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ABSTRACT - This study explores the capability of Convolutional Neural Networks (CNNs), a particular class of Deep Learning algorithms 
specifically crafted for computer vision tasks, to classify images of isolated fossil shark teeth gathered from online datasets as well as from 
the authors’ experience on Peruvian Miocene and Italian Pliocene fossil assemblages. The shark tooth images that are included in the final, 
composite dataset (which consists of more than one thousand images) are representative of both extinct and extant genera, namely, Carcharhinus, 
Carcharias, Carcharocles, Chlamydoselachus, Cosmopolitodus, Galeocerdo, Hemipristis, Notorynchus, Prionace and Squatina. We compared 
the classification performances of two CNNs, namely: SharkNet-X, a specifically tailored neural network that was developed and trained from 
scratch; and VGG16, which was trained using the transfer learning paradigm. Furthermore, in order to understand and explain the behaviour 
of the two CNNs, while providing a palaeontologist’s perspective on the results, we firstly elaborated a visualisation of the features extracted 
from the images using the last dense layer of each CNN, which was achieved through the application of the t-distributed Stochastic Neighbor 
Embedding (t-SNE) clustering technique. Then, we introduced the explainability method SHAP (SHapley Additive exPlanations), which is 
a game theoretic approach to explain the output of any Machine Learning model. The results show that VGG16 outperforms SharkNet-X in 
most scenarios, especially when trained with data augmentation techniques, achieving high accuracy (93%-97%) in tooth classification. In 
addition, the SHAP heatmaps revealed that the CNNs relied heavily on tooth margins and inner regions for identification, offering insights 
into the automated classification process. Overall, this study demonstrates that Deep Learning techniques can effectively assist in identifying 
isolated fossil shark teeth, paving the way for developing automated tools for fossil recognition and classification.

INTRODUCTION

Applications of Artificial Intelligence (AI) are 
growing in popularity across a broad spectrum of 
scientific fields (Wang et al., 2023), from fundamental 
physics (Carleo et al., 2019; Ciacci et al., 2024) and 
biology (Hassoun et al., 2021; Piazza et al., 2021; 
Richards et al., 2022) to healthcare (Barucci et al., 2021a; 
D’Andrea et al., 2023) and cultural heritage (Barucci et 
al., 2021b; Bickler, 2021; Cucci et al., 2021; Guidi et 
al., 2023). In the broad field of AI, Machine Learning 
(Domingos, 2012) and in particular Deep Learning 
(LeCun et al., 2015) algorithms are de facto driving the AI 
revolution by enabling researchers to harness the power 
of data, automate processes, improve decision-making 
and create innovative solutions that have a profound 
impact on society, economy and technology.

Palaeontology is starting to experience the same kind 
of trend with AI, as highlighted by some recent works and 
projects (Beaufort & Dollfus, 2004; Itaki et al., 2020; Liu 
& Song, 2020; Tetard et al., 2020; Zhang et al., 2020; Hou 
et al., 2021; Burton, 2022; Antonenko & Abramowitz, 
2023; MacFadden et al., 2023; Tetard et al., 2023).

For instance, Mimura et al. (2024) applied the 
Deep Learning model YOLO-v7 to the detection of 
microscopic fish teeth and denticles, while Marchant et 
al. (2020) used a Convolutional Neural Network (CNN) 
to classify foraminifera. Other interesting applications 
in micropalaeontology were reported by Carlsson et 
al. (2023) and Marret (2023), whilst Perez et al. (2023) 
developed an array of Machine Learning models capable 
of classifying images of extinct shark teeth, aiming 
to examine the benefits and drawbacks of Roboflow 
and Google’s Teachable Machine (two free online 
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platforms) as well as to identify techniques for enhancing 
palaeontological datasets.

In Liu et al. (2023), three CNNs were trained for 
taxonomic identification purposes with about 415 
thousand photos from 50 different fossil clades, while in 
Ho et al. (2023) a CNN was introduced to hierarchically 
classify carbonate skeletal grains, thus enabling Linnaean 
taxonomic classification from a single image. A dataset 
of Computer Tomography pictures of protoceratopsian 
dinosaurs from the Gobi Desert (Mongolia) was developed 
by Yu et al. (2022) to evaluate the fossil segmentation 
capabilities of the Deep Learning autoencoder architecture 
U-net. A Deep Learning application for the identification 
of uncommon Cambrian microfossils was provided 
by Wang B. et al. (2022), whilst the identification of 
fossil brachiopods was the main emphasis of Wang 
H. et al. (2022). Work presented by Xu et al. (2020) 
employed Machine Learning to identify palaeontological 
photomicrographs, while Liu & Song (2020) used 
CNNs to identify fossil and abiotic grains. Recently, 
Yu et al. (2024) reviewed over 70 palaeontological AI 
investigations conducted since the 1980s, encompassing 
tasks like prediction, image segmentation, and the 
categorization of micro- and macrofossils.

Fostering the integration of AI techniques for data 
analysis in palaeontology is crucial due to the complexity 
of the field. The area of study at the intersection of these 
two disciplines may yield valuable insights from several 
perspectives. On the one hand, palaeontology can, for the 
first time, leverage AI-based powerful tools to examine 
data; on the other hand, AI can use palaeontological data 
to build, test and refine its methods. Thus, palaeontology 
has all the potential to become one of the new frontiers 
in Artificial Intelligence applications today.

Here, we applied a Deep Learning approach to the 
problem of the genus-level classification of images of 
isolated fossil shark teeth based on CNNs, a class of 
algorithms specifically tailored to deal with computer 
vision tasks. Thanks to the development of a specific 
dataset of shark tooth images, we were able to compare 
the performances of two CNNs. We developed and trained 
from scratch a CNN, named SharkNet-X, tailored on the 
complexity of our problem, keeping into account the 
simplicity of the network architecture and ease of training. 
At the same time, leveraging on the transfer learning 
paradigm (Zhuang et al., 2020), we trained the famous 
VGG16 architecture (Simonyan & Zisserman, 2014).

Our dataset allocates more than one thousand images, 
representing both extinct and extant shark genera. The 
dataset used to train the two CNNs was built by merging 
publicly available fossilised shark teeth (sub)datasets 
along with images of Peruvian Miocene and Italian 
Pliocene fossil materials gathered by the authors.

Thanks to this dataset, a comparison between the 
two CNNs was performed in terms of classification 
performance. It is worth noting that data augmentation 
(Shorten & Khoshgoftaar, 2019; Mumuni & Mumuni, 
2022) was applied, in particular by varying the rotation 
angle of the images, thus aiming to develop a CNN model 
able to work in real settings, with samples oriented in all 
directions. Furthermore, performing feature extraction 
from the last dense layer of SharkNet-X and VGG16, 
allowed us to verify the presence of clusters among 

our data thanks to the t-distributed Stochastic Neighbor 
Embedding (t-SNE) clustering technique (Van der Maaten 
& Hinton, 2008; Kobak & Berens, 2019). This approach 
allowed us to make considerations about the similarity 
between genera and species.

Moreover, we introduced the explainability of the 
CNNs by using the SHapley Additive exPlanations 
(SHAP) method (Lundberg & Lee, 2017; Lundberg, 2018; 
Azevedo, 2022). This powerful tool allows data scientists 
to gain insights into the factors driving predictions in 
Machine Learning models. Such an explainable approach 
to the results of the developed CNNs enabled us to make 
a step towards bridging the gap between a pure Machine 
Learning approach and the palaeontological approach of 
human taxonomists.

Our main goal here is to demonstrate the Deep 
Learning paradigm’s ability to assist the identification of 
ancient shark teeth, setting the groundwork for the creation 
of information tools for the automatic recognition and 
categorization of objects in the field of palaeontology.

MATERIAL AND METHODS

Fossil shark teeth and their use in systematic palaeontology
The marine vertebrates that comprise the Class 

Chondrichthyes (also known as chondrichthyans, or 
cartilaginous fishes) belong in two subclasses: the poorly 
diverse Holocephali (currently consisting of a few 
more than 50 species of chimaeras) and the much more 
speciose Elasmobranchii, which in turn include the extant 
superorders Selachimorpha (more than 500 extant species 
of sharks in eight orders) and Batomorphii (almost 700 
extant species of rays in four orders; Serena et al., 2020, 
and references therein) (Fig. 1). The extant chondrichthyan 
diversity is still only partially known, with new species 
being described on a yearly basis (White et al., 2023). The 
cartilaginous fishes have roamed the Earth’s global ocean 
for more than 400 million years (Andreev et al., 2022), 
leaving a vast fossil record in their wake. Most of this 
record is represented by dental and dermal remains: this is 
due to the fact that teeth and scales are heavily mineralised 
in chondrichthyans, unlike the endoskeleton, which is 
largely cartilaginous. In particular, the elasmobranch teeth 
are coated with a stiff, strong, tough layer of enameloid 
(a calcium phosphate material; Wilmers et al., 2021) that 
makes them good candidates for being preserved as fossils. 
Further enhancing the fossil record of the elasmobranchs 
is their peculiar pattern of dental replacement, whereby 
their teeth are shed rapidly and replaced continuously 
throughout life (Kemp, 1999; Gillis & Donoghue, 2007; 
Tucker & Fraser, 2014; Berkovitz & Shellis, 2017), so 
much so that some extant sharks can loss thousands 
or even tens of thousands of teeth during their lifetime 
(Brisswalter, 2009). Luckily for palaeontologists, the 
shark dentitions often exhibit diagnostic morphological 
characters, hence the utility of isolated fossil shark 
teeth for taxonomic identifications to the genus or even 
species level (e.g., Sáez & Pequeño, 2010; Cappetta, 
2012; Pollerspöck & Straube, 2018). Ultimately, the 
painstaking palaeontological study of the fossil shark 
tooth record allows for reconstructing a comprehensive 
and detailed picture of the evolutionary history and 
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palaeobiodiversity of one of the most charismatic groups 
of marine vertebrates.

Dataset of shark tooth images
The dataset developed in this work to train and test 

the two CNNs (namely, SharkNet-X and VGG16) was 
built by combining eight separate (sub)datasets. Six 
such (sub)datasets are publicly accessible and contain 
labelled pictures of shark teeth coming mostly from 
palaeontological collections of the Calvert Marine 
Museum and Florida Museum of Natural History, while 
the remaining two were created by the authors based on 
the Italian Pliocene collection of the G.A.M.P.S. (Gruppo 
Avis Mineralogia e Paleontologia Scandicci) permanent 
exhibition (Badia a Settimo, Scandicci, Italy; e.g., Cigala 
Fulgosi et al., 2009; Collareta et al., 2018, 2020) as well as 
on the authors’ first-hand experience on Peruvian Miocene 
fossil assemblages from the East Pisco Basin stored at the 
Museo de Historia Natural de la Universidad Nacional 
Mayor de San Marcos (Lima, Peru; e.g., Landini et al., 
2017, 2019; Collareta et al., 2021; Bosio et al., 2022). 
Information about each (sub)dataset is reported in Tab. 1, 
while some examples of the tooth images included therein 
are shown in Fig. 2.

Firstly, all the images comprising the eight (sub)
datasets were merged into a single composite dataset 
containing about 1800 images. Then, a deep manual check 
was performed, during which duplicate images and photos 
of taxa represented by very few specimens were removed. 
Additionally, photos displaying hand-held or weirdly 
oriented teeth as well as severely damaged specimens were 
also eliminated. The resulting dataset numbers about 1400 
pictures of teeth in either labial or lingual view. All these 
images underwent a pre-processing step, including the 

removal of the background to exclude associated elements 
such as museum labels and scale bars, and the creation of 
a black uniform background. Examples of the resulting 
pictures are shown in Fig. 2, with other examples being 
reported in the Supplementary Online Material (Fig. S1).

The shark taxa allocated in the final dataset include 
both extinct and extant genera, namely: Carcharhinus, 
Carcharias ,  Carcharocles ,  Chlamydoselachus , 
Cosmopolitodus, Galeocerdo, Hemipristis, Notorynchus, 
Prionace and Squatina. The number of images available 
for each genus is reported in Tab. 2. This image collection 
helps to increase the generalizability of our model by 
taking into consideration variations in terms of size, 
orientation, light condition, and intrageneric variability 
(with some relevant exceptions such as the as-yet 
monotypic Prionace, most of the studied genera are 
represented by more than a single species in our dataset).

It is also important to keep in mind that some of 
the considered genera, including Hemipristis and 
Notorynchus, are characterised by a high degree of 
heterodonty, which means that major morphological 
differences exist between the upper/lower (i.e., dignathic 
heterodonty) and/or anterior/posterolateral teeth (i.e., 
monognathic heterodonty), thus further complicating their 
automated identification.

Convolutional Neural Network architectures for shark 
tooth classification

In order to understand how Convolutional Neural 
Networks can perform on our classification task, we 
compared two of them. A CNN called “SharkNet-X” 
was built and trained from scratch, while a second CNN 
(VGG16) was selected from among the most renowned 
and top-performing architectures.

It is worth noting that both the CNNs were trained, 
validated and tested on the same dataset, optimising 
the hyperparameters on the validation set, using the 
“class_weight” option of TensorFlow for weighting the 
loss function (during training only) on the base of ratio 

Fig. 1 - Hypothetical phylogenetic tree of the Class Chondrichthyes, 
showing the relationship between the eight shark superorders (names 
highlighted in bold and black silhouettes). Tree topology after Díaz-
Jaimes et al. (2016).

Name Number of images

Shark Tooth Model Dataset 700

Shark teeth Dataset 280

AI and Natural History Shark Tooth 
Model Dataset 115

Shark Tooth Data Computer Vision 
Project 46

MHS Data. Megalodon or not 
megalodon dataset 41

Shark sorting Dataset 40

G.A.M.P.S. (Casati-Zanaga collection 
of Tuscan Pliocene shark teeth) 428

Departamento de Paleontología de 
Vertebrados MUSM (collection of 
Peruvian Miocene shark teeth)

140

Tab. 1 - Overview of the (sub)datasets of shark tooth images for 
classification used in this paper.
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between classes in our dataset (aiming to alleviate the 
class imbalance issue).

Model performances were measured by using 
Accuracy, Balanced Accuracy, Precision, Recall and F1 
score (a detailed description of these metrics is reported 
in the Supplementary Online Material). 

SharkNet-X architecture - SharkNet-X is a 
Convolutional Neural Network that was implemented 
in Python, using Keras (Keras, 2015; Chollet, 2021) and 
Tensorflow. It consists of convolutional (2D), max pooling, 
flatten, drop-out and dense layers (Abadi et al., 2016). A 
sufficiently small size of 224 × 224 pixels was empirically 
selected for the input images, which demonstrated to 
lessen the computational load without compromising the 
classification results while enabling easy detection of 
the shark tooth characteristics. Details on the network’s 
architecture, layer by layer, showing the layer type, the 
output shape and the number of parameters is reported in 
Tab. S1 of the Supplementary Online Material.

SharkNet-X architecture was empirically derived 
by exploring different hyperparameter configurations. 
Specifically, we explored random selection of batch sizes 
(i.e., 16, 32, 64, 128), number of epochs (from 10 to 100) 
and initial learning rates (0.01, 0.001, 0.0005, 0.0001, 
0.00005, 0.00001). The model hyperparameters were 
selected given the best performance on the validation 
set. Best performances were achieved with SharkNet-X 
trained using the Adam optimiser (Kingma & Ba, 2014) 
with an initial learning rate of 0.0001, batch size of 32, 
45 epochs, and sparse categorical cross-entropy as loss 
function. In addition, we implemented early stopping to 
prevent overfitting and ensure optimal model performance.

VGG16 architecture and transfer learning - 
VGG16 is a CNN architecture that was proposed by the 
Visual Geometry Group at the University of Oxford, and 
it is characterised by its simplicity and depth. It consists 
of 16 layers, including 13 convolutional layers, two fully 
connected layers, and a softmax layer. The architecture uses 
small, 3 × 3 convolution filters throughout the network, 
and applies them in a consistent manner to increase the 

depth while keeping the computational requirements 
manageable. VGG16 has been widely adopted thanks to 
its excellent performance on image recognition tasks, thus 
achieving high accuracy in competitions like the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC). Its 
pre-trained models are frequently used for transfer learning 
in various computer vision applications. We utilised a pre-
trained VGG16 model from the TensorFlow’s Keras API, 
initialised with ImageNet weights, as the base feature 
extractor for our classification task with ten classes. The 
base model layers were set to non-trainable to preserve 
the learned features. We constructed a sequential model 
by adding the base model, followed by a flattening 
layer, a dense layer with 32 ReLU-activated units, and 
a final dense layer with softmax activation to produce 
class probabilities. The network was trained with the 
following hyperparameters: as optimizer Adam with an 
initial learning rate of 0.0001, batch size of 64, number of 

Fig. 2 - Sample images from our composite dataset used to train the CNNs, depicting one specimen for each studied genus. a) Carcharhinus. 
b) Galeocerdo. c) Hemipristis. d) Cosmopolitodus. e) Carcharias. f) Notorynchus. g) Chlamydoselachus. h) Carcharocles. i) Prionace. j) 
Squatina. Note that the teeth are shown in either lingual or labial view as well as without a scale bar, and set against a black background. This 
approach was employed to eliminate potential biases and standardise the images for consistent analysis.

Genus Number of images (train/test)

Carcharhinus 266/25

Carcharias 232/21

Carcharocles 100/8

Chlamydoselachus 58/10

Cosmopolitodus 71/8

Galeocerdo 127/10

Hemipristis 208/21

Notorynchus 108/10

Prionace 45/8

Squatina 23/8

Total number of images 1367 (1238/129)

Tab. 2 - Composition of the final, composite dataset of shark tooth 
images used to train the two CNN architectures.
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epochs equal to 150 and sparse categorical cross-entropy 
as loss function. Additionally, we implemented early 
stopping to prevent overfitting and ensure optimal model 
performance. Early stopping was used during training to 
prevent overfitting.

Dataset for training - In order to properly train the 
two network architectures and assess the resulting model 
generalisation capabilities, the performances of the two 
CNNs were compared by splitting the data into three 
subsets: training, validation and test sets. This enabled 
the training and evaluation of the final model on distinct 
sets of data (Bishop, 2006; Bishop & Bishop, 2023). 
Some details about these definitions are reported in the 
Supplementary Online Material. In the case of our dataset, 
we were in presence of class imbalance; thus, in order to 
alleviate this possible issue, we applied two strategies: 
firstly, the training loss of the CNNs was weighted using 
the parameter “class_weight”; secondly, we used data 
augmentation techniques (described below). The train/
test division was then performed as in many classification 
problems, maintaining an approximate 9/1 ratio between 
the training and test sets (see Tab. 2). Nevertheless, we 
decided for the classes with fewer examples to keep a 
minimum of eight images in the test set. Consequently, this 
decision led to deviations from the 9/1 ratio for minority 
classes. The taxonomic distribution of the shark tooth 
images allocated in the training and test sets is reported 
in the Supplementary Online Material (Fig. S3). We 
compared the two CNNs in terms of performance metrics 
and then selected the model that we considered to be the 
most suitable for the classification task of our study; this 
model of choice is referred to as “best model”.

Moreover, for this best model we performed another 
measure of the generalisation performance using the 5-fold 
cross-validation scheme (Ng, 1997; Hastie et al., 2009; 
Raschka & Mirjalili, 2019). It is important to note that the 
images must be pre-processed to be scaled and normalised 
according to the necessary network input shape in order 
to feed the CNN model.

Data augmentation - Data augmentation is a 
technique used in Machine Learning to increase the 
diversity and size of a training dataset without actually 
collecting new data. Generally speaking, this is achieved 
by applying various transformations such as rotations, 
translations, flips, zooms, and colour adjustments to 
existing data. By introducing variability and preventing 
overfitting, data augmentation can help the model to 
better generalise to new, unseen data. We implemented 
data augmentation using Keras’ “ImageDataGenerator” 
function, applying the following transformations: random 
rotations as well as horizontal flipping. It is important to 
note that, to ensure the CNNs generalize well to real-world 
images, we used two distinct rotation ranges: a minor 
perturbation of ±20° and a full rotation of ±180°. This 
approach enables the network to classify teeth regardless 
of the photograph’s orientation. Consequently, the two 
CNN architectures were trained under three conditions: 
no data augmentation, augmentation with rotations up 
to ±20° and horizontal flipping, and augmentation with 
rotations up to ±180° and horizontal flipping.

Examples of images for the training/validation/test 
set in different rotation positions are provided in the 
Supplementary Online Material (Fig. S2).

Feature clustering - The employment of clustering 
methods applied to features extracted by CNNs has 
garnered increasing attention due to their potential in 
revealing underlying structures within data (Guérin 
et al., 2021). Features extracted by a CNN through its 
convolutional layers capture hierarchical representations 
of input images, while the last dense layer provides a high-
dimensional feature vector that can be used for clustering 
similar images together, thus enabling the unsupervised 
analysis and organisation of image datasets.

Here, we employed an unsupervised clustering method 
called t-SNE to the last dense layer of SharkNet-X 
and VGG16. This idea was explored in the field of 
palaeontology also by Liu et al. (2023) and Niu et al. 
(2024). t-SNE is a popular dimensionality reduction 
technique used in Machine Learning and data visualisation. 
It aims to map high-dimensional data points into a lower-
dimensional space, typically 2D or 3D, while preserving 
the local structure of the data as much as possible. t-SNE 
works by modelling the similarity between data points in 
the original high-dimensional space and then representing 
these similarities in the lower-dimensional embedding. 
This helps to reveal clusters and patterns in the data 
that might not be easily discernible in the original high-
dimensional space.

Exaggeration and perplexity are two crucial t-SNE 
hyperparameters that affect the final visualisation, 
influencing how the algorithm balances between 
capturing local and global structures in the data. While 
perplexity controls the effective number of neighbours 
considered for each data point, exaggeration enhances 
the separation between clusters in the lower-dimensional 
embedding space, making them more visually distinct. A 
low perplexity value causes t-SNE to focus more on local 
structure, while a high perplexity value considers a larger 
neighbourhood for each data point. Typically, perplexity 
values in the range of 5 to 50 are used, while it is a common 
practice to use exaggeration with a factor of 4 or 12. It 
is often necessary to experiment with different values of 
perplexity and exaggeration to empirically find the optimal 
combination that reveals the structure of the data.

CNN Explainability - Nowadays, the field of 
explainable artificial intelligence (XAI; Samek et al., 
2017) comprises an important research field. In fact, 
explainability of the results of a Neural Network is 
one of the most remarkable and complex aspects of 
Deep Learning. This step is necessary in order to move 
these algorithms into applications in science, giving 
to the field experts not only a performance score, but 
also an explanation of why certain results are obtained. 
Explainability can also provide a feedback mechanism, 
wherein experts can help to improve the Deep Learning 
model looking at the explained results, thus contributing 
to modify the algorithm architecture and/or the training 
procedure if necessary. Today, much of the research in XAI 
continues to rely on CNNs for their comparatively more 
interpretable representations and established methods for 
explainability (Zeiler & Fergus, 2014). CNNs have been 
extensively studied and have well-established techniques 
such as feature visualisation, occlusion analysis, and 
saliency mapping, which facilitate understanding of 
model behaviour and decision-making processes. For 
example, Grad-CAM, LIME and SHAP are well-known 



Bollettino della Società Paleontologica Italiana, 63 (3), 2024220

such methods (Ribeiro et al., 2016; Selvaraju et al., 2020; 
Van Zyl et al., 2024), which have been extensively studied 
and confronted (Panati et al., 2022), also in the field of 
palaeontology (e.g., Hou et al., 2023).

For the purposes of the present work, we implemented 
SHAP - SHapley Additive exPlanations, an algorithm 
based on Shapley values, a concept from cooperative game 
theory. Shapley values have been introduced in 1953 by 
Lloyd Shapley (Shapley, 1953) and have been used in 
the past to compute explanations on model predictions 
(Lipovetsky & Cocklin, 2001; Štrumbelj & Kononenko, 
2014). SHAP is able to explain the output of any Machine 
Learning model, quantifying the contribution of each 
feature to the prediction made by the model, thus providing 
insights on how the model arrived at a particular prediction. 
The core idea behind SHAP is rooted in the concept of 
Shapley values, which assigns a value to each player in 
a cooperative game based on their contribution to the 
overall outcome. SHAP computes Shapley values for each 
feature, indicating how much each feature contributes to 
the difference between the actual and average predictions. 
SHAP values then provide interpretable explanations for 
individual predictions, highlighting which features pushed 
the prediction towards a certain outcome, and which in 
turn pulled it away. These explanations can help users to 
understand and trust complex Machine Learning models, 
identify influential features, detect biases, and debug 
model behaviour.

In the context of palaeontology, SHAP can help 
fill the gap between a purely data-driven approach to 
classification and the necessity of a palaeontological 
explanation of the results obtained by the model. In the 
case of images, which is relevant to our task of automating 
the classification of shark tooth photographs, SHAP 
provides insights on why a particular image was classified 
in a certain way by attributing the contribution of each 
pixel to the model decision. SHAP analyses the importance 
of individual pixels or regions of the image in influencing 
the model prediction. It computes SHAP values for each 
pixel, indicating how much a pixel contributes to the 
difference between the model’s prediction for the image 
and its average prediction. Positive SHAP values indicate 
that a pixel contributes to a higher prediction score for 
a particular class, while negative values indicate the 
opposite. By visualising these SHAP values, users can 
gain insights into which parts of the image are most 
influential in the model decision-making process. This 
can help in understanding why the model classified the 
image in a certain way, identifying important features or 
patterns in the image, and assessing the model strengths 
and weaknesses. 

We applied SHAP to the classification results of 
SharkNet-X and VGG16, thus obtaining for each CNN 
a heatmap of the SHAP values for image inputs of 
representative examples of each genus. These heatmaps 
provide a visual representation of the importance or 
contribution of each pixel to the model prediction for a 
particular image. A colour gradient is used to indicate the 
magnitude of the contribution, with warmer colours (e.g., 
red) representing higher or positive contributions, and 
cooler colours (e.g., blue) representing lower or negative 
contributions. The heatmap often reveals localised patterns 
or regions of interest within the image that are particularly 

influential in the model decision-making process. These 
regions may correspond to specific features, objects 
or structures that are relevant to the classification task. 
Overall, the heatmaps generated by SHAP provide 
valuable visual insights into the inner workings of 
image classification models, helping users to interpret 
and understand model predictions in a transparent and 
interpretable manner.

The warranted consistency of SHAP values helps 
explaining why it gained so much popularity in recent 
years. Indeed, these and other advantages have been 
highlighted in recent literature reviews (Arrieta et al., 
2020; Heuillet et al., 2021; Vilone & Longo, 2021; 
Bodria et al., 2023). SHAP is presented by Linardatos 
et al. (2020, p. 12) as “the most complete method, 
providing explanations for any model and any type 
of data, doing so at both a global and local scope”, 
and “[together with LIME (Ribeiro et al., 2016)], by 
far, the most comprehensive and dominant across the 
literature methods for visualising feature interactions 
and feature importance”. Here, we used DeepExplainer, 
a variant of SHAP designed to work with Deep Learning 
models such as those implemented in frameworks like 
TensorFlow and Keras. To calculate Shapley values for 
model explainability, we selected 70 random samples 
from the training set to form the background dataset, 
ensuring diversity and representativeness by selecting 
seven samples from each class. We then used the SHAP 
DeepExplainer with this background dataset to explain 
the model’s predictions. Specifically, we applied the 
explainer to test images, thus generating Shapley values 
that quantify the contribution of each image pixel to the 
model’s output.

CNN training and computing environments
All the analysis described above were executed on 

a workstation with the following characteristics: CPU 
Intel Core i9-7940X CPU, RAM 128 GB, GPU NVIDIA 
Quadro P6000 24 GB, OS Ubuntu 22.04.4 LTS. An epoch 
of training of VGG16 with data augmentation required 
about 50 seconds, which for 120-150 epochs means 
hours of training. Exploring the space of hyperparameters 
of the CNN, such as learning rate or changing the data 
augmentation settings, can exponentially increase the 
time required for training. In turn, a single run of SHAP 
can take up to five minutes (depending on the number of 
samples used) to provide a heatmap as output.

RESULTS

Classification results
Table 3 compares the two CNNs under different data 

augmentation conditions (rotations of  0°, ±20° and ±180°) 
for multiple classification metrics.

VGG16 demonstrates robustness across various 
rotations, maintaining strong performance in all metrics. 
In particular, VGG16 shows consistently higher accuracy 
and balanced accuracy across all rotations compared to 
SharkNet-X, maintaining an accuracy between 93-97% 
and a balanced accuracy between 91-95% regardless 
of the rotation, which indicates robustness to image 
transformations. Additionally, VGG16 consistently 
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demonstrates higher precision (95-97%), meaning it 
produces fewer false positives across all rotations, while 
also maintaining a high recall rate (93-97%), which 
indicates its effectiveness in identifying true positives 
regardless of image orientation. This results in a higher 
overall F1 score (93-97%) that reflects an excellent 
balance between precision and recall.

SharkNet-X performs reasonably well for minor 
rotations but shows noticeable drops in performance when 
classifying images rotated by 180°. This suggests it may be 
more sensitive to significant transformations in the input 
data, possibly due to a less robust internal representation 
of rotational variance. In real-world applications, where 
handling rotated images may prove necessary, VGG16 
appears to be a more suitable option due to its consistent 
performance across various transformations. However, 

SharkNet-X may still be an efficient model under normal 
or minimally rotated conditions of the input data.

In light of the aforementioned, we selected VGG16 
with data augmentation using rotation angles up to ±180° 
as our “best model”. Despite not being the highest-
performing model in terms of classification metrics, 
we consider it the best compromise between robust 
performance and generalizability to real-world scenarios. 
The learning curves (loss function and accuracy) for 
the training and validation sets and a performance 
matrix (evaluated on the test set) for the best model are 
reported in Fig. 3 and Fig. 4, respectively, while the 
corresponding figures for the other models are provided in 
the Supplementary Online Material (Figs S4, S5 and S6). 
In addition, the best model was cross-validated obtaining 
an average balanced accuracy of 89 ± 3% (std). Additional 
cross-validation results are reported in Tab. S2 of the 
Supplementary Online Material.

t-SNE and SHAP results
We used the last dense layer of the best model CNN 

to extract 128 features for each image in the dataset. The 
resulting feature data matrix (1367 images × 128 features) 
was given as input to the t-SNE algorithm implemented 
with SciKit-Learn (Pedregosa et al., 2011). Results are 
shown in Fig. 5 for the combination of hyperparameters 
given by a perplexity of 50 and an exaggeration of 50. 
t-SNE results for the other CNN models (including 
SharkNet-X) are provided in the Supplementary Online 
Material (Fig. S7).

Figure 6 displays the SHAP heatmaps for the best 
model CNN, as evaluated for a few representative 
examples.

DISCUSSION

The performance results summarised in Tab. 3 show 
good performances for all the models. The SharkNet-X 
architecture appears to work better when trained using 
data augmentation with small rotation angles (up to ±20°), 
while VGG16 shows about the same performances when 
trained without data augmentation and when using data 
augmentation with small rotation angles (up to ±20°). 
Using instead data augmentation with complete rotation 
angles (up to ±180°) results in slightly decreasing the 
VGG16 model performance. However, in general the 
performances of VGG16 architecture are always better 
than those of SharkNet-X. Aiming to obtain a model 
with good performances on real scenarios, where shark 
teeth can appear in different orientations, we selected 
as best model the VGG16 architecture trained with data 
augmentation with angles up to ±180°.

Results for the test set using the best model are 
summarised by the Confusion Matrix shown in Fig. 
4, which shows that the most frequent mispredictions 
regarded: 1) teeth of Carcharocles being misinterpreted 
as belonging to Carcharhinus and Prionace; and 2) 
teeth of Galeocerdo being misinterpreted as belonging 
to Prionace. The former issue may be due to the fact 
that some upper teeth of Prionace and broad-toothed 
Carcharhinus species (i.e., the “bull group” sensu 
Cappetta, 1987) are superficially reminiscent of those 

SharkNet-X VGG16

Rotation [degrees] 0 20 180 0 20 180

Accuracy (%) 80 89 77 97 95 93

Bal. Accuracy (%) 76 85 75 95 94 91

Precision (%) 82 91 80 97 96 95

Recall (%) 80 89 77 97 95 93

F1 (%) 78 88 76 97 95 93

Tab. 3 - Classification performance metrics for the two CNNs, 
SharkNet-X and VGG16. Results are reported for the three cases 
considered, namely, no data augmentation, and data augmentation 
with horizontal flipping and rotation angles ±20° and ±180°.

Fig. 3 - Train and Validation learning curves for the VGG16 with 
data augmentation (rotation range ± 180°): a) Accuracy; b) Loss.
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of Carcharocles, especially when size and profile views 
are not taken into account. Such superficial similarities 
concern the overall outline, presence of serrations along 
the cutting edges, absence of cusplets, and relatively short 
root lobes, although many major differences do obviously 
exist. That two teeth of Galeocerdo out of ten were 
misinterpreted as belonging to Prionace is more difficult 
to explain based on dental similarities alone.

The high-dimensional representation learned by 
the last dense layer of the CNN is confirmed by the 
2D t-SNE visualisation shown in Fig. 5. The extracted 
features exhibit clustering patterns corresponding to the 
shark genera, indicating the effectiveness of the CNN in 
capturing meaningful distinctions within the dataset. The 
best individualised clusters appear to be those concerning 
Chlamydoselachus and Notorynchus. This is not 
surprising as the tricuspid teeth of Chlamydoselachus and 
the comb-like teeth of Notorynchus are among the most 

distinctive of the whole dataset. Conversely, the cluster 
that describes the genus Carcharhinus partly overlaps 
with a few others. Once again, this comes as no surprise 
considering that Carcharhinus spp. are characterised 
by a cutting-clutching dentition wherein the upper and 
lower teeth are often different from each other in general 
morphology (e.g., Bourdon, 1991), and that different 
species of Carcharhinus (including both narrow- and 
broad-toothed forms) are present in our dataset, which 
concurs to create a wide intrageneric variability in terms 
of tooth shape. 

SHAP results are shown in Fig. 6 for some 
representative examples. From a data analysis point 
of view, it is important to outline some characteristics 
of the obtained SHAP heatmaps. In the figure, SHAP 
values are given for each example and some possible 
outcomes. Generally speaking, the distribution of warm- 
and cool-coloured pixels indicates that the characters 

Fig. 4 - Heatmap visualization of the classification performance of the VGG16 best model with data augmentation (rotation range ± 180°), 
showing the percentage of correct and incorrect predictions for each class made on the test set. The rows represent the true labels (genera), 
and the columns represent the predicted labels (genera), with each cell indicating the percentage of prediction. Along the rows, next to each 
genus name, the number in parentheses represents the total number of images belonging to that specific class. Diagonal cells show the model’s 
accuracy for each class, while off-diagonal values reveal the proportion of misclassifications, helping to identify specific genera that are 
frequently confused with others. The color gradient from light yellow to dark green corresponds to increasing percentage values.
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that the CNN keeps as most diagnostic cluster along 
the tooth margins, and secondarily inside the margins 
themselves, suggesting that it is the tooth outline (and 
especially the crown outline) that leads the process of 
automated identification. In some cases, however, we 
found such pixels outside the main region of the image. 
This outcome is to be expected, as this method focuses 
exclusively on highlighting what the CNN is “looking 
at” in the input image in order to discriminate different 
genera of shark teeth rather than explaining why a specific 
prediction was made.

Although the performances achieved by the best model 
are good, the clustering of t-SNE meaningful and the 
results of the SHAP explainability heatmaps promising, 
it is important to point out the limitations of our work in 
order to indicate future improvements and advancements. 
Firstly, one of the limitations consists in the small number 
of specimens included in some of the considered genera 
(e.g., Chamydoselachus, Prionace and Squatina) and 
class imbalance. Addressing this challenge might result 
in improving the model’s performances. It is also worth 
noting that a more systematic analysis will be necessary in 
future works to assess the consistency of the t-SNE results 
due to the stochasticity and hyperparameter dependency 
of the method.

Another limitation concerns the interpretability of the 
results provided by SHAP. While the SHAP heatmaps 
confirm that the CNN is “looking at” the right places (i.e., 
the tooth borders and inner regions), the method does not 
explain how this information is used by the network in 
order to perform the prediction. This limitation is inherent 
to the SHAP post-hoc approach to Explainability.

By acknowledging these limitations, we pave the way 
for future research endeavours aimed at addressing these 
challenges.

CONCLUSIONS

We explored the efficacy of two Convolutional Neural 
Networks, SharkNet-X and VGG16, for the genus-level 
classification of fossil shark teeth. We compared the 
two CNNs and chose a best model, namely, the VGG16 
trained with data augmentation. This model achieved 
good performances. Additionally, the t-SNE clustering 
analysis conducted on the last dense layer of the CNN 
reaffirmed the quality of the learned representation, clearly 
demonstrating distinct clustering patterns corresponding 
to different genera. Hopefully, this model will serve as 
an initial step toward the creation of research software, 
such as the already available ParticleTrieur (Marchant et 
al., 2020), dedicated to specimen classification and the 
analysis of tooth morphology.

In addition, we introduced the SHAP method for CNN 
explainability, which allowed us to obtain a visual heatmap 
to interpret the output of the CNN. Such maps were 
investigated by palaeontologists in order to understand 
what kind of patterns/features the neural network was 
looking at during the identification process. 

Although certain limitations persist, we are confident 
that future research will significantly advance our 
comprehension and utilization of Deep Learning 
techniques in the field of shark tooth classification and 
beyond.

DATA AND CODE AVAILABILITY 

The complete dataset generated and analysed in the 
current study is available from the first and corresponding 
authors. Additionally, the fine-tuned VGG16 Model 
(trained with rotation up to 180 degree) for our application 

Fig. 5 - t-SNE 2D visualization of the features extracted from the last dense layer of the VGG16 best model with data augmentation (rotation 
range ± 180°), using the entire dataset.
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and part of the dataset are available on github at https://
github.com/GAIA-IFAC-CNR/SharkNet-X.

SUPPLEMENTARY ONLINE MATERIAL

Supplementary data of this work are available on the 
BSPI website at: https://www.paleoitalia.it/bollettino-spi/
bspi-vol-633/
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