; Sem-
eraro et al., 2022), where connections of different types are 

colored differently. In other words, edge-colored graphs 
are multiplex networks where links of different colors can 
be present at the same time between any two nodes, for 
example, phonological similarities and semantic associa-
tions, as highlighted in Fig. 2, left. A given color identifies 
a given type of relationships or similarity between any two 
nodes, i.e., all links of the same color can compose a given 
network layer, as highlighted in Fig. 2, right.

Multiplex lexical networks can be represented either 
by using the representation of edge-colored graphs or by 
using multiple layers, i.e., the representation of a multi-
layer network. The presence of multiple layers/interactions 
alters the connectivity of words drastically compared to 
their single-layer layouts (Cong & Liu, 2014; Martinčić-
Ipšić et al., 2016). For instance, in Fig. 1, right, “mat” is 
disconnected on the free association layer but connected 
to “cat” on the phonological layer. Multiple layers also 
give rise to edge overlap across different aspects of asso-
ciative knowledge; for example, “kitty” and “cat” share a 
connection on both the free association and the semantic 
overlap layers, an overlap that cannot be measured when 
layers are considered as separate, single components 
(De Domenico, 2022). In the following, we review how 
multilayer/multiplex networks can identify and quantify 

Fig. 2  Edge-colored graphs are equivalent to multiplex lexical net-
works. Coloring edges according to their layer/nature can be conveni-
ent when one needs to account for connectivity from multiple sources 
combined (left). Distinguishing between layers (right) can be con-
venient when one wants to check for connectivity patterns on individ-
ual aspects of the mental lexicon, e.g. phonological similarities and 
semantic associations. Either representation captures the same con-
nectivity patterns, one in terms of multidimensional colors for links 
and the other in terms of multiple layers. Notice that in multiplex 

lexical networks, connectivity can be described in two distinct ways: 
either in terms of connected components or in terms of viable clus-
ters. The largest connected component (LCC, pink) is the largest set 
of nodes connected by at least one path with links of any color. The 
largest viable cluster (LVC, orange) is the largest set of nodes con-
nected simultaneously on all layers by at least one path with links of 
the same color. The LVC is a more restrictive version of the LCC but 
the two coincide in single-layer networks
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cognitive patterns that would go undetected using standard 
single-layer networks.

Cognitive patterns highlighted by multilayer 
networks but invisible to single‑layer 
networks

Multilayer networks take into account more than one type of 
relationship among nodes at once, thus giving rise to more 
complex structures and phenomena that cannot be observed 
in single-layer networks. This section reviews key ways in 
which multilayer networks have been shown to differ from 
single-layer networks. We discuss these quantitative differ-
ences in relation to the relevant psychology literature, and 
consider the overall benefits, limitations, and roads for future 
research of multilayer networks as models of cognition.

Multiplex viability highlights language kernels 
in the mental lexicon invisible to single‑layer 
networks

As in single-layer networks (Siew et al., 2019), the collection 
of all intra-layer and inter-layer links connecting nodes i and 
j also represents a path in multilayer networks (Bianconi, 
2018). For instance, in Fig. 1, right, there is a multilayer path 
connecting “mat” and “kitty” through the intra-layer link 
“mat (phonological)” – “cat (phonological)”, the interlayer 
link “cat (phonological)” – “cat (semantic overlap)” and 
the intra-layer connection “cat (semantic overlap)” – “kitty 
(semantic overlap)”. In contrast to describing a path between 
nodes in a single-layer network, in multilayer paths it is nec-
essary to specify the layers of nodes to distinguish intra- and 
inter-layer links. In edge-colored multiplex networks, this 
distinction is not necessary, but links of different colors must 
be allocated to different layers, i.e., one color identifies one 
layer (De Domenico, 2022; Vukić et al., 2020).

Notice that we say “edge-colored multiplex networks” 
because not all multiplex networks can also be represented 
as an edge-colored graph: Multiplex networks where inter-
layer connections are present and with different weights can-
not be cast into edge-colored graphs unless self-connections 
are considered. Assuming specific weights for inter- and 
intra-layer links enables the definition of the shortest path 
length, i.e., the minimum total weight or number of links 
necessary for traversing a path between any two nodes. In 
edge-colored graphs, the shortest path length (also called 
network distance or geodesic network distance) considers 
only intra-layer links, and can be defined as the smallest 
number of links of any color connecting any two nodes 
(Fatima et al., 2021). Without considering explicit inter-layer 

connections, the network distance between “mat” and “kitty” 
would be 2 in Fig. 1, left.

Ultimately, the possibility of “jumping” across layers 
enhances the connectivity of multilayer networks. Mul-
tilayer shortest path lengths in edge-colored multiplex 
networks mixing semantic, phonological, and syntactic 
associations were shown to significantly predict cogni-
tive phenomena like early word acquisition (Citraro et al., 
2023; Stella, 2019; Stella et al., 2017; Stella & De Domen-
ico, 2018), semantic relatedness (Levy et al., 2021), and 
picture-naming production in people with aphasia (Cas-
tro & Stella, 2019; Castro et al., 2020). All these studies 
combined behavioral data in the form of free associations 
(Coltheart, 1981; De Deyne et al., 2019; De Deyne et al., 
2013; Nelson et al., 2004) and linguistic data from Word-
Net (Miller, 1995) in the forms of synonyms, hypernyms, 
and phonological similarities (cf. Vitevitch, 2008). In all 
of these studies, multiplex network distances achieved 
better model performances than their single-layer coun-
terparts i.e., in terms of achieving better R2 values and 
thus explaining more variance in the observed scores of 
semantic relatedness (Levy et al., 2021; Stella, 2018) and 
correct picture naming probabilities (Castro & Stella, 
2019; Castro et al., 2020), but also in terms of multiplex 
network distances predicting normative word learning 
consistently better than single-layer distances or word 
frequency (Stella, 2019; Stella et al., 2017). These quan-
titative comparisons provide converging evidence that the 
ability to transition between layers, crucially enabled by 
multilayer networks, is pivotal for modelling interactive 
aspects of the mental lexicon that might intervene dur-
ing mental navigation for memory search, retrieval, and 
recall (for a cognitive review of these processes, see Dell 
et al., 2014; Dell & O'Seaghdha, 1992; Hills et al., 2012; 
Hills & Kenett, 2022; Zock & Biemann, 2020) and during 
language acquisition (Dóczi, 2019; Kuperman et al., 2012; 
Vitevitch et al., 2023).

Interactions between different aspects of the lexicon 
might be modelled through explicit (Levy et  al., 2021; 
Stella, 2018) or latent (Marinazzo et al., 2022) patterns of 
connectivity between nodes in different layers. Whereas we 
discuss latent patterns in the section Finding hidden interac-
tions between two or more layers: Mediation, suppression, 
and other layer-interaction mechanisms below, here we focus 
on explicit interactions arising from connectivity patterns. 
Transitioning between multiple layers gives rise to multiple 
ways of defining connectedness in multilayer networks, see 
Fig. 2 (right). In single-layer networks, two nodes are con-
nected if there exists a path between them (Newman, 2018). 
Analogously, several works on multilayer and multiplex net-
works defined connectedness as depending on the existence 
of a multilayer path between any two nodes (Battiston et al., 
2014; Boccaletti et al., 2014; De Domenico et al., 2013). 
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The largest connected component can then be defined as 
the largest set of nodes connected by at least one multilayer 
path (Battiston et al., 2020; Bianconi, 2018; Stella, 2018; 
Stella et al., 2018). This definition can be modified in the 
presence of explicitly defined inter-layer links (Bianconi, 
2018). Importantly, the presence of several layers can give 
rise to additional definitions of connectivity that differ from 
their single-layer counterparts (Newman, 2018), thus giving 
rise to phenomena unobserved in single-layer networks, such 
as the identification of language kernels (Aitchison, 2012; 
Cancho & Solé, 2001).

The above multilayer definition of connectedness (Bian-
coni, 2018) exploits links present in either one layer or oth-
ers. This combinatorial “OR” approach is different from 
requiring the presence of connected paths in all layers. Other 
works (Baxter et al., 2021; Baxter et al., 2014; Bianconi, 
2018) considered viability as a definition of connectedness 
based on an “AND” logic: In a multilayer network, two 
nodes are viably connected if there exist intra-layer paths 
connecting those two nodes on every single layer. Intralayer 
paths are confined to a single path, for example, paths using 
links of only one color. A largest viable component (LVC) 
is the largest set of viably connected nodes (Baxter et al., 
2021; Stella, 2020).

As highlighted in Fig. 2, the requirement of intra-layer 
connectedness across all layers (i.e., viability) is consider-
ably more restrictive than the above definition of connect-
edness. This distinction naturally leads to the question of 
whether connected components and viable components 
might differ in their structure when modelling cognitive 
aspects of the mental lexicon (Stella et al., 2018), for exam-
ple, contain different sets of concepts. Note that in single-
layer networks, the largest viable cluster and the largest 
connected component (LCC) would be the same (Baxter 
et al., 2014). However, the LVC and the LCC would differ 
on multilayer networks made of different layers, potentially 
giving rise to phenomena unexpected in single-layer cogni-
tive networks (Siew et al., 2019).

The LVC corresponds to a spurt in language learning

The first quantitative evidence characterizing the cognitive 
relevance of LVCs was found by Stella et al. (2018). The 
authors identified an LVC of 1,000 words in a representation 
of the mental lexicon with an LCC of 8,000 English words, 
connected across four semantic/syntactic/phonological lay-
ers, namely free associations and phonological similarities 
from the MRC psycholinguistic database (Coltheart, 1981) 
and hypernyms and synonyms from WordNet (Miller, 1995).

All these layers were considered as binary and unweighted, 
i.e., two words were linked: (i) on the free-association layer 
if they were reminded of each other in a free association task 
(see also De Deyne et al., 2013); (ii) on the phonological layer 

if they differed by the addition/substitution/deletion of one 
phoneme (see also Vitevitch, 2008); (iii) on the synonym 
layer if they shared meaning in any given context (see also 
Lacasa et al., 2021); and (iv) on the syntactic layer if they 
were a more general instance (hypernym) or a more specific 
case (hyponym) of each other (see also Aitchison, 2012). By 
wrangling and combining such data from lexical reposito-
ries (e.g., synonyms, hypernyms/hyponyms, and phonologi-
cal similarities) and from behavioral experiments (e.g., free 
associations), Stella et al. (2018) managed to build a multiplex 
lexical network representing binary unweighted associations 
between 8,000 English words. Weights were not considered 
(e.g., in terms of synonymity strength; Coltheart, 1981) 
because of technical issues in wrangling together, within the 
same network structure, wildly different sets of weights, and 
for avoiding the problem of choosing suitable heuristics for 
distinguishing between weak weights and absent interactions. 
However, Stella et al. (2018) conducted a preliminary analysis 
of such binarized multiplex network structure and – under the 
information theoretical framework of structural reducibility 
(De Domenico et al., 2015) – found that those four binary 
layers encoded different structural patterns between the same 
set of words: Each layer represented a different organization of 
conceptual associations in the mental lexicon. This motivated 
further analyses.

Notice that the 8,000 words in the multiplex lexical net-
work included nouns, verbs, and adjectives already investi-
gated in past psycholinguistic mega-studies by Brysbaert and 
colleagues, namely on age-of-acquistion (AoA) (Kuperman 
et al., 2012) and on concreteness (Brysbaert et al., 2014). 
Stella et al. (2018) used the psycholinguistic estimate of the 
age-of-acquisition of a given word to simulate how the net-
work representation of the mental lexicon grew over time, 
i.e., by adding to the network one word after another, start-
ing from those with lower AoA and proceeding in ascend-
ing order of AoA. The authors thus managed to simulate 
the growth of the mental lexicon and its LVC over time, 
according to the ordering of word acquisition indicated by 
AoA norms. Such ordering imitated the order in which most 
native English speakers acquire concepts over time, i.e., a 
normative acquisition as discussed in Steyvers and Tenen-
baum (2005). Whereas the LCC grew smoothly over time, 
the LVC appeared with a sudden, discontinuous phase transi-
tion (also called explosive; Baxter et al., 2021) around age 
7–8 years old, a critical age for the development of reading 
and reasoning skills in typically developing children (Frith, 
2017; Piaget, 1964).

The LVC was also found to be rich in shorter and higher 
frequency/polysemy/concreteness words (compared to the 
LCC). When partitioning words as inside/outside of the LVC, 
each multiplex layer exhibited a core-periphery structure 
(Newman, 2018), with the LVC representing a network core, 
i.e., a set of tightly linked high-degree nodes connecting more 
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peripheral low-degree nodes. Furthermore, when removing 
words in the LVC from the multiplex lexical network, the 
average network distance between words increased consider-
ably more than removing words outside of the LVC but with a 
matched degree. Since distance in cognitive networks refers to 
conceptual similarities (Fatima et al., 2021; Siew et al., 2019), 
and shorter distance corresponds to quicker conceptual pro-
cessing (cf. Kenett et al., 2017; Kumar et al., 2020; Vitevitch, 
2019), this pattern indicates a beneficial role played by nodes 
in the LVC in providing shortcuts of conceptual associations 
between other concepts. Noticeably no LVC was found when 
the phonological layer was excluded from the analysis, sug-
gesting that phonological associations are key to identifying 
the LVC. Given all of these characteristics of the LVC, Stella 
and colleagues suggested that the LVC was a language kernel 
in the mental lexicon (Cancho & Solé, 2001). That is, the LVC 
is a sample of highly frequent yet simple words that are promi-
nent (e.g., well connected) in language and whose availability 
enables communicative advantages (Aitchison, 2012; Cancho 
& Solé, 2001; Gruenenfelder & Pisoni, 2009).

Interestingly, past approaches based on single-layer net-
works but on different datasets converged to results similar 
to the ones provided by multiplex lexical networks. Vincent-
Lamarre and colleagues (Vincent-Lamarre et al., 2017; Vin-
cent‐Lamarre et al., 2016) built a network of directed syntac-
tic dependencies between words and others used to defined 
the latter across different English dictionaries. The authors 
identified language kernels as strong full connected com-
ponents, i.e., sets of nodes that are mutually connected by 
directed sequences of connections (Newman, 2018). Despite 
these works (Vincent-Lamarre et al., 2017; Vincent‐Lamarre 
et al., 2016) using only connections induced by syntactic spec-
ifications – for example, in the sentence “love is weakness,” 
“weakness” is used to specify the concept of “love” – they 
found language kernels with the same order of magnitude of 
words of the kernels identified with multiplex lexical networks 
(Stella et al., 2018), which rather combine or overlap several 
relationships like the semantic, phonological, and syntactic 
ones defined above. Both approaches confirmed that words in 
the language kernel are learned earlier, are more concrete, and 
have higher frequency than others in the rest of the dataset/
dictionary/network. The main advantage of multiplex lexical 
network is the fact that they do not require specific dictionary-
like syntactic definitions (e.g., “water is a transparent liquid 
at room temperature”) and thus better appeal to the complex, 
intricate structure of the mental lexicon (Aitchison, 2012).

The LVC identifies changes in mental navigation 
related to variation in creativity levels

A critical cognitive mechanism related to individual dif-
ferences in creative thinking is associative thinking, which 
allows a creative person to search more broadly through their 

memory, leading to the combination of remote ideas into 
original and appropriate ideas (Beaty & Kenett, 2023). Thus, 
a complementary question is: Can modelling how a person 
searches their memory be used to predict how creative they 
are? This is indeed possible via cognitive multiplex network 
modelling.

This exact question was examined by Stella and Kenett 
(2019), who reanalyze data collected by Kenett et al. (2016). 
In the original work by Kenett et al. (2016), a large sample of 
participants underwent an animal-category semantic fluency 
task, tasks assessing their fluid intelligence, and a self-report 
questionnaire assessing creative achievements (Carson et al., 
2005). The authors then divided the sample into four groups 
– low/high creativity and low/high intelligence – and esti-
mated their group based semantic memory networks.

To maximize group differences, Kenett and Stella (2019) 
only analyzed the two extreme groups from Kenett et al. 
(2016) – low creativity/low intelligence and high creativ-
ity/high intelligence. Stella and Kenett (2019) analyzed 
partipants’ performance in a semantic fluency task, as an 
operationalization of a mental navigation task that operates 
over memory when searching internally (Abbott et al., 2015; 
Ovando-Tellez et al., 2022; Todd & Hills, 2020). In this task, 
participants are required to generate as many category mem-
bers as possible, in a given amount of time. Computational 
methods allow examining how people search through their 
memory (Benigni et al., 2021; Hills et al., 2012; Todd & 
Hills, 2020), tracing the paths they traverse over representa-
tions of their mental lexicon (Hills & Kenett, 2022). Often, 
this task is based on the animal category (Ardila et al., 2006; 
Hills et al., 2012), i.e., name as many animals as possible in 
2 min. Specifically, Stella and Kenett (2019) only focused on 
the creativity scores of participants in both groups, investi-
gating how the mental navigation of these participants can 
be utilized to classify them into their creativity group (lower 
or higher creativity).

To classify participants as lower- or higher-creative indi-
viduals, the authors used a multiplex network to represent 
lexical memory over the same four layers used in Stella 
(2018), but extended it to 16,000 English words. This mul-
tiplex network exhibited an LVC with over 1,100 words (see 
Fig. 3). Stella and Kenett examined computationally the way 
people exploited their memory, and classified participants 
into low- and high-creative individuals, based on the way 
they “walked” on the multiplex network, through the LVC. 
In other words, the authors analyzed participants’ measures 
of navigating over the cognitive multiplex network focusing 
on the LVC.

The authors found that the lower- and higher-creative 
individuals differed in several cognitive multiplex measures, 
largely focusing on how they rely on their performance on 
the LVC, and on the number of responses they are able to 
generate. Individuals with lower creativity accessed the LVC 

1989Psychonomic Bulletin & Review (2024) 31:1981–2004



considerably more than those with higher creativity, suggest-
ing a beneficial role for the LVC to support recall in people 
unable to employ other cognitive strategies to achieve higher 
levels of creativity. Such distinctive patterns were measured 
through network access, distance, and entropy, and became 
a set of features in an artificial intelligence (AI) model that 

was trained to categorize high/low creativity levels from 
network measures of LVC access. In a leave-one-out cross-
validation, the AI achieved an accuracy of 65 ± 1% (com-
pared to a baseline of 50% for random guessing), indicating 
that multiplex viability may influence conceptual recall and 

Fig. 3  Illustration of the process followed by Stella and Kenett 
(2019). First, the authors constructed a cognitive multiplex network 
(top left). Next, the authors quantitatively examined participants’ 
semantic fluency responses as a mental navigation process over the 
cognitive multiplex network (top right). Participants’ measures of 
how they explore the cognitive multiplex network when searching 

for animal names was then used to build a machine learning model 
to classify participants in low or high creative individuals. This pre-
dictive model was accurate up to 75% of the time in classifying par-
ticipants into their correct group of low- and high-creative individuals 
(bottom)
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high-level cognitive strategies related to creativity (Hills & 
Kenett, 2022; Kenett et al., 2018).

Overall, the work of Stella and Kenett (2019) is signifi-
cant in two ways. First, it demonstrates how a viable compo-
nent in a multiplex network can be used to examine complex 
cognitive processes, such as mental navigation operation-
alized via a semantic fluency task. Second, the LVC can 
be used to extract features and construct machine-learning 
predictive models, correctly classifying individuals’ crea-
tivity levels based on fluency data, for example, mention-
ing synonyms of “hot” or animals from the animal category 
within 2 min. Such evidence opens up the door to additional, 
future studies in representing complex cognitive processes 
and their interactions with personality traits (Samuel et al., 
2023; Stella & Kenett, 2019).

The LVC supports correct picture naming in people 
with aphasia

Another example illustrating an advantage for words in the 
LVC comes from picture naming in people with aphasia. In a 
picture-naming task individuals are visually presented with a 
line drawing or photograph and asked to name the object that 
is depicted, a task formalized in the Philadelphia Naming 
Test (PNT), a 175-item picture-naming test developed in the 
Language and Aphasia Lab of MRRI (Roach et al., 1996). 
Aphasia describes a spectrum of language disorders, impact-
ing word processing, understanding, and production (Dell 
et al., 1997). Castro et al. (Castro & Stella, 2019; Castro 
et al., 2020) investigated picture naming through a multiplex 
lexical network with 8,000 words linked by free associa-
tions, hypernyms/hyponyms, phonological similarities, and 
synonyms. The authors found that multiplex distance was 
important for predicting not only the rate of correct picture 
naming (Castro & Stella, 2019), but also the types of mis-
takes made by people with aphasia (Castro et al., 2020). 
Higher predictive power in the first (regression) and second 
(multinomial regression) tasks was achieved when multi-
layer distances were used, rather than considering network 
layers in isolation.

Building on those findings, Stella (2020) discovered that 
items in the LVC were named correctly with frequency rates 
at least 30% higher than for items found outside of the LVC. 
Further, through network attacks accounting for frequency, 
degree, and word length effects, the author found that the 
probability of correct production in PNT could efficiently 
identify words within the LVC (compared to random guess-
ing; Stella, 2020), fully dismantling the LVC by removing 
only one-third of its nodes. Together, these results suggest 
that words in the LVC might benefit from enhanced lexi-
cal retrieval mechanisms that in clinical populations lead 
to more accurate production of words in the LVC (as meas-
ured by the PNT; Stella, 2020), and in healthy populations 

supports recall in individuals with lower creativity levels 
(Stella & Kenett, 2019) and lower openness (Samuel et al., 
2023).

To sum up, in multilayer representations of the mental 
lexicon, viability can identify a language kernel that has 
interesting features for cognitive processing. This ker-
nel emerges from the interactive nature of semantic and 
phonological associations (Levy et al., 2021; Stella et al., 
2018), and facilitates cognitive processing in both healthy 
and clinical populations. Importantly, it is not possible to 
identify such a kernel in single-layer networks that model 
only part of the mental lexicon (Stella, 2019; Stella et al., 
2017; Stella & Kenett, 2019), highlighting the importance 
of using the multilayered network approach to shed light 
on cognitive representation and processing. Future research 
should further investigate clusters like the LVC and identify 
new ones, potentially arising from other types of relation-
ships among words or by including other pieces of lexical 
information in the network (Citraro et al., 2023). The clus-
ters that are discovered in multilayer networks could lead 
to novel insights and provide quantitative ways to examine 
cognitive processing (Vitevitch & Mullin, 2021), creativity 
(Beaty et al., 2023; Benedek et al., 2023), cognitive func-
tions in altered states of consciousness (Rastelli et al., 2022), 
and language acquisition (Citraro et al., 2023), among other 
processes relevant to cognitive network science (Castro & 
Siew, 2020; Siew et al., 2019).

Community detection in multilayer networks highlights 
shortcuts between semantic themes

A community is a group of nodes more closely or tightly 
connected to each other than to nodes belonging to other 
groups (Blondel et al., 2008). Community detection is the 
task of decomposing a network into well-connected and 
well-separated groups of nodes, and it is one of the most 
challenging problems in complex network analysis (For-
tunato, 2010), in part because of the different topological 
criteria adopted to define a “community” (Newman, 2018). 
Community detection algorithms, used to identify com-
munities in a network, can be classified according to the 
way they approach the community-detection task (Blondel 
et al., 2008; Girvan & Newman, 2002; Palla et al., 2005). 
The most common algorithmic approaches used to partition 
single-layer networks fall into two classes, adopting either 
(i) the well-known modularity-based optimization scheme 
(Blondel et al., 2008) or (ii) the concept of k-cliques – sub-
graphs where all nodes are adjacent to each other and have 
degree k – to extract sets of overlapping communities (Palla 
et al., 2005). Both community detection approaches have 
found clusters of words sharing similar linguistic traits in 
single-layer networks, like shared sequences of phonemes 
in phonological networks (Siew, 2013), or concepts falling 
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in the same semantic field (found in a free association net-
work; Palla et al., 2005) and in a syntactic network (Gerow 
& Evans, 2014).

The task of community detection is more complicated 
in multilayer networks, because the community detection 
algorithm must consider the different types of relationships 
occurring in different layers at the same time (Magnani 
et al., 2021). Multilayer community detection algorithms 
are classified according to the strategy chosen to handle the 
presence of multiple layers:

• Flattening methods reduce all layers into a single one, 
making the structure suitable for classic community 
detection (Berlingerio et al., 2011). This approach was 
used by Vuki´c and colleagues, who identified different 
semantic fields of “database” via community detection 
in a multilayer network with factual, conceptual, proce-
dural, and metacognitive connections between concepts 
(Vukić et al., 2020).

• Layer-by-layer methods process layers independently 
before merging the final list of communities through 
consensus, (Magnani et al., 2021).

• Multilayer methods act directly on the multilayer struc-
ture, finding communities by transitioning across the lay-
ers. In this class of methods, we find extensions of the 
modularity-based approaches in single-layer networks to 
multilayer networks. Examples of this approach include 
GLouvain (Mucha et al., 2010) or the multilayer exten-
sion (Edler et al., 2017) of the Infomap algorithm (Ros-
vall & Bergstrom, 2008).

Choosing the most suitable community-detection method 
for a multiplex or multilayer lexical network is a challenge 
to cutting-edge research in cognitive networks. Only a few 
works have indirectly addressed this problem so far. Kov´acs 
et al. (2021) analyzed the multilayer network structure of 
semantic, syntactic, and phonological associations of sev-
eral languages, including English and Hungarian. Using a 
modularity maximization approach, they found that larger 
communities tended to reflect mostly semantic associations, 
whereas smaller communities encoded encyclopedic knowl-
edge (Kovács et al., 2021).

Interestingly, the task of grouping nodes in a multilay-
ered network is tied to the task of detecting communities in 
attributed networks, where nodes also possess categorical 
information or features (Chunaev, 2020). Notice that attrib-
uted networks are graphs, i.e., collections of nodes linked 
together, where either nodes or links can be labelled with 
categorical or continuous data, for example, nodes repre-
senting words might be labelled as “positive,” “negative,” 
or “neutral” according to their valence (Scott et al., 2019; 
Stella, 2022) or be attributed their age of acquisition, a 

numerical average score in years as obtained from a psy-
chological mega-study (Citraro & Rossetti, 2020; Steyvers 
& Tenenbaum, 2005).

In this vein, Citraro and Rossetti (2020) recently tack-
led community detection in multilayer lexical networks by 
introducing the Extending to Vertex Attributes Louvain or 
EVA method. Their approach extends the modularity-based 
optimization function (Blondel et al., 2008) to a multi-objec-
tive criterion requiring communities to be as homogeneous 
as possible to the features carried by the nodes and across 
different network layers. The idea of such a requirement 
comes from the well-documented tendency for conceptual 
associations to be present between concepts sharing similar 
features (Aitchison, 2012; Kenett et al., 2017; Kennington 
& Schlangen, 2015; Kumar et al., 2020). Requiring com-
munities to be homogenous, or to contain as many as pos-
sible words with the same feature, allows one to obtain 
communities of words/concepts that are more consistent 
with the relevant literature about the mental lexicon. The 
authors tested the multiplex mental lexicon built in (Stella 
et al., 2018) and enriched it with lexical features such as 
word length, valence, arousal, dominance, semantic size of 
denoted words, and gender association (from the Glasgow 
dataset; Scott et al., 2019).

Multiplexity highlights shortcuts between concept 
communities in a phonological/semantic multiplex 
model

Figure 4(A) sums up with a toy example what community 
detection algorithms that are also sensitive to the features 
attributed to each node can reveal in multilayer lexical 
networks. Analyzing the aggregated multiplex structure 
obscures the variation in feature homogeneity across lay-
ers. For instance, when requiring communities to feature 
words sharing as much as possible the same word length, 
modularity shows a very fast decrease in the semantic lay-
ers, but remains stable in the phonological layer (Fig. 4B). 
This means that the semantic layer is unable to provide 
communities where most words have the same length, 
whereas the structure of the phonological layer can provide 
such communities. This dichotomy essentially reflects the 
absence of a clear cognitive constraint influencing the lay-
out of conceptual associations in the semantic layer based 
on length. Instead, in the phonological layer, where shorter 
words tend to share connections, the edit-distance rule 
– grounded in several research studies (Chan & Vitevitch, 
2009; Siew, 2013; Vitevitch & Mullin, 2021) – creates 
several communities where words share the same length, 
and the algorithm can thus identify such solutions even at 
higher resolution powers.
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Two main results emerged from the feature-rich multiplex 
mental lexicon (with 4,000 words and two layers, i.e., free 
associations and phonological similarities) analyzed by Cit-
raro and Rossetti (2020):

1. Communities extracted by EVA reflect thematic con-
texts: Concepts can fall within different contexts accord-
ing to the psycholinguistic features used to perform 
community detection, even keeping the network fixed. 

Fig. 4  (A) Attribute-aware community detection in a toy multilayer 
lexical network: a toy partition for word length (left) and valence 
(right). Results from Citraro & Rossetti (2020). (B and C) Differ-
ent attributes correlate with different layers (B); a toy example of 

matched communities on the semantic (blue links), phonological (red 
links), and multiplex (mixed links) lexical structure for the arousal 
property (C)
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In other words, one network can give rise to many sets of 
communities according to the feature selected for EVA. 
For instance, “star” belonged to a community of words 
relative to astrophysics when semantic size was used as 
a feature for community detection on the semantic layer. 
On the same layer, “star” belonged to a community of 
words relative to “shining” when arousal was used 
instead (Fig. 4C). Such thematic coherence and context 
swapping were not observed in the phonological layer. 
These findings indicate an important interplay between 
semantic features (e.g., “being astrophysics objects,” 
“shining”) and semantic layers in multiplex networks, 
which should be treated differently from phonological 
similarities. While it is intuitively expected for semantic 
features to influence thematic coherence more promi-
nently on semantic rather than phonological networks 
(Aitchison, 2012), these quantitative models open the 
way to mapping and exploring the interplay between 
psycholinguistic norms and network structure (Citraro 
et al., 2023).

2. As illustrated within Fig. 4C, semantic links provide 
shortcuts between different clusters of phonologically 
similar words that would otherwise be at a greater net-
work distance. This happens because the homogeneity of 
the same feature (e.g., arousal) over communities span-
ning different layers changes significantly across layers. 
Although less thematically cohesive, the multiplex net-
work structure provides shortcuts that make single-layer 
communities overlap with each other. Recent investi-
gations indicated that semantic and phonological con-
nections are systematically better than random links in 
decreasing the average network distance between words 
(Levy et al., 2021). Hence the observed overlap in com-
munities from different layers might be due to a potential 
cognitive benefit, worthy of further research.

Finding hidden interactions between two or more layers: 
Mediation, suppression, and other layer‑interaction 
mechanisms

It is only recently that current research in multilayer net-
works has highlighted quantitative frameworks for capturing 
mediation and suppression between network layers (Lacasa 
et al., 2021). In quantitative psychology, mediation repre-
sents the consideration of how a given variable D affects 
the causal relationship between two other variables A and B 
(MacKinnon et al., 2007). In the presence of causal chains, A 
→ D → B, D acts as a mediator variable. Accounting for the 
mediator variable D might reduce or weaken the direct rela-
tionship, when present, between A and B, since the mediator 
might explain a part of the influence exerted by A over B. In 
other cases, the addition of a third variable does not reduce 

it but rather restores or amplifies the influence exerted by 
one variable over a second, dependent, one. In these cases, 
the third variable provides a suppression effect (MacKinnon 
et al., 2000).

The key research question in capturing mediation/sup-
pression in multilayer networks is: Does the topology of 
a given layer depend on the structure of another layer but 
through the mediation/suppression of a third unseen network 
layer? This research question is evidently different from 
capturing directly the similarity between the organization/
topology of any two layers, a task that can be performed by 
using a wide variety of spectral and information-theoretic 
metrics (De Domenico & Biamonte, 2016; De Domenico 
et al., 2015; Hartle et al., 2020; Mheich et al., 2020; San-
toro & Nicosia, 2020). The recent findings of Lacasa et al. 
(2021) relied on capturing mediation/suppression over the 
individual links, potentially replicated or not, across any two 
network layers. Their approach has not been applied to cog-
nitive networks yet. Nonetheless, it represents an interesting 
direction for future research in psychological representations 
of the mental lexicon.

To better understand how such machinery would work in 
multiplex cognitive networks, let us consider the example of 
a two-layer multiplex network with a free-association layer 
and a phonological layer, analogous to the ones discussed 
in Levy et al. (2021) or Citraro and Rossetti (2020). These 
different layers might display a small level of correlation 
since words sounding similar to each other tend also to be 
recalled together in free-association tasks (as measured with 
link overlap in Stella et al., 2017). However, this similar-
ity might be due to causal relationships: Sound similarity 
might facilitate or inhibit a memory recall pattern (Vitevitch 
& Mullin, 2021). Alternatively, this influence might not be 
directly evident. Analogous to latent variables in psychomet-
rics (Golino et al., 2022), there might be a hidden network 
layer of conceptual associations that either confounds or 
mediates the relationship between phonological similarities 
and free associations or other pairs of layers in the mental 
lexicon.

The recent study by Lacasa et al. (2021) introduces a 
framework to quantify mediation and suppression between 
networks. The framework works at the level of edges eC

ij
 

between words i and j on layer l. Layers are considered as 
variables, so that a layer l = A might exert a causal influence 
over another layer l = B through the mediation or suppres-
sion of a third layer l = C. In the case of mediation, the 
presence of a link eC

ij
 in the hidden layer would also deter-

mine the presence of the same link in layers A and B. In the 
case of suppression, the presence of a link eC

ij
 in the hidden 

layer would determine the presence of the same link only in 
layer A (but not in B) or only in layer B (but not in A). 
Counting edges can give rise to an information-theoretic 
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framework inferring the presence of a mediation/suppression 
mechanism, purely based on multilayer network structure 
and link correlations (for the mathematics, we refer the 
reader to Lacasa et al., 2021).

The applications of such network-based mediation/sup-
pression framework have to date involved social networks 
(online, professional, personal interactions) and mesoscale 
connectomes in the complete C. elegans nervous system 
(Lacasa et al., 2021). In lexical networks this approach 
could address questions such as: “Are semantic associ-
ations more likely to occur if there is semantic overlap 
but not phonological similarity?” If we consider factual 
and metacognitive layers in a knowledge network, this 
approach could be combined with the multiplex represen-
tation introduced by Vukić et al. to identify mediation and 
suppression mechanisms in processing domain knowledge 
(Vukić et al., 2020).

Neither of the above examples could be investigated with 
single-layer networks, highlighting the importance of using 
multilayer networks and mediation and suppression tech-
niques to detect latent relationships in data due to layer-
interaction mechanisms.

A concrete example of the relevance of layer-interaction 
mechanisms in exploring cognition comes from recent mul-
tilayer investigations of the issue of lexical access (Levy 
et al., 2021). Please note that we are considering lexical 
access in the context of comprehension and recognition 
processes where word recognition, unlocking or accessing 
the meaning of a word requires a flow of information from 
phonology to semantics (Aitchison, 2012; Vitevitch & Mul-
lin, 2021). Classic linguistic theories assume that in order 
to comprehend or produce meaningful linguistic output, one 
needs to access and retrieve information from their men-
tal lexicon, a process known as lexical access (Aitchison, 
2012). Lexical access involves multiple processes of repre-
sentation, in particular, a semantic word-meaning process 
and a phonological wordform mapping process, that allow 
access and retrieval from the mental lexicon (Dell et al., 
2014). However, whether the relation between these two 
processes is serial, parallel, or interactive is still debated 
(Dell et al., 2014; Nadeau, 2012). The modular account 
argues for a detailed process between two discrete modular 
processes of lexical access. According to this account, dur-
ing lexical access of a linguistic input, semantic processing 
takes place only after phonological processing is completed. 
The cascading account argues for a more relaxed modular 
account. According to this model, semantic processing can 
initiate before phonological processing is complete. Finally, 
the interactive model theorizes that lexical access involves 
an interactive spread of information across a phonologi-
cal layer and a semantic layer that can influence each other 
(Dell et al., 2014; Dell et al., 1997). This model argues that 
both layers are structured as a network, and that information 

spreads across these two networks, related to the organiza-
tion of concepts across both layers and to the strength of 
links that connect them. However, the specific model of lexi-
cal access is still open for debate.

Layer‑interaction mechanisms in a phonological/
semantic multiplex network

In a recent study, Levy et al. (2021) applied a cognitive mul-
tilayer network analysis to directly analyze and quantify the 
relation between phonological and semantic networks, moti-
vated by the interactive model of language processing (Dell 
et al., 2014). To do so, the authors constructed a large-scale 
multilayer network comprised of empirical phonological and 
semantic layers (Fig. 5), for a large-scale network of about 
9,000 words [18]. The authors then conducted the following 
analyses: First, they examined the similarity between the two 
layers by measuring their link overlap. Next, they measured 
the effect of adding non-overlapping links from one layer to 
the other. Finally, Levy et al. examined the potential benefit 
of combining both layers as a multilayer network on lexical 
access, by measuring the networks’ average distances of the 
single layers versus the multiplex (Levy et al., 2021).

Indeed, in their approach, Levy et al. (2021) consid-
ered “interactive” the emergence of shortcuts in the whole 
multiplex network benefiting from both phonological and 
semantic links. They highlighted such interactiveness in 
two ways, without ever considering mediation/suppression 
effects (which we covered in the section Finding hidden 
interactions between two or more layers: Mediation, sup-
pression, and other layer-interaction mechanisms instead). 
In a given multiplex layer, it is expected for the addition 
of non-overlapping links to decrease the overall distances 
between concepts: New links can create novel shortcuts and 
these can be beneficial for mental search processes, as we 
discussed already above. A key question becomes whether 
this reduction happens at faster or slower rates depending on 
whether these links are added according to a certain strategy. 
Through simulations, Levy et al. (2021) showed that adding 
links at random shortened the distance between words at 
much slower rates/smaller magnitudes compared to adding 
those same links present in one layer to the other. Impor-
tantly, adding links from word-pairs that had short paths in 
one layer largely reduced distances of word pairs that had 
short distances in the other layer. Thus, adding links from 
one layer to the other had a specific, non-random effect.

Furthermore, Levy et al. empirically demonstrated the 
significance of their notion of interactiveness of the multi-
layer architecture. They did so by reanalyzing response time 
(RT) data collected by Kumar et al. (2020). Kumar et al. 
(2020) computed a single-layer semantic network in Eng-
lish based on the University of South Florida Free Associa-
tion Norms, comprising 5,000 normed words (Nelson et al., 
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2004). Kumar et al. (2020) demonstrated how semantic dis-
tance based on path length in their network related to partici-
pants’ reaction time (RT) while judging whether word-pairs 
are related to each other. In doing so, Kumar et al. replicated 
and extended similar findings previously found in Kenett 
et al. (2017). To do so, Kumar et al. had participants make 
relatedness judgments on pairs of cue words that varied in 
the semantic distance between the words based on the path 
length in their semantic network for those two words (Kumar 
et al., 2020). Levy et al. (2021) conducted the following 
analysis:

First, they identified links from the Kumar et al. seman-
tic network that corresponded to links in their semantic 
layer. Next, they examined how semantic and multilayer 
path lengths related to RT in the corresponding links from 
the Kumar and colleagues’ study. Critically, Levy et al. 
found that short multilayer path length related to shorter 

RT compared to the same path length (or two steps) in the 
semantic network of Kumar et al. as well as the semantic 
layer of Levy and colleagues (Fig. 5). Thus, Levy and col-
leagues empirically demonstrated the cognitive advantage 
of conceptual paths between concepts in the mental lexicon 
based on “interactive” relations of phonological and seman-
tic information.

Thus the authors argue that the interaction between these 
two layers might be crucial for allowing more efficient 
lexical access, by reducing path distances between nodes 
in a cognitive multilayer network (Levy et al., 2021). For 
example, in the phonological layer, the cue words intend 
and invest had a path distance of three (intend → intent → 
invent → invest). However, in the semantic layer, these cue 
words intend and invest are directly connected, see Fig. 5B. 
Thus, in a multilayer phonological-semantic network, the 
distance between intend and invest is much shorter than in 

Fig. 5  Top: Multiplex network of semantic and phonological lay-
ers constructed by Levy et  al. (2021). (A) Illustration of the over-
lap across the (weighted by relative frequency with which a given 
association was produced by participants) semantic layer and the 
(unweighted) phonological layer. (B) Illustration of the multiplex 
network with nodes and links across both semantic and phonologi-
cal layers. Bottom: The multilayer network is more quickly acces-

sible than the semantic network (C). Reaction times (RTs) for relat-
edness judgments in the Kumar et al. (2020) network (Green), Levy 
et al. (2021) semantic network (Orange), and the Levy et al. (2021) 
multilayer network (Blue). Error bars for the Levy et al. (2021) net-
works represent standard deviations of the average RT. The error bar 
of the Kumar et al. (2020) network represents the standard deviation 
of averages of subsets of RTs

1996 Psychonomic Bulletin & Review (2024) 31:1981–2004



a phonological only network, enhancing the lexicon’s effi-
ciency in lexical access even in potential impairments (Cas-
tro & Stella, 2019; Castro et al., 2020).

Overall, the multilayer approach by Levy et al. demon-
strates the strength of applying a cognitive multilayer net-
work analysis to examine classic cognitive theories, such 
as on the nature of lexical access (Levy et al., 2021). It also 
demonstrates the feasibility of combining computational 
modelling with empirical research to advance cognitive 
research.

Discussion, limitations, and future directions

Recent work using multilayered networks in cognitive sci-
ence has revealed key insights that would not have been 
observed using single-layer networks. This work has exam-
ined cognitive processing in healthy (Levy et al., 2021; 
Samuel et al., 2023; Stella et al., 2017; Stella et al., 2018; 
Stella & Kenett, 2019) and clinical populations (Castro 
& Stella, 2019; Castro et al., 2020), revealed clusters and 
communities reflecting different contexts and meanings of 
individual concepts (Citraro & Rossetti, 2020; Citraro et al., 
2023; Dell et al., 1997; Kovács et al., 2021), and discovered 
latent mediation/suppression interactions between different 
aspects of knowledge (Dell et al., 1997; Marinazzo et al., 
2022). These findings illustrate the potential for multilayer 
networks to advance the cognitive sciences using a quanti-
tative, interpretable, and human-centric framework. Multi-
layer networks give structure to the representations found 
in interactive layers of the mental lexicon (quantitative; De 
Domenico, 2022). This structure can be interpreted using 
various network measures, such as network distance and 
concept relatedness (interpretability, e.g., Kenett et al., 2017; 
Kumar et al., 2020), and may account for the complexity of 
the human mind (human-centric; Stella, 2019).

Although the use of multilayer networks has much poten-
tial, this approach also has some limitations, which naturally 
lead to crucial directions for future research. For example, 
in most cases (including the examples presented here) links 
are defined between pairs of nodes. In some cases, it may 
be more useful to create a set of nodes instead of simply 
pairs of nodes to form a hypergraph. For example, several 
actors feature in scenes in movies without just co-occurring 
with each other, or more than two words in a sentence might 
modify its meaning. Hypergraphs are being increasingly 
studied and applied (Battiston et al., 2020) to account for 
simultaneous interactions between more than two entities 
at once. From a cognitive perspective, hypergraphs could 
be structured across multilayer/multiplex structures either 
by building links through information-theoretic measures 
(Marinazzo et al., 2022) or by considering other interaction 
patterns between concepts (e.g., phonological similarities 

between words sharing the same skeleton of vowels and 
consonants; Gruenenfelder & Pisoni, 2009). In either case, 
future research using the hypergraph approach could poten-
tially reveal higher-order behaviors that are not observable 
with pairwise relationships, perhaps identifying communi-
ties of concepts reflecting specific semantic fields (Gerow 
& Evans, 2014) or contexts of usage (Citraro et al., 2023).

Another limitation comes from the fact that by merging 
different weighted layers, an experimenter might need to 
select different strategies for distinguishing between present, 
weak, and absent relationships between words in the data. 
These strategies might have to deal with different weight dis-
tributions across each layer and would require some motiva-
tion in terms of cognitive modelling. These aspects represent 
important modelling challenges, which might be addressed 
by taking inspiration from renormalization theories in 
regression models (e.g. lasso regression or ridge regres-
sion (Fu, 1998) and lead to future frameworks accounting 
for weighted similarities or connections between words (an 
interesting early stage approach being the one developed 
in Citraro et al. (2023), but only for categorical variables).

Multilayer networks contain several network layers, 
and thus correspond to an increased chance of mistakes in 
assessing whether two concepts should be connected or not, 
such as whether two concepts are syntactically related in 
speech (Morgan et al., 2021; Parola et al., 2023) or in text 
(Semeraro et al., 2022). Mechanisms for link prediction or 
noise correction should thus be applied to next-generation 
multilayer models of the mental lexicon. Bayesian infer-
ence can identify errors in a given network layer even in the 
presence of unknown and heterogenous uncertainty (Pei-
xoto, 2018). The formalism proposed by Peixoto checks for 
the presence of connections between different clusters of 
nodes, using structured generative network models to infer 
the presence/faulty presence of individual links even without 
direct error estimates. This approach could filter layers of 
free associations (De Deyne et al., 2013) or other types of 
semantic/syntactic datasets (Quispe et al., 2021), lessening 
the impact of noise over the multilayer structure.

Single-layer and multilayer networks are useful con-
structs to make sense of complex and multivariate systems 
(Newman, 2018), but they remain modelling proxies. The 
mental lexicon might not look like a network in some spe-
cific instances, as recently discussed by Hills and Kenett 
(2022). Alternative modelling approaches should thus be 
pursued in parallel with multilayer networks, leading to next-
generation studies where multiple models are compared or 
used together. Word embeddings (Kennington & Schlangen, 
2015; Kumar, 2021; Kumar et al., 2022; Litovsky et al., 
2022) represent promising alternative modelling approaches, 
giving more emphasis to the vector-like nature of features 
associated with individual concepts. Frameworks encom-
passing vectors and multilayer networks to model the mental 
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lexicon, like the FERMULEX approach by Citraro and 
colleagues (Citraro et al., 2023), represents an interesting 
attempt to capture the complexity of mental representations.

Building network models that minimize redundant fea-
tures while maximizing informativeness (e.g., prediction 
power about word norms; Scott et al., 2019) under potential 
uncertainty is becoming increasingly relevant in quantitative 
psychology, especially network psychometrics (Christensen 
et al., 2023; Golino et al., 2022).

A current limitation of cognitive multilayer networks is 
the selection of which layers to include and which to discard 
when building a representation of the mental lexicon (Citraro 
et al., 2023). Adding more network layers can provide more 
information about connectivity patterns between concepts 
but, at the same time, it can add unnecessary redundancy 
(Santoro & Nicosia, 2020). This should be circumvented 
by a data-informed selection of layers encoding conceptual 
associations being relevant for the cognitive phenomena 
being investigated. For instance, when investigating iconic-
ity (Aitchison, 2012), one should consider both semantic 
and phonological associations for mapping word forms 
and meanings together. However, there are several ways to 
encode a given type of conceptual association, for example, 
phonological similarities might be captured in different ways 
according to different ways of achieving phonological tran-
scriptions. This data issue naturally leads to hundreds, if not 
thousands, of possible network layers composing a cognitive 
multilayer network.

One could challenge the cognitive plausibility of such 
rigid distinctions – would humans encode hundreds of 
distinct and potentially minimally different layers in their 
mental representations of associative knowledge? Cognitive 
experiments (Dóczi, 2019) indicate that associative knowl-
edge is resilient to noise and might thus not be encoded in 
strict ways, for example, “parser” and “parsing” would sound 
similar and appear as sharing some meaning to a human 
despite not being directly linked in a phonological network. 
This evidence suggests that network layers might differ in 
non-trivial ways, not because of the absence/presence of 
a few different connections between concepts, but rather 
because of some more general structural patterns. Fewer 
but maximally different network layers might be cognitively 
plausible, at least in some instances of knowledge processing 
(Hills & Kenett, 2022). These would be the outcome of a 
feature economy process, apt at communicating effectively 
with limited cognitive resources (Aitchison, 2012).

Cognitive multilayer networks might thus open the way 
to novel exciting future research aimed at assessing, quan-
tifying, and understanding both universal similarities and 
individual differences in how humans can integrate multi-
ple nuanced but analogous similarities along multidimen-
sional cognitive representations of associative knowledge. 
However, how can future research quantify whether distinct 

layers in multilayer models are merely data-driven or rather 
constitute accurate cognitive representations? This limitation 
can be addressed in two ways. First, representations of the 
mental lexicon should include only the layers that are rel-
evant for a specific task. For example, to model the process 
of reading the interplay between phonology and orthography 
requires both layers (Siew & Vitevitch, 2019). Second, once 
relevant layers have been selected, additional tools from 
information theory can quantify the amount of redundant 
information embedded in a given combination of layers. 
Structural reducibility analysis (De Domenico et al., 2015) 
and compressibility (Santoro & Nicosia, 2020) can identify 
the best combination of network layers maximizing informa-
tion gain compared to a baseline model where all layers are 
aggregated together. Information gain could be implemented 
in different ways (Santoro & Nicosia, 2020). In multiplex 
networks, the maximization of the Von Neumann entropy 
was shown to successfully identify those layers providing 
the most information about node connectivity (De Domenico 
et al., 2015). The experimenter should thus check whether 
a preliminary representation of the mental lexicon could be 
further aggregated or compressed via entropy maximization, 
which would indicate the presence of redundant layers to 
be aggregated with each other to limit the number of lay-
ers to be considered. These approaches have unveiled that 
many social and technological multilayer networks exhibited 
moderate redundancy (De Domenico & Biamonte, 2016; De 
Domenico et al., 2015; Santoro & Nicosia, 2020) and could 
be further reduced/compressed in structure. This was not 
the case for all multiplex lexical networks reviewed here, 
which showed how semantic, syntactic, and phonological 
aspects of words captured very different, and thus irreduc-
ible, patterns of connectivity (Stella et al., 2017; Stella et al., 
2018; Stella & Kenett, 2019). Future research should com-
bine informed designs and information-theoretic tools to bet-
ter select appropriate layers for and reduce redundancy in a 
given multilayer model of the mental lexicon.

Attention has to also be paid to the issue of model inter-
pretability. In the research papers we reviewed here, net-
works give structure to psychological data, thus acting as a 
“modelling prism” that captures the structural organization 
of data, for example, the presence of long-distance paths 
between word pairs (Citraro & Rossetti, 2020; Levy et al., 
2021) or the location of words inside or outside from a 
special connectivity cluster such as the large viable com-
ponent (Samuel et al., 2023; Stella et al., 2018). Knowl-
edge about these structural patterns provides more control 
to the experimenter using these features for machine learn-
ing. The data patterns highlighted and unveiled by network 
structure should be used as features in interpretable AI 
frameworks (Molnar, 2020), i.e., frameworks where the 
directionality and impact of features over AI performance 
can be assessed, tested, and identified – for example, as 
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in SHAP scores. Recently Baker et al. (2023) used SHAP 
scores to identify how shorter distances on a free-associ-
ation layer and longer distances on a phonological layer 
might help an AI model recognize semantic mistakes in 
picture-naming tasks. The authors related these directional 
patterns to a spreading activation framework (Collins & 
Loftus, 1975; Siew, 2019), with network distance captur-
ing how related words are in exchanging activation signals 
within the mental lexicon structure. The authors inter-
preted their findings as activation spreading taking place 
on multiple levels but failing mostly in semantic aspects of 
the mental lexicon, and leading to naming a word semanti-
cally related to the target one, i.e., producing a semantic 
mistake (for more details, see Baker et al., 2023). This 
example underlines how the additional knowledge pro-
vided by networks as “modelling prisms” and the adoption 
of interpretable AI models, should both promote a next-
generation adoption of interpretable, testable, reproduc-
ible, and quantitative frameworks for cognitive modelling. 
Notice that simply putting data without the control and 
additional knowledge provided by network structure would 
greatly reduce and impair model interpretability, since the 
experimenter would not have direct access to the features 
being spotted and captured by the AI (e.g., network dis-
tance capturing spreading activation aspects).

Importantly, networks are not only being used to under-
stand the complexity of the human mind (Hills & Kenett, 
2022; Stella, 2018; Vitevitch, 2008), but are also being 
employed to understand the complexity of the human brain 
(Aerts et al., 2016; Amico et al., 2021; Betzel & Bassett, 
2017; Bullmore & Bassett, 2011). These single-layer net-
works of the brain may connect brain regions that are physi-
cally connected or brain regions that are active at the same 
time. An ambitious goal for future research is to use the mul-
tilayer network approach to connect the cognitive network 
layer to the brain network layer to finally bridge the intangi-
ble mind and the physical brain (Vitevitch & Mullin, 2021; 
Zaharchuk & Karuza, 2021). At present, it is not clear how 
many network layers would be needed to accomplish this, or 
what those intermediate network layers might represent. It is 
also not clear if the spread or diffusion of activation that is 
commonly used to model cognitive processing in cognitive 
network models (Litovsky et al., 2022; Vitevitch & Mullin, 
2021) is an appropriate mechanism to model the processes 
that occur at other network layers. Connecting the mind and 
the brain using multilayer networks may seem like an elu-
sive goal, but we need only look to the Internet for exist-
ence proof of a physical network (i.e., the fiberoptic cables 
that envelope the world) bridging to the intangible social 
networks that emerge on software platforms like Facebook, 
Twitter, etc. (whose information is transmitted across those 
fiberoptic cables). Future research bridging cognitive and 
brain networks within multilayer, feature-rich frameworks 

might contribute to building a quantitative understanding 
of how the brain stores conceptual representations of words, 
which represents an intriguing brain/mind puzzle (Poeppel 
& Idsardi, 2022).

Additional materials for psychologists 
interested in learning more about multilayer 
networks

Multilayer cognitive networks remain within the realm 
of cognitive network science, a relatively novel topic for 
psychologists that is quickly growing within the com-
munity (Castro & Siew, 2020; Siew et al., 2019; Stella 
et al., 2022). For this reason, it is important to provide 
a concise methodological complement to the psychology 
and cognitive science papers reviewed above. This sub-
section includes a selection of relevant methodological 
papers, reviews, tutorials, and programming tools that can 
be adopted by readers interested in applying multilayer 
networks to their multidimensional psychological data.

The rapid growth of the field motivated the appearance 
of several relevant reviews about cognitive networks in psy-
chology (Castro & Siew, 2020; Siew et al., 2019) and in 
cognitive data science (Hills & Kenett, 2022; Stella, 2022), 
which can all be interesting starting points for learning more 
about network measures and their psychological interpreta-
tions. Some pioneering works on multiplex lexical networks 
(Stella et al., 2017; Stella et al., 2018) also contain detailed 
supplementary information about the mathematics of mul-
tilayer networks and their relevance for psychologists inter-
ested in investigating the mental lexicon. More mathemati-
cally inclined psychologists would benefit from reading the 
theoretical formalism of multilayer networks, in general, 
described by pioneering papers in physics (Battiston et al., 
2014; De Domenico et al., 2015; De Domenico et al., 2013; 
Santoro & Nicosia, 2020).

In addition to theoretical foundational papers, the physics 
community has also developed several ready-to-use tools 
for investigating multilayer networks. MuxViz, developed 
mostly by De Domenico et al. represents a powerful library 
for investigating the structure of multilayer networks (De 
Domenico, 2022), with an easy-to-use graphical interface 
and out-of-the-box data visualizations. MuxViz can also vis-
ualize small multilayer networks and detect potential over-
laps between connections across different layers. A recent 
book (De Domenico, 2022) reports several tutorials about 
how to produce cutting-edge visualizations on multilayer 
networks. The R packages igraph and network provide more 
advanced data analysis and visualization options but through 
a steeper learning curve. Python users might rather resort to 
other valid alternatives, such as the Py3plex library, which 
performs multilayer network visualizations and analyses 
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(Škrlj et al., 2019), or the packages networkx and igraph 
(available also in Python). Finally, the recent work by Aleta 
and Moreno (2019) represents a valuable tutorial paper for 
approaching multilayer networks and getting acquainted 
with their formalism for the first time.

Conclusions

Cognitive multilayer networks can map multiple types of 
cognitive information at once. Their quantitative framework 
can thus model how different types of associations might 
co-exist within the mental lexicon and influence cognitive 
processing. This review has highlighted several pioneering 
studies unearthing mechanisms of psychological phenom-
ena that could not be observed in single-layer cognitive 
networks. The phenomena that were only unveiled by the 
combination of multiple layers of associative knowledge 
included: (i) multiplex viability as a booster of lexical search 
and processing in people with lower creativity, shielding 
words from degraded production in people with aphasia; (ii) 
multilayer community detection as a way to highlight the-
matic clusters of concepts shaped by psycholinguistic norms 
and linked by multilayer shortcuts; and (iii) layer-layer cor-
relations as interactive mechanisms between phonological 
and semantic similarities in lexical processing. In addition 
to describing the novel quantitative perspectives where mul-
tilayer networks can shed light on knowledge representations 
in the mental lexicon and in potential brain/mind models, we 
have discussed key limitations and promising directions for 
future research. The formalism covered in this review thus 
opens the way to next-generation quantitative frameworks 
of cognition able to model multivariate psychological data.
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