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Abstract. Word associations have been extensively used in psychology
to study the rich structure of human conceptual knowledge. Recently,
the study of word associations has been extended to investigating the
knowledge encoded in LLMs. However, because of how the LLM word
associations are accessed, existing approaches have been limited in the
types of comparisons that can be made between humans and LLMs. To
overcome this, we create LLM-generated word association norms mod-
eled after the Small World of Words (SWOW) human-generated word
association norms consisting of over 12,000 cue words. We prompt the
language models with the same cues and participant profiles as those in
the SWOW human-generated norms, and we conduct preliminary com-
parative analyses between humans and LLMs that explore differences in
response variability, biases, concreteness effects, and network properties.
Our exploration provides insights into how LLM-generated word asso-
ciations can be used to investigate similarities and differences in how
humans and LLMs process information.
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1. Introduction

Understanding the mental lexicon is an important part of studying human cogni-
tion. The way in which we represent concepts in terms of relationships between
them is essential for understanding how we process information, and consequently,
how we reason, form beliefs, and make decisions [1]. One way to tap into the rich
structure of human conceptual knowledge is through word associations, obtained
by asking participants to produce associated responses when prompted with a
cue word. Word associations have been extensively used in cognitive psychology
and linguistics for studying lexical retrieval [2,3], semantic organization [4], and
similarity judgments [5,6,7], as well as investigating concreteness effects [8,9] and
cognitive biases [10]. Additionally, cognitive models built from word association
norms can provide powerful insights into many different cognitive phenomena,
such as language learning [11] and creativity [12]
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Recently, researchers have begun to use word associations as a method for in-
vestigating the capabilities and limitations of LLMs [13], including investigations
of biases [14,15]. Most of these approaches investigate the embedding space of lan-
guage models in order to gain access to their associations [16]. They then compare
these LLM associations to the well studied properties of human-generated word
associations, such as asymmetry and intransitivity [17]. While this approach pro-
vides important insights, it is limited for a few reasons. First, since associations
extracted from embedding spaces are usually based on cosine similarity, they are
symmetrical, unlike human associations. Also, contextual embeddings must first
be transformed into static embeddings [18] , which can introduce bias and distort
similarity estimates [19]. Challenges such as these related to investigating contex-
tual embeddings have led to a broader shift in how researchers approach investi-
gating LLMs [19], from a bottom-up approach to a top-down approach that probes
LLMs in a variety of cognitive and linguistic tasks in order to better understand
their capabilities and reconstruct their cognitive architecture [20,21,22]. This new
approach has led to the emergence of machine psychology [23], a new field which
entails applying the tools of cognitive psychology to investigate the behavior of
machines as if they were human participants in psychological experiments. The
machine psychology approach has several advantages. First, probing methods can
be applied regardless of the type of LLM – a significant advantage considering
the rapid pace of LLM advancements – and also, the top-down approach allows
for more direct comparisons between humans and LLMs.

One recent study applied a machine psychology approach to compare human
word associations with LLM word associations accessed from rule mining on word
sequences sampled from LLMs [17]. While this approach more closely imitates
human word associations, the probing method still differs significantly from how
human word associations are accessed, limiting the types of comparisons that
can be made. In this work, we aim to close that gap by creating datasets of
LLM-generated word association norms that are directly comparable to human-
generated norms. We model our dataset after the Small World of Worlds English
word association norms (SWOW) [7], the largest and most recent dataset to date.
We prompt Mistral AI’s large language model – in particular the mistral-7b-
instruct-0.1 model – to produce responses to the same exact cues that are present
in the SWOW dataset. We create two datasets of LLM-generated norms: for the
first dataset, we prompt the model with only the cue words. For the second, we
prompt the model with cue words as well as the exact profiles of the participants
in the original SWOW experiment (i.e. age, gender, etc.). In this way, we also
investigate how well the model is capable of simulating (its own interpretation
of) a specific profile.

The aim of this working paper is to provide an overview of the datasets and
a brief demonstration of how they may be used. The remainder of the paper is
organized as follows. In Section 2 we present the methodology used to generate
and preprocess the data and we discuss the preliminary comparative analyses
that we performed on all three sets of norms: the original SWOW dataset, the
Mistral-without-profiles dataset, and the Mistral-with-profiles dataset. In Section
3 we present the results of our preliminary analyses, and in Section 4 we briefly
discuss directions for future work.
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2. Experimental settings and methodology

We prepared the input to the model using the preprocessed original SWOW
dataset containing 12,282 unique cue words, each repeated 100 times, with three
responses (R1, R2, and R3) per cue token. We matched the SWOW participant
profiles to their corresponding cue words to ensure that the Mistral-with-profiles
dataset would be aligned with the original SWOW data. We then prompted the
model to provide three associations each time it was presented with a cue word.
In the case of the dataset with participant profiles, we also asked the model to
respond as if it were a person with the specified profile.

Preprocessing of the responses consisted of various steps. First, proper names
and spelling errors were corrected (including changing British spelling to Ameri-
can spelling) using mapping tables from the original SWOW experiment. Prefixes
the, a an, and and were also removed from the responses, unless the response
was among the cues (e.g. a lot). Then, a series of ad-hoc filters were applied to
remove nonsensical responses such as printassociation1, corresponding to 0.75%
and 4.32% of all responses in the Mistral-without-profiles data and the Mistral-
with-profiles data, respectively. Finally, duplicate responses and responses iden-
tical to their cues were removed.

Following data preprocessing, we performed the following preliminary ex-
ploratory analyses to capture peculiarities of the generated datasets2.

Properties of cues and responses. We investigated the properties of cues and re-
sponses by counting the numbers of tokens, numbers of types, and the percent-
age of missing responses in all three datasets. We also calculated the percentage
overlap of the original responses compared to the LLM responses. Additionally,
we compared the distributions of the number of unique responses per cue across
the three datasets. These statistics provide important insights about the richness
of the responses provided by humans compared to LLMs.

Investigating biases and relations. Since word associations are generally sponta-
neous and automatic, they can serve as a window into our implicit biases. In or-
der to explore any potential differences in gender biases across the datasets, we
looked at the top ten most frequent response tokens to the cues man and woman.
We also investigated differences in the types of relations that responses shared
with the cues, specifically, paradigmatic vs. syntagmatic relations. Paradigmatic
relations are those that can be expressed in a taxonomy or can be substituted for
each other [24], including synonymy (i.e. woman – lady), antonymy (i.e. woman –
man), and hypernymy (i.e. woman – person). Rather, syntagmatic relations are
those that tend to occur in similar contexts [25](i.e. woman – feminism). Whether
a response has a paradigmatic or a syntagmatic relation with the cue word has
important implications for how lexical data is processed, and may also provide
insights about how we form biases.

Concreteness effects. Concreteness effects are nuanced and complex differences in
how we process lexical information with regards to the abstractness/concreteness

2The link to the repository containing the LLM-generated norms will be made available upon
the acceptance of the working paper.
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of a word. We were interested in investigating the concreteness effect that concrete
words have stronger but fewer associates while abstract words have weaker but
more associates [8]. We investigated this effect in all three datasets.

Network comparisons. Representing word association norms as complex networks
enables us investigate structural properties of the mental lexicon that would oth-
erwise not emerge. We built weighted directed networks from the three datasets
such that cues are source nodes and responses are target nodes. Therefore, edges
are directed from cues to responses and weighted based on the frequency of the
association. We then considered only the largest strongly connected components,
keeping only those nodes that were both cues and responses. We report network
statistics for these three networks (i.e. density, clustering coefficient, etc.) and
then we make pairwise comparisons of the three networks to quantify how similar
and different they are. First, we made pairwise comparisons of their sets of nodes.
We use the Jaccard coefficient (i.e. (A∩B)/A∪B)) as a measure of similarity, and
we also calculated the respective set difference percentages (i.e. (A − B)/A and
(B −A)/B). To compare sets of edges, we considered only the edges in the node
intersection of the networks being compared. We then calculated the same mea-
sures that we used to assess similarities and differences between the sets of nodes,
that is, the Jaccard coefficient and the respective set difference percentages.

3. Experimental Results

In this section we report the preliminary results obtained from performing the
exploratory analyses defined in Section 2.

Properties of cues and responses Table 1 displays the statistics reflecting the
properties of the cues and responses of the three datasets. All three datasets have
the same cues, and they differ only in their responses. The Mistral-without-profiles
norms have the lowest percentage of missing responses, while the Mistral-with-
profiles norms have the highest percentage of missing responses. The number of
response types (unique responses), however, is significantly higher in the original
dataset compared to the LLM datasets. The Mistral-without-profiles dataset also
has slightly more response tokens than the Mistral-with-profiles dataset. In line
with these statistics, 77.3% of the original response types are not in the Mistral-
without-profiles responses, compared to just 30.7% of the Mistral-without-profiles
response types that are not in the original responses. These percentages diverge
even further to 82.9% and 29.9% respectively when comparing the original data
to the Mistral-with-profiles data. These statistics indicate that humans generate
a much wider variety of responses than both the LLMs, and that Mistral-without-
profiles generates a slightly wider variety of responses compared to Mistral-with-
profiles. These statistics are also reflected in the histograms in Figure 1, that
display the number of unique responses per cue for the three datasets. Unlike the
human distribution, the LLM ones are skewed right, reflecting the tendency to
produce fewer unique responses to cues compared to humans.

Investigating biases and relations. Table 2 displays the top ten most frequent re-
sponse tokens to man and woman. We immediately notice that the responses pro-
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Original Mistral w/o profiles Mistral w/ profiles

Number of Tokens Cues 1,228,200 1,228,200 1,228,200

R1 1,197,104 1,190,773 1,114,685

R2 1,148,452 1,182,667 1,080,649

R3 1,058,117 1,144,556 1,002,303

R123 3,403,673 3,517,996 3,197,637

Number of Types Cues 12,282 12,282 12,282

R1 64,824 23,438 20,482

R2 75,466 30,595 20,369

R3 76,817 31,733 19,880

R123 134,217 43,993 32,792

Percentage Missing Tokens R1 2.53% 3.10% 9.24%

R2 6.49% 3.71% 12.0%

R3 13.9% 6.81% 18.4%

R123 7.62 % 4.52 % 13.2%

Table 1. Statistics for cues, R1, R2, R3, and R123 (all responses combined) are provided for the
three datasets. Statistics include the number of tokens (total counts), the number types (unique
counts), and the percentage of missing response tokens.

Figure 1. Histograms displaying the number of unique responses per cue for the original data
(left), Mistral data without profiles (center), and Mistral data with profiles. While the original
data are quite symmetrical, the Mistral data are skewed right, tending towards fewer unique
responses.

Original Mistral w/o profiles Mistral w/ profiles

man woman man woman man woman

woman man human hair car hair

human female male makeup work female

male girl shirt beauty job makeup

child lady person female road fashion

boy mother suit strength career beauty

person person hair fashion city elegance

guy sex adult human suit human

husband beauty tie adult computer dress

strong wife computer dress tie style

gender gender work grace truck adult

Table 2. The top ten most frequent responses to the cues man and woman for the three datasets
are shown. Responses shown in bold reflect paradigmatic relations with the cue word, while
responses shown in italics reflect syntagmatic relations with the cue word.

duced by the LLMs are blatant stereotypical gender biases (e.g. woman – makeup,
man – career). While we observe some biases among the human-generated re-
sponses (e.g. man – strong), they are not nearly as pronounced as those pro-
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duced by the LLMs. We also notice that responses produced by humans tend
towards paradigmatic relations with the cue words (shown in bold in Table 3)
while responses produced by LLMs tend towards syntagmatic relations (shown
in italics in Table 2). This response pattern may in fact be tied to the gender
biases observed, since syntagmatic relations are arguably more subjective than
paradigmatic relations (related to context rather than logical relationships), and
therefore leave more room for biased perceptions.

Figure 2. Concreteness effects for the original data (top), mistral data without profiles (center),
and mistral data with profiles (bottom). Plots on the left display cue concreteness vs. number
of associations, while plots on the right display cue concreteness vs. strength of associations.
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Concreteness effects. The density plots in Figure 2 show cue concreteness vs.
number of associations (left), and cue concreteness vs. strength of associations
(right), for each of the three datasets. The expected concreteness effect [8] is
present in the original data evidenced by the downward slope on the left (higher
cue concreteness, fewer associates) and the upward slope on the right (higher
cue concreteness, stronger associates). This effect appears to be absent in the
Mistral-without-profiles data, and very subtle in the Mistral-with-profiles data.

Network comparisons. The networks shown in Figure 3 are subgraphs centered
around the cue word dog, including only the top ten most frequent response
nodes and the weighted directed edges from the cue dog to the responses. These
visualizations demonstrate how the networks were built, and they also provide
an idea of the types of differences that can observed between the networks. For
example, in the original network, the most frequent response to dog is cat, as
evidenced by the very strongly weighted edge from dog to cat. Interestingly, cat
is completely absent among among the responses in the LLM subgraphs. Instead
the top responses are bark and pet. Another interesting property that we can
observe is that the responses with paradigmatic relations to the cue appear to be
the same in all three subgraphs (puppy, canine, animal(s), pet) while responses
with syntagmatic relations to the cue seem to account for most of the variation
among the responses (cat, love, bone, furry, leash, loyal).

Figure 3. Subgraphs centered around the cue word dog are show for all three networks. They
include only the neighbors with the top ten highest in-degree (top ten most frequent responses).
Only weighted directed edges from the cue dog to the responses are shown.

Table 3 shows the network statistics for the three networks constructed. We note
that the LLM networks are sparser than the original networks. They also have
much higher average edge weights and lower degrees compared to the original net-
work. These statistics reflect the higher variation among responses in the original
data compared to the LLM-generated data.

Table 4 shows the statistics that reflect the similarities and differences from
the pairwise network comparisons. Regarding the pairwise node comparisons,
there is a large percentage of node overlap in all three pairwise comparisons, ev-
idenced by the high Jaccard coefficients. We observe that all nodes in the LLM
networks are also in the original network, but that 7.8% and 19.5% of the nodes in
the original network are not in the Mistral-without-profiles network and Mistral-
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Statistics Original Mistral w/o profiles Mistral w/ profiles

nodes 12,228 11,271 9,841

edges 1,067,696 360,683 267,003

density 0.00714 0.00284 0.00276

< kin >, < kout > 87.3 32 27.1

< kinw >, < koutw > 241.9 259.7 244.8

< w > 2.77 8.11 9.02

< C > 0.078 0.092 0.079

< L > 2.72 3.89 4.47

D 5 9 11

Table 3. Network statistics of the three networks are shown. The statistics include the numbers
of nodes and edges, the network density, the average in-degree < kin > and out-degree < kout >,
the average weighted in-degree < kinw > and weighted out-degree < koutw >, the average edge
weight < w >, the average clustering coefficient < C >, the average shortest path length < L >
and the network diameter < C >.

Nodes A B (A-B)/A Jaccard (B-A)/B

Original Mistral w/o profiles 0.0783 0.9217 0

Original Mistral w/ profiles 0.1952 0.8048 0

Mistral w/ profiles Mistral w/o profiles 0.1400 0.8488 0.0150

Edges A B (A-B)/A Jaccard (B-A)/B

Original Mistral w/o profiles 0.8230 0.1418 0.5394

Original Mistral w/ profiles 0.8624 0.1162 0.5726

Mistral w/ profiles Mistral w/o profiles 0.5689 0.2998 0.5040

Table 4. Pairwise network comparisons of the three networks are shown. The upper table shows
statistics for comparisons between the sets of nodes in the networks, while the lower table
shows statistics for comparisons between the sets of edges, considering only edges in the node
intersection of the two networks being compared. The Jaccard coefficient reflects the similarity
between sets, while (A-B)/A and (B-A)/B reflect the respective set differences.

with-profiles network, respectively. These nodes represent cues that were never
given as responses by the LLMs. Regarding the pairwise edge comparisons, we ob-
serve that there is very little overlap between sets of edges, especially between the
original network and the LLM networks. The LLM networks are much more simi-
lar to each other than they are to the original network, with a Jaccard coefficient
of 30% compared to 14.1% and 11.6%, respectively.

4. Conclusions and future work

We provided an overview of two novel LLM-generated word association datasets
proposing some preliminary analyses that demonstrate how comparisons between
human-generated and LLM-generated norms can be used to investigate various
aspects of information processing. We find that human-generated responses are
much richer and more varied than LLM ones. Also, Mistral-without-profiles re-
sponses are slightly more varied than Mistral-with-profiles ones, suggesting that
more detailed prompts may limit response variability. We also observe stronger
gender biases and weaker concreteness effects in the LLM-generated norms com-
pared to the human-generated norms. In future work, we would like to expand
our network analyses by exploring spreading activation processes on feature-rich
networks to investigate the emergence of cognitive biases in humans and LLMs.
Such investigations could have important implications for human-AI interaction.
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