
Journal of the Franklin Institute 362 (2025) 107548

A
0
l

Contents lists available at ScienceDirect

Journal of the Franklin Institute

journal homepage: www.elsevier.com/locate/fi

Shedding light on uncertainties in machine learning: formal
derivation and optimal model selection
Giulio Del Corso , Sara Colantonio , Claudia Caudai ∗

Institute of Information Science and Technologies, National Research Council, Pisa, 56127, Italy

A R T I C L E I N F O

Keywords:
Uncertainty quantification
Bayesian learning
Probabilistic modeling
Deep neural network
Reliable artificial intelligence

A B S T R A C T

The concept of uncertainty has always been important in the field of mathematical modeling.
In particular, the growing application of Machine Learning and Deep Learning methods in
many scientific fields has led to the implementation and use of new uncertainty quantification
techniques aimed at distinguishing between reliable and unreliable predictions. However, the
novelty of this discipline and the plethora of articles produced, ranging from theoretical results
to purely applied experiments, has resulted in a very fragmented and cluttered literature. In
this review, we have attempted to combine the well-established mathematical background of the
Bayesian framework with the practical aspect of modern state-of-the-art emerging techniques in
order to meet the urgent need for clarity on key concepts related to uncertainty quantification.
First, we introduced the different sources of uncertainty, ranging from epistemic/reducible to
aleatoric/irreducible, providing both a rigorous mathematical derivation and several examples
to facilitate understanding. The review then details some of the most important techniques
for uncertainty quantification. These methods are compared in terms of their advantages and
drawbacks and classified in terms of their intrusiveness, in order to provide the practitioner with
a useful vademecum for selecting the optimal model depending on the application context.

1. Introduction

Since ancient times, uncertainty has been seen as synonymous with disorder, and therefore as something to be limited or even
eliminated from scientific experiments. In fact, uncertainty is the aspect that makes the calculations inconclusive, leaving us with a
feeling of precariousness in the interpretation of an event. The attempt of this review is to reconcile with the concept of uncertainty,
to recognize its usefulness, and to realize that it is an indispensable aspect of mathematical modeling anything that has to do with the
perceivable and the thinkable. From the earliest philosophical definitions of knowable and uncertainty, through to modern Bayesian
formalism or the use of credal sets, there has been an attempt to subdivide the types of uncertainty into more comprehensible
classes. In particular, reducible uncertainties (i.e., dependent on the amount of information available) and irreducible uncertainties
were introduced, which in turn specialize in a plethora of subclasses not clearly disjointed, such as epistemic uncertainties, model
uncertainties, noise, and numerous others [1,2].

With the advent of modern Machine Learning techniques, it became increasingly important to determine how uncertainty in
the model inputs (e.g., epistemic variability) changed the prediction (forward uncertainty quantification) and could affect its use.
Similarly, it was possible to investigate which variables could play a dominant role in the model (local/global sensitivity analysis)
or which were the optimal parameters of a model given information affected by uncertainties (inverse sensitivity analysis). The

∗ Corresponding author.
E-mail address: claudia.caudai@isti.cnr.it (C. Caudai).
https://doi.org/10.1016/j.jfranklin.2025.107548
Received 7 August 2024; Received in revised form 10 January 2025; Accepted 15 January 2025
vailable online 21 January 2025
016-0032/© 2025 The Authors. Published by Elsevier Inc. on behalf of The Franklin Institute. This is an open access article under the CC BY
icense (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fi
https://www.elsevier.com/locate/fi
https://orcid.org/0000-0003-4604-2006
https://orcid.org/0000-0003-2022-0804
https://orcid.org/0000-0002-1590-7890
mailto:claudia.caudai@isti.cnr.it
https://doi.org/10.1016/j.jfranklin.2025.107548
https://doi.org/10.1016/j.jfranklin.2025.107548
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfranklin.2025.107548&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G. Del Corso et al.

a
t
t

i
o
o
S

(

t
f

f
m

p

o

Journal of the Franklin Institute 362 (2025) 107548
study of the combination of these problems has given rise to a flourishing line of research in classical Machine Learning called
Uncertainty Quantification [3]. However, the advent of Neural Networks, and in particular their deep derivatives, has changed
the classic paradigm. The models were no longer tools for understanding the underlying statistical relationships, but powerful
predictors subject to high risk of over-fitting that could be used in a wide range of applications, from autonomous driving [4]
to automatic identification of the correct Medical Equipment in emergency settings [5], or medical diagnosis [6–8]. Uncertainty
nalysis, especially in biomedical contexts, has thus taken on a completely different role, with increasing interest in the ability of
he model to recognize its own limitations (reliability) or to detect a malfunction in radically different types of data from those used
o train it (out-of-distribution analysis).

Many recent papers and reviews have focused on providing details of individual families of methods related to Deep Learning [9–
11], proposing alternatives to the probabilistic/Bayesian formulation [12] or offering a systematic description of the application
domains of different UQ techniques [13]. However, to the best of our knowledge, few attempts have been made to reconcile the
classical formalism derived from the well-structured theory of Bayesian statistics and uncertainty quantification with the formalism
typical of supervised Machine Learning (especially Deep). Similarly, it is easy for Machine Learning practitioners wishing to use
uncertainty estimation techniques to get lost in the plethora of methods available, and it can be an overwhelming task to work
out which method is best suited to the study situation, especially in terms of computational resources required and implementation
difficulties.

Therefore, after a historical/mathematical introduction to the evolution of the concept of uncertainty (Section 2), our focus
n this paper has been to provide a theoretically rigorous yet illustrative vademecum to guide a practitioner in the selection
f the optimal Bayesian ANN model. We are also committed to providing precise nomenclatures and definitions, with the aim
f providing disclaimers where the state of the art is sometimes imprecise, vague, or contaminated by transversal concepts. In
ection 3 we introduce step-by-step the different kinds of uncertainties (Aleatoric Uncertainty and Epistemic Uncertainty) and further

subdivide them into Aleatoric Inherent, Aleatoric Experimental, Aleatoric Model and Epistemic Model, and Epistemic Approximation
uncertainties. We also discuss the difference between irreducible and reducible uncertainties and show how the out-of-distribution
problem arises as a special case of approximation uncertainty. In Section 4 we briefly introduce the Bayesian formalism and
make a comparison between the state-of-the-art techniques for dealing with uncertainty. In particular, we divide the techniques
into Intrusive (Section 5: ANN with distributional outputs, Bayesian Neural Networks, Deep Gaussian Processes), Semi-intrusive
Section 7: Ensemble Methods), and Non-intrusive (Section 6: Monte Carlo Dropout, Internal Score, Trust Score, etc.) to help

practitioners choose the appropriate method for the task. Given the breadth and complexity of the topic, we decided to move some
important but mathematically challenging related topics to the Appendices, such as a formal derivation of variational inference for
Bayesian Neural Networks, Markov Chain Monte Carlo posterior estimation, and the theory of Classical Gaussian Processes.

2. An historical introduction: The road to modern uncertainty conceptualization

Uncertainty, from disturbing factor to useful modeling component
Since the 17th century, with the efforts of great scientists such as Descartes, Newton, Galileo, and Laplace, there has been an

attempt to use mathematics to model reality with the highest possible degree of precision. Several theories were developed, with
he intent of modeling frequency probabilities. In particular, in 1763 the Reverend Thomas Bayes developed a powerful theorem
or conditional probabilities [14], later used by Bruno De Finetti [15] to define the subjectivist approach to probability. Until

the last decades of the 19th century, uncertainty was considered a disturbing factor, to be tried to reduce as much as possible.
Over time, however, many studies, including primarily those of the theoretical physicists who, in the first decades of the twentieth
century, theorized quantum mechanics, such as Heisenberg, Bohr, Schrödinger, Pauli, etc. have made it clear that uncertainty was an
indispensable component for the modeling of physical and biological processes in particular, but more generally of any phenomenon
inherent to reality [16,17]. This awareness has begun to decrease the credibility of the analytical infinitesimal calculus, in which
ew variables are related to each other in a deterministic way, in favor of approaches such as statistical mechanics, in which is
uch more complicated to eliminate randomness and decide in a deterministic way the relationships between variables. Statistical

mechanics made it possible to deal with non-linear problems with a large number of components, taking into consideration the
relationships between sensitive indicators of the variables (such as mean and variance) instead of the variables themselves [18].
Towards the first decades of the 20th century, awareness grew about the importance of incorporating uncertainty into mathematical
approaches as a necessary element for understanding and modeling reality. Illustrious mathematicians, economists, logicians, and
hilosophers dedicated themselves to the problem of decoding, recognition, and rigorous formalization of uncertainty (see Fig. 1

for a road map of contributions). Scientists began to understand the inverse correlation between uncertainty and complexity, in the
sense that allowing greater uncertainty in a system can contribute to simultaneously decreasing its complexity; this consideration
pened the doors to the challenges of determining the optimal level of tolerable uncertainty within a problem of modeling to make

it as faithful and accurate as possible [16].

The arduous task of defining what uncertainty is
In 1923 Bertrand Russell published an essay entitled ‘‘Vagueness’’ [19], in which he attempted to define the limits in the

perception of reality, both at a sensory level in the perception field and at a representation level through the logical-mathematical
instruments. According to Russell, logic is the highest possible tool for representing reality, but faithful representation still remains
an ineffable concept: ‘‘All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to
this terrestrial life but only to an imagined celestial existence... logic takes us closer to heaven than other studies.’’ [19]. Bertrand Russell,
2

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 1. Road map of evolution of Uncertainty conceptualization in the 20th century, throw years and currents of thought.

together with the contemporary philosophers Gottlob Frege and Ludwig Wittgenstein, studied natural language for a long time in
relation to its ambiguity and its ability to represent reality [20,21], laying the foundations for the Logical Atomism, an important
philosophical view according to which reality is thought of as decomposition into non-reducible propositions, i.e., atomic facts, to
which the principles of classical logic can be applied [22]. Both Russell and Wittgenstein came to consider vagueness as a ‘‘degree’’
to be attributed to reality based on the number of ‘‘differences’’ that the various systems derived from its representation (through
language) can have.

Another philosopher who studied the concept of Vagueness was Max Black, who in his 1937 essay entitled ‘‘Vagueness. An exercise
in logical Analysis’’ [23] underlined the unbridgeable gap between scientific theory and its application. However, Black contested
Russell’s hypothesis of the non-applicability of logic principles to ‘‘vague’’ concepts, because he saw it as too great a threat to
reasoning with ordinary language (epistemological logic) [24]. Two other philosophers who dealt with the concept of uncertainty
were Michael Cohen, who considered the problem of legal reasoning, introducing the so-called Baconian Probabilities, understood
as degrees of provability of an evidence [25], and David Lewis, who introduced a graded notion of possibility in the form of relations
between subjective plausibility estimated for counterfactual statements in different possible worlds [26]. Another step forward in
the long road of the formalization of the concept of uncertainty, as we know it today, was made by the economist G. L. S. Shackle
who between 1940 and 1970 wrote many essays on the conceptualization of the degree of possibility of an event, understood as
the inverse of the degree of surprise that this event would arouse if it occurred. Shackle considered the possibility as closely linked
to the uncertainty in the decision and inverse to the impossibility, understood as the necessity for the opposite event to occur. He
formulated the Principle of Decisional Cruciality, later used in the theory of financial risk analysis [27].

Probability, possibility, and evidence theory
The most important turning point in the formulation of modern uncertainty theory was provided by Lofti A. Zadeh, who in

1965 published the paper ‘‘Fuzzy Sets’’ [28] in which he introduced new types of sets characterized by non-precise boundaries.
Membership to a fuzzy set cannot be established with certainty, but is defined through a continuous function, in this way Zadeh
questioned the foundations of Aristotelian dichotomous logic and introduced a logic with continuous values that actually contains
and does not exclude the binary logic (true-false) used by classical Bayesian Probability Theory. Fuzzy logic has greatly facilitated
the representation of uncertainty in its various forms such as ambiguity, measurement error, incomplete information, and natural
variability. Zadeh, like Russell and Wittgenstein, deeply reflected on natural language, on the fact that natural language represents
the most accurate tool possible for the description of reality perceived by human beings because it is the result of an evolution of
dozens of thousands of years. In natural language there are terms such as ‘‘something’’, ‘‘some’’, ‘‘about’’, ‘‘little’’, ‘‘very’’, ‘‘essentially’’,
‘‘more or less’’, which are essentially ‘‘vague’’ terms, too complex to be processed with a logical-mathematical language, but which
perfectly represent concepts specific to areas such as biology, physiology, psychology, sociology, economics and more generally
human and natural sciences. Zadeh called these terms ‘‘hedges’’ [29]. Hedges are considered untractable by classical computing,
based on a binary architecture. According to Lofti Zadeh, the difference between human and mechanical intelligence lies in the
human brain’s ability to reason in imprecise and non-quantitative terms. Fuzzy Set Theory aims to facilitate the codification, by
the machine, of concepts, vague and imprecise from a quantitative point of view, but very significant from a qualitative one. ‘‘⋯
to effectively deal with such [biological] systems, which are generally orders of magnitude more complex than artificial systems, we need
a radically different kind of mathematics, the mathematics of fuzzy or nebulous quantities that are not describable in terms of probability
3

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 2. Graphical scheme showing the relationship/simplified relationship between the real input/output and the corresponding trained model.

distributions’’ [28]. For fuzzy logic, the proposition ‘‘x is a member of A’’ is not necessarily either true or false, but it may be true
only to some degree, the degree to which 𝑥 is actually a member of A. In 1978 Zadeh introduced the Theory of Possibility [30],
an important mathematical theory for dealing with the propagation of uncertainty with limited statistical or subjective information
and for managing incomplete information. In subsequent years Didier Dubois and Henri Prade contributed to the mathematical
formalization and development of this theory [31,32]. At a formal level, there is a broad correspondence between the theory of
possibility and the theory of probability both are based on set functions, and in a certain sense possibility theory may be interpreted
in terms of interval-valued probabilities. Important differences consist of the fact that in the possibility theory, a pair of functions are
used (the possibility operator and the necessity operator) instead of just one and the addition operator corresponds to the maximum
operator, in fact in the probability theory the distributions have a sum 1, while in the possibility theory, the distributions have max
value 1 [33]. In his 1995 essay ‘‘Discussion: Probability Theory and Fuzzy Logic Are Complementary Rather Than Competitive’’ [34]
Zadeh theorized that probability theory alone is not sufficient to comprehensively deal with the concept of uncertainty, but rather
probability theory and possibility theory are complementary and very useful for jointly dealing with different aspects of uncertainty.
Probability theory offers the possibility of representing with numbers, while fuzzy logic offers the possibility of representing with
words, and estimating fuzzy probabilities. Classical probability theory is not very effective in those fields in which knowledge is
incomplete and the dependencies between variables are not well defined or in those fields in which human reasoning, perceptions,
and emotions play an important role. From this perspective, contamination of fuzzy logic and classical probability theory results in
a significant enrichment in terms of representative capacity: probability fundamentally measures the frequency of an event, while
possibility is used to quantify the meaning of an event [17].

There is also a strong correspondence between probability theory and Evidence theory, also called Dempster-Shafer Theory
(DST), introduced by Arthur Dempster in 1967 [35] in the field of statistical inference and later developed by Glenn Shafer [36].
DST generalizes the Bayesian Theory of Subjective Probability [37]. The main difference with classical probability theory is that
in probability theory the evidence (degree of belief) is associated with only one possible event, while in DST the evidence can be
associated with multiple possible events, i.e., sets of events. Degrees of belief derived by different events can be combined through
Dempster’s rule of combination, making DST an important tool for mathematically dealing with uncertainty.

Teach to machines uncertainty reasoning
In 1981 Clark and Carlson focused on the computational context associated with Machine Learning algorithms, observing that

ambiguity in a computational context can lead to significant uncertainty [38,39]. They proposed a disclaimer between stochastic
(also called aleatoric) uncertainty, which occurs because the Machine Learning algorithm can behave in many different ways
due to variable input data, and subjective (also called epistemic) uncertainty, which arises from a lack of information, from an
inadequacy of the parameters or from problems concerning the implementation of the algorithm. From the 80 s other fuzzy measures
had been introduced [40] and attempts to give an algebraic structure to fuzzy spaces have been made, introducing new ideas
of fuzzy arithmetic [41] and hybrid arithmetic [42,43]. An interesting methodological approach introduced by Zadeh in 1993 is
represented by soft computing [44], a methodology that integrates fuzzy logic, Neural Networks, and genetic algorithms to adapt
to the imprecision of the real world. Soft computing aims to manage uncertainty, incompleteness, tolerance for errors, and biases
to obtain tractability, robustness, scalability, and optimization of computational costs. Soft computing has led to the birth of Neuro-
Fuzzy Systems [45] and Fuzzy Neural Networks [46], which play a particularly important role in the process of inducing rules from
observation and in the creation of adaptive systems. In conclusion, many possible approaches to the formalization and management
of uncertainty in Deep Learning have been introduced, capable of tackling the problem from different perspectives. For our purposes,
however, the probabilistic approach, based on the Bayesian paradigm introduced and formalized by Pearl in 1988 [47] and currently
the predominant uncertainty analysis mechanism in ML methods, is the most appropriate because it allows greater explanatory
clarity and pedagogical potential.
4

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 3. Examples of how the choice of dimensionality affects the perception of the relationship under study, , and the uncertainties associated with it. (Panel
a): ∗ = (1 ,2 ,3) = [0, 2𝜋]2 × [0, 1], 𝑌 = {0, 1}, ∗(𝑥1 , 𝑥2 , 𝑥3) = 1 if 𝑥3 > 0.5. (Panel b): Limiting the input space to two dimensions can hide the real relationship;
to an observer, the 𝑦 values appear to be randomly sampled from a Bernoulli distribution (Inherent Aleatoric Uncertainty). Therefore, an approximate model
emulates a simplified affected by aleatoric uncertainty. (Panel c): Conversely, removing confounding variables can reduce the complexity of the problem.

3. Uncertainties: From intuition to formal derivation

Uncertainty analysis in Machine Learning begins with the formal definition of the uncertain quantities involved in the modeling
problem. In fact, uncertainties can be of different types (including aleatoric, model, and approximation uncertainties) and can be
intrinsic to the relationship under study or derived from an attempt to approximate reality with a numerical model. Although most
techniques derived from the Bayesian approach fail to disentangle reducible (epistemic) and irreducible (aleatoric) uncertainties,
providing a formal definition allows the practitioner to understand how a method provides an appropriate estimate of random
variability. In addition, each type of uncertainty requires an appropriate strategy to mitigate it, so it is fundamental to have a
complete overview of the sources of randomness in order to properly manage the modeling of the phenomena.

3.1. Reality and model: The map isn’t the territory

The first step, with reference to Fig. 2, is to define the inputs/instance space of the problem (denoted by ∗) and the
corresponding outputs/outcomes (denoted by ∗). These two quantities are associated by a relationship ∗ ∶ ∗ → ∗ that returns
a value 𝑦∗ ∈ ∗ for each input 𝐱∗ ∈ ∗. This relationship represents reality, the true output once the input is chosen, and is
independent of measurement error or model approximation. However, in several real cases, the relationship is too complex to be
handled, and therefore we work with a simplified relationship which relates an input space with the corresponding outcomes
 .

The goal of a mathematical modeling process is to estimate the relationship using an approximating model (i.e., model
induction). The model is constructed from a sample/data-set = {(𝐱𝑖, 𝑦𝑖)}𝑛𝑖=1 ⊂ × and a set of hypothesis ℎ = (𝜃 , ℎ̂) ∈ 𝐻 :

 ∶= ℎ = 𝜃 ,ℎ̂ ∶ → (1)

The data set includes the data available to the experimenter. Instead, a choice of hypothesis ℎ = (𝜃 , ℎ̂) ∈ 𝐻 of a model includes
both the trainable parameters 𝜃 of a model (e.g., usually weights and biases for an ANN) and all those choices ℎ̂ made on the basis
of prior knowledge (e.g., use of a linear regressor or an ANN, choice of training hyperparameters, etc.).

3.2. Aleatoric uncertainty: A random world

The first type of uncertainty that can affect the relationship under consideration is called Aleatoric Uncertainty (𝜀𝐴, from Alea,
dice in Latin). It is often referred to as Stochastic Uncertainty, Statistical Uncertainty, or even Irreducible Uncertainty. Random
uncertainty may be inherent in the relationship under consideration (𝜀𝐴,𝐼 , Aleatoric Inherent Uncertainty), the result of noise in
the analysis and measurement process (𝜀𝐴,𝑁 , Aleatoric Experimental Uncertainty/Noise) or to random alterations in the modeling
process (𝜀𝐴,𝑀 , Aleatoric Model Uncertainty). Random uncertainty can vary with the input 𝐱 (Heteroscedastic Uncertainty) or be
constant over the input space (Homoscedastic Uncertainty). Aleatoric uncertainty represents the inherently random nature of the
problems studied, which cannot be explained away. Aleatoric uncertainty is inherently irreducible (i.e., it cannot be eliminated by
improving the model/providing more data) and therefore, unless properly modeled, will always result in an unexplained discrepancy
between model predictions (𝑥) and reality (𝑥).

Remark 1 (Does Aleatoric Uncertainty Exist?). Referring to Fig. 3, aleatoric uncertainty associated with the relationship is often a
consequence of the simplifying assumptions, which reduce the more complex relationship ∗ to the simpler one . As an example,
consider an input space = (1,2,3) = [0, 2𝜋]2 × [0, 1] and a relationship ∗(𝑥1, 𝑥2, 𝑥3) = 1 ⟺ 𝑥3 > 0.5. This relationship is
fully deterministic. However, working with a limited amount of information (i.e., reducing to (,)) leads to a relationship
1 2

5

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 4. Model of aleatoric uncertainty. (Panel a): The non-deterministic relationship relates inputs/outputs which are affected by Experimental Aleatoric
Uncertainty/Noise (𝜀𝐴,𝑁 ,𝐱 , 𝜀𝐴,𝑁 ,𝑦). (Panel b): With a change of perspective, can be seen as a relationship between a deterministic input and an output
influenced by Aleatoric Inherent (𝜀𝐴,𝐼) and Aleatoric Experimental Uncertainty/Noise. (Panel c): Shows the effect of Aleatoric Uncertainties. The deterministic
value 𝐱 corresponds to a random output affected by the Aleatoric Inherent Uncertainty (𝐱) + 𝜀𝐴,𝐼 , which is further contaminated by the Aleatoric Experimental
Uncertainty/Noise on 𝑦.

(𝑥) corresponding to a fully random Bernoulli distribution 𝑝 = 0.5. It is worth noting that often the aleatoric uncertainty is just
a consequence of the limited knowledge of the problem, which forces us to approximate the effects of the unknown/unmeasured
parameters and call it ‘‘Aleatoric Uncertainty’’. The approximating model emulates the simplified relationship and therefore
will never be able to match the reality ∗, perceiving the discrepancy as aleatoric uncertainty.

Aleatoric inherent uncertainty: A non-deterministic relationship
The relationship is usually not deterministic (i.e., for a given input 𝐱 ∈ , (𝑥) is a random variable). It is crucial to emphasize

that this source of uncertainty is a property of the relationship/reality and therefore will never be reduced by providing more data
or improving the models. Referring to Fig. 4(a), Aleatoric Inherent Uncertainty can be introduced using the following formalism:
𝐱 → (𝐱) + 𝜀𝐴,𝐼 , where 𝜀𝐴,𝐼 ∶= 𝜀𝐴,𝐼 (𝐱,) is a function of both the input value 𝐱 and the relationship itself.

Example 1. Consider a relationship ∶ = N → = N which associates an integer 𝐱 with the value given by the sum of 𝑥 six-sided
dice. is inherently random, since the same input 𝐱 may correspond to different outputs 𝑦 (Aleatoric Inherent Uncertainty). In this
particular example, the Inherent Aleatoric Uncertainty depends on the input value 𝐱 (Heteroscedastic Uncertainty).

Aleatoric Experimental Uncertainty/Noise: The observer effect
A second type of uncertainty (Aleatoric Experimental Uncertainty/Noise) refers to variations in information content caused

by the acquisition process itself. Examples include the choice of experimental settings, measurement errors, incorrect labeling of
data, or visual artifacts introduced into the input image (blur, motion artifacts, degradation of image quality, etc.). Referring to
Fig. 4(a), this uncertainty affects both the input and output quantities (𝐱 → 𝐱 + 𝜀𝐴,𝑁 ,𝐱 and 𝑦 → 𝑦 + 𝜀𝐴,𝑁 ,𝑦), making the problem
almost mathematically intractable. However, to simplify the discussion, it is possible to change the perspective of the problem
slightly (Fig. 4(b)).

If the original study relationship links a deterministic input 𝐱 to its output 𝑦 and the observer analyses a perturbed version
of it (𝐱 + 𝜀𝐴,𝑁 ,𝐱 ,𝑦 + 𝜀𝐴,𝑁 ,𝑦), the same problem can be seen as a different relationship ̂ between the perturbed input and output. ̂
takes as input the (perturbed) value 𝐱 ∈ ̂ , and produces the output ̂(𝐱) ∶=

(

𝐱 − 𝜀𝐴,𝑁 ,𝐱
)

. This change of perspective shifts the
Experimental Aleatoric Uncertainty on 𝐱 to the relation itself (i.e., to the Aleatoric Inherent Uncertainty 𝜀𝐴,𝐼 (𝐱, ̂)) thus condensing
all uncertainties on 𝑦:

Original 𝐱 + 𝜀𝐴,𝑁 ,𝐱 → (𝑥) + 𝜀𝐴,𝐼 (𝐱,) + 𝜀𝐴,𝑁 ,𝑦
Shift 𝐱 → (𝐱 − 𝜀𝐴,𝑁 ,𝐱) + 𝜀𝐴,𝐼 + 𝜀𝐴,𝑁 ,𝑦 ∶= ̂(𝐱) + 𝜀𝐴,𝐼 (𝐱, ̂) + 𝜀𝐴,𝑁 ,𝑦

To improve readability, we will always assume the perspective shift in the following. Thus we will use a relationship between a
deterministic input 𝐱 and the corresponding output (𝐱) + 𝜀𝐴,𝐼 + 𝜀𝐴,𝑁 by omitting ⋅̂ and ⋅𝑦 from the notation.

Aleatoric model uncertainty: The effect of random inference
Aleatoric uncertainty can also be generated by the model itself during the inference process. This can be due to the pseudo-

random propagation of rounding errors on a machine, or to the numerical instability of approximating certain physical phenomena.
However, Aleatoric Model Uncertainty (𝜀𝐴,𝑀) is often negligible compared to the other components of aleatoric uncertainty.
Therefore, for simplicity, we will assume that the model is not subject to aleatoric uncertainty, which therefore remains a property
of the true relationship under study (Aleatoric Inherent Uncertainty) and the data collection process (Aleatoric Experimental
Uncertainty).
6

G. Del Corso et al.

S
c
A

t
l

b

r
o

b

u

t

b

c
|

|

Journal of the Franklin Institute 362 (2025) 107548
3.3. Epistemic uncertainty: The lack of knowledge

While Aleatoric Uncertainty encompasses the intrinsically random nature of the underlying relationship , the variability caused
by lack of knowledge about the problem is called Epistemic Uncertainty. This uncertainty is also known as Systematic Uncertainty,
ubjective Uncertainty, or Reducible Uncertainty. Epistemic uncertainty can be induced by the a priori choice of hyperparameters ℎ̂
haracterizing the model (𝜀𝐸 ,𝑀 , Epistemic Model Uncertainty) or, conversely, by a finite amount of available data (𝜀𝐸 ,𝐴𝑝, Epistemic
pproximation Uncertainty). The inherent randomness of the relationship is encoded in the Aleatoric Uncertainty and does not

directly affect the Epistemic one. Since this uncertainty is due to a lack of knowledge, it can be reduced by improving the choice
of model hyperparameters ℎ or by increasing the size of the data-set (i.e., is the reducible part of total uncertainty).

Epistemic model uncertainty: How to train the optimal model
In supervised learning, to obtain a numerical approximation of the relationship , we need to define a proper model ℎ =

𝜃 ,ℎ̂ ∶ → where ℎ = (𝜃 , ℎ̂) ∈ 𝐻 is a set of hypotheses. The set of hypotheses can be divided into hyperparameters ℎ̂
and trainable parameters 𝜃. Hyperparameters (often referred to as meta-hypotheses) correspond to the choices made a priori by
he experimenter based on previous experience, available resources, or literature. These include the type of model used (classical
inear/logistic/random Forest models, Deep Learning models, etc.), the model structure (number of Random Trees for random forests,

number and type of layers for Neural Networks, etc.), and even the rule needed to define how well the model fits (i.e., the loss
function 𝓁 ∶ × → R). Once the hyperparameters ℎ̂ are established, we have to choose the optimal model (fully characterized
y its trainable parameters 𝜃).

The goal of the learner is to induce an optimal hypothesis (𝜃∗, ℎ̂) ∈ 𝐻 with low expected loss/risk (the cost function):

𝜃∗ ∶= arg min
(𝜃 ,ℎ̂)∈𝐻

E𝓁(𝜃 , ℎ̂) ; E𝓁(𝜃 , ℎ̂) ∶= ∫×
𝓁(𝜃 ,ℎ̂(𝐱), 𝑦) 𝑝(𝐱, 𝑦) 𝑑𝐱𝑑 𝑦 (2)

where 𝑝 is a probability measure on × , 𝓁 is the chosen loss, E𝓁 is the expected loss/risk (the cost function), and 𝜃∗ are the
optimal trainable parameters (i.e., the true expected loss minimizer). 𝜃∗ ,ℎ̂ is called the Optimal Bayesian Predictor. To provide
an intuitive insight, the optimal trainable parameters 𝜃∗ are obtained as those that minimize a measure of model-reality discrepancy
(i.e., the loss 𝓁) over the entire space of possibilities × . The model obtained depends both on these optimized parameters and
on the a priori hyperparameters ℎ̂, hence: 𝜃∗ ,ℎ̂ is the optimal model given a set of hyperparameters ℎ̂ and goodness of fit measure 𝓁.

Remark 2 (A Given Parameter is Trainable or Fixed?). In most cases, it is difficult to separate trainable parameters from hyperpa-
ameters, which can often be switched from one type to another (e.g., the number of layers in a Deep Neural Network can be fixed
r automatically adapted to the available data). There are several strategies (hyperparameter tuning/optimization) to identify

an optimal set of hyperparameters ℎ̂, including: Grid Search, Random Search, Bayesian optimization, and Nested Cross Validation.
Note that this can be seen as a shift of all hyperparameters to the trainable set.

Even with the optimal trainable parameters 𝜃∗ and even assuming a null aleatoric uncertainty 𝜀𝐴, there could be a discrepancy
etween the reality and the model outcome: (𝐱) ≠ 𝜃∗ ,ℎ̂(𝐱). The discrepancy between the Optimal Bayesian Predictor and the

reality is called Epistemic Model Uncertainty (𝜀𝐸 ,𝑀):

𝜃∗ ,ℎ̂(𝐱) = (𝐱) + 𝜀𝐸 ,𝑀 (3)

This uncertainty is often referred to as Model Inadequacy, Model Bias, Model Discrepancy, or Structural Uncertainty, and thus
nderlies the dependence on the limit of the model itself to approximate the relationship .

Epistemic approximation uncertainty: Training on real data
The minimization problem described in Eq. (2) requires full knowledge of the space × , which is usually not available to

he experimenter. In fact, in most supervised learning applications, the information about the space × is provided by a sample
∶=

{

(𝐱1, 𝑦1),… , (𝐱𝑁 , 𝑦𝑁)
}

⊂ × , the so-called Training data-set. The Optimal Bayesian Predictor 𝜃∗ ,ℎ̂ is therefore replaced
y the Empirical Model �̂� ,ℎ̂ trained on the data-set , whose optimal trainable parameters �̂� are obtained as:

�̂� ∶= arg min
(𝜃 ,ℎ̂)∈𝐻

Ê𝓁(𝜃 , ℎ̂) ≈ 𝜃∗

Ê𝓁(𝜃 , ℎ̂) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝓁
(

𝜃 ,ℎ̂(𝐱𝑖), 𝑦𝑖
)

≈ E𝓁(𝜃 , ℎ̂)

 ∶=
{(

𝐱𝑖, 𝑦𝑖
)}𝑁

𝑖=1 ⊂ ×

(4)

where the empirical expected loss/risk Ê𝓁 approximates the expected loss/risk E𝓁 .

Remark 3 (Cost, Loss and Objective Functions). The Loss Function 𝓁 quantifies how much the model prediction deviates from the
orresponding ground truth 𝑦𝑖 (𝓁

(

(𝐱𝑖), 𝑦𝑖
)

). Common choices for regression task include Absolute Loss (𝐿1-loss, 𝓁
(

(𝐱𝑖), 𝑦𝑖
)

=
(𝐱) − 𝑦 |), Square Loss (𝐿 -loss, 𝓁

(

(𝐱), 𝑦)

=
(

(𝐱) − 𝑦
)2), or Variance Attenuation loss for two headed models (𝓁((𝐱), 𝑦) =
𝑖 𝑖| 2 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖

7

G. Del Corso et al.

A

a
e

t

p
N
e
o

a
h

Journal of the Franklin Institute 362 (2025) 107548
log 𝜎2(𝐱𝑖)
2 + (𝑦𝑖−𝜇(𝐱𝑖))2

2𝜎2(𝐱𝑖)
). For classification task, a frequent choice is the Binary Cross entropy (𝓁((𝐱𝑖), 𝑦𝑖) = 𝑦𝑖 ⋅ log((𝐱𝑖)) + (1 −

𝑦𝑖) ⋅ log(1 − (𝐱𝑖))). The Cost Function is a measure of how much the model’s prediction of a group of objects deviates from the
ground truth. It is usually derived as a proper combination of the loss function values as the mean (Expected loss), median, etc.
(e.g., Cost(,) = 1

#
∑#

𝑖=1 𝓁((𝐱𝑖), 𝑦𝑖)). Most cost functions can be derived as a special case of Maximum Likelihood Estimation,
see Appendix A. Whenever a regularization term is added to the cost function, the function to be minimized is called the Objective
Function (Obj(,) = Cost(,) + Regularisation()).

The discrepancy between 𝜃∗ and �̂� depends on the quality and the number 𝑁 of data available and is called the Epistemic
pproximation Uncertainty (𝜀𝐸 ,𝐴𝑝):

�̂� ,ℎ̂(𝐱) = 𝜃∗ ,ℎ̂(𝐱) + 𝜀𝐸 ,𝐴𝑝 (5)

Epistemic Approximation Uncertainty is sometimes referred to as Interpolation Uncertainty.

Remark 4 (Why Do We Need More Data?). Increasing the data-set size 𝑁 → ∞ improves the approximation Ê𝓁(𝜃 , ℎ̂) ≈ E𝓁(𝜃 , ℎ̂)
nd thus reduces the Epistemic Approximation Uncertainty 𝜀𝐸 ,𝐴𝑝 → 0. However, the increasing amount of data cannot reduce the
pistemic model uncertainty, in fact:

lim
𝑁→∞

�̂� ,ℎ̂(𝐱) = 𝜃∗ ,ℎ̂(𝐱) ≈ (𝐱) + 𝜀𝐸 ,𝑀
and therefore ‘‘more data’’ does not automatically mean a perfect approximation of reality.

It is worth noting that is a sample from the space × . Therefore, the empirical distribution 𝑝() obtained from and used
o train the model, imperfectly mimics the real underlying distribution on × (i.e., 𝑝() ≈ 𝑝(×)). This can often occur with a

light-tailed 𝑝(×) distribution, which can lead to a data set with little or no training data in the tails. This discrepancy can lead
to an Epistemic Approximation Uncertainty strongly dependent on the input 𝐱. The inputs 𝐱 which are relatively under-represented
in 𝑝() are called out-of-distribution values and are a major cause of reduced model generalization.

Remark 5 (Universal Approximation Theorem). Increasing the complexity of the model (i.e., increasing the number of trainable
arameters 𝜃) improves the model’s ability to approximate a deterministic relationship . In particular, for Artificial Neural
etworks, the Universal Approximation Theorem ensures that a sufficiently complex Neural Network can perfectly approximate
very relationship (𝜀𝐸 ,𝑀 → 0). However, the increasing complexity of the models requires a huge amount of data to be trained
n, resulting in a dramatic increase in Epistemic Approximation Uncertainty (𝜀𝐸 ,𝐴𝑝 → ∞).

3.4. Summary of the uncertainties

The uncertainties introduced in this section are summarized in the following set of equations:

𝑦 = (𝐱) + 𝜀𝐴,𝐼 + 𝜀𝐴,𝑁 Aleatoric Inherent+Experimental Unc. (6)

𝜃∗ ,ℎ̂(𝐱) ≈ 𝑦 + 𝜀𝐸 ,𝑀 Epistemic Model Uncertainty (7)

�̂� ,ℎ̂(𝐱) ≈ 𝜃∗ ,ℎ̂(𝐱) + 𝜀𝐸 ,𝐴𝑝 Epistemic Approximation Uncertainty (8)

The simplified relationship relates the input 𝐱 to the output 𝑦 with the inclusion of two non-deterministic components, the
Aleatoric Inherent Uncertainty (𝜀𝐴,𝐼) and the Aleatoric Experimental Uncertainty (𝜀𝐴,𝑁), which represent the irreducible part of
the total variability (Eq. (6)).

The Optimal Bayesian Predictor 𝜃∗ ,ℎ̂(𝐱) is the best approximation of the relationship given the experimenter’s a priori
knowledge. The discrepancy between prediction and reality is called Epistemic Model Uncertainty (Eq. (7)). Working with a data-
set of finite size leads to another difference between the actual Empirical Model �̂� ,ℎ̂ and the Optimal Bayesian Predictor, the
so-called Epistemic Approximation Uncertainty (𝜀𝐸 ,𝐴𝑝, Eq. (8)). The epistemic uncertainties represent the reducible part of the total
variability and can be reduced by improving the quality of the a priori hypotheses (𝜀𝐸 ,𝑀 → 0) and by increasing the data-set size
(𝜀𝐸 ,𝐴𝑝 → 0).

Therefore, the equation that contains the full relationship between the actual model and the reality is the following:

�̂� ,ℎ̂(𝐱) ≈ (𝐱) + 𝜀𝐴,𝐼 + 𝜀𝐴,𝑁 + 𝜀𝐸 ,𝑀 + 𝜀𝐸 ,𝐴𝑝 ∶= (𝐱) + 𝜀𝐴 + 𝜀𝐸 (9)

where 𝜀𝐴 and 𝜀𝐸 represent the aleatoric and epistemic uncertainty, respectively. The combination of 𝜀𝐴 and 𝜀𝐸 is the Predictive
Posterior Uncertainty.

Remark 6 (Only Additive Uncertainties?). The formalism used (i.e., 𝑦+ 𝜀) may erroneously suggest that the uncertainties act only as
n additive term on the values. However, 𝜀 = 𝜀(𝑦) must be considered as a (nonlinear) function of the value itself. A description of
ow to model this uncertainty as an additive plus multiplicative component (i.e., 𝑦 + 𝜀 ∶=

(

𝑦 ⋅ 𝜀𝑚𝑢𝑙 𝑡
)

+ 𝜀𝑎𝑑 𝑑) is reported in [48,49].
8

G. Del Corso et al.

t
a
a

t

a
D
e

Journal of the Franklin Institute 362 (2025) 107548
4. Techniques to handle uncertainties

The optimal balance between efficiency, reliability, complexity and computational cost of the different UQ approaches is difficult
o find and depends strongly on the task under investigation. To assist practitioners in the challenging task of selecting the most
ppropriate method for their application, we opted to divide the techniques into three main macro-categories: Intrusive, Non-intrusive
nd Semi-intrusive.

The Intrusive (or by-design) techniques are effective but complex and usually computationally expensive methods that require
careful integration with the model (Section 5). Among the numerous intrusive techniques, we focused on a straightforward
distributional output extension of standard ANN (Section 5.1), on Bayesian Neural Networks (Section 5.2), and on Deep Gaussian
Processes (Section 5.3). Conversely, Non-intrusive (or post-hoc) approaches are designed for a posteriori evaluation of a pre-
rained model. These methods have inferior performance compared to intrusive methods but are also easier to implement, require

fewer model modifications, and are usually less computationally expensive (Section 6). We introduced the Monte Carlo dropout
(Section 6.1) as the main post-hoc technique and discussed the limitations of using the internal score as a measure of reliability
(Section 6.2). Finally, semi-intrusive methods combine the effectiveness of intrusive techniques with the ease of the non-intrusive
approaches (Section 7). The main semi-intrusive technique is the Ensemble method, which combines multiple deterministic models
to quantify uncertainty, improve performance, and avoid over-fitting (Section 7.1).

Table 1 summarizes the characteristics of the main UQ techniques.

4.1. Bayesian framework

Most techniques for dealing with uncertainty rely significantly on Bayesian probability to provide a strong theoretical framework.
In addition, most of the standard concepts behind classical (deterministic) ANNs (such as regularization functions, loss selection,
dropout regularization, etc.) can be interpreted using the Bayesian formalism [64]. The Bayesian paradigm states that 𝑝(𝑥) is a
measure of belief in the occurrence of an event; prior beliefs influence posterior beliefs:

𝑝 (𝜃|) =
𝑝 (|𝜃) ⋅ 𝑝(𝜃)

𝑝 ()
∶=

𝑝 (, 𝜃)
∫𝛩 𝑝 (, 𝜃′) 𝑑 𝜃′ (10)

where 𝑝(𝜃) is the prior knowledge on trainable parameters, 𝑝 (|𝜃) is the likelihood (the measure of belief that can be generated
by the hypothesis 𝜃), 𝑝 () is the evidence, and 𝑝 (𝜃|) is the posterior (i.e., the belief in the hypothesis values given the original
prior belief updated with the data). The choice of the prior 𝑝(𝜃) strongly depends on the available knowledge about the shape
and distribution of the trainable parameters and can significantly influence the final quality of the posterior. An uninformative prior
(e.g., chosen using Shannon’s theory as the maximum entropy distribution under a given hypothesis) can provide less biased results
but requires a lot of data to correctly update the real posterior. Conversely, a highly informative prior (associated with a strong belief
in the parameter distribution) may provide a better posterior if correct, or pollute the result if incorrect. Induction (i.e., replacing
observations by a general model) in the Bayesian setting can be seen as determining a posterior distribution on the set of trainable
parameters 𝜃 ∈ 𝛩, given the data-set . In the Bayesian framework, making a prediction (given a prior set of hyperparameters ℎ̂
and the trainable parameters 𝜃 that fully characterize the model) can be written as 𝑝(𝑦|𝐱, 𝜃) = 𝑝

(

𝑦|𝐱,𝜃 ,ℎ̂
)

= 𝑝(𝑦|𝐱,), the so-called
Predictive Posterior Distribution.

4.2. Aleatoric and epistemic uncertainty disentanglement

Disentangling the two components of prediction uncertainty (aleatoric and epistemic) is a challenging task that has been
ddressed by various authors for specific cases, including: regression/reinforcement learning [65], MC-Dropout [50], and Flipout/
ropConnect/Ensemble [66]. It should be noted that the main limitation of the whole Bayesian approach is the difficulty of
fficiently disentangling between the two types of uncertainty [1] and other approaches are based on non-Bayesian methods such

as the fuzzy framework [67].

Remark 7 (Are We Identifying 𝜀𝐸 and 𝜀𝐴 Correctly?). Epistemic and aleatoric disentanglement should be evaluated with numerical
experiments [68] and ad hoc datasets [69], as disentanglement performance is typically evaluated on their respective downstream
tasks [70]. In particular, Epistemic uncertainty should be reduced by increasing the amount and quality of the dataset and must
be related to the ability of the model to discriminate OOD elements. On the contrary, aleatoric uncertainty should reach a plateau
independent of the amount of data and must be related to the ability to reject ambiguous cases (e.g., label noise).

Among the Bayesian approaches, one possibility is the so-called Gaussian Logits Disentanglement [68]. Assuming that the
aleatoric uncertainty is modeled as an explicit distribution provided by the model (i.e., multi-head ANNs, usually a simplified
Gaussian distribution) and the epistemic is included in the trainable parameter distributions, a formula can be derived to obtain
epistemic-aleatoric uncertainties [50].
9

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Table 1
Characteriztics, advantages and drawbacks of state-of-the-art UQ techniques.

Technique Description Advantages Drawbacks

Intrusive/By-design

ANN with distributional
outputs

An extension of the classical
ANN that provides
distributional output [50,51]

-Integrates standard predictions
with 𝜀𝐴 uncertainty estimates
-At inference time, only one
model evaluation is required for
each input
-Minor model modifications in
terms of architecture and training
process

-Requires ad hoc losses derived
from MLE theory
-Overconfident estimates
-Low 𝜀𝐸 approximation capability

BNN Stochastic ANN with Bayesian
weights/activation functions
[52,53]. Special intrusive case
of ensemble learning.

-Mitigates over-fitting
-Integrates standard predictions
with reliability estimates
-Can be combined with ANN with
distributional outputs on the
simplified hypothesis to
disentangle 𝜀𝐴 and 𝜀𝐸
-MCMC Inference: Exact
posterior approximation
-VI: Fast posterior approximation
-LA: Post-hoc approximation of VI

-Increased number of degrees of
trainable parameters
-Simplified assumptions on
posterior distribution, such as
Gaussian i.i.d. marginals
-Assumption on prior 𝑝(𝜃) can
affect the posterior
-At inference time, multiple
model evaluations are required
for each input 𝑥
-MCMC Inference: Very high
computational cost and lack of
scalability
-VI/LA: Poor approximation of
true posterior distribution
-LA: Local approximation of VI
around MAP.

DGP -Stacked GP: Several GPs
combined in series [54,55]
-Deep Kernel Learning: GP
with a kernel parameterized
by a DNN [56]

-Reliability predictions even with
small data-sets
-High-dimensional feature
learning capability
-Deep Kernel Learning:
State-of-the-art predictions

-Complex mathematical
framework and implementation
-Require careful extension to
overcome limitations
-High computational/memory
costs
-Stacked GP: No longer a GP

Semi-intrusive

Ensemble Aggregation of multiple ML
models [57,58]

-Embarrassingly parallelisable
-The number of sub-models can
be chosen according to
memory/computing power.
-General case of BNNs -Can be
tailored to the problem by
selecting specific ML sub-models

-High computational and memory
costs
-Sub-models/hyper-parameter
choices can greatly influence
models
-At inference time, multiple
model evaluations are required
for each input x

Non-Intrusive/Post-hoc

MC Dropout Prediction based on Bernoulli
dropping of weights at
inference time [59,60]

-Low computational cost (only at
inference time)
-Mitigates over-fitting and
provides improved predictions
-Easy to implement and
parallelisable
-Theoretically developed
framework

-No guaranteed convergence to
the true posterior if GP
approximations are not satisfied
-Sometimes unable to fully
capture of predictive uncertainty

Internal Model Score Approximation using last layer
score [61]

-Null computational cost
-No need to change the model
training process

-Overconfident predictive
posterior
-Poorly calibrated measures of
reliability

Trust Score Clustering score describing the
level of confidence in the
output [62,63]

-Solid mathematical background
-Low computational cost
-Easy to implement

-Suitable for classification only
-No upper bound
-Reliability calibration difficulties
-Less informative on
high-dimensional feature spaces
10

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 5. Example of uncertainty disentanglement based on predictive posterior Gaussian assumptions. (Panel a): Deterministic ANNs can only provide a point
estimate. (Panel b): Distributional output ANNs or DGPs output both a prediction and a reliability estimate (aleatoric uncertainty under the Gaussian hypothesis).
(Panel c): BNNs, Ensembles, or MC-dropout provide a random value sampled from a distribution and can therefore approximate epistemic uncertainty. (Panel d):
BNNs (or Ensembles) coupled to a distributional output provide a Gaussian Mixture Model output and can therefore approximate both epistemic and aleatoric
uncertainty.

Regression
Uncertainty disentanglement can be derived by assuming that the predictive posterior distribution can be approximated by a

Gaussian Mixture model [50]. Under this simplifying assumption, it holds:
𝑝(𝑦|𝑥) ∼ (𝜇∗(𝐱), 𝜎2∗(𝐱))

𝜇∗(𝐱) = 1
𝑆

𝑆
∑

𝑗=1
𝜇𝑗 (𝐱) ; 𝜎2∗(𝐱) =

1
𝑆

𝑆
∑

𝑗=1

(

𝜎2𝑗 (𝐱) + 𝜇2
𝑗 (𝐱)

)

− 𝜇2
∗(𝐱)

(11)

where 𝑆 is the number of samples drawn by the model (the number of outputs corresponding to different weight samples
for Bayesian ANN, or the 𝑆 predictions of an Ensemble/MC-Dropout approach), {𝜇𝑗 (𝑥)}𝑆𝑗=1 are the predictions and {𝜎𝑖(𝐱)}𝑆𝑗=1 are
the corresponding variances (see Fig. 5). Therefore, under the simplified Gaussian assumption, the predictive variance can be
decomposed into aleatoric and epistemic uncertainty:

𝜎2∗(𝐱) =
1
𝑆

𝑆
∑

𝑗=1
𝜎2𝑗 (𝐱) +

1
𝑆

𝑆
∑

𝑗=1
𝜇2
𝑗 (𝐱) − 𝜇2

∗(𝐱)

= E𝑗

[

𝜎2𝑗 (𝐱)
]

+ E𝑗

[

𝜇2
𝑗 (𝐱)

]

− E𝑗
[

𝜇∗(𝐱)
]2 = E𝑗

[

𝜎2𝑗 (𝐱)
]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜀𝐴

+ Var𝑗
[

𝜇𝑗 (𝐱)
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜀𝐸

(12)

Intuitively, the epistemic uncertainty corresponds to the variance of the predictions 𝜇𝑗 (𝐱) due to differences among the models.
Conversely, the aleatoric uncertainty is derived as the average between the reliability 𝜎2𝑗 (𝐱) of each prediction.

Remark 8 (Does It Work?). It should be noted that if the normal assumptions about the predictive posterior distribution are not
satisfied, this simplified decomposition can lead to non-intuitive results regarding the interaction between aleatoric and epistemic
uncertainty [66].

Classification
For classification, a similar procedure can be applied to derive aleatoric/epistemic decomposition. The output of a (multiclass,

 classes) classification model is usually a vector (𝑝𝑐)#𝑐=1 ∈ [0, 1]# of probabilities obtained by applying a softmax function to the
so-called logit layer 𝑧 = (𝑧𝑐)#𝑐=1 ∈ R#. The output of the classification model is defined as: ar gmax𝑐 (𝑝𝑐).

Following the regression subsection, the logit layer can be converted to a vector of Gaussian distributions (𝜇𝑐 (𝐱), 𝜎𝑐 (𝐱))#𝑐=1 to
include aleatoric uncertainty. However, there is no closed formula for applying a softmax function to Gaussian variables. One solution
is to define a sampling softmax function that samples 𝑇 times from the Gaussian logit layer 𝑧𝑖 ∼

(

𝜇𝑐 (𝐱), 𝜎𝑐 (𝐱)
)

and approximates
the softmax as 1

𝑇
∑𝑇

𝑖=1 sof t max(𝑧𝑖). For the logit layer, the results are the same as in the regression case:
𝑝(𝑧|𝑥) ∼ (𝜇∗(𝐱), 𝜎2∗(𝐱))

𝜇∗(𝐱) = 1
𝑆

𝑆
∑

𝑗=1
𝜇𝑗 (𝐱) ; 𝜎2∗(𝐱) =

1
𝑆

𝑆
∑

𝑗=1

(

𝜎2𝑗 (𝐱) + 𝜇2
𝑗 (𝐱)

)

− 𝜇2
∗(𝐱)

𝜎2∗(𝐱) = E𝑗

[

𝜎2𝑗 (𝐱)
]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜀𝐴

+ Var𝑗
[

𝜇𝑗 (𝐱)
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜀𝐸

(13)

where 𝑆 is the number of samples drawn by the model . By disentangling the logit layer and propagating the aleatoric/epistemic
contributions through the sampling softmax function, we can derive the corresponding probabilities:

𝑝𝜀𝐴 (𝑦|𝐱) = sampling softmax
(

𝜇∗(𝐱),E𝑗

[

𝜎2𝑗 (𝐱)
])

()

(14)

𝑝𝜀𝐸 (𝑦|𝐱) = sampling softmax 𝜇∗(𝐱),Var𝑗 [𝜇𝑗 (𝐱)]

11

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 6. (a) Deterministic ANN that outputs a distribution (e.g., a Gaussian distribution fully characterized by mean 𝜇 and std 𝜎). The network uses a Negative
Log-Likelihood loss and can train weights using classical backpropagation. (b) Fully probabilistic Bayesian Neural Network that outputs a (distributional) 𝜇 and
a (distributional) 𝜎. It is usually trained using a NLL-loss and using ad hoc techniques such as Markov Chain Monte Carlo or Variational Inference.

A measure of aleatoric/epistemic uncertainty can be computed as the Shannon entropy of 𝑝𝜀𝐴 (𝑦|𝐱) / 𝑝𝜀𝐸 (𝑦|𝐱) respectively:

Shannon entropy(𝑝) = −
∑

𝑐
𝑝𝑐 ⋅ log(𝑝𝑐)

Remark 9. Unlike in the case of regression, the transformation by the sampling softmax implies that the two entropies do not sum
to the total entropy.

5. Intrusive methods: Define a model from scratch

Intrusive methods for uncertainty quantification, also known as methods by-design, are a broad family of techniques that
involve proper model selection, training technique, software implementation, and even accurate data-set preparation. These
approaches are typically complex to implement and require careful study design. However, they provide full insight into the
uncertainties involved and are more powerful than their non-intrusive counterparts. Furthermore, even though intrusive methods
usually require higher computational resources, they can work with smaller dataset sizes if a strong prior is well embedded in the
experiment. Conversely, a wrong/weak prior or an inappropriate choice of method can lead to a disruptive increase in the amount
of data required to converge to the solution. Among the several examples of intrusive methods for uncertainty quantification, some
of the most relevant are: Artificial Neural Networks with distributional output [71], Bayesian Neural Networks [47], and Deep
Gaussian Processes [72].

5.1. ANN with distributional output

The most straightforward way to estimate the variability of a prediction is to replace a deterministic output (i.e., a point estimate)
with a probabilistic one (i.e., a distribution) [50,51,71]. In the same way that Gaussian regression provides a mean and variance
that indicate the reliability of the model, Neural Networks can be modified to provide outputs that match the parameters for a given
probability distribution. For example, if the output is assumed to be a Gaussian distribution, the Neural Network will have a final
node corresponding to the mean and a second node representing the standard deviation (see Fig. 6).

Remark 10 (How to Get Reasonable Variance Parameter?). The activation functions of these nodes can be used to impose conditions
on the free parameters. For instance, a softplus activation function (log(1 + exp(⋅)) with the addition of a minimum variance ∼ 10−6 for
numerical stability can force the node corresponding to the standard deviation to be positive, thus ensuring consistent results [73].

Changing the output of a network also means changing the loss used. The parameters (weights and biases) of the network
can be learned by Maximum Likelihood Estimation (MLE), i.e., by minimizing the Negative Log-Likelihood (NLL) criterion using
Stochastic Gradient Descent [74]. For instance, the Negative Log-Likelihood loss for standard regression is the mean squared error:
𝓁(𝐱, 𝑦) = (𝑦−𝜇(𝐱))2

2 , with 𝜇(𝐱) = (𝐱). Vice versa, for a two-headed (𝜇, 𝜎) Gaussian ANN (assuming that the output can be modeled
using a mean 𝜇𝜃(𝐱) plus a zero-mean Gaussian noise with variance 𝜎2𝜃 (𝐱) depending on trainable parameters 𝜃, see Fig. 5(b)) The
Negative Log-Likelihood is the Variance Attenuation Loss:

− log 𝑝𝜃(𝑦|𝐱) = 1
2
log

(

𝜎2𝜃 (𝐱)
)

+

(

𝑦 − 𝜇𝜃(𝐱)
)2

2𝜎2𝜃 (𝐱)
+ constant (15)

Intuitively, this loss rewards solutions close to the original ground truth ((𝑦 − 𝜇𝜃(𝐱)
)2

→ 0). However, this loss tends to increase the
variance 𝜎𝜃(𝐱) to reduce the Mean Squared Error (MSE) contribution each time a good solution cannot be derived. More complex
distributions, both for regression and classification, can be used by deriving the corresponding maximum likelihood estimation, see
Appendix A for more details.
12

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 7. (Panel a): BNN with distributional weights, the output is the predictive posterior distribution 𝑝 (𝑦|𝐱,). By sampling the output, the point estimate can
be collected as the mean 𝜇, coupled with a measure of dispersion 𝜎 (for regression tasks) or the mean probability for classification tasks. (Panel b): BNN with
distributional activation functions.

Remark 11 (Two-heads Classification). As briefly introduced in Section 4.2, for multiclass classification, the last layer of the pre-
softmax network function (i.e., the so-called logit layer) can be converted to a multi-head network to approximate aleatoric
uncertainties. Formally, the logit layer 𝜇𝜃(𝐱) (i.e., the vector of the raw value for each class) is substituted by a multivariate Gaussian
distribution with means 𝜇𝜃(𝐱) and variances 𝜎2𝜃 (𝐱) [50]. To derive the prediction, an empirical approximation of the softmax function
(sampling softmax function) is obtained by sampling the multivariate Gaussian distribution (𝜇𝜃(𝐱), 𝜎2𝜃 (𝐱)), applying the softmax
function, and averaging the result. The selected class is the arg max of this average, while a measure of aleatoric uncertainty is the
Shannon entropy of the sampled softmax probabilities.

Unfortunately, this approach tends to produce overconfident variance estimates and can additionally lead to below-average mean
fits. There are a few extensions to mitigate both overconfidence [51,75] and underperformance [74].

Remark 12 (Aleatoric or Epistemic?). The simplified Gaussian assumption on the output (i.e., fully described by a mean plus a
zero-mean Gaussian noise 𝑦 ∼ 𝜇(𝐱) +

(

0, 𝜎2)) is an input-dependent heteroscedastic (aleatoric) uncertainty. Hence, assuming a
null epistemic uncertainty 𝜀𝐸 = 0, the variance tends to increase towards the inputs affected by a greater aleatoric uncertainty
𝜀𝐴. Therefore, under simplified Gaussian assumptions, the variance can be used as an approximation for aleatoric uncertainty
𝜀𝐴 ≈ E[𝜎𝜃(𝐱)] = 𝜎𝜃(𝐱) ⋅ E[1] = 𝜎𝜃(𝐱), see Eq. (11).

In summary, this technique is a straightforward, intrusive extension of the standard deterministic ANN capable of integrating
standard prediction with reliability estimates which tends to approximate aleatoric uncertainties. Furthermore, this technique can
be combined with more advanced approaches such as Bayesian Neural Networks or Ensemble to produce more complex predictive
posterior distributions. However, the overconfident and poorly calibrated reliability estimates encourage the search for alternatives.

5.2. Bayesian neural networks

A Bayesian Neural Network (BNN) is a stochastic ANN trained using Bayesian inference. ANNs can incorporate stochasticity
by introducing non-deterministic elements into the original architecture, either stochastic weights or activation functions [47,76–
78], see Fig. 7. Bayesian Neural Networks are not strictly a category of architectures, but rather a way of approaching training
and inference that interprets the learning process from a probabilistic point of view, using probability distributions instead of
deterministic weights and activation functions [79]. In recent years, many architectures have been reinterpreted and implemented
with a Bayesian approach, such as Adversarial Variational Bayes [80], Bayesian Graph Neural Networks [81], Bayesian Recurrent
Neural Networks [82], and Bayesian Long Short-Term Memory [83].

Among the several advantages, BNNs mitigate over-fitting [52] as they are difficult to overtrain [84], allow learning from small
data sets [85], and are a powerful tool for providing better calibrated uncertainty estimates compared to the model’s internal
score [86–88]. The main disadvantage of using BNNs over their deterministic alternatives is the increase in the number of degrees
of freedom (e.g., each Gaussian weight is described by two parameters, mean and variance, instead of one). In addition, standard
training methods such as backpropagation cannot be applied to stochastic networks, which rely on much more complex (and
computationally expensive) methods such as Markov Chain Monte Carlo, Variational Inference, or Laplace Approximation (e.g., local
post-hoc approximation of VI), see Appendix C.

BNN functional/stochastic model: A standard feedforward ANN architecture (the so-called ‘‘functional model’’ in the Bayesian
framework) can be seen as:

𝜃(𝐱) ∶=
⎧

⎪

⎨

⎪

𝑣0 = 𝐱 [Input]
𝑣𝑖 = 𝑓𝑖

(

𝑊𝑖 ⋅ 𝑣𝑖−1 + 𝑏𝑖
)

𝑖 ∈ [1, 𝐿] ; 𝜃 = {(𝑊𝑖, 𝑏𝑖)}𝐿𝑖=1 (16)
⎩

𝑦 = 𝑣𝐿 [Output]

13

G. Del Corso et al.

t
b
d
d
a
C

a
b

f

t
(
i
l
d

{
v

u

𝑦
u

i

Journal of the Franklin Institute 362 (2025) 107548
where 𝐿 is the number of layers, 𝑣𝑖 is the 𝑖th layer, {(𝑊𝑖, 𝑏𝑖)}𝐿𝑖=1 is the set of trainable parameters corresponding to the matrix
of weights and the vector of biases of each layer, and 𝑓𝑖 is an activation function (such as ReLU, Sigmoid, TanH, etc.). The
BNN counterpart shares the original hyperparameters (ℎ̂: number of layers, learning rate, etc...) and is obtained by replacing the
deterministic weights 𝑊𝑖 with a suitable distribution or by introducing stochasticity in the activation functions 𝑓𝑖. Several other
ways to incorporate stochasticity can be derived from Probabilistic Graphical Theory [89].

Remark 13 (Stochastic Weights vs. Stochastic Activation Functions). Stochastic activation functions can be used to compress variational
parameters during variational inference [90], but are less commonly used in practice due to their more complex formulation and
implementation compared to stochastic weights. Moreover, in several cases, the use of stochastic activation functions has equivalent
formulation using stochastic weights [9].

It should be noted that even the use of elementary weight/activation function distributions can lead to a highly non-Gaussian
predictive posterior due to the non-linearity of the network. Similarly, the degrees of freedom of the BNN can be reduced by making
only a few weights/activation functions stochastic instead of every element in the network.

Model induction: For standard ANNs, training is usually done by minimizing a cost function (e.g., the log-likelihood of
he training set plus a regularization term) to obtain the best model trainable parameters �̂� using efficient methods such as
ackpropagation (with a stochastic gradient descent algorithm, ADAM, etc.). However, standard sampling approaches fail to
etermine the posterior 𝑝 (𝜃|), which is highly non-convex and high-dimensional [91] (e.g., |𝜃| ∼ 2.3 ⋅ 107 for ResNet50) and
oes not admit a closed-form solution. To approximate the posterior (i.e., to be able to sample from 𝑝 (𝜃|)), various numerical
pproaches have been adopted. The most effective are represented by proper conditional distribution sampling, such as Markov
hain Monte Carlo [92,93], and approximate distribution approaches, such as Variational Inference [53,94] (see Appendix C).

According to Eq. (10), the posterior can only be derived after choosing a prior 𝑝(𝜃). This choice is a major drawback of the Bayesian
pproach, as the posterior distribution is strongly dependent on the prior. When no strong knowledge of the prior distribution can
e provided (as in most real-world DL scenarios), one possibility is to choose a non-informative (weak) prior that can be washed

out by a small amount of data, such as a uniform distribution over the entire range of parameter variation or a diffuse normal
distribution (i.e., high variance) [95]. It should be noted that even in the deterministic setting, the prior is implicitly chosen when
the objective function is defined, so BNNs simply make the choice of prior explicit.

Remark 14 (Explicit Prior and Regularization). The regularization function in the deterministic setting acts as a prior in the Bayesian
ramework [9]. Indeed, given a cost function, if the loss is the Negative Log-Likelihood, it holds:

�̂� = ar gmin𝜃 Cost
(

𝜃 ,
)

= ar gmax𝜃 log 𝑝
(

𝑦|𝑥, 𝜃
)

≈ ar gmax𝜃 log 𝑝
(

𝑦|𝑥, 𝜃
)

⋅ 𝑝(𝜃)

= ar gmin𝜃 Cost
(

𝜃 ,
)

+ Regularisation(𝜃)

If we are refining an existing model, the prior can be derived from the trained parameters 𝜃. One possible approach is to define
he prior as a multivariate diffuse normal distribution with means equal to the (deterministic) trained parameters and high variances
weak prior). However, for new models, a common choice is to set 𝑝(𝜃) = (0, 𝜎 ⋅ 𝐼), which corresponds to the 𝐿2 regularization
n the deterministic setting, and thus reduces the difficulties of weight space and scaling symmetry [96]. The use of the normal
aw is dictated by the fact that it has a reduced increase in the number of parameters (from 1 to 2 trainable parameters) and
ue to the good theoretical properties of Gaussian distributions, including the simple formulation of its log. However, there are no

strong theoretical arguments for preferring it to other more complex distributions corresponding to different regularization strategies
[97].

Model Prediction: Given the data-set and the posterior distribution 𝑝(𝜃|), the predictive posterior distribution

𝑝 (𝑦|𝐱,) = ∫ 𝑝
(

𝑦|𝐱, 𝜃′)
⏟⏞⏞⏟⏞⏞⏟
𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑖𝑜𝑛

𝑝
(

𝜃′|
)

⏟⏞⏟⏞⏟
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦

𝑑 𝜃′

on unseen data 𝐱 can be derived by sampling from the posterior distribution �̂�(𝑗) ∼ 𝑝(�̂�) = 𝑝(𝜃|) and collecting the results
𝑦(𝑗)}𝑗 = {�̂�(𝑗) (𝐱)}𝑗 . In fact, due to the random components, a forward pass through a BNN can be seen as sampling a set of
alues for the weights/activation functions and applying the associated deterministic ANNs. This can be interpreted as considering
�̂� ,ℎ̂ as an (infinite) collection (ensemble) of models {�̂�(1) ,ℎ̂,�̂�(2) ,ℎ̂,…} whose trainable parameters �̂�(𝑗) are realizations of �̂� [98].

Thus, BNNs can be seen as a special case of ensemble learning (where the stochastic parameters are forced to follow a simplified,
sually Gaussian, distribution during VI) [99]. The predictive posterior distribution 𝑦|𝐱, �̂� ∼ �̂� ,ℎ̂ + 𝜀𝐴 + 𝜀𝐸 can be approximated

from multiple model evaluations {�̂�(1) ,ℎ̂(𝐱),�̂�(2) ,ℎ̂(𝐱),…}. The output of the model can be the overall approximate distribution or
an average point estimate (e.g., mean/median/mode) coupled with a measure of dispersion (e.g., variance/interquartile range). In
particular for regression task, following Eq. (11), the predictions 𝜇𝑗 = 𝑦(𝑗) = �̂�(𝑗) (𝐱) can be averaged to obtain a point estimate
̂ = 1

𝑆
∑𝑆

𝑗=1 𝜇𝑗 (𝐱) ≈ E𝑗
[

𝜇𝑗 (𝐱)
]

. A measure of reliability is the variance of the predictions 1
𝑆−1

∑𝑆
𝑗=1

(

𝜇𝑗 (𝐱) − �̂�
)2 ≈ Var𝑗

[

𝜇𝑗 (𝐱)
]

which,
nder the normal assumptions on the predictive posterior distribution, represents the Epistemic Uncertainty 𝜀𝐸 .

For a (multi-class) classification task, the last layer of the BNN contains one node for each possible outcome 𝑘 ∈ . Each time
the model �̂�(𝑗) (𝐱) is called for inference, it returns a probability vector {(𝑝(𝑗)𝑖)#𝑖=1}

𝑆
𝑗=1, where 𝑆 is the number of samples used for

nference. The predictions are averaged (�̂� = (�̂�)# = 1 ∑𝑆 (𝐱)) and the point estimate is defined as the most likely averaged
𝑖 𝑖=1 𝑆 𝑗=1 �̂�(𝑗)

14

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 8. Deep Gaussian Processes. (Panel a): Stacked Gaussian Process obtained with multiple layers of classical GPs. (Panel b): Stacked Gaussian Process, which
uses a Deep Neural Network as the kernel function of a classical GP.

class: �̂� = ar gmax𝑖 �̂�𝑖. A possible measure of reliability can be derived from the variance of the averaged probability Var𝑖
[

�̂�𝑖
]

or as
the variance of the probabilities of the predicted class among the samples Var𝑗 [𝑝

(𝑗)
�̂�].

Remark 15 (This Evaluation Seems Really Expensive!). Iterating thousands of model evaluations to extrapolate the distribution 𝑦|𝐱, �̂�
can be described as forward uncertainty propagation [100], which relies on an appropriate sampling strategy to be computationally
efficient. Unfortunately, most efficient sampling strategies suffer from the curse of dimensionality (including quasi-Monte Carlo low
discrepancy sequence [101]) and are therefore unsuitable for ANNs whose number of parameters 𝑚 is usually very large. Therefore,
in most cases, inference on 𝑦 must be done using standard Monte Carlo/Latin Hypercube approaches, possibly coupled with an
appropriate halting criterion to avoid unnecessary model evaluations [102].

As described in Section 5.1, Bayesian Neural Networks can be modified to explicitly output a distribution (e.g., Gaussian,
LogNormal, Bernoulli, etc.) rather than a pointwise output. In such cases, the NLL loss should be adapted to the multihead output
and the induction should vary accordingly (by using BNN training strategies such as MCMC and VI). Following Section 5.1,
the combination of multihead output with Bayesian weights/activation functions is used as a starting point for uncertainty
disentanglement [2,65,103]. Indeed, under Gaussian assumptions on the predictive posterior distribution, the distributional output
𝜇𝑗 (𝐱), 𝜎𝑗 (𝐱) can be used to provide an approximation of both epistemic (𝜀𝐸 ≈ Var𝑗

[

𝜇𝑗
]

) and aleatoric uncertainty (𝜀𝐴 ≈ E𝑗

[

𝜎2𝑗 (𝐱)
]

).

In conclusion, BNNs are powerful intrusive models that provide insight into the shape of the predictive posterior distribution,
using a more complete and computationally intensive theoretical framework than the deterministic method, and associating a
reliability index with the pointwise estimate.

5.3. Deep Gaussian processes

Classical Gaussian Process (GP) Regression [104,105] is a powerful metamodeling technique that interpolates the data to provide
an estimate of the predictive posterior distribution even with extremely small data-sets [106]. Classical GP (see Appendix B) is
often used to provide a mathematical background to other Bayesian techniques, such as MC-Dropout (Section 6.1), since it can
be proved that under certain conditions a GP is a multilayer perceptron with infinite units in the hidden layer [107]. A GP
𝑍(𝐱) ∼

(

𝑚(𝐱), 𝑘(𝐱, 𝐱′)) is a stochastic process fully characterized by a mean function 𝑚(𝐱) and a parameterized covariance (or
kernel) function 𝑘(𝐱, 𝐱′) = 𝑘(𝐱, 𝐱′|𝜑).

However, classical GPs are ineffective at handling high-dimensional data, such as complex input vectors or images, because
most commonly used kernel functions are based on simplistic similarity metrics [72]. Furthermore, the choice of an optimal kernel
function capable of extracting useful features for computing the similarity between samples is sometimes challenging, especially
for structured data where hierarchical feature extraction needs to be considered [54]. For this reason, Deep Gaussian Processes
were introduced to combine the ability of Deep Neural Networks to learn high-dimensional features with the flexible framework
of classical GPs [72]. The two main paradigms for integrating DNNs with GPs are: Stacked Gaussian Processes [54] and Deep
Kernel Learning [56].

A strategy for improving Gaussian Processes to capture complex relationships is represented by the Stacked Gaussian Processes
(sometimes called Deep Gaussian Process) [54,55]. This involves combining several GPs so that the output of the previous GP is
used as the input of the next GP, similar to stacking perceptrons in a multilayer perceptron (Fig. 8(a)). From the original work of
Lawrence et al. [55], with a GP using a second GP as an input prior, it was clear that the main difficulty with stacked GPs was
the lack of an analytical solution. To overcome the risk of over-fitting of the Maximum A Posteriori estimation (MAP) approach,
Damianou et al. proposed a variational approach that can be applied to a Stacked GP with an arbitrary number of layers [54,108]
and a back constraint to limit the number of variational parameters to be learned [109]. However, even with these improvements,
the assumption of GP layer independence leads to solutions with hidden GP layers turned off that are equivalent to single-layer
GP. This major drawback can be overcome by using a variational bound, which preserves the exact posterior of the model while
maintaining the correlation within and between adjacent layers [110]. Unfortunately, this approach requires the use of costly MCMC
15

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 9. (Panel a): Dropout of units corresponding to 0 outcomes of a Bernoulli distribution 𝑧. (Panel b): Alternatives to the standard Bernoulli dropout that
act on the connection (Bernoulli DropConnect), use a continuous dropout function (Gaussian Dropout), or act on both units and connections (Spike-and-Slab
Dropout).

strategies, making the use of Stacked GP extremely computationally expensive. It should also be noted that a stacked GP would no
longer be a GP since the posterior distribution can be any (non-Gaussian) distribution.

An alternative to the Stacked Gaussian Process is Deep Kernel Learning [56], which aims to construct kernels that encapsulate
the expressive power of deep architectures to overcome the limitations of simple classical ones. Formally, given a parameterized
(classical) kernel 𝑘(𝐱, 𝐱′|𝜑) and a DNN 𝜃 , a Deep Kernel function is defined as 𝑘(𝜃(𝐱),𝜃(𝐱′)|𝜑), which can be seen as a GP
applied on the last layer of a Deep Neural Network (Fig. 8(b)). This allows a natural extension of standard GP to images/videos by
using Convolutional Neural Networks to define kernels that evaluate shape and contours.

Remark 16 (Sparse Formalism and Speed Up). There are several extensions of naive DGP that use a sparse matrix of interpolation
weights on the covariance matrix generated by the Deep Kernel function, thus providing an approximation of the original Deep
Kernel (i.e., 𝐾 𝛾 ≈ 𝐾sparse) [111]. This allows for fast computations both in the training phase (almost linear scaling vs. potentially
cubic scaling of classical GP/DGP [112]) and (1) time per test point prediction.

In summary, Deep Gaussian Processes are highly intrusive methods that can lead to state-of-the-art models by combining the
probabilistic properties of standard Gaussian Processes with the shape (Stacked GP) or flexibility (Deep Kernel GP) of DNNs.
However, these techniques have several drawbacks in terms of memory, computational cost, and the a priori decision on the shape
of the underlying DNN architecture. Although most of these limitations can be addressed, this family of methods is among the most
complex to handle for uncertainty quantification tasks.

6. Non intrusive methods: Post-Hoc approaches

A more practical approach to quantifying the uncertainty of a pre-trained model is represented by the so-called ‘‘post-hoc
methods’’, which are non-intrusive and cannot affect the predictive performance of the models, but uniquely deal with quantifying
their uncertainty. Post-hoc methods have the great advantage of not having to rerun the models, thus saving computationally
expensive data processing, but conversely are usually barely acceptable for providing reliable uncertainty estimates. Some post-hoc
approaches can be derived from local approximations of intrusive methods (e.g., Laplace approximation, see Appendix C).

6.1. Monte Carlo (MC) dropout

Dropout (also known in the UQ setting as Monte Carlo Dropout or Model Averaging) was originally introduced as a technique
to reduce model over-fitting [59,60]. Given an arbitrary Neural Network, the output of the 𝑖th layer can be written as a non-
linear function of a linear combination of the values of the layer 𝑣𝑖 = 𝑓

(

𝑊𝑖 ⋅ 𝑣𝑖−1 + 𝑏𝑖
)

, where 𝑊𝑖 is the matrix of weights
between the layers, 𝑏𝑖 is the vector of biases and 𝑓 is the activation function (see Fig. 9). With Dropout regularization, each
layer 𝑖 (made up of 𝑠 units) except the last is coupled to a multivariate binary random variable (usually following a Bernoulli
distribution (𝑞𝑖) | 𝑞𝑖 ∈ [0, 1]). During the training phase, one realization 𝑧𝑖 = (𝑧𝑖,1,… , 𝑧𝑖,𝑠) of this distribution is sampled for
each backward pass. Units corresponding to a score of 0 are dropped, while units corresponding to a score of 1 are retained:
𝑣𝑖 = 𝑓

(

𝑊𝑖 ⋅ 𝑧𝑇𝑖 ⋅ diag
(

𝑣𝑖−1
)

+ 𝑏𝑖
)

.
Formally, dropping a unit is equivalent to setting its value to 0 (even during backward propagation of derivatives). By alternately

resampling the binary variable for each input point and each forward pass, using the same values for backpropagation, the network
converges smoothly with a reduced risk of over-fitting [59,60].
16

G. Del Corso et al.

D

s
f

n

c

o
t

m

f
T

D

i

Journal of the Franklin Institute 362 (2025) 107548
Remark 17 (Can We Accidentally Disconnect the Network?). By using a high dropout value, it appears that parts of the ANN can be
accidentally disconnected. However, dropout is applied at the layer level (i.e., 𝑞 = 0.5 means that 50% of the units in each layer will
be dropped, not that 50% of all units will be dropped). Furthermore, most Dropout implementations do not sample from a Bernoulli
distribution (with the risk of dropping every single unit in a layer), but instead drop a proportion of the layer weights exactly equal
to the dropout parameter. Therefore, no layers can be disconnected following the dropout procedure.

A cost function consisting of an NLL loss combined with a 𝐿2 regularization can be used to provide a theoretical framework for
ropout regularization:

cost𝑑 𝑟𝑜𝑝𝑜𝑢𝑡 = 1
𝑁

𝑁
∑

𝑖=1
NLL(𝑦𝑖,(𝐱𝑖)) + 𝜆

𝐿
∑

𝑗=1

(

‖𝑊𝑖‖
2
2 + ‖𝑏𝑖‖

2
2
)

where 𝑁 is the size of the training set, 𝐿 is the number of layers, and NLL is a given loss (e.g., softmax for classification tasks,
square ‘‘Euclidean’’ loss for regression tasks, etc.). It can be proved that minimizing this loss function is equivalent to minimizing
the Kullback–Leibler divergence between an approximate distribution and the posterior of a Deep Gaussian process. Therefore, a
network trained with Dropout using a cost function that includes a regularization term that acts as a prior (e.g. 𝐿2 normalization)
turns a standard ANN into an approximated BNN [9].

Remark 18 (Why Does It Work?). The reason why Dropout regularization can drastically reduce over-fitting is that it can perform as
tochastic gradient descent on a regularized error function, and is equivalent to a 𝐿2 regularizer applied after proper scaling of the
eatures [113,114]. In addition, an arbitrary ANN with dropout applied before each weight layer is equivalent to an approximation

of the probabilistic Deep Gaussian Process (marginalized over its covariance function parameters) [115]. The Deep Gaussian Process
inherits the ability to avoid over-fitting of classical Gaussian Processes [54] and therefore the aforementioned approximation
provides an explanation for the use of Dropout as a practice to avoid over-fitting.

Changing the dropout parameter 𝑞𝑖 leads to a variation in the magnitude of the output of the layer (e.g., applying a 𝑞𝑖 ∼ 50%
will drop half the units and therefore reduce the magnitude of the outputs). If a network layer is trained to receive values from only
a fraction (1 − 𝑞𝑖) of the previous layer due to dropout, then at inference time, when the entire previous layer contributes to the
result, model performance may degrade. To avoid this pitfall, whenever a Bernoulli dropout is applied (either in the training phase
or in the inference phase), it is sufficient to apply a scaling factor to the weights equal to 1∕(1 − 𝑞𝑖) to compensate for the missing
nodes.

As a remark, Dropout can also use other distributions than Bernoulli, such as Gaussian Dropout, which uses multiplicative random
ormal values with unitary mean 𝜖 ∼ (1, 𝜎2).

In addition, the dropout can be applied to the connection (Bernoulli/Gaussian DropConnect) instead of to the units, or to both
onnections and units (Spike-and-Slap Dropout) [116].

Remark 19 (Optimal Dropout Parameter). There is no consensus on the optimal dropout parameter, which is strongly dependent
n the size of the training data set. In fact, even if a dropout value of 0.5 is reported to be optimal for various large data-set
asks [60,117], even smaller values can lead to a significant increase in performance compared to naive ANN [118]. Conversely, it

should be noted that higher dropout rates slow down convergence [117] and may be suboptimal for small data sets [118].
Dropout as post-hoc method: While standard dropout is only a technique to prevent overfitting during training, a slight

modification of the above procedure can be used at inference time to provide a post hoc approximation of the posterior predictive
distribution 𝑝(𝑦|𝐱). Moment matching can be used to derive formulae for higher order statistics [10]. An empirical approximation
of the first two moments (mean, used as a more stable point estimate, and variance, used as a measure of reliability) can be derived
from these model evaluations. The mean can be computed by performing 𝑆 stochastic forward passes through the network and
averaging the results. Similarly, the model predictive variance can be approximated as the sample variance of the same 𝑆 stochastic
forward passes through the ANN (plus a bias term equal to the inverse of the model precision [115]). With respect to this bias, the
model precision can be approximated using Bayesian optimization over validation log-likelihood [119] or otherwise dropped while

aintaining a biased estimate of the variance.
Therefore, at inference time, 𝑆 model evaluations are performed by resampling the Bernoulli distribution and performing a

orward pass. By applying a Bernoulli dropout at a given layer (of factor 𝑞𝑖), the weights must also be rescaled by a factor of 1∕(1 −𝑞𝑖).
his very large number of forward evaluations (i.e. the convergence rate of the standard MC approximation is (1∕

√

#𝑆 𝑎𝑚𝑝𝑙 𝑒), so
an accuracy of ∼1% requires about 104 samples) can be time-consuming, even though the task is embarrassingly parallelizable.

Remark 20 (How to Calibrate the Reliability Score?). Gaussian Processes, and consequently MC-Dropout, are not calibrated. In fact, MC
ropout is an approximation of an underlying Gaussian process whose uncertainty depends on the prior choice of hyperparameters

and covariance function. Different activation functions (ReLU, TanH, etc.) or different dropout distributions (Bernoulli, (1, 𝜎2), etc.)
lead to a MC Dropout that approximates a different GP. A standard approach to scale uncertainty and understand if the prediction
s reliable is to fit an elementary distribution (Gaussian, LogNormal, etc.) to the uncertainty of the training set and evaluate if the

prediction belongs to a high percentile of the cumulative distribution function.
In conclusion, MC Dropout is a post-hoc technique that approximates VI on an associated Deep Gaussian Process, thus providing

a simple and embarrassingly parallelizable method to derive an estimate of Epistemic Uncertainty [120] and, with proper extension,
Aleatoric Uncertainty as well [121]. The main drawback of MC dropout is that the Bayesian approximation of the predictive posterior
17

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 10. (Panel a): Internal Model reliability score calculated from the Sigmoid/SoftMax activation values for classification tasks. (Panel b): Trust Score calculated
from one of the fully connected layers.

distribution relies on the Gaussian Process equivalence, which may not always be satisfied [10]. Indeed, there is evidence that MC
Dropout does not always fully capture the predictive uncertainty [122].

6.2. Internal score, trust score, et simila

In several real-world scenarios, practitioners aim to derive an estimate of the predictive posterior probability without further
training. Therefore, the literature provides a plethora of post-hoc scores that should allow an assessment of the reliability of the
predictions. However, most of these scores lack a theoretical basis and therefore, although useful in practice as an indicator of
overconfident results, they do not approximate the predictive posterior distribution (see Fig. 10).

A common practice in Machine Learning is to use the Internal Model Score as an approximation of the predictive posterior
distribution. For example, a Deep Learning Classifier typically has a final layer that includes a sigmoid activation function (binary
classification) or a softMax activation function (multiclass classification). These functions return a normalized value ([0, 1], the
Internal Score) which is often referred to as a ‘‘probability’’. This score can be used as a measure of reliability (i.e. higher internal
scores correspond to better predictions, while lower scores may indicate unreliable results). However, the use of these Internal
Scores should be discouraged as they tend to produce poorly calibrated measures of reliability [61,123]. Confidence Calibration is
a related line of work that aims to transform classifier outputs into probability values [123–126]. However, even after calibration,
the internal scores tend to be overconfident [127–129], incorrectly reporting as ‘reliable’ predictions with a very high variance in
the predicted posterior distribution.

Among the various post-hoc alternatives to the use of Internal Scores, a technique with a solid mathematical background and a
few-shot learning fashion [63] is the Trust Score [62]. Formally, given a test sample 𝑥, a classifier (with a set of possible classes
), and the set S(𝐾𝑖) of the training set corresponding to the given class 𝐾𝑖, the Trust Score is defined as the ratio between the
distance of the test sample to S(𝐾𝑖) of the nearest class other than the predicted class and the distance of the test sample to the set
of the class predicted by the classifier :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S(𝐾𝑖) ∶= {(𝐱𝑗 , 𝑦𝑗) ∈ × | 𝑦𝑗 ∈ 𝐾𝑖}
𝑂2nd(𝐱) ∶= ar gmin𝐾𝑖∈ | 𝐾𝑖≠(𝐱) 𝑑

(

𝐱, 𝑆(𝐾𝑖)
)

𝐓𝐒(𝐱) ∶= 𝑑
(

𝐱,𝑆
(

𝑂2nd(𝐱)
))

𝑑(𝐱,𝑆((𝐱))) ∈ [0,∞)

(17)

where 𝑂2nd(𝑥) is the second optimal closest class, 𝑑 is an arbitrary distance (Euclidean k-nearest neighbor, distance from the centroid,
etc.) computed on the last dense layer of the Artificial Neural Network, and 𝐓𝐒(𝑥) is the trust score of the input 𝑥.

It can be shown that for labeled data distributions with well-behaved class boundaries, the classifier is likely to agree with
the optimal Bayesian Classifier when the Trust Score is large [62]. However, for high-dimensional feature spaces (such as those
computed on ViT or VGGs), the reliability measure obtained is less informative, and the fact that the trust score has no upper bound
makes the results difficult to interpret.

In conclusion, post-hoc methods should generally be replaced by other non-intrusive (MC dropout) or semi-intrusive (Ensemble)
techniques. However, a few theoretically well-founded methods (such as Trust Score) can add a reliability score at almost null
computational/memory cost, thus improving the standard deterministic classification.

7. Semi-intrusive methods: From deterministic to Bayesian

The intrusive methods described in Section 5 are accurate and complex techniques for uncertainty quantification but are often
characterized by high computational costs. On the other hand, the non-intrusive methods, described in Section 6, are less accurate
than the intrusive models but can save time and computational costs. Between intrusive and non-intrusive techniques, semi-intrusive
18

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
Fig. 11. Plots of the three main ensembling paradigms: Bagging (Panel a), based on random resampling of homogeneous models; Boosting (Panel b), based on
sequential fitting of difficult data; and Stacking (Panel c): based on non-homogeneous/highly specialized models.

techniques represent an efficient alternative approach that combines the accuracy of intrusive methods with the ease of non-intrusive
ones. In fact, semi-intrusive methods modify the architecture and training procedure of the original deterministic model with fewer
modifications than intrusive approaches, while still obtaining a better reliability estimate compared to post-hoc strategies. Among
them, the most relevant are the Ensemble methods, a family of approaches that combine multiple deterministic sub-models to avoid
over-fitting and to quantify uncertainty [57].

7.1. Ensemble methods

Ensemble methods are among the best techniques for improving the predictive ability and providing an estimate of the
uncertainty of ML models. Ensemble Methods represent a learning paradigm in which multiple ML models are trained to
solve the same problem and combined to achieve better results [57]. The naïve idea behind ensemble learning is that multiple
predictions from models trained on different data or with different hyperparameters can provide a combined estimate that is
less prone to over-fitting than the disjoint ones. Formally, instead of training a single model �̂� ,ℎ̂, we define a parameterized
family of models = {�̂�(𝑗) ,ℎ̂(𝑗)}

𝑆
𝑗=1. The point estimate �̂� ,ℎ̂(𝐱) is substituted by an aggregate estimate (usually the mean across

predictions for regression tasks: (𝐱) = 1
𝑆
∑𝑆

𝑗=1 �̂�(𝑗) ,ℎ̂(𝑗) (𝐱) and the argmax of the average of the outputs of the softmax layer:
(𝐱) = ar gmax𝑐 𝑙 𝑎𝑠𝑠

(

1
𝑆
∑𝑆

𝑗=1 �̂�(𝑗) ,ℎ̂(𝑗) (𝐱)
)

/ the most frequent class for classification tasks). The main drawbacks of ensemble methods
are: how to define an optimal strategy to derive the sub-models, and the computational/memory cost both at training and inference
time when 𝑆 is large. In fact, when ML or DL models are used as part of the ensemble, the memory, and computational cost are
not suitable for most applications [58].

As reported in Fig. 11, there are three main ensembling paradigms to define an optimal family : Bagging, Boosting, and
Stacking. Bagging is an example of a randomization-based approach where the (homogeneous) ensemble members can be trained in
parallel without any interaction, while boosting-based approaches train the ensemble members sequentially, improving performance
at a high computational cost.

In Bagging (also called Bootstrapping) 𝑆 bootstrap sets 𝑗 of randomly sampled observations are generated from the initial
data-set . Each of these sets should be representative of the original data distribution and independent of each other [130]. Each
model �̂�𝑗 ,ℎ̂

is trained on a different sub-set 𝑗 so that the encompasses the variability of the original data distribution. Due to
the independence of the bootstrap sets, the training process of the models can be performed in parallel (both through embarrassing
parallelization and efficient parallelization), thus reducing the computational time. If the base learner lacks intrinsic randomization
(e.g., can be obtained by solving a convex optimization problem, as in the case of random forests [131]), Bagging can introduce
diversity. Conversely, if the base learner has multiple local optima (such as ANNs and especially DNNs), bootstrapping can actually
reduce performance. In such cases, the entire data set can be used for each �̂�𝑗 ,ℎ̂

, taking advantage of the multiple optima to
provide differences between ensemble sub-models [73].

Remark 21 (Deep Ensemble). Deep Ensemble is a semi-intrusive bootstrapping method that requires fewer changes to the model
definition and training algorithms than other ensemble techniques [73]. Exploiting the inherent randomness of the Deep Learning
training process and the multiple optima typical of ANNs, Deep Ensembles start from homogeneous models with random ini-
tialization and train them multiple times on the randomly reshuffled full data-set (or on a bootstrapping sub-set if enough data
are available). By using an appropriate scoring rule (i.e., a measure of the quality of the prediction uncertainty, such as log-
likelihood for ANNs) as the loss function, we can train the ensemble using standard backpropagation [132]. To smooth the predictive
distributions and further differentiate the sub-models, an appropriate data augmentation strategy coupled with an adversarial
smoothing technique can be employed [128].

Boosting methods aim to improve the accuracy of individual models using an adaptive sequential training approach [133].
In particular, each model �̂�(𝑗) ,ℎ̂ focuses on observations that the previous model �̂�(𝑗−1) ,ℎ̂ had difficulty dealing with. Because
the calculations to fit the different models cannot be done in parallel (unlike bagging), boosting is considered a computationally
19

G. Del Corso et al.

B

v

d
p

m

w
p
a
t

f

o
p

t

Journal of the Franklin Institute 362 (2025) 107548
expensive technique. The most commonly used boosting methods are Adaptive Boosting (AdaBoost) [134] and Extreme Gradient
oosting (XGBoost) [135].

Remark 22 (Hyperensemble). Hyperensemble is a variation of the standard bagging/boosting strategy. Instead of using homogeneous
models (i.e., with the same initial parameters/hyperparameters ℎ̂), the sub-models {�̂�𝑗 ,ℎ̂𝑗

}𝑆𝑗=1 are also characterized by a slight
ariation of their hyperparameters ℎ̂𝑗 , such as learning rate, kernel size or optimization strategy [136].

The third ensembling paradigm is Stacking. Stacking combines heterogeneous learning models (usually highly specialized for
ifferent facets of the problem) [137]. The combination is done by training a meta-model to make predictions based on the multiple
redictions returned by different models. The metamodel, usually an ANN, takes the model outputs as inputs and is trained on them

to make more robust predictions and assess reliability. A natural extension of stacking is Multilevel Stacking, which consists of
ultiple layers of ensembles stacked on sub-layers [138].

After training, the inference is done by set aggregation, and uncertainty is obtained from the variance of the prediction
(regression) or the mean entropy (classification), see Eq. (11). In particular, if the ensemble (# = 𝑆) is treated as a uniformly-

eighted mixture model, the combined prediction is simply �̂� = 1
𝑆
∑𝑆

𝑗=1 𝑀�̂�(𝑗) (𝐱). Under the simplified assumptions on the predictive
osterior distribution (see Section 4), Ensembles can be used to approximate epistemic uncertainty as 𝜀𝐸 ≈ Var𝑗

[

𝑀�̂�(𝑗) (𝐱)
]

. In
ddition, if the sub-models of the ensemble provide distributional outputs (i.e., are ANNs with distributional outputs or BNNs),
he ensemble can also be used to approximate the aleatoric uncertainty (see Eq. (12)).

Remark 23 (How Many Models Make Up an Ensemble?). Determining the optimal number of models to form an ensemble is still an
open problem. Therefore, the available computing power is usually the main bottleneck for the number of trained models. Iterative
approaches can be used to add more models until a convergence criterion is reached or the available resources are exceeded.

In summary, Ensembles are semi-intrusive highly parallelizable methods that can be applied with a slight modification of the cost
unction (i.e., by using an appropriate scoring rule). The ease of training, the ability to provide an estimate of predictive uncertainty,

and the improved performance compared to point estimation make this family of techniques the gold standard for UQ estimation.
However, the high computational/memory cost of training and handling tens or even hundreds of models makes them difficult to
apply to most real-world scenarios.

8. Conclusion

Uncertainty Quantification has become a crucial aspect in dealing with Machine Learning contexts, especially in Deep Learning
ones. In fact, due to the high risk of Artificial Neural Networks over-specializing on the problem, leading to low generalization
capability, the real-world application of these methods is strongly dependent on the assessment of the reliability of the predictions.
With this work, we hope to provide the scientific community with a useful resource to better navigate the emergent, vast, and
often challenging field of supervised Bayesian uncertainty analysis. First, we tried to define the different types of uncertainty,
taking into account their relationship with the chosen model, the trainable parameters, and the learning context. In particular,
we have shown the reader, in a mathematically rigorous yet illustrative manner, the fundamental difference between those types of
variability that can be controlled simply by increasing the numerosity of the data set, and those that require active modification of
the model used. These uncertainties can be integrated by using appropriate techniques beyond the use of internal scores. However,
each of these methods has its own implementation difficulties and corresponding computational costs. Thus, the practitioner may
feel overwhelmed by the different methods available and end up implementing deterministic techniques, even when the available
resources are sufficient to use Bayesian techniques. Therefore, we have analyzed the frameworks (probabilistic/deterministic),
intrusiveness, advantages, and disadvantages of some of the main approaches to quantifying uncertainty in Deep Learning that
are currently state of the art: ranging from highly intrusive and efficient techniques (such as Bayesian Neural Networks with
distributional output) to post-hoc methods with almost zero computational cost (MC Dropout, Trust Score, etc.). Formal derivation
through consistent language and formulae between the different sections will hopefully assist in a more detailed understanding of
the techniques presented, thus avoiding many of the errors found even in the technical literature.

The landscape of UQ techniques is diverse, ranging from Bayesian methods to several families of techniques that are not purely
probabilistic. Where, for the sake of simplicity in the presentation of key concepts, it has been necessary to make a sharp selection
f what we believe to be the cornerstones of Bayesian UQ methods, it is useful to remember that this article does not exhaust the
lethora of modern techniques for uncertainty quantification. Examples of further intrusive techniques are the generative methods

for UQ [139] or, among post-hoc approaches, Conformal prediction methods [140]. Future work will focus on investigating the
critical issues identified in the review, both theoretically and experimentally. In particular, it is crucial to determine the capability
of the different techniques to estimate each type of uncertainty, their ability to disentangle them, and the sample sizes that are
considered appropriate for their use. Therefore, we will focus on providing a rigorous comparison between different techniques (in
erms of OOD detection, posterior approximation, and uncertainty disentanglement) using standardized procedures (see [66] for

disentanglement experiments) using ad hoc synthetic datasets for UQ investigation [69,141]. In addition, we associated this review
with the git containing the open source codes of the aforementioned techniques and experiments [142].

In conclusion, this review stands as a vademecum of the state of the art of supervised Bayesian uncertainty analyses, specifying
the drawbacks not only from a theoretical point of view but also in terms of implementation complexity and intrusiveness of use
and leading practitioners to view Artificial Neural Networks as inextricably linked to the uncertainty they introduce.
20

G. Del Corso et al.

C
W

Journal of the Franklin Institute 362 (2025) 107548
Notation Meaning
∗, ∗ Inputs/instance space of the problem, outputs/outcomes space
∗ ∶ ∗ → ∗ Real relationship returning a value 𝑦∗ ∈ ∗ for each input 𝑥∗ ∈ ∗

 ∶ → Simplified relationship between simplified spaces and
̂ ∶ ̂ ⟶ ̂ Measurable relationship between perturbed input and output
𝓁 ∶ × → R Loss function
 = {(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ × Sample/data-set of dimension 𝑁 of the space ×
ℎ = (𝜃 , ℎ̂) ∈ 𝐻 Set of hypotheses: 𝜃 are the trainable parameters (weights and biases for

ANNs), ℎ̂ hyperparameters (prior knowledge choices such as type of
architectures, learning rate, etc.)

 ∶= ℎ = 𝜃 ,ℎ̂ ∶ → Approximating Model
𝜃∗ Optimal trainable parameters (true expected loss minimizer)
𝜃∗ ,ℎ̂ Optimal Bayesian Predictor
�̂� Optimal trainable parameters on a finite data-set
�̂� ,ℎ̂ Empirical Model
𝜀𝐴 Aleatoric Uncertainty
𝜀𝐴,𝐼 Aleatoric Inherent Uncertainty
𝜀𝐴,𝑁 Aleatoric Experimental Uncertainty/Noise
𝜀𝐴,𝑀 Aleatoric Model Uncertainty
𝜀𝐸 Epistemic Uncertainty
𝜀𝐸 ,𝑀 Epistemic Model Uncertainty
𝜀𝐸 ,𝐴𝑝

Epistemic Approximation Uncertainty
𝑣𝑖 = 𝑓𝑖

(

𝑊𝑖 ⋅ 𝑣𝑖−1 + 𝑏𝑖
)

𝑖th layer in a feedforward ANN
𝐿 Number of layers
𝑊𝑖, 𝑏𝑖 Weights/biases of the 𝑖th layer
𝑓𝑖(⋅) Activation function of the 𝑖th layer
𝑝(𝜃) Prior knowledge on trainable parameters
𝑝(|𝜃) Likelihood of the dataset given 𝜃
𝑝() Evidence of the available data-set
𝑝(𝜃|) Posterior distribution of trainable parameters
𝑝 (𝑦|x, 𝜃) = 𝑝 (𝑦|x,) Predictive posterior distribution
𝜇∗(x) Mean of the output for regression task
𝜎2∗(x) Variance of the output for regression task
𝑆 Number of sub-models/evaluations/forward passes

CRediT authorship contribution statement

Giulio Del Corso: Writing – review & editing, Writing – original draft, Investigation, Formal analysis, Conceptualization. Sara
olantonio: Writing – review & editing, Funding acquisition, Conceptualization. Claudia Caudai: Writing – review & editing,
riting – original draft, Supervision, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This study was partially funded by the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement
No 952159 (ProCAncer-I) and the European Union’s Horizon Europe Research and Innovation Program under Grant Agreement No
101135932 (FAITH).

Appendix A. Negative log-likelihood and maximum likelihood estimation

The assumptions about the task determine the choice of loss 𝓁. Classification problems require a loss that penalizes choosing
the wrong class (e.g., binary cross-entropy), whereas regression problems need to value choices that are close to the ground truth
(e.g., MSE). However, there are many cases where the choice of a loss straightforward, such as in multi-head networks corresponding
to a distributed output, see Section 5.1. The Bayesian framework allows most known losses to be reinterpreted as the Negative
Log-Likelihood (NLL) of the problem of interest.
21

G. Del Corso et al.

h

w
i
l
b

M

A
t
𝜃
b

(

Journal of the Franklin Institute 362 (2025) 107548
Formally, defining the data-set as realizations of 𝑁 i.i.d. random variables {(𝑋𝑖, 𝑌𝑖)}𝑁𝑖=1 from a population 𝑌 with density/mass
function 𝑓 , Likelihood function is defined as:

(

𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1
)

∶= 𝑓
(

{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1|𝜃
)

=
⏟⏟⏟
𝑖.𝑖.𝑑 .

𝛱𝑁
𝑖=1𝑓 ((𝐱𝑖, 𝑦𝑖)|𝜃) (A.1)

Intuitively, it describes the plausibility that these values come from the distribution fully characterized by 𝜃. Using the i.i.d.
ypothesis, the likelihood can be calculated for each sample (𝐱, 𝑦) and the combined likelihood for the whole data set . Determining

the optimal model means choosing 𝜃 values and therefore the Maximum Likelihood Estimator (MLE) is defined as:

�̂�𝑀 𝐿𝐸 ∶= ar gmax
(

𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1
)

(A.2)

In optimization problems, it is preferable to minimize the sums of elements rather than maximizing their products, and therefore
e can apply a logarithm to the likelihood (log-likelihood). The other advantage of using log-likelihood over likelihood is that

t avoids problems of numerical precision (i.e., products of small numbers can lead to arithmetic underflow). Furthermore,
ogarithms transform products in summation, making it easier to calculate the derivative (both for theoretical calculation and for
ackpropagation). Therefore, by applying a logarithmic transformation to the original Likelihood, we get:

𝑁 𝐿𝐿(𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1) ∶= − log(𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1) = −
𝑁
∑

𝑖=1
log 𝑓 ((𝐱𝑖, 𝑦𝑖)|𝜃)

�̂�𝑀 𝐿𝐸 ∶= ar gmax
(

𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1
)

= ar gmin𝑁 𝐿𝐿(𝜃|{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1)
(A.3)

The first-order condition for minimizing the NLL is 𝜕 𝑁 𝐿𝐿(𝜃|{(𝐱𝑖 ,𝑦𝑖)}𝑁𝑖=1)
𝜕 𝜃 = 0, which can lead to an analytical solution in some simplified

statistical cases. Most of the cost functions commonly used in Machine Learning can be derived as Negative Log-Likelihood under
appropriate assumptions. The introduction of regularization functions, which act as a prior in the Bayesian setting, leads to a different
(less prone to over-fitting) maximization called Maximum A Posteriori estimate (MAP).

Remark 24 (How to Compute the NLL Explicitly?). By assuming that the output of a neural network is a given probability distribution,
𝑓 (⋅) can be written explicitly as the density/mass function of that probability distribution. This allows most standard (and non-
standard) losses to be derived as a special case of 𝑁 𝐿𝐿. Examples include: single-head Gaussian with fixed (homoscedastic)
variance for MSE, two-head Gaussian with variable (heteroscedastic) variance for variance attenuation, 𝑘 categorical distribution
for cross-entropy, etc.

For regression tasks, the output can be modeled with a continuous distribution (e.g. Gaussian or more complex/skewed) to derive
SE or variance attenuation losses:

Example 2 (One Head Regression - MSE). Mean Squared Error is a loss that can be derived from MLE under a few assumptions.
ssume that there is a relationship between an input vector 𝐱 and an outcome 𝑦, that can be described by a mean plus a variance

erm 𝜀 ∼
(

0, 𝜎2) (homoscedastic aleatoric uncertainty): 𝑦 = E[𝑦|𝐱] +𝜀 ≈ 𝜇𝜃(𝐱) +𝜀. To derive the MLE approximation of the optimal
, we can note that adding 𝜇𝜃(𝐱) to a normal distribution leads to: 𝑦 ∼

(

𝜇𝜃(𝐱), 𝜎2
)

. Therefore, the likelihood of a couple (𝐱, 𝑦) can
e computed from the density of a Gaussian distribution:

(𝜃|(𝐱, 𝑦)) = 1
(

2𝜋 𝜎2)
1
2

exp
(

−

(

𝑦 − 𝜇𝜃(𝐱)
)2

2𝜎2

)

(A.4)

and the NLL is:

NLL(𝜃|(𝐱, 𝑦)) = 1
2
log(2𝜋) + 1

2
log 𝜎2 +

(𝑦 − 𝜇𝜃(𝐱))2

2𝜎2
(A.5)

by dropping the constant terms 1
2 log(2𝜋) and 1

2 log(𝜎
2) and multiplying by the constant 2𝜎2, we get:

ar gminNLL(𝜃|(𝐱, 𝑦)) = ar gmin
(

𝑦 − 𝜇𝜃(𝐱)
)2 (A.6)

by computing this value on every (𝐱𝑖, 𝑦𝑖) ∈ and taking the average, we obtain the Mean Squared Error loss.

Example 3 (Multi Head Regression - Variance Attenuation). Assume that we have an ANN 𝜃 with two heads (see Section 5.1)
corresponding to mean 𝜇𝜃 and variance 𝜎2𝜃 of a Gaussian output. In order to derive the optimal 𝜃 we need to define a cost function
i.e., the NLL). The likelihood for a Gaussian output is:

(𝜃|(𝐱, 𝑦)) = 1
(

2𝜋 𝜎2𝜃 (𝐱)
)
1
2

exp
(

−

(

𝑦 − 𝜇𝜃(𝐱)
)2

2𝜎2𝜃 (𝐱)

)

(A.7)

therefore the NLL is:

NLL(𝜃|(𝐱, 𝑦)) = 1
2
log(2𝜋) + 1

2
log 𝜎2𝜃 (𝐱) +

(𝑦 − 𝜇𝜃(𝐱))2

2𝜎2𝜃 (𝐱)
(A.8)

by dropping the constant term 1
2 log(2𝜋), this is the Variance Attenuation loss introduced in Section 5.1
22

G. Del Corso et al.

c

(

t
s

j

f
o
p

(
a

∑

Journal of the Franklin Institute 362 (2025) 107548
Classification tasks, on the other hand, assume that the output of the model can be written as a categorical distribution to derive
lassical cross-entropy or classification variance attenuation losses.

Example 4 (One Head Classification - Cross Entropy). Standard cross entropy can be derived as the negative Log-Likelihood of
the softmax layer of an ANN classifier (sof t max(𝑧) = 𝑒𝑧∕

∑#
𝑐∗=1 𝑒

𝑧∗𝑐 , 𝑧 = 𝜃(𝐱), with 𝑧 the logit layer of the raw outputs of the
network). Indeed, by assuming that the outputs of the softmax layer represent the parameters (𝑝1,… , 𝑝#) of a categorical distribution
(i.e., 𝑓 (𝑦 = one _ hot _ encoded(𝑖)) = 𝑝𝑖), the likelihood is:

(𝜃|(𝐱, 𝑦)) = 𝑓 ((𝑦, 𝐱)|𝜃) = sof t max(𝜃(𝐱))𝑐 (A.9)

where 𝑦 = (𝑦𝑐∗)#𝑐∗=1 is the one-hot encoded vector of the observed class, with 𝑦𝑐 = 1 on the correct class index 𝑐 and 0 otherwise
i.e, only the predicted probability of the given class 𝑐).

𝑁 𝐿𝐿(𝜃|(𝐱, 𝑦)) = − log sof t max
(

𝜃(𝐱)
)

𝑐 = −
#
∑

𝑐∗=1
𝑦∗𝑐 log

𝑒𝜃 (𝐱)∗𝑐
∑#

𝑐′=1 𝑒
𝜃 (𝐱)𝑐′

(A.10)

where the last term is the Cross entropy loss.

Example 5 (Multi Head Classification - Variance Attenuation). Multi-head classification is not straightforward as the softmax layer of
the categorical distribution parameters cannot be directly substituted with a Gaussian vector. One possible approach to circumvent
this limitation is to substitute the last raw (logit) layer 𝑧 of the network with a Gaussian distribution (i.e., 𝑧 = 𝜃(𝐱) =

(

𝜇𝜃(𝐱), 𝜎2𝜃 (𝐱)
)

The Negative Log Likelihood for a couple (𝐱, 𝑦), with 𝑦 the one hot encoded vector of the correct class 𝑐 is:

𝑁 𝐿𝐿(𝜃|(𝐱, 𝑦)) = − log sof t max
(

 (𝜇𝜃(𝐱), 𝜎2𝜃 (𝐱))
)

𝑐 ≈ − 1
𝑇

𝑇
∑

𝑡=1

#
∑

𝑐∗=1
𝑦∗𝑐 log

𝑒𝑧
(𝑡)
𝑐∗

∑#
𝑐′=1 𝑒

𝑧(𝑡)
𝑐′

where 𝑧(𝑡) ∼
(

𝜇𝜃(𝐱), 𝜎2𝜃 (𝐱)
)

(A.11)

where the Monte Carlo approximation (with 𝑇 samples 𝑧(𝑡) sampled from the logit Gaussian distribution) is necessary due to the
lack of an analytical formulation of the density of a softmax function applied to a Gaussian vector. This is called the (classification)
variance attenuation loss.

Appendix B. Classic Gaussian process regression

Gaussian Process (GP) Regression (also known as Kriging or Wiener Kolmogorov prediction) is a classic metamodel technique
hat interpolates the data using a Gaussian process to provide a Bayesian estimate of the posterior probability even with extremely
mall data-sets [106]. The mathematical theory behind GPs dates back to 1940, with the works of Kolmogorov [104] and

Wiener [105], and it is arguably one of the first effective Bayesian metamodeling techniques.
A GP {𝑍(𝐱)|𝐱 ∈ } is a stochastic process such that, given any finite number of random variables (𝑍(𝐱1),… , 𝑍(𝐱𝑁)), it has a

oint Gaussian probability distribution. 𝑍(𝐱) is uniquely identified by its mean and covariance functions [12], defined as:
{

𝑚(𝐱) = E [𝑍(𝐱)]
𝑘(𝐱, 𝐱′) = cov(𝑍(𝐱), 𝑍(𝐱′)) = E

[

(𝑍(𝑥) − 𝑚(𝐱))(𝑍(𝐱′) − 𝑚(𝐱′))
] (B.1)

and therefore can be denoted as: 𝑍(𝐱) ∼
(

𝑚(𝐱), 𝑘(𝐱, 𝐱′)) ∼ (𝑚, 𝑘).

Remark 25 (How to Choose Mean and Covariance Functions?). The mean and covariance functions are not uniquely determined. Each
amily of functions has its own properties that strongly modify the underlying GP. The ability of the metamodel to approximate the
riginal model can be strongly influenced by the choice of these functions. The choice of these two functions corresponds to an a
riori hypothesis on the GP process.

The mean function 𝑚(𝐱) of the GP 𝑍(𝐱) can lead to different model predictions. It is common to consider GPs with a zero mean
function. It should be noted that the posterior distribution obtained by conditioning 𝑍(𝐱) on the training data set can have a non-zero
mean even with the zero mean assumption on the prior distribution. Therefore, the obtained posterior mean is not constrained to
be zero regardless of the choice of 𝑚(𝐱) [143]. Common choices for 𝑚(𝐱) include: stationarity of the first moment over the domain
i.e., E [𝑍(𝐱)] = 𝑐 𝑜𝑛𝑠𝑡𝑎𝑛𝑡, simple Kriging), assuming constant unknowns over the search neighborhood of 𝐱 (ordinary Kriging), or
ssume a general polynomial trend model (universal Kriging).

The covariance function is a positive definite kernel (i.e., a general symmetric function 𝑘 ∶ × → R such that
𝑚
𝑖=1

∑𝑚
𝑗=1 𝑐𝑖𝑐𝑗 𝑘(𝐱𝑖, 𝐱𝑗) > 0 holds for any 𝐱1,… , 𝐱𝑚 ∈ , given 𝑚 ∈ N and 𝑐1,… , 𝑐𝑚 ∈ R). For a GP 𝑍(𝐱), a covariance function

𝑘(𝐱, 𝐱′) gives the covariance of the values of the random field at the two locations 𝐱 and 𝐱′.

Remark 26 (Stationary Kernel). The covariance functions used in many practical applications are stationary. A kernel is said to be
stationary if it is a function of the distance 𝑥− 𝑥′, i.e. 𝑘(𝐱, 𝐱′) = 𝑓 (𝐱 − 𝐱′) (i.e., it is invariant with respect to translation in the input
space).
23

G. Del Corso et al.

𝑚

Journal of the Franklin Institute 362 (2025) 107548
Fig. B.12. (Panel a): a priori Gaussian Process, no data have been provided and therefore the GP is consistent with the prior hypothesis. (Panel b): Training
data points are provided and therefore the posterior GP provides a prediction according to the new information.

Commonly used covariance functions include: Constant covariance (𝑘(𝐱, 𝐱′) = constant), Linear covariance (𝑘(𝐱, 𝐱′) = 𝐱𝑇 ⋅ 𝐱′),
and Squared Exponential (SE) covariance (𝑘(𝐱, 𝐱′) = 𝜎2 exp

(

− 1
2𝜑2 ‖𝐱 − 𝐱′‖2

)

parameterized by 𝜑 (correlation length) and the variance
parameter 𝜎2). The latter is a common stationary choice in Kriging [144], with 𝑚(𝐱) that is intuitively the trend around which the
realizations vary, 𝜑 the oscillation frequencies, and 𝜎2 the range of variations.

Once the prior GP 𝑍(𝐱) with its own mean function 𝑚(𝑥) and covariance function 𝑘(𝐱, 𝐱′) and given a training data-set (,) =
{(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1 have been defined, regression consists of describing the predictive posterior probability of an unknown output 𝑦∗ for
an input 𝐱∗.

Remark 27 (GP as Surrogate Model). In a Machine Learning fashion, GP can be thought of as an original prior GP 𝑍(𝐱) conditioned on
a data-set to define a posterior GP fully characterized by its mean and variance functions. These functions can be computed using
a training strategy, such as the maximum likelihood method [145,146], gradient-based approaches [147], or with cross-validation
strategy [148].

For the properties of the GP, it holds:
[

𝑦∗

]

∼
([

𝑚()
𝑚(𝐱∗)

]

,
[

𝑘(,) 𝑘(, 𝐱∗)
𝑘(𝐱∗,) 𝑘(𝐱∗, 𝐱∗)

])

(B.2)

therefore, the predictive posterior random variable can be calculated as follows:
(𝑦∗ | 𝐱∗, ×) ∼ (�̃�(𝐱∗), �̃�(𝐱∗, 𝐱∗))

�̃�(𝐱∗) ∶= 𝑚(𝐱∗) + 𝑘(𝐱∗,)𝑘(,)−1(− 𝑚())

�̃�(𝐱∗, 𝐱∗) ∶= 𝑘(𝐱∗, 𝐱∗) − 𝑘(𝐱∗,)𝑘(,)−1𝑘(, 𝐱∗)
(B.3)

Therefore, given a new input value 𝐱∗, an estimate of the output can be obtained from the prior 𝑍(𝐱) in terms of: predicted mean
̃ (𝐱∗) (a weighted combination of the training data) and predicted variance �̃�(𝐱∗, 𝐱∗) (the posterior variability in the prediction).

Remark 28 (Why Is the Mean a Good Point Estimate?). In most applications, the result must be a point estimate, obtained as the
argmin of a given loss/risk function 𝓁(𝑦𝑡𝑟𝑢𝑒, 𝑦∗). In the absence of 𝑦𝑡𝑟𝑢𝑒, the point estimate is obtained by minimizing the average
expected loss 𝑦∗𝑜𝑝𝑡𝑖𝑚𝑎𝑙|𝐱

∗ = ar gmin𝑦∗ ∫ (𝑦′, 𝑦∗)𝑝(𝑦′|𝐱∗,)𝑑 𝑦′. In general, the risk-minimizing value is the median. However, for a
Gaussian predictive posterior distribution, the mean and median coincide. Therefore, for any symmetric loss function and symmetric
predictive distribution, we always get 𝑦∗ as the mean of the predictive distribution [143].

The variance �̃�(𝐱∗, 𝐱∗) of the conditional distribution above deals with its uncertainty and is made up of two parts: 𝑘(𝐱∗, 𝐱∗) can be
read as the variance due to the test data, while the second term represents the variance induced by the training data [72]. The total
variance is the difference between the two terms as if the information in the training data reduces the original variance inherent in
the test data (see Fig. B.12).

In conclusion, GP regression is one of the best-known classical Machine Learning approaches to define a surrogate model capable
of producing a prediction coupled with a probabilistic reliability score (i.e., the predictive variance �̃�(𝐱∗, 𝐱∗), which is the model’s
mean-square error) that can be used both for regression and for global sensitivity analysis [106]. The given self-assessment of model
performance can be used to define a sub-set of optimal points {𝑥𝑖, 𝑦𝑖} to enrich the original data set (Sequential Design). This can
be done by selecting new points as those with the highest predicted variance or by implementing more efficient strategies [149–
151]. These sequential designs are often used in Deep Learning settings to efficiently explore the hyperparameter space (Bayesian
optimization) [152,153]. The main drawbacks of this method are that the entire data set must be stored in order to generate
the predictive posterior, and that GP cannot handle problems with a very high dimensionality of the input space. However, these
difficulties are partially addressed by a deep extension of GP called Deep Gaussian Processes [72].
24

G. Del Corso et al.

V

s
v

𝜃

m
d
t
(

o

i

Journal of the Franklin Institute 362 (2025) 107548
Appendix C. Training a Bayesian model

As described in Section 4, training a model (i.e., model induction) in the Bayesian framework can be seen as determining the
posterior distribution of the trainable parameters given the data-set (i.e., �̂� = 𝜃|) or the full population × (i.e., 𝜃∗ = 𝜃| ×).
This applies directly to several of the methods discussed in this review, most notably the intrusive ones: BNNs, DGPs, and BNNs
with distributional output.

Formally, model induction is merely sampling from the posterior distribution (followed, eventually, by model averaging to
produce a point estimate). However, the posterior is a high-dimensional and highly non-convex conditional distribution [91].
Therefore, most of the classical approaches (such as inverse transform sampling, acceptance-rejection method, rejection sampling,
etc.) fail to sample from it. Two of the most commonly used methods are Markov Chain Monte Carlo (MCMC) sampling [92] and

ariational Inference (VI) [53].

C.1. Markov Chain Monte Carlo

MCMC approaches are methods that can approximate true complex conditional distributions by constructing a sequence of
random samples (i.e., a Markov Chain such that each sample depends on the state of the previous sample) that converges to
the desired distribution [92]. MCMC has several drawbacks, including: an initial burn-in time before convergence, autocorrelated
amples after a certain number of iterations (hence the need to subsample a much larger set of samples to obtain uncorrelated
alues), and required hypothesis on the target distribution.

Among the various MCMC alternatives, the one best suited to the Bayesian framework is the Metropolis–Hastings algorithm
which simply requires a function 𝑓 (𝑥) proportional to the target posterior [154] (i.e., when computing the posterior distribution, it
can be chosen as a combination of the terms in the numerator of Eq. (10)). Formally, the Metropolis–Hastings algorithm starts with
a guess 𝜃0 on the possible distribution. The subsequent candidate 𝜃𝑖+1 is obtained by sampling a proposal distribution 𝑄

(

𝜃′|𝜃𝑖
)

. If
′ is more likely, is retained (e.g., 𝜃𝑖+1 = 𝜃′), otherwise is dropped with an acceptance probability 𝑝 = min

(

1, 𝑄(𝜃′|𝜃𝑖)
𝑄(𝜃𝑖|𝜃′)

⋅ 𝑓 (𝜃′)
𝑓 (𝜃𝑖)

)

.

Remark 29 (How to Choose MCMC Hyperparameters?). MCMC parameters have to be properly chosen. If the spread is too large too
any samples are rejected while if it is too small the samples are highly autocorrelated. Similarly, the number of epochs must be
efined to avoid burn-in time and the size of the full sample should be chosen to avoid excessively autocorrelated values. Therefore,
he state-of-the-art MCMC algorithms for Bayesian statistics is the No-U-Turn Sampler (NUTS) [155], a Hamiltonian Monte Carlo
characterized by low rejection rate and short burn-in time) [156] combined with an automatic hyperparameter tuning strategy.

C.2. Variational inference

To reduce the computational burden associated with the use of MCMC strategies, an alternative approach is Variational
Inference (VI) [53]. Variational Inference aims to define an easy (analytical and parameterized by 𝜙, usually multivariate Gaussian
n the weights of the model) distribution 𝑞𝜙(𝜃|) which approximates the true posterior one: 𝑞𝜙 = 𝑞𝜙(𝜃|) ≈ 𝑝(𝜃|)

Remark 30 (Going Beyond Gaussians). While the multivariate Gaussian distribution is a typical choice for approximating the
posterior, a broader family of distributions with particular conjugacy properties can be used to tailor the posterior to the given
task [157]. More advanced techniques overcome the limitation of choosing a given distribution by providing a sequence of
ncreasingly complex approximations to capture multiple modes of the posterior, such as nonparametric VI [158] or normalizing

flow VI [159].
Given the data set and an a priori hypothesis about the trainable parameters 𝜃, VI aims to minimize the difference between

the real posterior 𝑝(𝜃|) and approximate 𝑞𝜙 distributions, thus obtaining a simplified model 𝑞𝜙 ≈ 𝜃|. To define a similarity
between two distributions (with density), we need a suitable measure, like the Kullback–Leibler Divergence 𝑑KL (also called
Relative Entropy). If 𝑑𝐾 𝐿 → 0, the two distributions are close and, therefore, we can use 𝑞𝜙 as an approximation of 𝑝(𝜃|). Given
𝑞𝜙(𝜃|) and 𝑝(𝜃|), the KL divergence is defined as:

𝑑KL(𝑞𝜙(𝜃|) ∥ 𝑝(𝜃|)) ∶=∫R𝑀
log

(𝑞𝜙(𝜃|)(𝑧)
𝑝(𝜃|)(𝑧)

)

⋅ 𝑞𝜙(𝜃|)(𝑧) ⋅ 𝑑 𝑧

=E𝑞𝜙(𝜃|)

[

log
(𝑞𝜙(𝜃|)

𝑝(𝜃|)

)]

=E𝑞𝜙(𝜃|)
[

log 𝑞𝜙(𝜃|) − log 𝑝(𝜃|)
]

=E𝑞𝜙(𝜃|)
[

log 𝑞𝜙(𝜃|) − log (𝑝(𝜃 ,)∕𝑝())
]

=E𝑞𝜙(𝜃|)
[

log 𝑞𝜙(𝜃|) − log 𝑝(𝜃 ,) + log 𝑝()
]

=E𝑞𝜙

[

log 𝑞𝜙(𝜃|)
]

− E𝑞𝜙

[

log 𝑝(𝜃 ,)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
E𝑞𝜙 [log 𝑝(|𝜃)⋅𝑝(𝜃)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+E𝑞𝜙

[

log 𝑝()
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
log 𝑝()⋅E𝑞𝜙 [1]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(C.1)
−ELBO 𝑖𝑛𝑡𝑟𝑎𝑐 𝑡𝑎𝑏𝑙 𝑒

25

G. Del Corso et al.

r

f
f
p
o

I

Journal of the Franklin Institute 362 (2025) 107548
where 𝑀 is the number of trainable parameters. Indeed, by reordering the terms:
log 𝑝()
⏟⏞⏟⏞⏟
𝑒𝑣𝑖𝑑 𝑒𝑛𝑐 𝑒

= − E𝑞𝜙

[

log 𝑞𝜙(𝜃|)
]

+ E𝑞𝜙

[

log 𝑝(|𝜃) ⋅ 𝑝(𝜃)
]

+ 𝑑𝐾 𝐿(𝑞𝜙(𝜃|) ∥ 𝑝(𝜃|))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

log 𝑝() ≥−E𝑞𝜙

[

log 𝑞𝜙(𝜃|)
]

+ E𝑞𝜙

[

log 𝑝(𝜃)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
+E𝑞𝜙

[

log 𝑝(|𝜃)
]

= E𝑞𝜙

[

log 𝑝(|𝜃)
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙 𝑖ℎ𝑜𝑜𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅𝑒𝑐 𝑜𝑛𝑠𝑡𝑟𝑢𝑐 𝑡𝑖𝑜𝑛 𝐸 𝑟𝑟𝑜𝑟

−E𝑞𝜙

[

log
𝑞𝜙(𝜃|)
𝑝(𝜃)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑KL

(

𝑞𝜙(𝜃|) ∥ 𝑝(𝜃)
)

∶= ELBO
(

𝑞𝜙(𝜃|) ∥ 𝑝(𝜃|)
)

(C.2)

The ELBO (Evidence Lower BOund) is a lower bound of the evidence log 𝑝(), and is given by the tractable Reconstruction Error
Term (E𝑞𝜙

[

log 𝑝(|𝜃)
]

), which represents the Negative Log-Likelihood loss (Appendix A) minus the tractable KL divergence of the
approximate posterior distribution 𝑄𝜙 and the prior distribution 𝜃 [160].

Remark 31 (ANN with Distributional Output). In Section 5.1 we introduced ANNs with distributional outputs. The loss discussed in
that section is the Reconstruction Error Term. Obviously, the ANNs can be trained by adding also the KL divergence term (which
emains constant by assuming fully deterministic weights and biases).

Remark 32 (ELBO vs. KL). Following the previous equations, it holds:

𝑑KL(𝑞𝜙(𝜃|) ∥ 𝑝(𝜃|)) = log 𝑝()
⏟⏞⏟⏞⏟

𝑖𝑛𝑡𝑟𝑎𝑐 𝑡𝑎𝑏𝑙 𝑒 (𝑐 𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
−ELBO

(

𝑞𝜙(𝜃|) ∥ 𝑝(𝜃|)
)

(C.3)

Therefore, maximizing the ELBO is equivalent to minimizing the KL divergence. However, optimization problems are usually set up
as minimization tasks rather than maximization ones, so the objective function in VI is taken to be the negative ELBO, also called
the Variational Free Energy.

Variational Inference translates the computation of the marginal likelihood into the optimization of its lower bound. The natural
choice for optimizing the lower bound with Neural Networks is the Stochastic Gradient Descent algorithm (on mini-batches). The
adaptation of the Stochastic Gradient Descent algorithm to Variational Inference is called the Stochastic Variational Inference
(SVI) algorithm. This allows scaling to large/computationally demanding data sets as the ELBO can be computed on a single mini-
batch at each iteration. Concerning optimization using Neural Networks, for every mini batch a Gradient Descent Algorithm aims
to update the trainable parameters 𝜃. An issue arises for SVI, because back propagation does not work on random sampling and
therefore Gradient Descent Algorithm cannot be used directly. A smart solution for this problem has been proposed by Kingma et al.
under the name of Reparametrization trick [161].

Remark 33 (Reparametrization Trick). To use gradient base optimization, the reparametrization assumes that the trainable values 𝑧
ollow 𝑞𝜙 ∼ (𝜇 , 𝜎2) (i.e., a multivariate normal distribution). Instead of sampling directly from it (and thus stopping the gradient
low through the model), the values 𝑧 can be reparametrized as 𝜇 + 𝜎 ⋅ (0, 1) by assuming Gaussian noise over each trainable
arameter. The need to use the reparametrization trick and the need to easily compute the reconstruction error leads to the choice
f simplified 𝑞𝜙, usually taken from the exponential family (such as multivariate normal, gamma, Dirichlet, etc.).

In summary, given a model with variational parameters (e.g., weights, biases, activation functions, etc.), a choice for the objective
function is the Variational Free Energy (i.e., - ELBO). The reconstruction error term is computed in a supervised manner using the
available data set, while Kullback–Leibler divergence is computed cumulatively on each variational layer. In particular, for each
layer, 𝑑KL is computed between 𝑞𝜙 (usually chosen as a Gaussian distribution) and the prior hypothesis on 𝜃 (typically 𝜃 ∼ (0, 1)).
Therefore, in the Gaussian case is computed again as a proper combination of the Variance Attenuation Loss (see Appendix A).

Remark 34 (What About the E𝑞𝜙 Term?). Formally, ELBO must be computed as the mean with respect to the 𝑞𝜙 distribution. However,
approximating this average can drastically increase the computational training effort, as it requires multiple samples from the
approximate distribution 𝑞𝜙, recalculating the terms of the ELBO each time. Therefore, the practice is to keep only one sampled
value and average over the minibatch to smooth the solution. It should be noted that this can lead to noisy solutions and therefore
the optimal (but costly) way to compute ELBO would be to resample from the variational distribution.

C.3. Laplace approximation

A post hoc approach to evaluate the posterior distribution is the Laplace approximation [79]. This method relies on a local
approximation of the posterior distribution around the ‘‘maximum a posterior’’ (MAP) estimator. This is similar to Variational
nference (i.e., is an optimization approach), but VI is a costly global approximation procedure (during training), while the Laplace

approximation is a non-intrusive a posteriori local MAP estimate that can be applied to a pre-trained ANN. As for VI, the Laplace
Approximation relies on strong assumptions about the form of the posterior distribution (usually assumed to be Gaussian). This, along
26

G. Del Corso et al.

i

c
t

Journal of the Franklin Institute 362 (2025) 107548
with the local nature of the approximation, implies that the Laplace approximation poorly captures the multimodal distribution and
nduces low accuracy UQ.

The Laplace approximation aims to find a Gaussian approximation of a complex probability density defined over a set of
ontinuous variables [162]. In the DL framework, this translates to: finding a Gaussian approximation of the posterior 𝑝(𝜃|) given
he weights of the network.

The Negative Log-Likelihood loss is then estimated using a second-order Taylor expansion around the MAP:

(𝜃;) ≈ (𝜃𝑀 𝐴𝑃 ;)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

0

+1
2
(𝜃 − 𝜃𝑀 𝐴𝑃)𝑇𝐇(𝜃 − 𝜃𝑀 𝐴𝑃) (C.4)

where the first term is zero by definition and H is the Hessian matrix (i.e., the second derivative of the ANN likelihood function
regarding the model weights 𝐇 ∶= ∇2

𝜃(𝜃|)|𝜃𝑀 𝐴𝑃). By assuming a multivariate Gaussian posterior distribution (of the weights), this
leads to:

𝑝(𝜃|) ≈ (𝜃𝑀 𝐴𝑃 ,𝐇−1) ∶= 𝑝(𝜃𝑀 𝐴𝑃 |) ⋅ 𝑒−
1
2 (𝜃−𝜃𝑀 𝐴𝑃)𝑇𝐇(𝜃−𝜃𝑀 𝐴𝑃) (C.5)

where 𝜃𝑀 𝐴𝑃 are the weights of the pre-trained ANN.

Remark 35 (How to Compute 𝐇−1?). Computing 𝐇−1 requires storing 𝑛2 partial derivatives (where 𝑛 is the number of trainable
weights) and then inverting the matrix, which is computationally infeasible for standard ANNs. Common methods to speed up
computations include: (1) Reduce 𝐇 to a diagonal matrix (i.e., assuming independent weights) (2) Reduce to a 𝐿 block diagonal
matrix (one block for each layer, assuming independent layers) (3) Select a subset of weights to update (to Gaussian distribution)
and leave all other weights fixed at their MAP estimate [163]. However, all of these methods can lead to an overestimation of the
uncertainty (variance) of the predictive posterior distribution.

This approximation can be used to obtain the predictive posterior distribution for a given input 𝐱∗ by applying an MC approach
to the simplified posterior (𝜃𝑀 𝐴𝑃 ,𝐇−1) and then averaging the models with the sampled weights {𝜃(𝑠)}𝑆𝑠=1.

References

[1] S.C. Hora, Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management, Reliab. Eng. Syst. Saf. 54
(2–3) (1996) 217–223.

[2] A. Der Kiureghian, O. Ditlevsen, Aleatory or epistemic? Does it matter? Struct. Saf. 31 (2) (2009) 105–112.
[3] T.J. Sullivan, Introduction to Uncertainty Quantification, Vol. 63, Springer, 2015.
[4] Q. Rao, J. Frtunikj, Deep learning for self-driving cars: Chances and challenges, in: Proceedings of the 1st International Workshop on Software Engineering

for AI in Autonomous Systems, 2018, pp. 35–38.
[5] E. Pachetti, G. Del Corso, S. Bardelli, S. Colantonio, Few-shot conditional learning: Automatic and reliable device classification for medical test equipment,

J. Imaging 10 (7) (2024) 167.
[6] F. Yang, H.-z. Wang, H. Mi, C.-d. Lin, W.-w. Cai, Using random forest for reliable classification and cost-sensitive learning for medical diagnosis, BMC

Bioinformatics 10 (2009) 1–14.
[7] A. Lambrou, H. Papadopoulos, A. Gammerman, Reliable confidence measures for medical diagnosis with evolutionary algorithms, IEEE Trans. Inf. Technol.

Biomed. 15 (1) (2010) 93–99.
[8] G. Del Corso, D. Germanese, C. Caudai, G. Anastasi, P. Belli, A. Formica, A. Nicolucci, S. Palma, M.A. Pascali, S. Pieroni, et al., Adaptive machine learning

approach for importance evaluation of multimodal breast cancer radiomic features, J. Imaging Inform. Med. (2024) 1–10.
[9] L.V. Jospin, H. Laga, F. Boussaid, W. Buntine, M. Bennamoun, Hands-on Bayesian neural networks—A tutorial for deep learning users, IEEE Comput.

Intell. Mag. 17 (2) (2022) 29–48.
[10] M. Magris, A. Iosifidis, Bayesian learning for neural networks: an algorithmic survey, Artif. Intell. Rev. 56 (10) (2023) 11773–11823.
[11] W. He, Z. Jiang, A Comprehensive Survey on Uncertainty Quantification for Deep Learning, 2023, URL https://api.semanticscholar.org/CorpusID:

257219242.
[12] E. Hüllermeier, W. Waegeman, Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Mach. Learn. 110

(2019) 457–506, URL https://api.semanticscholar.org/CorpusID:216465307.
[13] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U.R. Acharya, et al., A review of

uncertainty quantification in deep learning: Techniques, applications and challenges, Inf. Fusion 76 (2021) 243–297.
[14] T. Bayes, An essay towards solving a problem in the doctrine of chances. 1763., M. D. Comput. : Comput. Med. Pr. 8 3 (1763) 157–171, URL

https://api.semanticscholar.org/CorpusID:263568682.
[15] B. de Finetti, Sul significato soggettivo della probabilità, Fund. Math. 17 (1931) 298–329, URL https://api.semanticscholar.org/CorpusID:117887848.
[16] G.J. Klir, B.J.C. Yuan, Fuzzy Sets and Fuzzy Logic, 1995, URL https://api.semanticscholar.org/CorpusID:115906608.
[17] J.T. Bradley, R. Seising, The gap between scientific theory and application: Black and Zadeh - Vagueness and fuzzy sets, in: NAFIPS 2006 - 2006 Annual

Meeting of the North American Fuzzy Information Processing Society, 2006, pp. 408–413, URL https://api.semanticscholar.org/CorpusID:17713995.
[18] J.M. Booker, T.J. Ross, An evolution of uncertainty assessment and quantification, Sci. Iran. 18 (2011) 669–676, URL https://api.semanticscholar.org/

CorpusID:122228714.
[19] B. Russell, Vagueness, Australas. J. Philos. 1 (2) (1923) 84–92, http://dx.doi.org/10.1080/00048402308540623.
[20] L. Wittgenstein, Tractatus logico-philosophicus, Nord. Wittgenstein Rev. (1914) URL https://api.semanticscholar.org/CorpusID:170285990.
[21] G. Frege, Grundgesetze der Arithmetik, 1903, URL https://api.semanticscholar.org/CorpusID:190946830.
[22] B. Russell, The Philosophy of Logical Atomism, 1918, URL https://api.semanticscholar.org/CorpusID:170808846.
[23] M. Black, Vagueness. An exercise in logical analysis, Philos. Sci. 4 (1937) 427–455, URL https://api.semanticscholar.org/CorpusID:120376519.
[24] M. Black, Reasoning with loose concepts, Dialogue 2 (1963) 1–12, URL https://api.semanticscholar.org/CorpusID:170424742.
[25] M. Cohen, Action theory, Philos. Books 18 (3) (1977) 115–117, http://dx.doi.org/10.1111/j.1468-0149.1977.tb01727.x, arXiv:https://onlinelibrary.wiley.

com/doi/pdf/10.1111/j.1468-0149.1977.tb01727.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0149.1977.tb01727.x.
[26] D. Lewis, Counterfactuals and comparative possibility, J. Philos. Logic 2 (1973) 418–446, URL https://api.semanticscholar.org/CorpusID:122802088.
[27] J. Lécaillon, G.L.S. Shackle, J. Lécaillon, Decision Order and Time in Human Affairs, 1962, URL https://api.semanticscholar.org/CorpusID:143586227.
27

http://refhub.elsevier.com/S0016-0032(25)00042-0/sb1
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb1
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb1
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb2
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb3
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb4
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb4
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb4
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb5
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb5
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb5
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb6
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb6
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb6
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb7
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb7
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb7
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb8
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb8
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb8
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb9
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb9
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb9
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb10
https://api.semanticscholar.org/CorpusID:257219242
https://api.semanticscholar.org/CorpusID:257219242
https://api.semanticscholar.org/CorpusID:257219242
https://api.semanticscholar.org/CorpusID:216465307
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb13
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb13
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb13
https://api.semanticscholar.org/CorpusID:263568682
https://api.semanticscholar.org/CorpusID:117887848
https://api.semanticscholar.org/CorpusID:115906608
https://api.semanticscholar.org/CorpusID:17713995
https://api.semanticscholar.org/CorpusID:122228714
https://api.semanticscholar.org/CorpusID:122228714
https://api.semanticscholar.org/CorpusID:122228714
http://dx.doi.org/10.1080/00048402308540623
https://api.semanticscholar.org/CorpusID:170285990
https://api.semanticscholar.org/CorpusID:190946830
https://api.semanticscholar.org/CorpusID:170808846
https://api.semanticscholar.org/CorpusID:120376519
https://api.semanticscholar.org/CorpusID:170424742
http://dx.doi.org/10.1111/j.1468-0149.1977.tb01727.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0149.1977.tb01727.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0149.1977.tb01727.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0149.1977.tb01727.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0149.1977.tb01727.x
https://api.semanticscholar.org/CorpusID:122802088
https://api.semanticscholar.org/CorpusID:143586227

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
[28] L.A. Zadeh, Fuzzy Sets, 1965, URL https://api.semanticscholar.org/CorpusID:205883170.
[29] L.A. Zadeh, A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges, 1972, URL https://api.semanticscholar.org/CorpusID:120547398.
[30] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 100 (1978) 9–34, URL https://api.semanticscholar.org/CorpusID:

13928072.
[31] D. Dubois, H. Prade, Operations in a fuzzy-valued logic, Inf. Control. 43 (1979) 224–240, URL https://api.semanticscholar.org/CorpusID:5734042.
[32] D. Dubois, H. Prade, Possibility theory, Scholarpedia 2 (1988) 2074, URL https://api.semanticscholar.org/CorpusID:10448969.
[33] P. Agarwal, D.H.S. Nayal, Possibility theory versus probability theory in fuzzy measure theory, 2015, URL https://api.semanticscholar.org/CorpusID:

6269180.
[34] L.A. Zadeh, Discussion: Probability Theory and Fuzzy Logic are Complementary Rather Than Competitive, 1995, URL https://api.semanticscholar.org/

CorpusID:120593999.
[35] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, in: Classic Works of the Dempster-Shafer Theory of Belief Functions,

1967, URL https://api.semanticscholar.org/CorpusID:1305116.
[36] G. Shafer, A mathematical theory of evidence, A Math. Theory Evid. (1976) URL https://api.semanticscholar.org/CorpusID:27862354.
[37] A.P. Dempster, A generalization of Bayesian inference, in: Classic Works of the Dempster-Shafer Theory of Belief Functions, 1968, URL https:

//api.semanticscholar.org/CorpusID:44440896.
[38] B. Jalaeian, S. Russell, Uncertain context: Uncertainty quantification in machine learning, AI Mag. 40 (2019) 40–49, URL https://api.semanticscholar.

org/CorpusID:213331028.
[39] H.H. Clark, T.B. Carlson, I I ’ Context for Comprehension, 2012, URL https://api.semanticscholar.org/CorpusID:201863058.
[40] G.J. Klir, M.J. Wierman, J. Kacprzyk, Uncertainty-Based Information: Elements of Generalized Information Theory (Studies in Fuzziness and Soft

Computing), 1998, URL https://api.semanticscholar.org/CorpusID:67394188.
[41] M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Sets and Systems 108 (1999) 83–90, URL https://api.semanticscholar.org/CorpusID:

42467917.
[42] S. Ferson, L. Ginzburg, Hybrid arithmetic, in: Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference

of the North American Fuzzy Information Processing Society, 1995, pp. 619–623, URL https://api.semanticscholar.org/CorpusID:124809291.
[43] A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic : Theory and Applications, 1986, URL https://api.semanticscholar.org/CorpusID:120239309.
[44] L.A. Zadeh, Fuzzy logic, neural networks, and soft computing, Commun. ACM 37 (3) (1994) 77–84, http://dx.doi.org/10.1145/175247.175255.
[45] D.D. Nauck, F. Klawonn, R. Kruse, Foundations Of Neuro-Fuzzy Systems, 1997, URL https://api.semanticscholar.org/CorpusID:56820012.
[46] M.M. Gupta, E. Sanchez, Fuzzy information and decision processes, IFAC Proc. Vol. 15 (1981) 409–411, URL https://api.semanticscholar.org/CorpusID:

118619232.
[47] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan kaufmann, 1988.
[48] R.J. Carroll, D. Ruppert, L.A. Stefanski, C.M. Crainiceanu, Measurement Error in Nonlinear Models: a Modern Perspective, Chapman and Hall/CRC, 2006.
[49] E. Saccenti, M.H. Hendriks, A.K. Smilde, Corruption of the pearson correlation coefficient by measurement error and its estimation, bias, and correction

under different error models, Sci. Rep. 10 (1) (2020) 1–19.
[50] A. Kendall, Y. Gal, What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30 (2017).
[51] N.S. Detlefsen, M. Jørgensen, S. Hauberg, Reliable training and estimation of variance networks, 2019, arXiv preprint arXiv:1906.03260.
[52] D. Hendrycks, K. Gimpel, A baseline for detecting misclassified and out-of-distribution examples in neural networks, 2016, arXiv preprint arXiv:1610.02136.
[53] D. Barber, C. Bishop, Variational learning in Bayesian neural networks, Neural Netw. Mach. Learn. (1998) 215–237.
[54] A. Damianou, N.D. Lawrence, Deep gaussian processes, in: Artificial Intelligence and Statistics, PMLR, 2013, pp. 207–215.
[55] N.D. Lawrence, A.J. Moore, Hierarchical Gaussian process latent variable models, in: Proceedings of the 24th International Conference on Machine

Learning, 2007, pp. 481–488.
[56] A.G. Wilson, Z. Hu, R. Salakhutdinov, E.P. Xing, Deep kernel learning, in: Artificial Intelligence and Statistics, PMLR, 2016, pp. 370–378.
[57] D. Van, Ensemble Methods: Foundations and Algorithms, 2012, URL https://api.semanticscholar.org/CorpusID:15096071.
[58] A. Malinin, B. Mlodozeniec, M. Gales, Ensemble distribution distillation, 2019, arXiv preprint arXiv:1905.00076.
[59] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors,

2012, arXiv preprint arXiv:1207.0580.
[60] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach.

Learn. Res. 15 (1) (2014) 1929–1958.
[61] V. Kuleshov, P.S. Liang, Calibrated structured prediction, Adv. Neural Inf. Process. Syst. 28 (2015).
[62] H. Jiang, B. Kim, M. Guan, M. Gupta, To trust or not to trust a classifier, Adv. Neural Inf. Process. Syst. 31 (2018).
[63] L. Fei-Fei, R. Fergus, P. Perona, One-shot learning of object categories, IEEE Trans. Pattern Anal. Mach. Intell. 28 (4) (2006) 594.
[64] N.G. Polson, V. Sokolov, Deep learning: A Bayesian perspective, 2017.
[65] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, S. Udluft, Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive

learning, in: International Conference on Machine Learning, PMLR, 2018, pp. 1184–1193.
[66] M. Valdenegro-Toro, D.S. Mori, A deeper look into aleatoric and epistemic uncertainty disentanglement, in: 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, CVPRW, IEEE, 2022, pp. 1508–1516.
[67] R. Senge, S. Bösner, K. Dembczyński, J. Haasenritter, O. Hirsch, N. Donner-Banzhoff, E. Hüllermeier, Reliable classification: Learning classifiers that

distinguish aleatoric and epistemic uncertainty, Inform. Sci. 255 (2014) 16–29.
[68] I.P. de Jong, A.I. Sburlea, M. Valdenegro-Toro, How disentangled are your classification uncertainties?, 2024, arXiv preprint arXiv:2408.12175.
[69] G. Del Corso, F. Volpini, C. Caudai, D. Moroni, S. Colantonio, NADA: A synthetic shape benchmark for testing probabilistic deep learning models, 2024,

http://dx.doi.org/10.5281/zenodo.14361220.
[70] B. Mucsányi, M. Kirchhof, S.J. Oh, Benchmarking uncertainty disentanglement: Specialized uncertainties for specialized tasks, 2024, arXiv preprint

arXiv:2402.19460.
[71] D.A. Nix, A.S. Weigend, Estimating the mean and variance of the target probability distribution, in: Proceedings of 1994 Ieee International Conference

on Neural Networks, ICNN’94, Vol. 1, IEEE, 1994, pp. 55–60.
[72] K. Jakkala, Deep Gaussian processes: A survey, 2021, arXiv abs/2106.12135. URL https://api.semanticscholar.org/CorpusID:235606388.
[73] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Adv. Neural Inf. Process. Syst.

30 (2017).
[74] M. Seitzer, A. Tavakoli, D. Antic, G. Martius, On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks, 2022, arXiv

preprint arXiv:2203.09168.
[75] A. Stirn, D.A. Knowles, Variational variance: Simple, reliable, calibrated heteroscedastic noise variance parameterization, 2020, arXiv preprint arXiv:

2006.04910.
[76] Tishby, Solla, Consistent inference of probabilities in layered networks: predictions and generalizations, in: International 1989 Joint Conference on Neural

Networks, IEEE, 1989, pp. 403–409.
[77] J. Denker, Y. LeCun, Transforming neural-net output levels to probability distributions, Adv. Neural Inf. Process. Syst. 3 (1990).
[78] S. Geman, et al., Buntine, w., and weigend, a.(1991).‘‘Bayesian back-propagation’’. complex systems, 5, 603-643., 1991.
28

https://api.semanticscholar.org/CorpusID:205883170
https://api.semanticscholar.org/CorpusID:120547398
https://api.semanticscholar.org/CorpusID:13928072
https://api.semanticscholar.org/CorpusID:13928072
https://api.semanticscholar.org/CorpusID:13928072
https://api.semanticscholar.org/CorpusID:5734042
https://api.semanticscholar.org/CorpusID:10448969
https://api.semanticscholar.org/CorpusID:6269180
https://api.semanticscholar.org/CorpusID:6269180
https://api.semanticscholar.org/CorpusID:6269180
https://api.semanticscholar.org/CorpusID:120593999
https://api.semanticscholar.org/CorpusID:120593999
https://api.semanticscholar.org/CorpusID:120593999
https://api.semanticscholar.org/CorpusID:1305116
https://api.semanticscholar.org/CorpusID:27862354
https://api.semanticscholar.org/CorpusID:44440896
https://api.semanticscholar.org/CorpusID:44440896
https://api.semanticscholar.org/CorpusID:44440896
https://api.semanticscholar.org/CorpusID:213331028
https://api.semanticscholar.org/CorpusID:213331028
https://api.semanticscholar.org/CorpusID:213331028
https://api.semanticscholar.org/CorpusID:201863058
https://api.semanticscholar.org/CorpusID:67394188
https://api.semanticscholar.org/CorpusID:42467917
https://api.semanticscholar.org/CorpusID:42467917
https://api.semanticscholar.org/CorpusID:42467917
https://api.semanticscholar.org/CorpusID:124809291
https://api.semanticscholar.org/CorpusID:120239309
http://dx.doi.org/10.1145/175247.175255
https://api.semanticscholar.org/CorpusID:56820012
https://api.semanticscholar.org/CorpusID:118619232
https://api.semanticscholar.org/CorpusID:118619232
https://api.semanticscholar.org/CorpusID:118619232
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb47
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb48
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb49
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb49
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb49
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb50
http://arxiv.org/abs/1906.03260
http://arxiv.org/abs/1610.02136
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb53
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb54
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb55
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb55
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb55
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb56
https://api.semanticscholar.org/CorpusID:15096071
http://arxiv.org/abs/1905.00076
http://arxiv.org/abs/1207.0580
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb60
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb60
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb60
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb61
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb62
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb63
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb64
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb65
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb65
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb65
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb66
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb66
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb66
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb67
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb67
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb67
http://arxiv.org/abs/2408.12175
http://dx.doi.org/10.5281/zenodo.14361220
http://arxiv.org/abs/2402.19460
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb71
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb71
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb71
http://arxiv.org/abs/2106.12135
https://api.semanticscholar.org/CorpusID:235606388
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb73
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb73
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb73
http://arxiv.org/abs/2203.09168
http://arxiv.org/abs/2006.04910
http://arxiv.org/abs/2006.04910
http://arxiv.org/abs/2006.04910
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb76
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb76
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb76
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb77
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb78

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
[79] D.J. MacKay, A practical Bayesian framework for backpropagation networks, Neural Comput. 4 (3) (1992) 448–472.
[80] L.M. Mescheder, S. Nowozin, A. Geiger, Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks, 2017, arXiv

abs/1701.04722. URL https://api.semanticscholar.org/CorpusID:605416.
[81] H. Shi, X.-M. Zhang, S. Sun, L. Liu, L. Tang, A survey on Bayesian graph neural networks, in: 2021 13th International Conference on Intelligent

Human-Machine Systems and Cybernetics (IHMSC), 2021, pp. 158–161, URL https://api.semanticscholar.org/CorpusID:238478843.
[82] M. Fortunato, C. Blundell, O. Vinyals, Bayesian recurrent neural networks, 2017, arXiv abs/1704.02798. URL https://api.semanticscholar.org/CorpusID:

4026237.
[83] C. Chen, X. Lin, G. Terejanu, An approximate Bayesian long short- term memory algorithm for outlier detection, in: 2018 24th International Conference

on Pattern Recognition, ICPR, 2017, pp. 201–206, URL https://api.semanticscholar.org/CorpusID:2255761.
[84] F. Burden, D. Winkler, Bayesian regularization of neural networks, Artif. Neural Netw.: Methods Appl. (2009) 23–42.
[85] Y. Gal, Z. Ghahramani, Bayesian convolutional neural networks with Bernoulli approximate variational inference, 2015, arXiv preprint arXiv:1506.02158.
[86] J. Mitros, B. Mac Namee, On the validity of Bayesian neural networks for uncertainty estimation, 2019, arXiv preprint arXiv:1912.01530.
[87] A. Kristiadi, M. Hein, P. Hennig, Being bayesian, even just a bit, fixes overconfidence in relu networks, in: International Conference on Machine Learning,

PMLR, 2020, pp. 5436–5446.
[88] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, J. Snoek, Can you trust your model’s uncertainty? evaluating

predictive uncertainty under dataset shift, Adv. Neural Inf. Process. Syst. 32 (2019).
[89] W.L. Buntine, Operations for learning with graphical models, J. Artificial Intelligence Res. 2 (1994) 159–225.
[90] Y. Wen, P. Vicol, J. Ba, D. Tran, R. Grosse, Flipout: Efficient pseudo-independent weight perturbations on mini-batches, 2018, arXiv preprint

arXiv:1803.04386.
[91] P. Izmailov, S. Vikram, M.D. Hoffman, A.G.G. Wilson, What are Bayesian neural network posteriors really like? in: International Conference on Machine

Learning, PMLR, 2021, pp. 4629–4640.
[92] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, 1970.
[93] R. Neal, Bayesian learning via stochastic dynamics, Adv. Neural Inf. Process. Syst. 5 (1992).
[94] G.E. Hinton, D. Van Camp, Keeping the neural networks simple by minimizing the description length of the weights, in: Proceedings of the Sixth Annual

Conference on Computational Learning Theory, 1993, pp. 5–13.
[95] N.P. Lemoine, Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses, Oikos 128 (7) (2019)

912–928.
[96] A.A. Pourzanjani, R.M. Jiang, B. Mitchell, P.J. Atzberger, L.R. Petzold, Bayesian inference over the stiefel manifold via the Givens representation, Bayesian

Anal. 16 (2) (2021) 639–666.
[97] D. Silvestro, T. Andermann, Prior choice affects ability of Bayesian neural networks to identify unknowns, 2020, arXiv preprint arXiv:2005.04987.
[98] C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural network, in: International Conference on Machine Learning, PMLR,

2015, pp. 1613–1622.
[99] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, CRC Press, 2012.

[100] G. Del Corso, Uncertainty analysis of biological systems: towards a digital twin of the human heart, 2022.
[101] R.E. Caflisch, Monte carlo and quasi-monte carlo methods, Acta Numer. 7 (1998) 1–49.
[102] M.J. Gilman, A brief survey of stopping rules in Monte Carlo simulations, 1968.
[103] A. Mobiny, P. Yuan, S.K. Moulik, N. Garg, C.C. Wu, H. Van Nguyen, Dropconnect is effective in modeling uncertainty of bayesian deep networks, Sci.

Rep. 11 (1) (2021) 5458.
[104] A. Kolmogoroff, Interpolation und extrapolation von stationaren zufalligen folgen, Izv. Ross. Akad. Nauk. Seriya Mat. 5 (1) (1941) 3–14.
[105] N. Wiener, N. Wiener, C. Mathematician, N. Wiener, N. Wiener, C. Mathématicien, Extrapolation, Interpolation, and Smoothing of Stationary Time Series:

with Engineering Applications, Vol. 113, MIT press Cambridge, MA, 1949.
[106] L. Le Gratiet, S. Marelli, B. Sudret, Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes, in: Handbook of Uncertainty

Quantification, Springer, 2017, pp. 1289–1325.
[107] R.M. Neal, Bayesian Learning for Neural Networks, vol. 118, Springer Science & Business Media, 2012.
[108] A. Damianou, Deep Gaussian Processes and Variational Propagation of Uncertainty (Ph.D. thesis), University of Sheffield, 2015.
[109] Z. Dai, A. Damianou, J. González, N. Lawrence, Variational auto-encoded deep Gaussian processes, 2015, arXiv preprint arXiv:1511.06455.
[110] H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference for deep Gaussian processes, Adv. Neural Inf. Process. Syst. 30 (2017).
[111] A. Wilson, H. Nickisch, Kernel interpolation for scalable structured Gaussian processes (KISS-GP), in: International Conference on Machine Learning,

PMLR, 2015, pp. 1775–1784.
[112] J. Quinonero-Candela, C.E. Rasmussen, A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6 (2005) 1939–1959.
[113] S. Wager, S. Wang, P.S. Liang, Dropout training as adaptive regularization, Adv. Neural Inf. Process. Syst. 26 (2013).
[114] P. Baldi, P.J. Sadowski, Understanding dropout, Adv. Neural Inf. Process. Syst. 26 (2013).
[115] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning, in: International Conference on Machine

Learning, PMLR, 2016, pp. 1050–1059.
[116] P. McClure, N. Kriegeskorte, Representing inferential uncertainty in deep neural networks through sampling, 2016.
[117] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).
[118] A. Pauls, J. Yoder, Determining optimum drop-out rate for neural networks, in: Midwest Instructional Computing Symposium, MICS, 2018.
[119] J.M. Hernández-Lobato, R. Adams, Probabilistic backpropagation for scalable learning of bayesian neural networks, in: International Conference on

Machine Learning, PMLR, 2015, pp. 1861–1869.
[120] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, T. Vercauteren, Aleatoric uncertainty estimation with test-time augmentation for medical image

segmentation with convolutional neural networks, Neurocomputing 338 (2019) 34–45.
[121] H. Liu, R. Ji, J. Li, B. Zhang, Y. Gao, Y. Wu, F. Huang, Universal adversarial perturbation via prior driven uncertainty approximation, in: Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2941–2949.
[122] A. Chan, A. Alaa, Z. Qian, M. Van Der Schaar, Unlabelled data improves bayesian uncertainty calibration under covariate shift, in: International Conference

on Machine Learning, PMLR, 2020, pp. 1392–1402.
[123] C. Guo, G. Pleiss, Y. Sun, K.Q. Weinberger, On calibration of modern neural networks, in: International Conference on Machine Learning, PMLR, 2017,

pp. 1321–1330.
[124] J. Platt, et al., Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, Adv. Large Margin Classif. 10 (3)

(1999) 61–74.
[125] B. Zadrozny, C. Elkan, Transforming classifier scores into accurate multiclass probability estimates, in: Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2002, pp. 694–699.
[126] A. Niculescu-Mizil, R. Caruana, Predicting good probabilities with supervised learning, in: Proceedings of the 22nd International Conference on Machine

Learning, 2005, pp. 625–632.
[127] F. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction algorithms 1998, in: Proceedings of the 15th International

Conference on Machine Learning ICML-98 Morgan Kaufmann, San Mateo, CA.
29

http://refhub.elsevier.com/S0016-0032(25)00042-0/sb79
http://arxiv.org/abs/1701.04722
https://api.semanticscholar.org/CorpusID:605416
https://api.semanticscholar.org/CorpusID:238478843
http://arxiv.org/abs/1704.02798
https://api.semanticscholar.org/CorpusID:4026237
https://api.semanticscholar.org/CorpusID:4026237
https://api.semanticscholar.org/CorpusID:4026237
https://api.semanticscholar.org/CorpusID:2255761
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb84
http://arxiv.org/abs/1506.02158
http://arxiv.org/abs/1912.01530
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb87
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb87
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb87
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb88
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb88
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb88
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb89
http://arxiv.org/abs/1803.04386
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb91
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb91
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb91
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb92
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb93
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb94
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb94
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb94
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb95
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb95
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb95
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb96
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb96
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb96
http://arxiv.org/abs/2005.04987
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb98
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb98
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb98
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb99
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb100
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb101
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb102
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb103
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb103
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb103
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb104
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb105
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb105
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb105
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb106
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb106
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb106
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb107
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb108
http://arxiv.org/abs/1511.06455
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb110
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb111
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb111
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb111
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb112
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb113
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb114
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb115
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb115
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb115
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb116
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb117
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb118
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb119
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb119
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb119
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb120
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb120
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb120
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb121
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb121
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb121
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb122
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb122
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb122
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb123
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb123
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb123
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb124
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb124
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb124
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb125
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb125
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb125
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb126
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb126
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb126
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb127
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb127
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb127

G. Del Corso et al. Journal of the Franklin Institute 362 (2025) 107548
[128] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, 2014, arXiv preprint arXiv:1412.6572.
[129] A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 427–436.
[130] S.B. Kotsiantis, Bagging and boosting variants for handling classifications problems: a survey, Knowl. Eng. Rev. 29 (2013) 78–100, URL https:

//api.semanticscholar.org/CorpusID:27301684.
[131] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, URL https://api.semanticscholar.org/CorpusID:89141.
[132] T. Gneiting, A.E. Raftery, Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc. 102 (477) (2007) 359–378.
[133] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, in: Neural Information Processing

Systems, 2016, URL https://api.semanticscholar.org/CorpusID:6294674.
[134] R.E. Schapire, Explaining AdaBoost, in: Empirical Inference, 2013, URL https://api.semanticscholar.org/CorpusID:7122892.
[135] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2016, URL https://api.semanticscholar.org/CorpusID:4650265.
[136] F. Wenzel, J. Snoek, D. Tran, R. Jenatton, Hyperparameter ensembles for robustness and uncertainty quantification, 2020, arXiv abs/2006.13570. URL

https://api.semanticscholar.org/CorpusID:220042034.
[137] D. Horng, Chau, G. Tech, M. Roozbahani, J. Heer, J.T. Stasko, C. Faloutsos, Ensemble methods, Mach. Learn. with Spark™ Python® (2019) URL

https://api.semanticscholar.org/CorpusID:60385584.
[138] S. Singh, A. Yassine, R. Benlamri, Internet of energy: Ensemble learning through multilevel stacking for load forecasting, in: 2020 IEEE Intl Conf

Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf
on Cyber Science and Technology Congress (DASC/ PiCom/ CBDCom/ CyberSciTech), 2020, pp. 658–664, URL https://api.semanticscholar.org/CorpusID:
226845927.

[139] R. McAllister, G. Kahn, J. Clune, S. Levine, Robustness to out-of-distribution inputs via task-aware generative uncertainty, in: 2019 International Conference
on Robotics and Automation, ICRA, IEEE, 2019, pp. 2083–2089.

[140] G. Shafer, V. Vovk, A tutorial on conformal prediction., J. Mach. Learn. Res. 9 (3) (2008).
[141] F. Volpini, C. Caudai, G. Del Corso, S. Colantonio, NA database: Generator of probabilistic synthetic geometrical shape dataset.
[142] G. Del Corso, Shedding light on ucertainties: an open source python implementation of UQ techniques, 2025, https://github.com/GDelCorso/ShedLight_UQ.
[143] C.E. Rasmussen, Gaussian processes in machine learning, in: Summer School on Machine Learning, Springer, 2003, pp. 63–71.
[144] M.L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media, 1999.
[145] D.A. Harville, Maximum likelihood approaches to variance component estimation and to related problems, J. Amer. Statist. Assoc. 72 (358) (1977)

320–338.
[146] T.J. Santner, B.J. Williams, W.I. Notz, B.J. Williams, The Design and Analysis of Computer Experiments, Vol. 1, Springer, 2003.
[147] C.E. Rasmussen, C.K. Williams, Model selection and adaptation of hyperparameters, in: Gaussian Processes for Machine Learning, MIT Press, 2005, pp.

105–128.
[148] F. Bachoc, Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, Comput. Statist.

Data Anal. 66 (2013) 55–69.
[149] R. Bates, R. Buck, E. Riccomagno, H. Wynn, Experimental design and observation for large systems, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1) (1996)

77–94.
[150] W.C. Van Beers, J.P. Kleijnen, Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping, European J.

Oper. Res. 186 (3) (2008) 1099–1113.
[151] L. Le Gratiet, C. Cannamela, Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes,

Technometrics 57 (3) (2015) 418–427.
[152] B. Betrò, Bayesian methods in global optimization, J. Global Optim. 1 (1) (1991) 1–14.
[153] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization, Proc. IEEE 104 (1)

(2015) 148–175.
[154] S. Chib, E. Greenberg, Understanding the metropolis-hastings algorithm, Amer. Statist. 49 (4) (1995) 327–335.
[155] M.D. Hoffman, A. Gelman, et al., The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo., J. Mach. Learn. Res. 15 (1)

(2014) 1593–1623.
[156] R.M. Neal, MCMC using Hamiltonian dynamics, 2012, arXiv preprint arXiv:1206.1901.
[157] C. Zhang, J. Bütepage, H. Kjellström, S. Mandt, Advances in variational inference, IEEE Trans. Pattern Anal. Mach. Intell. 41 (8) (2018) 2008–2026.
[158] S. Gershman, M. Hoffman, D. Blei, Nonparametric variational inference, 2012, arXiv preprint arXiv:1206.4665.
[159] D. Rezende, S. Mohamed, Variational inference with normalizing flows, in: International Conference on Machine Learning, PMLR, 2015, pp. 1530–1538.
[160] T. Salimans, D.P. Kingma, M. Welling, Markov Chain Monte Carlo and Variational Inference: Bridging the Gap, 2014, URL https://api.semanticscholar.

org/CorpusID:216078910.
[161] D.P. Kingma, M. Welling, Auto-encoding variational bayes, 2013, arXiv preprint arXiv:1312.6114.
[162] C.M. Bishop, N.M. Nasrabadi, Pattern Recognition and Machine Learning, vol. 4, Springer, 2006.
[163] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, P. Hennig, Laplace redux-effortless bayesian deep learning, Adv. Neural Inf. Process.

Syst. 34 (2021) 20089–20103.
30

http://arxiv.org/abs/1412.6572
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb129
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb129
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb129
https://api.semanticscholar.org/CorpusID:27301684
https://api.semanticscholar.org/CorpusID:27301684
https://api.semanticscholar.org/CorpusID:27301684
https://api.semanticscholar.org/CorpusID:89141
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb132
https://api.semanticscholar.org/CorpusID:6294674
https://api.semanticscholar.org/CorpusID:7122892
https://api.semanticscholar.org/CorpusID:4650265
http://arxiv.org/abs/2006.13570
https://api.semanticscholar.org/CorpusID:220042034
https://api.semanticscholar.org/CorpusID:60385584
https://api.semanticscholar.org/CorpusID:226845927
https://api.semanticscholar.org/CorpusID:226845927
https://api.semanticscholar.org/CorpusID:226845927
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb139
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb139
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb139
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb140
https://github.com/GDelCorso/ShedLight_UQ
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb143
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb144
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb145
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb145
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb145
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb146
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb147
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb147
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb147
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb148
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb148
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb148
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb149
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb149
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb149
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb150
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb150
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb150
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb151
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb151
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb151
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb152
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb153
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb153
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb153
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb154
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb155
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb155
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb155
http://arxiv.org/abs/1206.1901
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb157
http://arxiv.org/abs/1206.4665
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb159
https://api.semanticscholar.org/CorpusID:216078910
https://api.semanticscholar.org/CorpusID:216078910
https://api.semanticscholar.org/CorpusID:216078910
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb162
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb163
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb163
http://refhub.elsevier.com/S0016-0032(25)00042-0/sb163

	Shedding light on uncertainties in machine learning: formal derivation and optimal model selection
	Introduction
	An Historical Introduction: The Road to Modern Uncertainty Conceptualization
	Uncertainty, from disturbing factor to useful modeling component
	The arduous task of defining what uncertainty is
	Probability, Possibility, and Evidence theory
	Teach to machines uncertainty reasoning

	Uncertainties: From intuition to formal derivation
	Reality and model: The map isn't the territory
	Aleatoric Uncertainty: A Random World
	Aleatoric Inherent Uncertainty: A non-deterministic relationship
	Aleatoric Experimental Uncertainty/Noise: The observer effect
	Aleatoric Model Uncertainty: The effect of random inference

	Epistemic Uncertainty: The lack of knowledge
	Epistemic Model Uncertainty: How to train the optimal model
	Epistemic Approximation Uncertainty: Training on real data

	Summary of the uncertainties

	Techniques to handle uncertainties
	Bayesian Framework
	Aleatoric and Epistemic Uncertainty Disentanglement
	Regression
	Classification

	Intrusive Methods: Define a model from scratch
	ANN with distributional output
	Bayesian Neural Networks
	Deep Gaussian Processes

	Non Intrusive Methods: Post-Hoc approaches
	Monte Carlo (MC) Dropout
	Internal Score, Trust Score, et simila

	Semi-Intrusive Methods: From deterministic to Bayesian
	Ensemble Methods

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Negative Log-Likelihood and Maximum Likelihood Estimation
	Appendix B. Classic Gaussian Process Regression
	Appendix C. Training a Bayesian Model
	Markov Chain Monte Carlo
	Variational Inference
	Laplace Approximation

	References

