
ORIGINAL ARTICLE

Quantification using permutation-invariant networks based
on histograms

Olaya Pérez-Mon1 • Alejandro Moreo2 • Juan José del Coz1 • Pablo González1

Received: 27 March 2024 / Accepted: 14 October 2024
� The Author(s) 2024

Abstract
Quantification, also known as class prevalence estimation, is the supervised learning task in which a model is trained to

predict the prevalence of each class in a given bag of examples. This paper investigates the application of deep neural

networks for tasks of quantification in scenarios where it is possible to apply a symmetric supervised approach that

eliminates the need for classification as an intermediate step, thus directly addressing the quantification problem. Addi-

tionally, it discusses existing permutation-invariant layers designed for set processing and assesses their suitability for

quantification. Based on our analysis, we propose HistNetQ, a novel neural architecture that relies on a permutation-

invariant representation based on histograms that is especially suited for quantification problems. Our experiments carried

out in two standard competitions, which have become a reference in the quantification field, show that HistNetQ out-

performs other deep neural network architectures designed for set processing, as well as the current state-of-the-art

quantification methods. Furthermore, HistNetQ offers two significant advantages over traditional quantification methods: i)

it does not require the labels of the training examples but only the prevalence values of a collection of training bags,

making it applicable to new scenarios; and ii) it is able to optimize any custom quantification-oriented loss function.

Keywords Quantification � Prevalence estimation � Deep learning � Deep neural networks

1 Introduction

In many real-world applications [1–6], predicting the class

of each individual example in a dataset is of little concern,

since the real interest lies in the aggregate level, i.e., in

estimating the prevalence of the classes in a bag of

examples. Quantification, also known as ‘‘class prevalence

estimation,’’ is the supervised learning task that tackles this

particular problem [7]. Quantification has already proven

useful in a wide variety of fields, providing answers to

questions such as: what is the percentage of positive,

neutral, and negative reviews for a specific product of a

given company? [5] or what is the percentage of plankton

organisms belonging to each of the phytoplankton species

in this water sample? [3].

This learning problem can be formalized as follows. Let

Y ¼ fcjglj¼1 be the classes of interest, the goal is to learn a

quantifier: q : NX ! Dl�1, i.e., a functional q 2 Q that,

given a test bag B ¼ fxigmi¼1 in which xi 2 X is a vector of

features representing a data example, returns a vector of

class prevalence estimations qðBÞ 2 Dl�1. In this context,

NX denotes the space of bags (aka ‘‘multisets’’) over the

input space X . The function q thus maps any bag B into the

probability simplex Dl�1 ¼ fðp1; . . .; plÞ j pj 2 ½0; 1�;
Pl

j¼1 pj ¼ 1g, i.e., into the domain of all vectors repre-

senting probability distributions over Y. We will use pB 2
Dl�1 to indicate the true prevalence values of a bag B, and

Alejandro Moreo, Juan José del Coz and Pablo González

have contributed equally to this work.

& Olaya Pérez-Mon

perezolaya@uniovi.es

Alejandro Moreo

alejandro.moreo@isti.cnr.it

Juan José del Coz

juanjo@uniovi.es

Pablo González

gonzalezgpablo@uniovi.es

1 Artificial Intelligence Center, University of Oviedo, C/

Blasco de Garay, Gijón 33204, Asturias, Spain

2 Istituto di Scienza e Tecnologie dell’Informazione, Consiglio

Nazionale delle Ricerche, Pisa 56124, Italy

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-10721-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-4527-6698
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-10721-1&domain=pdf
https://doi.org/10.1007/s00521-024-10721-1

p̂AB 2 Dl�1 to indicate the estimated prevalence values

predicted by the quantification algorithm A, so that pBðcjÞ
and p̂ABðcjÞ are the true and the predicted class prevalence,

for class cj, respectively.

At first glance, quantification seems a task very similar

to classification in spirit. Indeed, the most straightforward

solution to the quantification problem, referred to as

Classify & Count (CC) in the literature, comes down to first

learning a hard classifier h : X ! Y using a training

dataset D ¼ fðxi; yiÞgni¼1 drawn from X � Y, to then issue

label predictions for all examples in the test bag B, and

finally counting the number of times each class has been

attributed. However, it has been observed that CC gives

rise to biased estimators of class prevalence [8]. The reason

is that h is biased toward the training prevalence and

therefore tends to underestimate (resp. overestimate) the

true prevalence of a class when this class becomes more

prevalent (resp. less prevalent) in the test bag B than it was

in the training set D. Noticeably, most quantification

algorithms rely on the predictions of a classifier1 which are

subsequently post-processed using information from D and

B. This post-processing is necessary since, in quantifica-

tion, we assume to face a shift in the data distribution (i.e.,

that the prevalence of the classes may differ between D and

B).

This particular shift is generally known as ‘‘label shift‘‘

or ‘‘prior probability shift’’ [11], according to which the

prior distribution P(Y) can change between training and

deployment conditions, while the class-conditional densi-

ties P(X|Y) are assumed stationary. The fact that CC is not

suitable for quantification under prior probability shift

conditions has led to the development of a myriad of

methods designed specifically for quantification, which is

by now recognized as a task in its own right (see, e.g.,

[12, 13] for an overview).

One of the main advantages of adopting deep neural

network architectures (DNNs) for quantification is that

DNNs allow the learning process to handle bags of

examples (labeled by their class prevalence values) instead

of individual examples (labeled by class). Following this

intuition, a change in the learning paradigm with respect to

the traditional one was first proposed in [14]. In this paper,

we offer an in-depth exploration of the implications of this

change of paradigm, by analyzing the main advantages and

limitations with respect to traditional approaches to quan-

tification. Conversely, traditional quantification methods

adopt an asymmetric approach in which a classifier is

trained to infer the class of the individual examples and in

which the label predictions are used to estimate the

prevalence of the classes in the bag. This way, the training

labels (class labels attached to the example) and the labels

to be predicted (class prevalence values attached to the

bag) are not homologous. In contrast, following the

approach proposed in [14], we can reframe the quantifi-

cation problem as a symmetric supervised learning task in

which the training set consists of a collection of bags with

examples labeled at the aggregate level (i.e., without

individual class labels). This formulation posits the quan-

tification problem as a multivariate regression task, in

which the labels provided for training and the labels we

need to predict become homologous. Throughout this

paper, we will demonstrate further advantages of this for-

mulation. Among them, and in contrast to traditional

quantification methods, the quantifier becomes capable of

optimizing any specific loss function.

With this aim, our paper investigates the application of

DNNs to the symmetric quantification problem. The paper

begins by addressing a central issue that arises when

making predictions for entire bags rather than for individ-

ual examples, namely how to represent bags in a permu-

tation-invariant manner [15–17]. Two influential DNN

architectures have been proposed for set processing:

DeepSets [18] and SetTransformers [19]. The former

employs a pooling layer like max, average, or median, to

summarize each bag, while the latter uses a transformer

architecture without positional encoding. These approaches

were designed as universal approximation functions for set-

based problems. Here, we propose a new architecture,

called HistNetQ, that gains inspiration from histogram

representations of empirical distributions.2 The reason why

histograms seem promising is twofold: histograms are

naturally geared toward representing densities and convey

more information than plain statistics (like the mean, or

median). We will show that histogram-based layers can be

seen as a generalization of the pooling layers proposed in

[14, 18].

The contributions of this paper are threefold. First, we

analyze the symmetric approach of [14] for quantification,

discussing its strengths and limitations. Secondly, we

empirically assess the suitability of previously proposed

permutation-invariant layers to the quantification problem.

Finally, we propose HistNetQ, a new permutation-invariant

architecture based on differentiable histograms, specifically

useful for quantification tasks.

Our experiments reveal two main findings: i) HistNetQ

outperforms not only traditional quantification methods

and previous general-purpose DNN architectures for set

1 Other alternatives exist which instead rely directly on the features

of the examples (the covariates) [9, 10]; however, the literature has

shown that these approaches tend to be less competitive.

2 The term ‘‘histogram’’ is typically used to refer to a visualization

tool for representing empirical distributions. Although there is no

visual representation within the model, we still use this term because

our method is based on certain operators that, in previous works, have

come to be known as ‘‘differentiable histograms’’.

Neural Computing and Applications

123

processing but also state-of-the-art quantification-specific

DNN methods [14, 20] in the two editions of the LeQua

competition [21, 22], the only competitions entirely devo-

ted to quantification held to date, ii) HistNetQ proves

competitive not only in the symmetric approach, but also

under the asymmetric approach too, that is, when a set of

bags labeled by prevalence is not available and must be

generated from D via sampling.

2 Related work

This section briefly describes the most important quantifi-

cation methods based on the asymmetric approach as well

as DNN architectures specifically designed to handle set-

based data.

2.1 Quantification methods

The Adjusted Classify and Count (ACC) method (see

[8, 23]), later renamed as Black Box Shift Estimation

‘‘hard’’ (BBSE-hard) in [24], learns a classifier h and then

applies a correction relying on the law of total probability:

pðhðxÞ ¼ ciÞ ¼
X

cj2Y
pðhðxÞ ¼ cijcjÞ � pðcjÞ; ð1Þ

which corresponds to the following linear system:

p̂CCB ¼ Mh � p; ð2Þ

where p̂CCB are the prevalence estimates returned by the CC

method for the test bag B, and Mh is the misclassification

matrix characterizing h, in which the entry mij is the

probability that h predicts ci if the true class is cj. Note that

Mh is unknown but can be estimated via cross-validation.

The reason is that the probability shift assumption by

which the class-conditional distribution of the covariates

P(X|Y) is assumed stationary across training and test con-

ditions, and implies that the class-conditional distribution

of the predictions P(h(X)|Y) remains stationary too [25].

ACC comes down to solving (2) as p̂ACCB ¼ M̂�1
h � p̂CCB if

Mh is invertible; otherwise, the Penrose pseudoinverse can

be used [26].

In [27], the authors propose two probabilistic variants of

CC and ACC, that consist of replacing the hard classifier h

with a soft classifier s : X ! Dl�1, thus giving rise to

Probabilistic Classify & Count (PCC):

p̂PCCB ¼
P

x2B sðxÞ
jBj ; ð3Þ

and Probabilistic Adjusted Classify and Count (PACC)

(also known as BBSE-soft in [24]):

p̂PACCB ¼ M̂�1
s � p̂PCCB : ð4Þ

The Expectation Maximization for Quantification (EMQ)

[28] method applies the EM algorithm to adjust the pos-

terior probabilities generated by a soft classifier s to the

potential shift in the label distribution. It iterates between

two steps: expectation, where the posteriors are updated,

and maximization, where the priors are updated, continuing

until convergence. The literature has convincingly shown

that EMQ is a ‘‘hard to beat’’ quantification method

[29, 30]. However, the performance of EMQ heavily relies

on the quality of the posterior probabilities generated by

s (i.e., on the fact that these posterior probabilities are well-

calibrated). For this reason, different calibration strategies

have been proposed in the literature; among these, the

Bias-Corrected Temperature Scaling (BCTS) calibration

proved the best of the lot [29]. In the experiments of

Sect. 5, we will consider two variants of EMQ: one in

which the posterior probabilities are not recalibrated and

another in which BCTS calibration is applied.

The HDy method [9] uses a combination of histograms

to represent the distributions of the training data D and the

test bag B, using the Hellinger distance (HD) to compare

them. HDy builds the histograms using the posterior

probabilities returned by a soft classifier s. Figure 1 illus-

trates the inner workings of the HDy method in a binary

quantification problem. In the training phase, the distribu-

tions of the posteriors returned by s for the positive and

negative examples in the training set D are estimated using

histograms Dþ and D�, respectively. At test time, the

posteriors of the test bag B are computed and represented

using the same procedure. HDy will then return the

prevalence value p̂ that minimizes the HD between the

mixture and the test bag distributions, solving the following

optimization problem:

Fig. 1 In this example, we observe the distributions of positive cases

(green) and negative cases (blue) within the training dataset

D. Additionally, we can see the mixture distribution (magenta) that

provides the best approximation of the test bag distribution (black)

Neural Computing and Applications

123

argmin
p̂2½0;1�

HDðp̂ � Dþ þ ð1� p̂Þ � D� B Þ: ð5Þ

QuaNet is a DNN architecture for binary quantification

[20]. QuaNet sorts the inputs by their posterior probabili-

ties and processes the sequence using a bidirectional LSTM

that learns a predictor of class prevalence. The prevalence

estimation is then combined with the estimates computed

with some base quantification methods (CC, ACC, PCC,

PACC, and EMQ). QuaNet then generates many bags out

of the training data D to train the model. However, in

contrast to the rest of the DNN architectures that this paper

analyzes, QuaNet follows the asymmetric approach and

requires (just like all quantification methods discussed in

this section) the availability of a training set D with indi-

vidual example labels.

A more exhaustive description of these (and other)

quantification algorithms can be found in [12, 13].

2.2 DNN architectures for sets

In recent years, dedicated DNNs have been proposed to

handle set-based data. Even though these architectures

were not originally devised with class prevalence estima-

tion in mind, they seem apt for the task since they all

construct on top of permutation-invariant representations.

Quantification requires permutation-invariant layers,

because the prevalences of B do not change if the examples

in B are shuffled.

The first of these architectures is called DeepSets [18].

DeepSets relies on different permutation-invariant pooling

operators, like max, average, or median. Pooling operators

are applied to the features representing the examples in a

given bag B. An operator is said to be permutation-in-

variant when the output of the layer is not affected by the

order in which the examples appear in the (serialized) input

sequence S. More formally, a function f is permutation-

invariant if f ðSÞ ¼ f ðpðSÞÞ for any permutation function p.
In [14], the authors use the same architecture and pooling

layers as in DeepSets, proposing its application to quan-

tification problems. For the sake of clarity, we will refer to

the use of simple pooling layers, as max, average, or

median, as DeepSets.

In [19], one step forward was taken by replacing the

simple pooling operators of DeepSets with transformers,

i.e., with attention-based mechanisms that model complex

interactions between the elements in the set. In this archi-

tecture, called SetTransformers, positional encoding is not

included since the order of the examples in the bag is

unimportant. Instead of modeling the interactions between

every possible pair of examples, SetTransformers incor-

porates the concept of inducing points, learnable latent data

points of the vector space that is given as input to the self-

attention mechanism. In this way, the original Oðn2Þ
complexity of SetTransfomer is reduced to OðnIÞ, where n
is the bag size and I (with I � n) the number of inducing

points. To the best of our knowledge, SetTransformers

have never been used in quantification.

3 Symmetric quantification: a case study
analysis

While [14] pioneered the symmetric approach to the field

of quantification learning, the authors did not delve deeper

into the implications of the new approach. Among other

things, this section aims to fill this gap by providing a

comprehensive analysis of its main advantages and

limitations.

Most previous quantification algorithms (as for example

those described in Sect. 2.1) require a training dataset D, in

which labels are attached to individual examples, in order

to learn a quantifier q 2 Q; q : NX ! Dl�1 that, given a

test bag B, computes estimates of class prevalence.

Therefore, the learning device is of the form

L : ðX � YÞn ! Q, meaning that the quantification prob-

lem is posed as an asymmetric task: training labels are

defined in Y, while predictions are probability distributions

from Dl�1. In order to reformulate quantification as a

symmetric supervised task, the training set needs to be

defined as D0 ¼ fðBi; piÞgn
0

i¼1, with Bi 2 NX a training bag

labeled according to its class prevalence values pi 2 Dl�1.

The learning device is thus formalized as

L0 : ðNX � Dl�1Þn
0
! Q, so that the labels provided for

training and the labels we need to predict become

Fig. 2 Different learning paradigms with respect to the type of data

used for training and testing. First column: a typical scenario of

classification; the training data consist of individually labeled data

instances and the test consist of predicting class labels for individual

data instances. Middle column: traditional quantification methods are

trained using individually labeled data instances; at test time,

quantifiers are required to predict the distribution of a bag. Last

column: in a symmetric quantification approach the model is trained

on bags labeled by prevalence

Neural Computing and Applications

123

homologous, i.e., are both probability distributions in Dl�1.

See Fig. 2 for a graphical representation of this intuition.

This reformulation presents some advantages and dis-

advantages that were not discussed in [14]. The first

advantage of the new approach is that the quantification

method is no longer necessarily bound to prior probability

shift. This is a major implication, since most previously

proposed methods in the quantification literature assume to

be in the presence of prior probability shift, and are

specifically devised to counter it. In contrast, by adopting

the symmetric approach, training examples can potentially

exhibit any type of shift, to which the method at hand will

try to develop resilience as part of the learning procedure.

This characteristic is significant, as it considerably broad-

ens the applicability of the quantification method to sce-

narios beyond prior probability shift.

The second advantage is that the quantification problem

is addressed directly, and not via classification as an

intermediate step. This should be advantageous by virtue of

Vapnik’s principle, according to which ‘‘If you possess a

restricted amount of information for solving some problem,

try to solve the problem directly and never solve a more

general problem as an intermediate step. It is possible that

the available information is sufficient for a direct solution

but is insufficient for solving a more general intermediate

problem.’’ Notice that all the methods described in

Sect. 2.1 (with the sole exception of QuaNet) do not

directly learn a model by minimizing a task-oriented loss

(as is rather customary in other areas of supervised

machine learning). The reason is that methods like ACC,

PACC, EMQ, and HDy undertake an asymmetric training

in which a classifier is learned, and then a predefined post-

processing function is employed to yield prevalence esti-

mates. As a result, most quantification methods proposed

so far are agnostic to specific quantification loss functions.

In contrast, methods based on the symmetric approach

(including HistNetQ) can be specifically tailored to mini-

mize a quantification-oriented loss function. This is

important as different applications may be characterized by

different notions of criticality; well-designed loss functions

play a crucial role in accurately reflecting these notions,

thereby enabling a method to become accurate in terms of

application-dependent requirements. For example (a) one

may opt for adopting the absolute error (AE) as an easily

interpretable metric in general cases; (b) in applications

related to epidemiology, estimating the prevalence of rare

diseases might be better served by the relative absolute

error (RAE); (c) in different contexts, employing a cost-

sensitive error measure could help weigh the relative

importance of different classes. See [31] for a broader

discussion on evaluation measures for quantification.

The third advantage is a widening of the range of

problems to which quantification can be applied. Current

quantification algorithms cannot be applied to problems in

which labels are provided at the aggregate level (i.e.,

datasets of ‘‘type D0’’). Problems in which the supervised

training data naturally arise in the form of sets labeled by

prevalence are many, and are the object of study of

research areas like multi-instance learning [32], and

learning from label proportions (LLP) [33, 34]. Examples

of these problems include, for instance, post-electoral

results by census tract,3 demographic analysis in which

sensible information (e.g., race, gender) is anonymized but

provided at the aggregate level, or public records of pro-

portions of diagnosed diseases per ZIP code. Notice that

the symmetric approach allows these problems to be

tackled directly.

However, the symmetric approach faces at least two

important issues. The first one is that the number of

available training bags in D0 may be limited in some

applications. This limitation arises because supervised

learning requires a large amount of labeled data. While the

previous approach requires labeling individuals (i.e.,

instances), the symmetric approach requires labeling pop-

ulations (i.e., bags of instances); the latter is certainly more

demanding to obtain. In Sect. 3.1, we present a method

aimed at mitigating this issue that consists of generating

new synthetic bags from existing ones.

The second aspect concerns the applicability of the

symmetric approach to cases in which the only available

training set is a traditional one, i.e., a dataset of ‘‘type D’’

with individual class labels. However, note that such a

setup poses no real limitation to the symmetric approaches

since a dataset of ‘‘type D0’’ can be easily obtained from a

dataset of ‘‘type D’’ via sampling. Sect. 3.2 discusses one

sampling generation protocol that fulfills this requirement;

the protocol is well-known in the quantification literature,

although it is more commonly employed for evaluation

purposes, i.e., for generating, out of a collection of labeled

individuals, many test bags exhibiting different class dis-

tributions that are used for testing quantification algo-

rithms. Of course, while feasible in principle, it is yet to be

determined whether a symmetric approach trained via a

sampling protocol performs comparably in terms of quan-

tification accuracy with respect to a traditional asymmetric

approach trained on the original dataset. This aspect will be

analyzed in the experiments of Sect. 5.

3 See, for example, the PUMS (public use microdata sample) of the

U.S. Census Bureau https://www.census.gov/data/datasets/2000/dec/

microdata.html.

Neural Computing and Applications

123

https://www.census.gov/data/datasets/2000/dec/microdata.html
https://www.census.gov/data/datasets/2000/dec/microdata.html

3.1 Bag mixer: data augmentation
for quantification

Arguably, the most important issue the symmetric

approach has to face concerns the potential limited size of

D0, which could easily result in overfitting, especially when

using DNN methods. The reason why is that training bags

are the equivalent counterparts of training examples from a

classification problem. This means that even a relatively

high number of training bags (e.g., the LeQua datasets we

use in the experiments of Sect. 5 comprise 1000 bags each)

remains quite low when compared to classification datasets

customarily used in deep learning (that typically comprise

tens or hundreds of thousands of instances).

One possible solution to this problem comes down to

generating new bags out of the original ones via subsam-

pling and mixing. Of course, although we are able to

generate new bags out of the examples in our dataset, we

do not know the (gold) true prevalence of the newly gen-

erated bags. However, we can guess it and label our new

bags with (silver) prevalence values instead. We propose a

heuristic called ‘‘Mixer’’ which operates as follows: given

a dataset of type D0, at each epoch, we generate new

training bags ðB; p̂Þ, from the original ones, in which

B ¼ B0
i

S
B0
j, where B0

i (resp. B
0
j) is a random subset con-

taining half of the elements of Bi (resp. Bj) and

p̂ ¼ ðjB0
ijpi þ jB0

jjpjÞ=ðjB0
ij þ jB0

jjÞ, and in which bags Bi

and Bj are chosen randomly from our original dataset D0.

Bags generated with the Mixer are fed into the network

along with real bags from D0. A single hyperparameter

controls the proportion of real bags used in each iteration.

A conceptualization can be consulted in Fig. 4.

This heuristic certainly introduces some noise in the

labels of the newly generated bags. However, we found

that this noise is generally smaller than the error produced

by other surrogate quantifiers would produce if employed

in place of the heuristic for estimating the bag prevalence

(see the experiment in Fig. 3). We use the Bag Mixer for

training all DNN methods.

3.2 Generating a collection of bags from D

Many experiments in quantification papers use benchmark

datasets borrowed from classification problems. In these

datasets, testing bags are not naturally provided so we

generate them artificially for testing quantification algo-

rithms. This way, a sampling protocol is employed to

generate a sufficiently large collection of testing bags,

D0 ¼fðBi; piÞgm
0

i¼1, with Bi 2 NX and pi 2 Dl�1, from a

labeled classification test set T ¼ fðxi; yiÞgmi¼1. The most

widely adopted sampling protocol is called artificial

prevalence protocol (APP) [35] which is designed to

simulate prior probability shift. APP consists of drawing a

fixed number of bags in which the bag prevalence pi is

uniformly drawn at random from the probability simplex

Dl�1, and the testing bag Bi for each class prevalence pi is

generated from T via random sampling with replacement,

trying to maintain P(X|Y) constant. In order to draw

prevalence vectors uniformly at random, we use the

Kraemer algorithm [36]

Note that the APP protocol is also useful for generating

a training dataset of ‘‘type D0’’ from a training dataset of

‘‘type D’’; that is, when there are no dedicated training bags

available but we want to train DNN-based methods using

the symmetric approach.

While APP is specialized in generating prior probability

shift, notice that if we have some prior knowledge about

the application at hand, other sampling protocols designed

for reproducing the expected shift could be applied in place

[37].

4 HistNetQ: differentiable histograms

In this paper, we propose a permutation-invariant layer for

quantification that gains inspiration from histograms. His-

tograms represent powerful tools for summarizing and

describing sets of values: they are directly aligned with the

concept of counting, and they disregard the order in which

the values are presented. However, histograms are not

differentiable operators and hence cannot be directly

employed as building blocks in a deep learning model. In

order to overcome this impediment, histograms can be

approximated by using common differentiable operations

such as convolutions and pooling layers. Different real-

izations of this intuition have been reported in the literature

of computer vision [38–42], but, to the best of our

knowledge, no one before has investigated differentiable

histograms in quantification.

Previous attempts for devising differentiable histograms

differ in how these are implemented. On the one hand,

[39, 40] proposed soft variants in which every value can

potentially contribute to more than one bin, based on the

distance of the value to the center of the bin and the width

thereof. On the other hand, in [43] the authors propose a

hard variant, that is, every value only contributes to the bin

in which the value falls. Throughout preliminary experi-

ments we carried out using all variants, we found that the

differences in performance were rather small. The hard

variant proved slightly better in such experiments (in terms

of validation loss) and is our variant of choice for the

experiments of Sect. 5. Other architectures and their results

are discussed in the supplementary material.

Neural Computing and Applications

123

More formally, given a bag of n data examples

B ¼ fxigni¼1, with xi 2 X , our goal is to compute a his-

togram for every feature vector ffkgdk¼1, where fk 2 Rn

represents the values of the k-th feature across the n

instances in the bag B, and where d is the number of fea-

tures extracted. In other words, every histogram is com-

puted along a different column from an n� d matrix

representing B. The hard differentiable histogram layer

proposed in [43] takes a user-defined hyperparameter N

determining the (fixed) number of bins (we use the same

number of bins for all feature vectors), and defines

fðlðkÞb ;w
ðkÞ
b ÞgNb¼1, the bin centers and widths, as indepen-

dent learnable parameters for each feature vector fk. The

value in the b-th bin of the k-th histogram is computed as:

H
ðkÞ
b ðBÞ ¼ 1

n

Xn

i¼1

/ðfk½i�; lðkÞb ;w
ðkÞ
b Þ; ð6Þ

where / is defined by:

/ðv; l;wÞ ¼ 0; if 1:01w�jv�lj � 1

1; otherwise.

(

ð7Þ

The value 1.01 in Eq. 7 is justified in [43] simply as a value

that yields slightly smaller values than 1 when the exponent

is \0 and slightly bigger values than 1 if the exponent is

[0. This, in combination with a threshold operation,

results in a (differentiable) mechanism to detect which

values fall into which bin (see Fig. 5 for a graphical rep-

resentation of the layer).

Note that we compute densities (by dividing the counts

by n) and not plain counts, in order to factor out the effect

of the bag size in the final representation. Note also that the

total number of parameters of a differentiable histogram

layer is 2Nd. Since the bin centers and widths are learnable,

the output can contain interval ‘‘gaps’’ (i.e., intervals in

which values are not taken into account), interval overlaps

(thus allowing one value to contribute to more than one

overlapping bin at the same time), or even zero-width bins.

This means that the output of the layer is not strictly a

Fig. 4 Flowchart describing the bag mixer augmentation procedure

Fig. 3 Distribution of errors

produced by EMQ-BCTS and

‘‘Mixer’’ heuristic in terms of

Absolute Error (AE) and

Relative AE (RAE) as evaluated

in LeQua datasets T1A (top

row) and T1B (bottom row) (see

more details in Sect. 5). EMQ-

BCTS was trained and

optimized using, respectively,

the training and validation sets,

and evaluated in the

corresponding test bags, while

for Mixer we run Monte Carlo

simulations generating bags out

of the training examples of each

task

Neural Computing and Applications

123

histogram, but this allows the model to control the com-

plexity of the representation (should N be too high, the

model can well learn to overlap bins or create zero-width

ones).

It is worth noting that the quantification method HDy,

described in Sect. 2.1, also relies on histograms. However,

there are significant differences between HDy and Hist-

NetQ. To begin with, HistNetQ models histograms on the

latent representations of the (potentially high-dimensional)

data, whereas HDy models histograms on the posterior

probabilities returned by a soft classifier. Also, as HistNetQ

uses a symmetric approach and learns directly from bags, it

does not need to impose any learning assumption, whereas

HDy relies on the prior probability shift assumptions.

Lastly, HistNetQ enables the optimization of a specific loss

function during the learning process, while this is not

possible in HDy.

Lemma 4.1 Hard differentiable histogram layers are

permutation-invariant.

Proof The proof is straightforward. The value H
ðkÞ
b ðBÞ is

computed by summing over the values returned by the /
function. Although pðBÞ with p any permutation function

alters the order of the values within the feature vectors fk,

this ordering does not affect the final counts since:

1

n

Xn

i¼1

/ðfk½i�;lðkÞb ;w
ðkÞ
b Þ ¼ 1

n

Xn

i¼1

/ðpðfkÞ½i�; lðkÞb ;w
ðkÞ
b Þ;

and hence H
ðkÞ
b ðBÞ ¼ H

ðkÞ
b ðpðBÞÞ. h

One of the claims of the paper is that polling layers like

average, median, or max proposed for set operations

[14, 18] can be seen as simplified models (or ablations) of

our proposal of using histogram layers (in other words, that

a histogram subsumes the information conveyed by these

statistics). In order to verify this, we designed a toy

experiment where a small neural network is trained to learn

each of the aggregation functions (average, median, and

max). To this aim, we equip our network with a single

histogram layer of 64 bins, followed by just two fully

connected layers (sizes 32 and 16). The network is then

trained on randomly generated vectors of 100 real values

between [0, max], where max is a random number in the

range [0, 1].

The absolute errors are pretty low: 0.0055 (average),

0.0090 (median), and 0.0219 (max) suggesting that his-

tograms are richer representations than the average, med-

ian, or max.

As the histogram layer can capture the distribution of

the data, it provides a more comprehensive view of the data

beyond single summary statistics, something that makes

them a promising approach for machine learning tasks that

require a density estimation method over sets.

5 Experiments

In this section, we turn to describe the experiments we have

carried out in order to assess the performance of our

HistNetQ model. To this aim, we have performed two main

experiments.4 The most important one was based on the

datasets provided5 for the LeQua 2022 [21] and the data-

sets provided6 for the LeQua 2024 [22], the follow-up

edition, competitions, which have become the standard

benchmarks for comparing modern quantification methods.

These datasets allowed us to conduct a perfectly controlled

comparison between asymmetric and symmetric methods.

The LeQua 2022 competition consists of four subtasks

of product reviews quantification: two subtasks (T2A and

T2B) having to do with raw text documents, and two

subtasks (T1A and T1B) in which documents were already

4 The source code for reproducing the experiments is available at

https://github.com/pglez82/histnetq.

5 https://zenodo.org/record/5734465, see also https://lequa2022.

github.io/.
6 https://zenodo.org/records/11661820, see also https://lequa2024.

github.io/.

Fig. 5 Learnable histogram

layer with hard binning and

learnable bin centers and

widths. The individual

components are common

operations used in DL

frameworks that we use to

compute Eq. 7

Neural Computing and Applications

123

https://github.com/pglez82/histnetq
https://zenodo.org/record/5734465
https://lequa2022.github.io/
https://lequa2022.github.io/
https://zenodo.org/records/11661820
https://lequa2024.github.io/
https://lequa2024.github.io/

converted into numerical vectors (X � R300) by the orga-

nizers. We focused on T1A and T1B subtasks since we are

unconcerned with textual feature extraction in this paper.

Both datasets contain real product reviews crawled from

the Amazon website. LeQua-T1A is a binary task of esti-

mating the prevalence of positive versus negative opinions,

where positive sentiment corresponds to reviews with 4 or

5 stars, while negative sentiment encompasses 1-star and 2-

stars reviews (3-stars reviews were filtered out). The

organizers provided a training dataset D with 5,000 labeled

opinions, a validation set D0 with 1,000 bags of 250 unla-

beled opinions annotated by prevalence, and 5,000 testing

bags of 250 opinions each. T1B is the multiclass task of

estimating the prevalence of 28 merchandise product cat-

egories, and consists of a training set D with 20,000 labeled

opinions, a validation set D0 with 1,000 bags of 1,000

unlabeled documents annotated by prevalence, and 5,000

testing bags of 1,000 documents.

A follow-up edition of the LeQua competition was

recently published as the LeQua 2024 competition. In this

case, tasks T1 and task T2 have the same characteristics as

T1A and T1B respectively but using different data and a

different feature extractor. In particular, in the LeQua

2022, the features were extracted by averaging 300-di-

mensional GloVe (static) embeddings, while in LeQua

2024, the features were extracted using the ELECTRA-

Small model [44], which outputs 256-dimensional vectors.

We trained our DNN methods using the validation bags

D0, in line with the symmetric approach (Sect. 3), while

traditional quantification methods (Sect. 2.1) were trained

using the training set D. Notice that, as could be expected

in most applicative domains, the size of the latter (i.e., the

number of labeled instances) is larger than the size of the

former (i.e., the number of labeled bags). In order to

compensate for this shortage of training bags, we employ

the Bag Mixer (Sect. 3.1) to train all DNN methods.

The target loss function of both LeQua competitions was

the relative absolute error:

RAEðp; p̂Þ ¼ 1

jYj
X

ci2Y

jdðpðciÞÞ � dðp̂ðciÞÞj
dðpðciÞÞ

; ð8Þ

in which dðpiÞ ¼ piþ�
jYj�þ1

is the smoothing function, with � the

smoothing factor that we set to ð2jBjÞ�1
following [8],

where |B| corresponds to the number of instances in the bag

B. We also report values of the absolute error,7 given by

AEðp; p̂Þ ¼ 1

jYj
X

ci2Y
jpðciÞ � p̂ðciÞj: ð9Þ

We have optimized all DNN methods to minimize the RAE

loss, because this was the official evaluation measure. As

recalled from Sect. 2, most traditional quantification

methods rely on the predictions of an underlying classifier.

We use logistic regression in all cases as it has demon-

strated consistently good performance across many recent

experimental studies [5, 45–47]. The hyperparameters of

the classifier were optimized, independently for each

quantification method, in terms of RAE in the validation

bags, either by the LeQua organizers8,9 (CC, PCC, ACC,

PACC, HDy, QuaNet) or by ourselves (EMQ-BCTS,

EMQ-NoCalib), using the QuaPy quantification library

[46].

We also use the Fashion-MNIST dataset [48] (a more

challenging variant of the well-known MNIST) for the

second experiment. In this case, the goal was to analyze the

performance of symmetric approaches when the training

data consists of individual labeled examples. A side

objective of this experiment is to use a different data type.

While the LeQua datasets consists of text reviews, this

dataset is composed of color images, which forces the

network to be equipped with an image-specific feature

extraction layer (see Fig. 6). Table 1 shows some statistics

of the datasets we used in our experiments.

The training set D consists of 60,000 images, while the

test set consists of 10,000 images of 28x28 pixels. Both

sets are labeled according to 10 classes. We use the APP

protocol (Sect. 3.2) for: i) generating the training bags D0

for DNNs methods (500 bags with 500 examples for each

epoch), and ii) evaluating all methods (5,000 test bags, of

500 examples each).

To ensure the fairness of the experiment, all the methods

used the same feature extraction module (described in

Sect. 5.1). The quantifiers learned by DNN methods were

optimized for AE or RAE depending on the evaluation

measure under consideration. The classifier employed with

quantification methods consists of a classification head on

top of the feature extraction module, with a softmax acti-

vation function, optimized to minimize the cross-entropy

loss. We applied early stopping on a validation set in order

to prevent overfitting. The validation set was then used to

generate the posterior probabilities on which some methods

(ACC, PACC) estimate the misclassification rates, and in

which EMQ-BCTS optimizes the calibration function.

5.1 A common architecture

In order to guarantee a fair comparison, we used the exact

same network architecture, depicted in Fig. 6, for all deep

7 While many other evaluation metrics for quantification exists in the

literature [31], RAE and AE are regarded as the best suited metrics in

modern evaluations of quantification performance; see, for example,

[5, 45, 46].
8 https://github.com/HLT-ISTI/QuaPy/tree/lequa2022.
9 https://github.com/HLT-ISTI/QuaPy/tree/lequa2024.

Neural Computing and Applications

123

https://github.com/HLT-ISTI/QuaPy/tree/lequa2022
https://github.com/HLT-ISTI/QuaPy/tree/lequa2024

learning-based methods, for which we replace only the

permutation-invariant layer. The architecture is very simi-

lar to the ones previously proposed for set-based problems

[14, 18, 19]. The first part of the network is in charge of

extracting features from the input examples. For the LeQua

datasets, we used a series of fully connected layers each

followed by a LeakyReLU activation function and dropout,

while for Fashion-MNIST we used a simple CNN with two

convolutional layers and one fully connected layer as

output (Fig. 6). Note that, if the individual class labels are

provided, then the features extracted from this layer might

well be used in other downstream tasks as, for example, to

train a classifier. However, it is worth noting that our

network does not employ any underlying classifier, and

therefore these features are used only as the input to a

permutation-invariant layer that embeds the bag. The out-

put of this layer is passed then through a feed-forward

module followed by a softmax activation, which finally

outputs a vector containing the estimated prevalence values

p̂. As a final remark, note that one particularity of any

neural network adopting the symmetric approach is that, in

order to backpropagate the errors through the network, the

complete bag must be feedforwarded through it. This is in

contrast to other learning endeavors, like neural classifi-

cation, in which stochastic gradient descent can applied to

arbitrary batch sizes of individual data items.

All DNN methods were trained following the same

exact procedure: the training set D0 was split into an actual

training set and a validation set used for monitoring the

validation loss; we applied early stopping after 20 epochs

without improvement in validation.

Hyperparameters (see supplementary material) were

tuned with the aid of OPTUNA [49].

5.2 Results and discussion

Table 2 and Fig. 7 report the results of the multiclass

experiments, while Table 3 and Fig. 8 report the results for

the binary experiments. Arguably, the most important

outcome is that HistNetQ outperforms EMQ in three out of

Fig. 6 An example of the common architecture used for DNNs

methods. The feature extraction layer and the layer sizes correspond

to a computer vision problem (Fashion-MNIST dataset). DenseFE and

denseQ are sequences of fully connected layers used in the feature

extraction module and in the quantification module, respectively

Table 1 Comparison across the datasets used, focusing on important characteristics like the number of classes, features, and instances

T1A T1 T1B T2 Fashion-MNIST

Data type Text reviews Text reviews Text reviews Text reviews Images

Kind of problem Binary Binary Multiclass Multiclass Multiclass

Number of classes 2 2 28 28 10

Number of features 300 256 300 256 784

Number of training instances 5000 5000 20000 20000 60000

Number of training bags 1000 1000 1000 1000 –

Bag size 250 250 1000 1000 –

Number of test instances 1250000 1250000 5000000 5000000 10000

Neural Computing and Applications

123

four LeQua datasets (namely, in the multiclass datasets

LeQua-T1B and LeQua-T2, and in the binary dataset

LeQua-T1A), and performs comparably in the binary

dataset LeQua-T1. This result is significant because EMQ

is considered one of the best quantification methods in the

literature [29]. The improvement obtained by HistNetQ is

substantial in both multiclass problems in LeQua-T1B

(more than 13%) and LeQua-T2 (more than 21%). We

think that this is due to two factors: (i) LeQua-T1B and

LeQua-T2 are multiclass problems in which it is difficult to

accurately estimate the posterior probabilities (a crucial

requirement for EMQ), and (ii) the performance of EMQ

suffers as the shift between the training set and the test bags

increases (see Fig. 7a).

Regarding the comparison of DNN methods, the results

show that representing bags using histograms (HistNetQ)

brings about better quantification performance than when

using SetTransformers or simple aggregation functions

(DeepSets) [14] across the five datasets, and the difference

in performance seems to correlate with the complexity of

the problem, with the multiclass datasets LeQua-T1B and

LeQua-T2 standing out as the most challenging datasets

among them. We conjecture that this improvement comes

from the fact that histogram-based representations are

naturally geared toward ‘‘counting,’’ and this turns bene-

ficial for quantification. Interestingly, DeepSets(median)

obtains the second-best RAE score in T1B. This may be

surprising because it uses an apparently simplistic pooling

Table 2 Results for multiclass datasets LEQUA-T1B, LEQUA-T2, and

FASHION-MNIST, in terms of AE and RAE. Methods that are not

statistically significantly different from the best one (bold), according

to a Wilcoxon signed-rank test, are marked with y if

0:001� p-value� 0:05 and with z if p-value[0:05

LeQua-T1B LeQua-T2 Fashion-MNIST

AE RAE AE RAE AE RAE

CC 0.0141 ± 0.003 1.8936 ± 1.187 0.0166 ± 0.003 2.3096 ± 1.383 0.0163 ± 0.007 0.5828 ± 0.723

PCC 0.0171 ± 0.003 2.2646 ± 1.416 0.0193 ± 0.003 2.6751 ± 1.605 0.0204 ± 0.008 0.7817 ± 0.974

ACC 0.0184 ± 0.004 1.4213 ± 1.270 0.0164 ± 0.004 1.3479 ± 1.161 0.0082 ± 0.003 0.2226 ± 0.238

PACC 0.0158 ± 0.004 1.3054 ± 0.988 0.0155 ± 0.004 1.1942 ± 1.135 0.0067 ± 0.002 0.1831 ± 0.193

EMQ-BCTS 0.0117 ± 0.003 0.9372 ± 0.817 0.0138 ± 0.004 1.1500 ± 0.978 0.0065 ± 0.002 0.1510 – 0.152

EMQ-NoCalib 0.0118 ± 0.003 0.8780 ± 0.751 0.0134 – 0.003 1.1616 ± 0.991 0.0132 ± 0.005 0.2549 ± 0.222

DeepSets (avg) 0.0128 ± 0.004 0.9954 ± 0.658 0.0408 ± 0.010 1.6982 ± 2.263 0.0083 ± 0.003 0.3283 ± 0.233

DeepSets (med) 0.0143 ± 0.004 0.8443 ± 0.543 0.0209 ± 0.006 1.2353 ± 0.891 0.0094 ± 0.003 0.7195 ± 0.586

DeepSets (max) 0.0277 ± 0.005 1.4646 ± 1.026 0.0219 ± 0.004 2.4217 ± 1.879 0.0219 ± 0.007 0.3520 ± 0.323

SetTransformers 0.0385 ± 0.008 1.6748 ± 1.428 0.0384 ± 0.013 3.6275 ± 4.218 0.0104 ± 0.003 2.2017 ± 1.190

HistNetQ (ours) 0.0107 ± 0.004 0.7574 ± 0.489 0.0181 ± 0.006 0.9508 ± 0.576 0.0060 ± 0.002 z0.1592 ± 0.171

Fig. 7 Error distribution (measured in terms of RAE on a logarithmic

scale) binned by the amount of prior probability shift between the

training set and each test bag (here measured in terms of jpD � pBj),

for the multiclass datasets. The green bars in the background represent

the distribution of bags per bin

Neural Computing and Applications

123

layer. The performance of SetTransformers is erratic: it

performs very well in the binary datasets (LeQua-T1A and

LeQua-T1), getting a statistically significant result, to

HistNetQ in LeQua-T1A, but it obtains the worst results

from the deep learning lot in the multiclass datasets LeQua-

T1B, LeQua-T2, and Fashion-MNIST. LeQua-T1B and

LeQua-T2 are undeniably harder than LeQua-T1A and

LeQua-T1 and SetTransformers’ inducing points likely

struggled to capture the interactions between all the clas-

ses. We were unable to make SetTranformers converge to

better results in this case, despite trying many combinations

of its hyperparameters (number of inducing points, number

of heads, etc.). Although transformers are powerful tools in

many contexts, they seem not to be the most adequate

solution for quantification tasks where the order and the

relation between examples in a bag are less important.

(This is in contrast to other types of data, such as in natural

language processing, where transformers excel in learning

from the order and relations between words.)

Table 3 Results for binary

datasets LEQUA-T1A and LEQUA-

T1 in terms of AE and RAE.

Methods that are not statistically

significantly different from the

best one (bold), according to a

Wilcoxon signed-rank test, are

marked with y if

0:001� p-value� 0:05 and with

z if p-value[0:05

LeQua-T1A LeQua-T1

AE RAE AE RAE

CC 0.0916 ± 0.055 1.0840 ± 4.311 0.0796 ± 0.048 0.9774 ± 3.919

PCC 0.1166 ± 0.070 1.3940 ± 5.621 0.1017 ± 0.060 1.2656 ± 5.113

ACC 0.0372 ± 0.029 0.1702 ± 0.508 0.0264 ± 0.020 0.1644 ± 0.603

PACC 0.0298 ± 0.023 0.1522 ± 0.464 0.0240 ± 0.018 0.1339 ± 0.463

HDy 0.0281 ± 0.022 0.1451 ± 0.456 0.0221 ± 0.017 0.1067 – 0.290

QuaNet 0.0342 ± 0.025 0.3176 ± 1.352 0.0243 ± 0.018 0.2640 ± 1.284

EMQ-BCTS 0.0269 ± 0.021 0.1183 ± 0.251 0.0221 ± 0.017 �0.1097 ± 0.324

EMQ-NoCalib 0.0236 ± 0.018 0.1088 ± 0.267 0.0211 ± 0.017 0.1110 ± 0.367

DeepSets (avg) 0.0278 ± 0.021 0.1269 ± 0.228 0.0208 ± 0.016 0.1096 ± 0.331

DeepSets (med) 0.0292 ± 0.023 0.1389 ± 0.256 0.0237 ± 0.018 0.1235 ± 0.324

DeepSets (max) 0.0499 ± 0.042 0.2183 ± 0.488 0.0447 ± 0.037 0.2191 ± 0.575

SetTransformers z0.0225 ± 0.017 z0.1096 ± 0.262 0.0202 – 0.016 0.1114 ± 0.374

HistNetQ (ours) 0.0224 ± 0.017 0.1071 ± 0.233 z0.0204 ± 0.016 0.1069 ± 0.312

Fig. 8 Error distribution (measured in terms of RAE on a logarithmic

scale) binned by the amount of prior probability shift between the

training set and each test bag (here measured in terms of jpD � pBj),

for the binary datasets. The green bars in the background represent the

distribution of bags per bin

Table 4 Results by number of bins in LeQua-T1B

AE RAE

HistNetQ (8 bins) 0.0297 ± 0.008 1.2878 ± 1.000

HistNetQ (16 bins) 0.0212 ± 0.007 1.0572 ± 0.738

HistNetQ (32 bins) 0.0121 ± 0.005 0.7851 ± 0.520

HistNetQ (64 bins) 0.0107 ± 0.004 0.7574 ± 0.489

The best results are highlighted in bold

Neural Computing and Applications

123

Yet another aspect that proved essential for avoiding

overfitting in all DNN methods is the Bag Mixer heuristic.

We analyze this in more detail in Sect. 5.3. Concerning

HistNetQ, we also analyzed the extent to which the number

of bins affects performance (see Table 4). We observe that

in complex problems, like LeQua-T1B and LeQua-T2, the

performance of HistNetQ tends to improve as the number

of bins increases, leading to networks with a higher number

of parameters and a richer bag representation. However,

this is not necessarily a rule of thumb, because it is rea-

sonable to believe that, in simpler problems, having too

many bins might lead to overfitting. We would therefore

prescribe treating the number of bins just as any other

hyperparameter to be tuned for each specific problem.

The results on Fashion-MNIST show that EMQ with

calibration is the best approach, even while requiring less

computational resources than DNN methods. According to

the literature, these results were to be expected, but the

performance of HistNetQ is rather similar and not signifi-

cantly worse in terms of RAE, while it even fares slightly

better in terms of AE. This is important, since it is rea-

sonable to think that the leap in performance HistNetQ

delivers in the LeQua competitions with respect to EMQ

primarily comes from the way the former exploits the

available bags labeled by prevalence. Note both methods

use these bags one way or another during the training

process; however, while HistNetQ is capable of directly

learning from them, EMQ can only use them for optimiz-

ing the hyperparameters of the classifier (i.e., for validating

different configurations of it). The Fashion-MNIST

experiment thus settles down a comparison in which both

methods have access to the very same amount of infor-

mation: a collection of individually labeled instances.

Despite the fact that this setup may seem favorable to

EMQ, HistNetQ performs on par in terms of RAE, in a

statistically significant sense, and even better in terms of

AE. However, it is also fair to mention that in this dataset,

HistNetQ performs worse when the amount of shift is large

(see Fig. 7c). On the other hand, HistNetQ outperforms the

rest of the quantification algorithms (only PACC fares

similarly) as well as the DNN methods also in this case. As

witnessed by the first experiment, DeepSets using median

or average polling layers prove more stable than

SetTransformers, especially for RAE. Altogether, these

results seem to suggest that HistNetQ is competitive in this

scenario too and should be considered even for problems in

which the supervised information at one’s disposal comes

in the form of individually labeled examples.

5.3 Ablation study

As discussed in Sect. 3.1, the Bag Mixer is a data aug-

mentation technique meant to enhance the training data of

DNN symmetric quantifiers in order to avoid overfitting. In

this section, we analyze the extent to which the Bag Mixer

impacts the performance of each network. To do so, we

carry out additional experiments in which the Bag Mixer is

not used (that is, using only the training bags provided in

D0), and we compare the results with those previously

reported in Tables 2 and 3. For this experiment, we con-

centrate on two of the datasets (LeQua-T1A and LeQua-

T1B) where the training bags with their corresponding

prevalence values are provided and thus limited.

For LeQua-T1A, Fig. 9 and Table 5 show that the net-

works exhibit lower training errors when using only 1000

training bags. However, this reduction in training error

leads to a significant drawback, as these models tend to

perform notably worse on the validation data as a clear

consequence of overfitting.

Fig. 9 Training and validation loss trends of HistNetQ in LeQua-

T1A, with and without the Bag Mixer using a patience criterion (i.e.

stopping the training process after a number of consecutive epochs in

which the validation loss does not improve). The training loss

decreases faster without the Bag Mixer (left figure); however, the

validation loss keeps improving with the Bag Mixer (right figure).

This is an indication that the Bag Mixer helps counter overfitting

Neural Computing and Applications

123

In the case of LeQua-T1B, Table 6, the adverse effects

of overfitting are amplified. This was to be expected, since

the number of classes is much higher in this dataset (up to

28), while the number of training bags stays the same (i.e.,

1000). In this scenario, the networks, especially those with

more complex architectures containing a greater number of

parameters, such as SetTranformers or HistNetQ, prove

more prone to overfit.

6 Conclusions

This paper introduces HistNetQ, a DNN for quantification

that relies on a permutation-invariant layer based on dif-

ferentiable histograms. We carried out experiments using

different quantification problems (from computer vision

and text analysis) in which we compared the performance

of HistNetQ against previously proposed networks for set

processing and also against the most important algorithms

from the quantification literature. The results show that

HistNetQ achieved state-of-the-art performance in both

problems.

From a qualitative point of view, HistNetQ also offers

several noteworthy properties like i) the ability to directly

learn from bags labeled by prevalence, which allows

HistNetQ to be applied to scenarios in which traditional

methods cannot; and ii) the possibility to directly optimize

for specific loss functions.

This research may hopefully offer a new viewpoint in

quantification learning, since our results suggest that

exploiting data labeled at the aggregate level might be

more effective, in terms of quantification performance than

exploiting data labeled at the individual level. Overall, this

study suggests that HistNetQ is a promising alternative for

implementing the symmetric approach in real applications,

obtaining state-of-the-art results that surpass previous

approaches.

Future work may include i) studying the capabilities of

HistNetQ when confronted with types of dataset shift other

than prior probability shift [37, 50], ii) exploring potential

applications of this architecture to other problems that, like

quantification, require learning a model from density esti-

mates over sets of examples and iii) investigating new

representations alternative to histograms, along the lines of

[47], that may be able to capture the interrelationships

between features that may exist in the data

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

024-10721-1.

Acknowledgement The work by the first, third and fourth authors has

been funded by MINECO (the Spanish Ministerio de Economı́a y

Competitividad) and FEDER (Fondo Europeo de Desarrollo Regio-

nal), grant PID2019-110742RB-I00 (MINECO/FEDER). The work of

the second author has been supported by the SoBig- Data.it and FAIR

projects funded by the Italian Ministry of University and Research

under NextGenerationEU program, and the QuaDash project

‘‘Finanziato dall’Unione europea-Next Generation EU, Missione 4

Componente 1 CUP B53D23026250001’’.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Data Availability Statement The code discussed and developed in this

paper is available in a GitHub open repository, accessible at https://

github.com/pglez82/histnetq. Detailed instructions for executing this

code can be found in the repository’s README file. For the exper-

iments analyzed in Sect. 5, the datasets are available from two dif-

ferent sources. Firstly, the datasets from the LeQua Competition 2022

[21], where T1A and T1B are included, consist in product reviews

converted into numerical vectors. They are accessible at https://

zenodo.org/record/5734465. Secondly, the datasets from the LeQua

Competition 2024 [22], including T1 and T2, consist in product

reviews that are converted into numerical vectors. These datasets can

be accessed at https://zenodo.org/records/11661820. Lastly, the

Fashion-MNIST dataset [48], a more challenging variant of the well-

known MNIST, can be obtained from https://github.com/zalandor

esearch/fashion-mnist.

Declarations

Conflict of interest No potential conflict of interest was reported by

the authors.

Table 5 LeQua-T1A results without Bag Mixer. Relative error vari-

ation with respect to when using Bag Mixer (Table 3) is shown in

parenthesis

AE RAE

Deepsets (avg) 0.0326 (?17.3%) 0.1469 (?15.8%)

Deepsets (median) 0.0416 (?42.5%) 0.1810 (?30.3%)

Deepsets (max) 0.0570 (?14.2%) 0.2287 (?4.8%)

SetTransformers 0.0368 (?63.6%) 0.1553 (?41.1%)

HistNetQ (ours) 0.0279 (?24.6%) 0.1265 (?18.1%)

Table 6 LeQua-T1B results without Bag Mixer. Relative error vari-

ation with respect to when using the Bag Mixer (Table 2) is shown in

parenthesis

AE RAE

Deepsets (avg) 0.0449 (?250.8%) 1.5029 (?51%)

Deepsets (median) 0.0215 (?50.4%) 1.0991 (?30.2%)

Deepsets (max) 0.0200 (�27.8%) 1.5740 (?7.5%)

SetTransformers 0.0311 (�19.2%) 4.2416 (?153.3%)

HistNetQ (ours) 0.0445 (?315.9%) 1.5108 (?99.5%)

Neural Computing and Applications

123

https://doi.org/10.1007/s00521-024-10721-1
https://doi.org/10.1007/s00521-024-10721-1
https://github.com/pglez82/histnetq
https://github.com/pglez82/histnetq
https://zenodo.org/record/5734465
https://zenodo.org/record/5734465
https://zenodo.org/records/11661820
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Beijbom O, Hoffman J, Yao E, Darrell T, Rodriguez-Ramirez A,

Gonzalez-Rivero M, Guldberg OH- (2015) Quantification in-the-

wild: data-sets and baselines. arXiv:1510.04811 [cs] (2015).

arXiv: 1510.04811

2. Forman G (2006) Quantifying trends accurately despite classifier

error and class imbalance. In: Proceedings of the 12th ACM

SIGKDD international conference on knowledge discovery and

data mining (KDD 2006), Philadelphia, US, pp. 157–166. https://

doi.org/10.1145/1150402.1150423

3. González P, Castaño A, Peacock EE, Dı́ez J, Del Coz JJ, Sosik

HM (2019) Automatic plankton quantification using deep fea-

tures. J Plankton Res 41(4):449–463

4. Hopkins D, King G (2010) A method of automated nonpara-

metric content analysis for social science. Am J Polit Sci

54(1):229–247

5. Moreo A, Sebastiani F (2022) Tweet sentiment quantification: an

experimental re-evaluation. PLOS ONE 17(9):1–23. https://doi.

org/10.1371/journal.pone.0263449

6. Dias FF, Ponti MA, Minghim R (2022) A classification and

quantification approach to generate features in soundscape ecol-

ogy using neural networks. Neural Comput Appl

34(3):1923–1937

7. González P, Dı́ez J, Chawla N, Coz JJ (2017) Why is quantifi-

cation an interesting learning problem? Prog Artif Intell

6(1):53–58. https://doi.org/10.1007/s13748-016-0103-3

8. Forman G (2008) Quantifying counts and costs via classification.

Data Min Knowl Discov 17(2):164–206. https://doi.org/10.1007/

s10618-008-0097-y

9. González-Castro V, Alaiz-Rodrı́guez R, Alegre E (2013) Class

distribution estimation based on the Hellinger distance. Inf Sci

218:146–164

10. Kawakubo H, Du Plessis MC, Sugiyama M (2016) Computa-

tionally efficient class-prior estimation under class balance

change using energy distance. IEICE TRANS Inf Syst

99(1):176–186

11. Quionero-Candela J, Sugiyama M, Schwaighofer A, Lawrence

ND (2009) Dataset shift in machine learning. The MIT Press,

Cambridge, MA

12. González P, Castaño A, Chawla NV, Coz JJD (2017) A review on

quantification learning. ACM Comput Surv (CSUR) 50(5):1–40

13. Esuli A, Fabris A, Moreo A, Sebastiani F (2023) Learning to

quantify. Springer, Cham, CH. https://doi.org/10.1007/978-3-

031-20467-8

14. Qi L, Khaleel M, Tavanapong W, Sukul A, Peterson D (2021) A

framework for deep quantification learning. In: Machine learning

and knowledge discovery in Databases: European conference,

ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,

Proceedings, Part I, pp. 232–248. Springer

15. Edwards H, Storkey AJ (2017) Towards a neural statistician. In:

5th International conference on learning representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings

16. Murphy RL, Srinivasan B, Rao VA, Ribeiro B (2019) Janossy

pooling: Learning deep permutation-invariant functions for

variable-size inputs. In: 7th international conference on learning

representations, ICLR 2019, May 6-9, 2019. OpenReview.net,

New Orleans, LA, USA

17. Wagstaff E, Fuchs F, Engelcke M, Posner I, Osborne MA (2019)

On the limitations of representing functions on sets. In: Interna-

tional conference on machine learning, pp. 6487–6494. PMLR

18. Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov

RR, Smola AJ (2017) Deep sets. Adv Neural Inf Process Syst.

https://doi.org/10.48550/arXiv.1703.06114

19. Lee J, Lee Y, Kim J, Kosiorek A, Choi S, Teh YW (2019) Set

transformer: A framework for attention-based permutation-in-

variant neural networks. In: International conference on machine

learning, pp. 3744–3753. PMLR

20. Esuli A, Moreo A, Sebastiani F (2018) A recurrent neural net-

work for sentiment quantification. In: Proceedings of the 27th

ACM international conference on information and knowledge

management (CIKM 2018), Torino, IT, pp. 1775–1778. https://

doi.org/10.1145/3269206.3269287

21. Esuli A, Moreo A, Sebastiani F, Sperduti G (2022) A detailed

overview of LeQua@CLEF 2022: Learning to quantify. In:

Proceedings of the working notes of CLEF 2022 - conference and

Labs of the evaluation Forum, Bologna, Italy, September 5th-8th,

2022. CEUR Workshop Proceedings, vol. 3180, pp. 1849–1868.

CEUR-WS.org, Bologna, Italy

22. Esuli A, Moreo A, Sebastiani F, Sperduti G (2024) A detailed

overview of LeQua@LQ 2024: Learning to quantify. In: Pro-

ceedings of the workshop learning to quantify: methods and

applications (LQ 2024) Vilnius, Lithuania, September 13, 2024,

Vilnius, Lithuania

23. Fernandes Vaz A, Izbicki R, Bassi Stern R (2019) Quantification

under prior probability shift: the ratio estimator and its exten-

sions. J Mach Learn Res 20:79–17933

24. Lipton Z, Wang Y-X, Smola A (2018) Detecting and correcting

for label shift with black box predictors. In: International con-

ference on machine learning, pp. 3122–3130. PMLR

25. Tasche D (2024) Comments on Friedman’s method for class

distribution estimation. arXiv:2405.16666 [cs.LG]

26. Bunse M (2022) On multi-class extensions of adjusted classify

and count. In: Proceedings of the 2nd international workshop on

learning to quantify (LQ 2022), Grenoble, IT, pp. 43–50

27. Bella A, Ferri C, Hernández-Orallo J, Ramı́rez-Quintana MJ

(2010) Quantification via Probability Estimators. In: 2010 IEEE

International conference on data mining, pp. 737–742. https://doi.

org/10.1109/ICDM.2010.75 . ISSN: 2374-8486

28. Saerens M, Latinne P, Decaestecker C (2002) Adjusting the

outputs of a classifier to new a priori probabilities: a simple

procedure. Neural Comput 14(1):21–41. https://doi.org/10.1162/

089976602753284446

29. Alexandari A, Kundaje A, Shrikumar A (2020) Maximum like-

lihood with bias-corrected calibration is hard-to-beat at label shift

adaptation. In: International conference on Machine learning,

pp. 222–232. PMLR

30. Esuli A, Molinari A, Sebastiani F (2020) A critical reassessment

of the Saerens-Latinne-Decaestecker algorithm for posterior

probability adjustment. ACM Trans Inf Syst(TOIS) 39(2):1–34

31. Sebastiani F (2020) Evaluation measures for quantification: an

axiomatic approach. Inf Retr J 23(3):255–288. https://doi.org/10.

1007/s10791-019-09363-y

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1510.04811
http://arxiv.org/abs/1510.04811
https://doi.org/10.1145/1150402.1150423
https://doi.org/10.1145/1150402.1150423
https://doi.org/10.1371/journal.pone.0263449
https://doi.org/10.1371/journal.pone.0263449
https://doi.org/10.1007/s13748-016-0103-3
https://doi.org/10.1007/s10618-008-0097-y
https://doi.org/10.1007/s10618-008-0097-y
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.48550/arXiv.1703.06114
https://doi.org/10.1145/3269206.3269287
https://doi.org/10.1145/3269206.3269287
http://arxiv.org/abs/2405.16666
https://doi.org/10.1109/ICDM.2010.75
https://doi.org/10.1109/ICDM.2010.75
https://doi.org/10.1162/089976602753284446
https://doi.org/10.1162/089976602753284446
https://doi.org/10.1007/s10791-019-09363-y
https://doi.org/10.1007/s10791-019-09363-y

32. Foulds JR, Frank E (2010) A review of multi-instance learning

assumptions. Knowl Eng Rev 25(1):1–25. https://doi.org/10.

1017/S026988890999035X

33. Freitas N, Kück H (2005) Learning about individuals from group

statistics. In: Proceedings of the 21st conference in uncertainty in

artificial intelligence (UAI 2005), Edimburgh, UK, pp. 332–339

34. Quadrianto N, Smola AJ, Caetano TS, Le QV (2009) Estimating

labels from label proportions. J Mach Learn Res 10:2349–2374

35. Forman G (2005) Counting positives accurately despite inaccu-

rate classification. In: Proceedings of the 16th European confer-

ence on machine learning (ECML 2005), Porto, PT, pp. 564–575.

https://doi.org/10.1007/11564096_55

36. Smith NA, Tromble RW (2004) Sampling uniformly from the

unit simplex. Johns Hopkins University, Tech. Rep 29

37. Zhang K, Schölkopf B, Muandet K, Wang Z (2013) Domain

adaptation under target and conditional shift. In: ICML,

pp. 819–827

38. Avi-Aharon M, Arbelle A, Raviv TR (2020) Deephist: Differ-

entiable joint and color histogram layers for image-to-image

translation. arXiv preprint arXiv:2005.03995

39. Peeples J, Xu W, Zare A (2022) Histogram layers for texture

analysis. IEEE Trans Artif Intell 3(4):541–552. https://doi.org/10.

1109/TAI.2021.3135804

40. Wang Z, Li H, Ouyang W, Wang X (2016) Learnable histogram:

Statistical context features for deep neural networks. In: Euro-

pean conference on computer vision, pp. 246–262. Springer

41. Hussain MA, Hamarneh G, Garbi R (2019) Renal cell carcinoma

staging with learnable image histogram-based deep neural net-

work. In: Suk H-I, Liu M, Yan P, Lian C (eds) Machine learning

in medical imaging. Springer, Cham, pp 533–540

42. Hussain MA, Hamarneh G, Garbi R (2019) Imhistnet: learnable

image histogram based dnn with application to noninvasive

determination of carcinoma grades in ct scans. In: Shen D, Liu T,

Peters TM, Staib LH, Essert C, Zhou S, Yap P-T, Khan A (eds)

Medical image computing and computer assisted intervention -

MICCAI 2019. Springer, Cham, pp 130–138

43. Yusuf I, Igwegbe G, Azeez O (2020) Differentiable histogram

with hard-binning. arXiv preprint arXiv:2012.06311

44. Clark K, Luong M-T, Le QV, Manning CD (2020) ELECTRA:

Pre-training text encoders as discriminators rather than genera-

tors. In: Proceedings of the 8th international conference on

learning representations (ICLR 2020), Addis Ababa, ET. https://

openreview.net/pdf?id=r1xMH1BtvB

45. Schumacher T, Strohmaier M, Lemmerich F (2021) A compar-

ative evaluation of quantification methods. arXiv:2103.03223v1

[cs.LG]

46. Moreo A, Esuli A, Sebastiani F (2021) QuaPy: a python-based

framework for quantification. In: Proceedings of the 30th ACM

international conference on information & knowledge manage-

ment, pp. 4534–4543

47. Moreo A, González P, Coz JJ (2024) Kernel density estimation

for multiclass quantification. arXiv preprint arXiv:2401.00490

48. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv

preprint arXiv:1708.07747

49. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna:

A next-generation hyperparameter optimization framework. In:

Proceedings of the 25rd ACM SIGKDD international conference

on knowledge discovery and Data Mining

50. Tasche D (2022) Class prior estimation under covariate shift: No

problem? In: Proceedings of the 2nd international workshop on

learning to quantify: methods and applications (LQ 2022),

ECML/PKDD. arXiv:2206.02449 [stat.ML], Grenoble (France)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1017/S026988890999035X
https://doi.org/10.1017/S026988890999035X
https://doi.org/10.1007/11564096_55
http://arxiv.org/abs/2005.03995
https://doi.org/10.1109/TAI.2021.3135804
https://doi.org/10.1109/TAI.2021.3135804
http://arxiv.org/abs/2012.06311
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
http://arxiv.org/abs/2103.03223v1
http://arxiv.org/abs/2401.00490
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/2206.02449

	Quantification using permutation-invariant networks based on histograms
	Abstract
	Introduction
	Related work
	Quantification methods
	DNN architectures for sets

	Symmetric quantification: a case study analysis
	Bag mixer: data augmentation for quantification
	Generating a collection of bags from D

	HistNetQ: differentiable histograms
	Experiments
	A common architecture
	Results and discussion
	Ablation study

	Conclusions
	Data Availability Statement
	References

