
A Systematization of the Wagner Framework:
Graph Theory Conjectures and Reinforcement

Learning

Flora Angileri1[0009−0001−3968−6973], Giulia Lombardi2,9[0000−0002−6953−5447],
Andrea Fois3[0000−0002−2749−240X], Renato Faraone3[0000−0003−2426−0299], Carlo

Metta4,7[0000−0002−9325−8232], Michele Salvi1,8,9[0000−0001−8519−4665], Luigi
Amedeo Bianchi2,9[0000−0001−7040−0366], Marco Fantozzi3[0000−0002−0708−5495],
Silvia Giulia Galfrè5[0000−0002−2770−0344], Daniele Pavesi3[0009−0005−3073−5379],

Maurizio Parton6,9[0000−0003−4905−3544], and Francesco
Morandin3,9[0000−0002−2022−2300]

1 Tor Vergata University of Rome, Italy
2 University of Trento, Italy
3 University of Parma, Italy

4 ISTI-CNR, Pisa, Italy
5 University of Pisa, Italy

6 University of Chieti-Pescara, Italy

Abstract. In 2021, Adam Zsolt Wagner proposed an approach to dis-
prove conjectures in graph theory using Reinforcement Learning (RL).
Wagner frames a conjecture as f(G) < 0 for every graph G, for a cer-
tain invariant f ; one can then play a single-player graph-building game,
where at each turn the player decides whether to add an edge or not.
The game ends when all edges have been considered, resulting in a cer-
tain graph GT , and f(GT ) is the final score of the game; RL is then
used to maximize this score. This brilliant idea is as simple as inno-
vative, and it lends itself to systematic generalization. Several different
single-player graph-building games can be employed, along with various
RL algorithms. Moreover, RL maximizes the cumulative reward, allow-
ing for step-by-step rewards instead of a single final score, provided the
final cumulative reward represents the quantity of interest f(GT ). In this
paper, we discuss these and various other choices that can be significant
in Wagner’s framework. As a contribution to this systematization, we
present four distinct single-player graph-building games. Each game em-
ploys both a step-by-step reward system and a single final score. We also
propose a principled approach to select the most suitable neural net-
work architecture for any given conjecture and introduce a new dataset
of graphs labeled with their Laplacian spectra. The games have been
implemented as environments in the Gymnasium framework, and along
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with the dataset and a simple interface to play with the environments,
are available at https://github.com/CuriosAI/graph_conjectures.

Keywords: Reinforcement Learning · Graph Theory.

1 Introduction

The field of graph theory is a wellspring of conjectures that have long fueled
mathematical investigation. Recently, Wagner in [19] proposed an innovative
approach to disprove these conjectures, formulating the problem as a one-player
game modeled within the Reinforcement Learning (RL) framework. In this game,
the player maneuvers through a state space of graphs, earning rewards based on
certain graph characteristics, and related to the conjecture in question. Through
optimal play, the game steers the player towards a graph that is as close as pos-
sible to the conjectured bound. Surpassing the bound provides a counterexample
to the conjecture.

In this very general framework, once a target conjecture is chosen, e.g. f(G) <
0 for every graph G, there are several pivotal choices that could lead to success
or failure. For instance, the rules of the “build your graph” game; the reward
function; the termination condition; the RL algorithm used to play the game
and optimize the cumulated reward; the neural network architecture involved
in the RL algorithm. Each of these variables, and many others as well, has an
impact on the model’s capability to explore successfully the space of graphs and
eventually finding a counterexample. Moreover, if the bound is not surpassed de-
spite the player learning, something can still be inferred: the conjecture is true,
and experiments gives us empirical evidence in favor of this, or the counterex-
ample is rare with respect to the visitation distribution of the RL algorithm in
use, and this suggests changing some of the choices toward a more sophisticated
exploration.

Novel Contributions. The aim of this paper is to open a discussion about
those pivotal choices: among various “build your graph” games, reward functions,
RL algorithms, neural network architectures, are some better than others? We
argue that the first and most effective choice is the game, and we provide open-
source Gymnasium [18] implementations of four different graph-building games,
that we call Linear, Local, Global, and Flip. An externally defined reward func-
tion makes them independent from the conjecture. Moreover, we argue that the
second important choice is the neural network architecture, that should excel
at extracting features informative for computing f . We recommend preliminary
testing of various architectures on a supervised task related to f , selecting the
one that performs best. We introduce a novel dataset of graphs labeled with
their Laplacian spectra, which is particularly useful for conjectures related to
eigenvalues. Furthermore, we present a novel counterexample for Conjecture 2.1
in [19]. With this contribution, we hope to steer the research toward a general
systematization of Wagner’s framework.

In Section 2, we briefly review the body of literature that has stemmed from
Wagner’s idea. In Section 3, we discuss the most relevant choices that can be

https://github.com/CuriosAI/graph_conjectures
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done. In Section 4, we describe four “build your graph” games, implemented as
Gymnasium environments: Linear (similar to Wagner’s original game), Local,
Global, and Flip (similar to the game described in [9]). In Section 5, we describe
the Laplacian spectra dataset. Finally, in Section 6, we discuss possible future
developments.

2 Related Work

The paper where this framework was first proposed by Wagner is [19]. Here the
game is played on graphs with a fixed number of nodes n, and the n(n−1)

2 edges
are enumerated in a predefined order. The agent starts from the empty graph G0,
and at turn t decides whether or not to add edge t, building graph Gt. The agent
does not receive any reward until the last turn t = T = n(n−1)

2 , when the game
ends and the agent receives a reward f(GT ). Note that since the agent needs to
know which edge to add at every turn, states contain both the graph Gt, and the
turn t as well (common in the RL finite horizon setting). The policy is modeled
as a fully connected 3-layers neural network, and the RL algorithm used is the
gradient-free cross-entropy method. Using this beautiful idea, Wagner was able
to find counterexamples for several published conjectures, including a 19-nodes
counterexample for a conjecture on the sum of the matching number and the
spectral radius [1,17]. In our paper, we provide a Gymnasium implementation
of Wagner’s game, that we call Linear, and a 18-nodes counterexample.

Wagner’s approach has led to several important follow-up studies, includ-
ing [9], co-authored by Wagner himself. This study tackles an extremal graph
theory problem originally proposed by Erdős in 1975. Their focus is on identi-
fying graphs of a specific size that maximize the number of edges while exclud-
ing 3- or 4-cycles. Utilizing AlphaZero[15], they bootstrap the search process
for larger graphs using optimal solutions derived from smaller ones, enhancing
lower bounds across various sizes. Key innovations of their work include a new
game, that they call edge-flipping game, and a novel Graph Neural Network
architecture, called pairformer, which has proven particularly effective for this
problem. However, they did not make the code for the game, the pairformer,
or the AlphaZero configuration used in their experiments publicly available. In
our paper, we provide Flip, a Gymnasium implementation of their edge-flipping
game.

Another very interesting paper is [6], in which the authors reevaluate Wag-
ner’s method with an emphasis on enhancing its speed and stability. They reim-
plement from scratch Wagner’s code, improving the readability, stability, and
speed. They also successfully construct counterexamples for various conjectured
bounds on the Laplacian spectral radius of graphs. Like our work, they imple-
ment an external reward function. Yet, the most important contribution of their
paper is, in our opinion, the special attention given to computational perfor-
mance. They observe that, since RL must process invariants for hundreds of
thousands of graphs to achieve adequate convergence in learning, using Net-
workX [8] and/or numpy is suboptimal. They show that invoking Java code
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directly from Python significantly accelerates the invariants computation. Our
experiments confirm that using networkX is quite slow, and using this approach
is the most natural future development of our paper, see Section 6.

In [7], authored by the same team as [6], new lower bounds are established
for several small Ramsey numbers. They continue to use Wagner’s original frame-
work, but with a slight modification to the RL algorithm. This aligns with our
proposal to diversify Wagner’s framework from multiple directions to effectively
tackle various conjectures.

3 Methods

3.1 Notation

In RL a game is typically modeled as a Markov Decision Process (MDP), that
is, a 4-tuple (S,A,R, p) consisting of state space, action space, rewards, and
transition model p : S×A → ∆(S×R), where ∆ denotes the space of probability
distributions. A transition p(s′, r|s, a) is the probability of reaching next state
s′ with a reward r ∈ R ⊂ R when the action a is executed in the state s.
An agent interacts with the environment by sampling actions from a policy
π : S → ∆(A). This agent-environment interaction gives rise to a sequence
S0, A0, R1, S1, A1, R2, . . . , called trajectory. Here St, At, Rt+1, St+1 denote the
state at time t, the action executed at time t sampled from π(·|St), the reward
received at time t+1, and the state reached at time t+1, respectively. Moreover,
if there are absorbing states reachable from every state under a uniform policy,
the game is called episodic and will eventually terminate; otherwise, it is called
continuing and the trajectory will never end, unless an additional termination
condition is given. Sometimes, the game ends always at a fixed time T , and in
this case it is called a finite time horizon MDP. Our game features a customizable
finite time horizon, which defaults to the number of edges. For this and other
details, see Sections 3.2, 3.3, 3.4, 3.5, and 4.

Gymnasium [18] is a maintained fork of OpenAI’s Gym [2] library, a popular
open-source framework developed by OpenAI that provides a standardized set of
games, called environments in Gym, for testing and developing RL algorithms.
The Gym library is designed to help researchers and developers to easily experi-
ment with different RL algorithms and compare their performance across a wide
variety of tasks. For this reason, we have chosen Gymnasium to implement the
graph-building games in this paper.

Given a family G of graphs, we always assume the conjecture in a normal
form:

f(G) ≤ 0 or f(G) < 0 ∀G ∈ G. (1)

In our environments, G is the family of all undirected unweighted graphs with a
fixed amount n of nodes, without multiple edges. Self-loops are optional.
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3.2 States, Actions, and Transitions

In Wagner’s framework, the MDP is a graph-building game, and thus, the state
St always contains at least the current graph Gt. Sometimes, prior knowledge
on the problem can suggest to restrict to certain graphs, for instance when one
can prove that a counterexample, if it exists, must happen on trees. In this case,
one could consider to restrict the family G of graphs visited during episodes. We
designed our environments for general undirected graphs with a fixed amount n
of nodes, without multiple edges, and we added the option to include or exclude
self-loops. See also Section 6 for possible improvements of our environments that
could allow to change the family G.

In Wagner’s framework, the agent visits one edge a time, under a predefined
order. However, in general, there are several different ways in which the agent
can move on the graph and select the edge (or the edges) to modify. For instance,
some games can be single-action based, like the edge-flipping game in [9] and our
Flip game; other games can be multi-action, with both possibilities to modify
an edge or not, like Wagner’s game, and our Linear, Local, and Global games.
Moreover, the agent can modify an edge in several ways: by adding or removing
it, but also by leaving it as it is or changing it, or by flipping it. A significant
aspect of how actions are defined is their impact on the game’s dynamics. In some
cases, the game becomes monotonic, meaning that each graph Gt is a subgraph
of Gt+1. For details on our implementation and how we take these variations
into account, see Section 4.

Another important consideration in Wagner’s framework is the transition
model used. In RL, the environment might respond to actions in a stochas-
tic manner, with transitions modeled by the conditional probability distribu-
tion p(s′, r|s, a). Incorporating a stochastic element in the graph-building game,
where an action At performed on graph Gt could lead to various possible next
states Gt+1, is an intriguing possibility, because this stochastic approach could
enhance exploration within the model. However, in our initial paper on system-
atizing Wagner’s framework, we implemented only deterministic games, where
applying the same action to a given graph consistently results in the same next
graph.

3.3 Reward

Given a conjecture as in (1), a natural choice for the reward in the episodic
setting is r(GT ) = f(GT ) at the end T of the episode, and r(GT ) = 0 elsewhere.
We call this reward sparse. Then, a counterexample is found when r(GT ) > 0
happens. A different choice is what we call the incremental reward: at each time
t > 0, we receive the increment f(Gt) − f(Gt−1). If we start from a “virtual”
graph G0 with f(G0) = 0, then the cumulated incremental reward is exactly
f(GT ), as with the sparse reward. In certain cases, for instance with temporal
difference algorithms, or when we are interested in understanding how a single
action impacts on the graph, an incremental reward could prove useful.
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Observe that in a graph-building game, reaching the end of the episode before
checking for the counterexample is not efficient. Since the game is just a way to
guide agent’s search for a counterexample, one could perform the check after ev-
ery action. In this case, again, a sparse reward seems less reasonable. We provide
the option of performing this check after every action in our environments. Note
that in particular when this check is enabled, performing the invariant compu-
tation with an external Java code as suggested in [6], is particularly useful. See
Section 6.

Furthermore, note that alternative rewards and a discounted setting could
also be considered. As long as the objective of maximizing cumulative rewards
potentially results in a counterexample, these alternatives remain viable. Ad-
ditionally, incorporating a discount factor offers the advantage of applicability
in continuing formulations of the game, when a termination condition is not
desired.However, designing a reward system in a discounted setting such that
maximizing it reliably leads to a counterexample presents significant challenges.

3.4 RL algorithm

The choice of the reinforcement learning (RL) algorithm is crucial. Wagner,
and [6,7] also showed that even a simple, gradient-free algorithm like the cross-
entropy method can achieve impressive results. Nonetheless, several alternative
algorithms could also be considered. Among the most promising are Proximal
Policy Optimization (PPO), known for its robustness and effectiveness across
various tasks, and AlphaZero-like algorithms. Employing PPO with our envi-
ronments enabled us to find a novel 18-node counterexample to Conjecture 2.1
in Wagner’s paper, see Fig. 1. Although this counterexample merely replicates
the structure of Wagner’s original, it underscores the potential applicability of
different algorithms.

Despite PPO being promising, we posit that AlphaZero is the most natural
choice in this highly complex graph-building game scenario, and in fact it was
used successfully in [9]. However, notice that while PPO is available in several
established RL library like Stable-Baselines [14], and its design space is rela-
tively easy to configure, AlphaZero complexity requires a much more thorough
calibration of its hyperparameters.

3.5 Architecture of approximators

Given the combinatorial explosion of non-isomorphic graphs when increasing the
number of nodes, approximation must be used. We assume that approximation
is done by neural networks, and this takes the neural network architecture in
play. Given the nature of the task, a clear “best choice” here is using a Graph
Neural Network (GNN). But which GNN is the best one for a given conjecture
f?

To guide the choice of a proper GNN architecture for a given conjecture f , we
propose to test different architectures on a supervised task involving the most
relevant invariants used in f . For instance, if the conjecture uses the largest
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Fig. 1: Counterexample G for Conjecture 2.1 found with PPO. Here
f(G) =

√
18− 1− 1− λ1(G)− µ(G) ≃ 0.02181 > 0

eigenvalue and the matching number, one could train several GNN to predict
the largest eigenvalue or the matching number of a graph, and then use in the
graph-building game the GNN that in the supervised learning task provided the
best accuracy. A dataset built to guide this selection process should be as rich
as possible, including a lot of non-isomorphic graphs.

Following on this idea, we created a dataset of graphs with 11 nodes, labelled
with their Laplacian spectra, see Section 5 for more details. This dataset is
designed for Brouwer’s Conjecture, that has been proven true up to n = 10 in
[3], see Section 6.

4 Environments

We implemented four “build your graph” games as Gymnasium environments:
Linear, Local, Global, and Flip. All our games are played on undirected graphs
with a fixed number n of nodes, and without multiple edges. The environments
are parametric with respect to several aspects: for instance, one can choose
the starting graph, or whether to enforce the agent excluding self-loops. For
details on these parameters, see Section 4.5. These environments are available
at https://github.com/CuriosAI/graph_conjectures.

4.1 Linear

Linear is a variation of the game used by Wagner. The name comes from the
state’s vector internal representation. In Linear, edges are ordered, and then at
each time t the agent can choose between leaving the edge number t as it is (i.e.
passing it), or flipping it. The Edge-flipping operation (as defined in [9]) changes
the state of an edge like a boolean not operator, as follows: let e ∈ {0, 1} be the

https://github.com/CuriosAI/graph_conjectures
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single bit representing the edge, then

flip(e) =

{
1 if e = 0

0 otherwise

The state is given by the graph and the current time t, and the action space
is {0, 1}, where 0 means that the current edge is left unchanged, and 1 that the
edge is flipped. With its default values, Linear differs from Wagner’s game for
the ordering of the edges: in Wagner’s game, edges are numbered by forming
and expanding cliques first, that is, (1, 2), (1, 3), (2, 3), (1, 4), . . . , while in Linear
is given by (1, 2), (1, 3), . . . , (1, n), (2, 3), . . . . Moreover, Wagner starts from the
empty graph, while the default setting in our games is to start from the complete
graph. Episodes in Linear always end at time T = n(n−1)

2 , if self-loops are not
allowed, and at time T = n(n+1)

2 , otherwise.

G

1 2

34

1 2

34

1 2

4 3

Fig. 2: Effects of the flip action on different edges. Existing and missing edges are
represented with solid and dotted lines, respectively. The top-right graph shows
G after flipping edge (2,3), while the bottom-right graph shows G after flipping
edge (1,4).

4.2 Local

In Local, the agent explores the graph space by moving from one node to another.
When moving from node i to node j, the agent has the option either to flip the
edge (i, j) or to pass it. This ensures that from node i, the agent’s actions are
“locally” confined, impacting only the directly connected edge (i, j). Note that
this is different from Linear, because the agent can choose any node j to move
to. The state is given by the current graph, the current node i where the agent
is located, and the current time. An action is given by a target node j to move
to from node i, and a binary value {0, 1}, where 0 means taking no action,
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and 1 means flipping the edge (i, j). In our implementation, this action logic is
represented by a single integer value k within the range [0, 2n − 1] where n is
the number of nodes. Assuming to start from node i, if k ∈ [0, n − 1], we move
to node j = k without taking any action on edge (i, j). If k ∈ [n, 2n − 1], we
move to node j = k mod n, and the edge (i, j) is flipped. Episodes in Local end
at a termination time T that can be passed as optional input when the game
is initialized, and defaults to T = n(n−1)

2 , if self-loops are not allowed, and to
T = n(n+1)

2 , otherwise.

4.3 Global

In Global, the agent explores the graph space by acting on any edge across the
entire graph at any time. The agent can choose any edge to act upon, deciding
either to flip it or to pass it. This “global” approach ensures that the agent’s
actions are not confined to its immediate location, allowing interaction with any
part of the graph. Episodes end at a termination time T that can be given as
input at game’s initialization, with same Local defaults. Similar to Local, the
possibility to pass on an action without flipping an edge is maintained, because
it helps mitigate the risk of choosing a wrong termination time for the game. For
instance, if flipping were mandatory, excessively long matches could potentially
disrupt an optimal configuration previously achieved. Allowing the passing of
actions enables the agent to maintain an optimal configuration indefinitely. The
state is given by the current graph, and the current time. An action is given by
a target edge, and a binary value {0, 1}, where 0 means taking no action, and 1
means flipping the edge. In our implementation, the action logic is similar to that
seen in Local, but generalized to handle global movements along the graph. Here,
the action is represented by a single integer value k within the range [0, 2m− 1],
where m is the number of edges. If k ∈ [0,m − 1], edge (i, j), where i =

⌊
k
n

⌋
and j = k mod m, remains unchanged. If k ∈ [m, 2m − 1], edge (i, j), where
i =

⌊
k−m
n

⌋
and j = k mod m is flipped.

4.4 Flip

Flip implements the edge-flipping environment as described in [9]. This environ-
ment is the same as Global, with one difference: the absence of the option to
pass. In Flip, each action requires the agent to select an edge and compulsorily
flip it. The termination time is the same as in Local and Global.

4.5 Common settings

In this section we describe the parameters that can be used to tune specific
aspects of the games. The number of nodes and the reward function must be
given in input, while the other ones, highlighted with ∗, have default values that
can be changed at game’s initialization.
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(a) Linear (b) Local

(c) Global and Flip

Fig. 3: Comparison of game modes. Edges that can be modified by the agent are
colored blue, with dotted lines representing missing edges. In Linear the agent
can modify just the next edge in the game’s order. In Local, the agent remains
on vertices, such as the blue one in 3b, and can choose to modify one among its
incident edges. In Global and Flip, all edges are always accessible.

– Number of nodes: Our games are thought to explore graphs with fixed
number of vertices. It is not possible to enlarge or reduce this dimension
while playing.

– Reward Function: Implementing environments parametric with respect to
the reward makes their structure completely independent from the conjec-
ture. Defined externally, the reward function takes an adjacency matrix and
a boolean, outputting a numeric value. This boolean determines whether
the reward should be normalized, a process which can affect neural net-
work training. The environment has a normalize reward option, which is
then internally passed to the reward function. Note that reward normaliza-
tion depends on knowing the maximum possible reward, which isn’t always
feasible.

– Normalize reward∗: This boolean value is passed to the function used in
computing rewards. Default value is False.

– Reward type∗: Incremental or sparse. Default is sparse.
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– Initial graph∗: The game can be started from any graph. Default value is
the complete graph.

– Self-loops∗: Self-loops are permitted in our environments, under the as-
sumption that agents will avoid them when the scenario specifically requires
graphs without self-loops. To enforce this rule and provide an additional
layer of control, we have implemented a Boolean option. If set to False, the
step method will not execute any action and will instead return an error
message whenever an agent attempts to create a self-loop. The default value
is False.

– Check at every step∗: Whether to check or not at every step for coun-
terexamples. Default is False.

– Termination time: When episodes end. Default is n(n−1)
2 when self-loops

is False, and n(n+1)
2 when self-loops is True.

Remark 1. Consider an agent playing a finite-time horizon “build your graph”
game, with horizon T . An agent looking for an optimal graph G∗ maximizing a
certain conjecture f would need to synchronize its moves to conclude the episode
exactly on G∗. If we assume for simplicity that the game starts from the empty
graph, in scenarios where the only action is flipping an edge, without the option
to pass, the parity of the number of edges of the final graph GT would be dictated
by the parity of T . Thus, it may well be impossible, also for a perfect agent, to
exploit G∗, without a pass action.

Remark 2. We raise questions about the suitability of RL for this type of combi-
natorial optimization problem. The outcome of an RL algorithm is a policy, that
can then be employed to play optimally. However, within this specific frame-
work, the focus is not on the policy itself but rather on the final state that the
policy produces. We wonder whether a different approach, for instance a gener-
ative model, could be a more appropriate approach. Such a model would focus
on iteratively constructing better graphs, which aligns more directly with the
primary goal of discovering counterexamples or optimal structures without the
intermediary step of policy refinement.

4.6 User interface

To facilitate testing of the game environments described herein, we provide a
simple graphical user interface (GUI), which is open-sourced and available at
https://github.com/CuriosAI/graph_conjectures under main.py. This interface
enables users to select a conjecture (Wagner or Brouwer), choose a game type
(Linear, Local, Global, or Flip), specify the number of nodes, and select the
reward type (Sparse or Incremental). Users can interact with the game by per-
forming actions, with the GUI visualizing the current state of the game as graph
G, as well as the function f(G) that is intended to be maximized.

https://github.com/CuriosAI/graph_conjectures


12 F. Angileri, G. Lombardi, A. Fois, R. Faraone, C. Metta, M. Salvi et al.

5 Dataset for Laplacian spectrum supervised learning

In this section we describe a dataset built for working on Brouwer’s Conjec-
ture [3], see Section 6. The dataset contains graphs with 11 nodes sampled from
diverse distributions, and labelled with their Laplacian spectra. This number of
nodes is the first one for which the conjecture has not yet been proved.

We used three different random graphs models implemented in NetworkX
Python library and graphs downloaded from The House of Graphs database [4].
Our dataset contains:

– 1010 graphs drawn from Erdős–Rényi (ER) models, denoted as G(11, p). We
considered p varying in [0, 1] with step 0.01, obtaining 99 non-trivial models,
and two trivial distributions that create copies of the empty graph or the
complete graph. We have drawn 10 graphs from each of this models. Our
choice to produce a small samples size at fixed p is motivated by the fact that
slightly similar probabilities p1 and p2 lead to similar ER models, and thus,
to similar graphs. Small models’ sample sizes produces a limited redundancy
of configurations, resulting in a oversampling effect that helps the learning
process.

– 540 graphs drawn from Watts-Strogatz models, varying the mean degree k
in {4, 6, 8}, avoiding k = 10 to stay away from the complete graph, and
rewriting edges’ probability β in [0.1, 0.9] with step 0.1. Combining k and β
in all possible ways gives 27 models and 20 graphs were drawn from each.

– 271 graphs with 11 nodes downloaded from The House of Graphs. House
of Graphs is a rich database of non-isomorphic graphs which is frequently
updated. It contains a lot of particular configuration that can be very hard
to reach with random graph’s generators.

– 10162 graphs obtained with Barabási–Albert model (BA), with parameter
m varying in {2, . . . , 9}. BA algorithm builds a graph starting from an initial
configuration on m0 > m nodes. We took House of Graphs’ samples with
3 ≤ n ≤ 10 and used each G in this batch to start a BA generation with
m < |V (G)|.

The dataset is open-sourced and available at https://github.com/CuriosAI/
graph_conjectures under the filename n11_graphs.g6. The .g6 format is a com-
pact text-based encoding specifically designed for graphs. It is well-supported
and can be easily read by the NetworkX method read_graph6, that returns a
list of graphs objects. Labels are in n11_laplacian_spectra.txt. This is a
simple text file, where each line includes 11 Laplacian eigenvalues in descend-
ing order, separated by spaces. Each line in the n11_laplacian_spectra.txt
directly corresponds to the graph at the same position in the n11_graphs.g6
file.

All pairs of graphs in the dataset have been subjected to the 1-dimensional
Weisfeiler-Leman test [20]. This test gives a negative response in case of non-
isomorphic graphs, and positive in case of potentially isomorphic graphs (false
positives are possible). The test resulted positive on 1124695 pairs, meaning that

https://github.com/CuriosAI/graph_conjectures
https://github.com/CuriosAI/graph_conjectures
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the percentage of isomorphic pairs is less than or equal to the 1,57% of the total.
The highlighted pairs are reported in the file weisfeiler_leman_results.txt.

This dataset can be used in selecting GNNs for any conjecture regarding
Laplacian eigenvalues, not only Brouwer’s Conjecture. In Section 6 we discuss
how this dataset could be further improved.

6 Future Work and Conclusions

An important next step for our proposed systematization is to integrate the
computation of invariants using external Java code. As pointed out by [6], this
could significantly enhance the computational efficiency.

An interesting direction for further research would be conducting an ablation
study to evaluate the effectiveness of various components described in this paper.
For instance, we could set a fixed conjecture, architecture, and algorithm, and
then test Linear, Local, Global, and Flip, to see if one of them is particularly
more effective than the others. This method could also be employed to assess
the impact of other elements within the framework.

Additionally, we plan to apply AlphaZero [16] and other AlphaZero-like al-
gorithms [11,12,13] to the Brouwer conjecture, using our dataset to select an
appropriate GNN flavor. We intend to experiment with the pairformer, imple-
mented following the description in [9] and the AlphaFold source code, from
which the pairformer is taken. All neural network architectures will be enhanced
by a global skip connection [5] and by non-shared biases [10].

Also the dataset could be improved. We plan to enhance its diversity by
calculating a range of graph invariants to identify and downsample overrepre-
sented elements. Additionally, we will explore new methods to enrich the dataset
further.

We conclude with a very general remark. Wagner’s approach holds potential
beyond graph theory, and it could be applicable to any combinatorial optimiza-
tion problem. In a sense, RL is a very powerful “algorithm” for discrete opti-
mization, and Wagner’s paper has “just” effectively exploited this power in the
realm of graphs.
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