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Abstract
The technologies of mobile communications and ubiquitous
computing pervade our society, and wireless networks sense
the movement of people and vehicles, generating large vol-
umes of mobility data. Miniaturization, wearability, perva-
siveness of mobile devices are producing traces of our mo-
bile activity, with increasing positioning accuracy and se-
mantic richness: location data from mobile phones (Global
System for Mobile Communications: GSM cell positions),
Geographic Positioning System (GPS) tracks from mobile
devices receiving geo-positions from satellites, etc. The ob-
jective of the GeoPKDD (Geographic Privacy-aware Knowl-
edge Discovery and Delivery), a project funded by Euro-
pean Commission under the Future and emerging technolo-
gies (FET) program of the 6th Framework(FP6), has been to
discover useful knowledge about human movement behav-
ior from mobility data, while preserving the privacy of the
people under observation. Pursuing this ambitious objective,
the GeoPKDD project has started a new exciting multidis-
ciplinary research area, at the crossroads of mobility, data
mining, and privacy. This paper gives a short overview of
the envisaged research challenges and the project achieve-
ments.

1 Introduction
Research on moving-object data analysis has been recently
fostered by the widespread diffusion of new techniques
and systems for monitoring, collecting and storing location
aware data, generated by a wealth of technological infras-
tructures, such as GPS positioning and mobile phone net-
works. These have made available massive repositories of
spatio-temporal data recording human mobile activities, that
call for suitable analytical methods, capable of enabling
the development of innovative, location-aware applications.
This is a scenario of great opportunities and risks: on one
side, mining this data can produce useful knowledge, sup-
porting sustainable mobility and intelligent transportation
systems; on the other side, individual privacy is at risk, as
the mobility data may reveal, if disclosed, sensitive personal
information. The GeoPKDD project [1], since 2005, investi-
gates how to discover useful knowledge about human move-
ment behavior from mobility data, while preserving the pri-

vacy of the people under observation. GeoPKDD aims at
improving decision-making in many mobility-related tasks,
especially in metropolitan areas:

Figure 1: The GeoPKDD process

• Monitoring and planning traffic and public transporta-
tion systems

• Localizing new facilities and public services

• Forecasting/simulating traffic-related phenomena

• Geo-marketing and location-based advertising

• Innovative info-mobility services

• Detecting deviations in collective movement behavior.

Many challenging questions emerge from the above sce-
nario. How to reconstruct a trajectory from raw logs, how
to store and query trajectory data? Which spatio-temporal
pattern and models are useful analytical abstractions of mo-
bility data? How to compute such patterns and models effi-
ciently? How to classify trajectories according to means of
transportation (pedestrian, private vehicle, public transporta-
tion vehicle)? Privacy protection and anonymity - how to



Figure 2: Representing trajectories in Hermes

make such concepts formally precise and measurable? How
to find an optimal trade-off between privacy protection and
quality of the analysis?

To answer these questions, the basic assumption of
GeoPKDD is that the movement data are at the base of an in-
tegrated knowledge discovery process, capable of supporting
management, querying, analysis and interpretation of this
form of data and patterns [13]. Unfortunately, discovering
useful knowledge from mobility data cannot be achieved by
simply invoking some off-the-shelf automated tool: as data
miners know, successful analytics is the fruit of an overall
knowledge discovery process, from raw data to knowledge.
Figure 1 depicts the steps of the knowledge discovery pro-
cess on movement data. Here, raw positioning data are col-
lected from mobile devices and stored in the data repository.
Trajectory data are then built, stored and analyzed by data
mining algorithms to discover patterns hidden in the data.
This process is typically iterative, since the composition of
subsequent data mining methods is needed, both on data and
pattern themselves, to obtain useful results. Finally, the ex-
tracted patterns have to be interpreted in order to be deployed
by the final users. During its four years of activity, the re-
searchers within the GeoPKDD project provided a wealth
of methods and technologies aimed at support the various
steps of such process. Some of these methods are embed-
ded into analytical platforms, which provide different inter-
action metaphors. The next sections of this paper describe
some of the GeoPKDD methods and platforms. Section 2
shortly describes the methods for storing and warehousing
trajectories. Section 3 introduces the key trajectory mining
algorithms developed in the project. Section 4 presents two
platforms which integrate several analysis methods and pro-
vide two different interaction metaphors.

2 Mobility Data Management and Warehousing
A trajectory, the basic form of mobility data, is a sequence
of time-stamped locations, sampled from the itinerary of a
moving object. A database management system and a data

warehouse have been designed around this specific form of
movement data.

The design of the trajectory database has been influ-
enced by the research on Moving Object Databases (MOD),
which extends the traditional database technology for mod-
eling, indexing and querying trajectory data. In MODs, the
spatial and temporal dimensions are first-class citizens and
both past and current (as well as anticipated future) positions
of moving objects are of interest [4, 5, 6]. Among the avail-
able possibilities, GeoPKDD adopted the MOD Hermes [7],
which, beyond storing and querying mechanisms for mas-
sive trajectory data, also provides efficient means for recon-
structing trajectories from raw location data. Trajectory re-
construction transforms sequences of raw sample points into
meaningful trajectories in accordance with different filters:
temporal gaps, spatial gaps, maximum speed, tolerance dis-
tance, among others.

Hermes models moving object assigning to each time
interval an arc, i.e., a function returning the position of
the object for each instant within the interval; arcs are
either lines or curves (See Figure 2.). Hermes provides
dedicated indexing mechanisms that support efficient queries
on trajectory data, such as:

• Spatial (range or nearest-neighbour) search : Find all
trajectories that were inside area A at time instant t (or
time interval I) or Find the trajectory that was closest
to point B at time instant t (or time interval I).

• Topological / directional search: Find all trajectories
that entered (crossed, left, bypassed, etc.) or were
located west (south, etc.) of an area or Find all
trajectories that crossed (met, etc.) or were located left
of (right of, in front of, etc.) a given trajectory T

• Most-similar-trajectories: Find the k most similar tra-
jectories to a given trajectory T.

Hermes is implemented on the top of a relational object
oriented database management system, the ORACLE Spatial
Cartridge.

Within GeoPKDD, the trajectory data warehouse,
T-Warehouse in short, has been created on top of Hermes as
a first analytical tool. The T-Warehouse is a spatio-temporal
data cube representing various aggregated measures of the
moving objects, such as spatial density and speed. The T-
Warehouse supports a variety of dimensions (temporal, spa-
tial, thematic) and measures (about space, time end their
derivatives), which enable exploratory analysis, drilling up
and down over space and time dimensions. The most chal-
lenging investigations addressed the definition of adequate
aggregate functions for trajectories: a new method to com-
pute holistic functions has been developed, such as the ag-
gregate presence measure (number of distinct trajectories in
a spatial unit) [8, 9, 10].



Figure 3: The trajectory database management system and warehouse

Figure 4: An Example of Trajectory Pattern

3 Mobility Data Mining
While the T-Warehouse analytical tools concentrate on pres-
ence of moving objects, mobility mining is aimed at ana-
lyzing movement. A method for mobility data mining tack-
les two different tasks: first, to define the format of spatio-
temporal patterns and models to be extracted from trajectory
data, and second, to design and implement efficient algo-
rithms for extracting such patterns and models. This sec-
tion provides a brief account of the different mining tasks
developed within GeoPKDD focusing on trajectory patterns,
trajectory clustering, and trajectory classification.

Figure 5: Roi construction: (a) original dataset, (b) dense
cells and (c) regions of interest.

3.1 Trajectory Pattern Mining.

We introduce a novel notion of spatio-temporal pattern,
which formalizes the idea of aggregated movement behav-
iors. A trajectory pattern, as defined in [12], represents
a set of individual trajectories that share the property of
visiting the same sequence of places with similar travel
times. Therefore, two notions are central: (i) the regions of
interest in the given space, and (ii) the typical travel time
of moving objects from region to region. In this approach
a trajectory pattern is a sequence of spatial regions that, on
the basis of the source trajectory data, emerge as frequently
visited in the order specified by the sequence; in addition,
the transition between two consecutive regions in such a
sequence is annotated with a typical travel time that, again,
emerges from the input trajectories. For instance, consider
the following two trajectory patterns over regions of interest



in the center of a town:

Railway Station
(15min)→ Castle Square

(2h15min)→ Museum (a)

Railway Station
(10min)→ Middle Bridge

(10min)→ Campus (b)

Here, pattern (a) may be interpreted as a typical behavior
of tourists that rapidly reach a major attraction from the
railway station and spend there about two hours before
getting to the adjacent museum. Pattern (b), may highlight
the pedestrian flow of students that reach the university
campus from the station: for them, the central bridge over
the river is a compulsory passage. It should be observed
that a trajectory pattern does not specify any particular route
among two consecutive regions, while a typical travel time
is specified, which approximates the (similar) travel time of
each individual trajectory represented by the pattern. More
formally:

DEFINITION 3.1. A T-pattern is a pair (S,A), where
S =< R0, ..., Rn >

is a sequence of locations, and
A = α1, ...αn ∈ Rk+

are the transition times (annotations). A T-pattern is also
represented as:

R0
α1→ R1

α2→ . . .
αn→ Rn.

The basic trajectory patterns discovery process consists
of four steps:

Popular regions detection: The input set of trajectories
T = {t1 . . . tn} is intersected with aN×N spatial grid
and the number of trajectories traversing each cell is
counted. If the count of a cell is greater than a frequency
threshold τ the cell is considered dense (Fig.5(b)).

Region of interest construction: To obtain a larger region,
neighboring dense cells are merged together to obtain
larger regions, called Region of interest (Roi) (Fig.5(c)).

Trajectories translation: Each trajectory in the input
dataset is transformed into a corresponding sequence
of Roi with appropriate time-stamps, according to an
approximated matching based on spatio-temporal inter-
polation.

Pattern discovery: Applying the algorithm introduced in
[2] to the set of time-stamped sequences of Roi, the
frequent sequences are extracted together with their
typical transition times, with reference to a specified
temporal tolerance threshold.

The complexity of the algorithm resides with the dy-
namic discretization of space and time needed to match frag-
ments of different trajectories. When the Roi’s are known

Figure 6: Trajectory clustering using the common-
destination distance

a-priori as part of the background knowledge of the analysis,
the algorithm simplifies considerably, as the first two phases
above are not needed; this is the case of mobile phone data
when the area of influence of towers (antennas) are consid-
ered as Roi’s.

3.2 Trajectory Clustering.

Clustering is one of the general approaches to explore
and analyze large amounts of data, since it allows the ana-
lyst to consider groups of objects rather than individual ob-
jects, which are too many. Clustering associates objects in
groups (clusters) such that the objects in each group share
some properties that do not hold (or hold much less) for the
other objects. Spatial clustering builds clusters from objects
being spatially close and/or having similar spatial proper-
ties (shapes, spatial relationships among components, etc.).
Clustering of trajectories implies considering space, time and
movement characteristics within a similarity notion: simple
distance-based clustering methods are not effective in sepa-
rating trajectory clusters that exhibit a non convex (non glob-
ular) shape, as it often occurs in practice. Therefore, we de-
cided to design trajectory clustering on the basis of density-
based clustering [23], extended according to the following
principles:

Parametric w.r.t. to distance function : There are several
interesting notions of distance useful to characterize
diverse movement behaviors. [14] introduced the idea
of a generic density-based clustering algorithm which
is parametric with respect to a distance function. The
distance functions may take into account the spatial
locations visited, their order, and, in some cases, the
time.



Figure 7: Trajectory clustering using the route-similarity
distance

Progressive clustering : Trajectories are complex objects,
so the clustering computation hardly scales up and may
become prohibitively expensive. In [15] we introduced
the idea of progressive clustering, using simpler dis-
tances at the beginning in order to separate the trajec-
tories into broad clusters, and then focus on interest-
ing sub-clusters using more complex and discriminative
distance functions.

A variety of distance functions have been proposed
for trajectories, including the basic Euclidean distance (as-
suming that trajectories are represented by vectors of fixed
length), spatial Euclidean distance average along the time,
time series-inspired functions such as (dynamic) time warp-
ing distance and Least Common Sub-Sequence (LCSS) mea-
sure, and direction-oriented distances. Some simpler dis-
tances that are often useful in practice are:

Common destination: Compare the destination of two tra-
jectories and compute the distance between the two
points. This simple distance allow the clustering algo-
rithm to discover groups of trajectories ending in the
same area (See Figure 6).

Common origin: Similarly to the previous one, this func-
tion considers the starting point of the two trajectories
allowing the clustering to discover groups with a com-
mon start area.

Route similarity: The function finds the best alignment in
space and time of the two trajectories for comparison
(See 7).

In density-based trajectory clustering, a cluster of mov-
ing objects contains all elements that are density-reachable
with respect to a density threshold. The algorithm pre-
sented in [14] computes an augmented cluster-ordering of
the database objects. This algorithm is the basic brick of the
interactive tool defined in [15], which allows the user to pro-
gressively refine the search. This method uses a sample of
the original set of trajectories to compute the clustering and
to reduce the time and space complexity needed. Then a sub-
set of representative trajectories are extracted from each clus-
ters. At this point the algorithm computes only the distances
between the original set of trajectories and the representa-
tive ones to create a complete clustering. The result approx-
imates the output obtained applying the classical algorithm
on the entire set, but the experiments show that the error is
very small and can be estimated with precision. The tool
supports a step-wise analytical procedure called progressive
clustering: a simple distance function with a clear meaning is
applied at each step, while successive application of differ-
ent functions yields sophisticated interpretation of clusters.
Visualization and interaction techniques play a crucial role.

In [17] the notion of progressive clustering is further
extended by combining clustering and classification, which
are driven by a human analyst through an interactive visual
interface. First, the analyst takes a manageable subset
of the objects and applies a density based clustering to
it. The analyst experiments with the clustering parameters
for gaining meaningful results with respect to the analysis
goals. Then, the analyst builds a classifier, which can
be used for attaching new objects to the existing clusters.
The analyst may also modify the clusters for their better
understandability and/or conformance to the goals. The
produced classifier is applied to the whole dataset. Each
object is either attached to one of the clusters or remains
unclassified, if it does not fit in any cluster. When necessary,
the analyst may repeat the procedure (take a subset - cluster
- build a classifier - classify) to the unclassified objects.

3.3 Trajectory Classification and Location Prediction.

Predictive models for trajectory data include a classifi-
cation method for inferring the category of a trajectory, (e.g.,
the transportation means associated to a trajectory: private
car, public transportation, pedestrian, etc.), and a predictor of
the next location of a moving object given its past trajectory.
There is strong current interest in next location prediction,
in that it enables several intelligent location-based services.
In the literature, this task is achieved by applying various
learning methods to the history of each moving object for
the purpose of creating an individual location predictor. Our



Figure 8: From local to global models: the prediction tree

proposed method, called WhereNext [19] predicts the future
location of a moving object on the basis of the collective be-
havior, synthesized by the previously extracted T-patterns:
this is coherent with the idea that global models can be built
out of a collection of (many) local patterns. Using trajectory
patterns as predictive rules has the following implications:

• the learning depends on the movement of all available
objects in a certain area, instead of on the individual
history of an object;

• the collection of trajectory patterns intrinsically con-
tains the spatio-temporal properties emerging from the
data.

The data structure used to build the predictor is a pre-
diction tree constructed by merging the trajectory patterns.
In the prediction tree each node contains entries of the form
〈id, region, support, children〉, where:

• id is the identifier of the node.

• region represents a region of a T-pattern

• support is the maximum support of the T-patterns of
the node is part.

• children is the list of child nodes.

The prediction tree uses the notion of T-Pattern prefix,
defined as follows.

DEFINITION 3.2. Let (S,A) and (S′, A′) be two T-patterns
such that (S,A) = R0

α1−→ R1
α2−→ . . .

αn−−→ Rn and

(S′, A′) = R0
β1−→ R1

β2−→ . . .
βk−→ Rk. (S′, A′) is a

prefix of (S,A) if and only if k ≤ n and ∀i = 1 . . . k: αi
is included in βi.

To insert a T-pattern Tp into a prediction tree, we
look for the path in the tree matching the longest prefix
of Tp. Then, we append to the identified path a branch
corresponding to the rest of the elements of Tp. The overall
prediction tree is obtained by inserting all input trajectories
progressively. The prediction tree is then used to assign the
most likely next locations for a given moving object. The
main idea behind the prediction is to find the best path on
the tree, namely the best T-pattern, that matches the given
trajectory. Hence, for a given trajectory we compute the best
matching score among all admissible paths for the trajectory
into the prediction tree. The children of the last node in the
best matching path are selected as next possible locations.

3.4 Trajectory Anonymity.

In the context of personal mobility data, privacy is a big
concern: location data allow inferences which may help an
attacker to discovery private information, such as individ-
ual habits and preferences. Hiding explicit identifiers and
replacing them with pseudonyms is insufficient to guaran-
tee anonymity, since location represents a property that may
allow re-identification: for instance, characteristic locations
such as home and work place can be easily uncovered with
the use of visual analytics methods, given detailed personal
trajectories. Therefore, in all cases when privacy concerns
are relevant, the trajectory data cannot be disclosed with-
out appropriate safeguards. Anonymization techniques are
data transformations that aim at a double goal: decrease the
probability of re-identification below an acceptable thresh-
old, while at the same time maintaining the analytical utility
of the data. One of the basic objectives of GeoPKDD was to
create analytical methods that natively took into account the



privacy requirements. Therefore, the researchers involved
in the project studied many different methods for protect-
ing individual privacy, which applied to different steps of
the knowledge discovery process, and aimed at preserving
data utility with reference to various mining tasks. In the
following we give a brief account of two methods for trajec-
tory anonymity. The very basic notion is k − anonymity
for trajectories: a k − anonymous trajectory dataset is one
where the itinerary of each person is indistinguishable from
that of other k − 1 persons – anonymity viewed as hiding
in the crowd. A k-anonymity method transforms a dataset
of trajectories into a new one where all trajectories are k-
anonymous.

The Never Walk Alone method [11] proposes a novel
concept of k-anonymity based on co-localization that ex-
ploits the inherent uncertainty of the moving objects where-
abouts. The notion of (k, δ) − anonymity is proposed for
moving objects databases, where δ represents location im-
precision. This approach is based on trajectory clustering
and spatial translation: first, groups of k similar trajectories
are formed by clustering, and then random spatial pertur-
bation is applied to each group 9. The resulting trajectory
dataset is k-anonymous, and some basic analytical proper-
ties are preserved, such as spatial density.

A more recent proposal is in [18], where the anonymiza-
tion of movement data is obtained by combining the notions
of spatial generalization and k-anonymity. The main idea
is to hide locations by means of generalization, specifically,
replacing exact positions in the trajectories by approximate
positions, i.e. points by centroids of areas. The main steps
of the proposed methods are:

• constructing a suitable tessellation of the territory into
areas depending of the input trajectory dataset;

• applying a spatial generalization of the original trajec-
tories;

• transforming the dataset of generalized trajectories to
ensure that it satisfies the notion of k-anonymity.

We conducted a thorough study on a real-life GPS
trajectory dataset, and provided strong empirical evidence
that the proposed anonymity techniques achieve the convict-
ing goals of data utility and data privacy: in practice, the
achieved anonymity protection is way stronger than the the-
oretical worst-case, while the quality of cluster analysis on
the trajectory data is accurately preserved.

4 Mastering the GeoPKDD Process
In order to support the interactive, iterative, combined usage
of the various tools for the purpose of discovering mobility
knowledge, GeoPKDD developed two prototype platforms:
a semantic-based query & reasoning systems, and a visual
analytic environment.

Figure 9: Trajectory anonymity: Never Walk Alone

This system allows the user to describe the entire knowl-
edge discovery process using a set of primitives [20], based
onto a Data Mining Query Language (DMQL) (See Figure
10). The spatio-temporal query primitives support selection
and pre-processing of trajectory data w.r.t. geographic back-
ground knowledge, as well as anonymization. The trajec-
tory mining primitives allow extracting and validating mobil-
ity patterns and models. The Data Mining Query Language
managing the whole knowledge discovery process exhibits
several advantages:

progressive querying and mining : Supporting the pro-
gressive combination of data selection, execution of
data mining algorithms on the selected data, storing of
the discovered patterns or models, querying the patterns
or the models, selection of of data supporting such mod-
els and analyze it in more detail, e.g., by applying fur-
ther mining tasks. An example is shown in Figure 11,
where first a clustering task is applied, secondly the tra-
jectories of a selected cluster are considered, and third
the T-patterns over these trajectories are extracted. This
iterative process allows to use the models not only as
static knowledge to be presented as a result, but also as
active elements of the process.

Repeatability of the process : The entire process is coded
by a script that can be re-applied on different data.

The DMQL incorporates a reasoning component, which al-
lows one to specify domain-driven ontologies using the Web
Ontology Language (OWL); the typical use of this feature
is to specify different types of trajectories and patterns [22].
The main objective of the semantic component is to enrich
both trajectories and mined patterns with domain knowl-
edge, thus making an explicit representation of semantic con-
cepts. Examples of semantic enrichments for trajectories are
the concepts of stops and moves [3], defined respectively as
properties of movement and absence of movement in the seg-
ments of a trajectory. The semantic component of the DMQL
allows one to specify such concepts and to perform the se-
mantic tagging of trajectories, which can be used as input



for mining tasks. Another example of semantic tagging in
the transportation domain is the concept of systematic vs non
systematic movement, which can be defined on the basis of
the routine behavior of commuters in their home-work-home
trips.

Figure 10: The Semantic-based query & reasoning system

4.1 Visual Analytics.

The aim of this system is to help the analyst to navigate
through mobility data and patterns and to visually drive
the analytical process [21]. The key features include: the
visualization of T-patterns to support the navigation of the
extracted patterns in the spatial and temporal dimensions;
the progressive refinement of T-clusters, through user-driven
exploration and evaluation of the discovered T-clusters [16]
and the visual exploration of various measures provided by
the T-Warehouse [9].

5 Conclusion
The analytical power of the tools developed within the
GeoPKDD project has been to assess by experiments over
massive collections of trajectory data, in particular data
sensed by vehicular GPS devices at a fine spatio-temporal
resolution. We ran a large scale experiment of urban mobil-
ity analysis, based on a real life GPS dataset, obtained from
17,000 private cars with on-board GPS receivers, tracked
during one week of ordinary mobile activity in the metropoli-
tan area of the city of Milan, Italy. The observed population
consists of anonymous and heterogeneous car drivers par-
ticipating in a specific car insurance program. On the ba-
sis of this experiment, we showed how a comprehensive at-
las of urban mobility can be created, which reveals the rel-
evant mobility behaviors: commuting trips, frequently fol-
lowed itineraries, convergent patterns, slow-down patterns,
etc. This concept goes beyond the O-D matrix, the typical
tool of transportation engineering: not only the flux among
locations is analyzed, but also the movement patterns ob-
tained by learning from trajectory micro-data. The mobility
patterns and clusters can be browsed by a mobility analyst
(by the hours of the day, the days of the week, the geographic
area, etc.), in order to explore the typical mobility of a city in

Figure 11: The T-Patterns discovered on the trajectories in a
cluster

varying circumstances, also to observe emerging deviations
from normal.

This complex experiment confirmed the original vision
of the GeoPKDD project: in order to turn raw GPS tracks
into useful forms of mobility knowledge and accomplish
complex analytical tasks such as the creation of an urban
mobility atlas, a thorough infrastructure for supporting the
knowledge discovery process is needed, designed around
a core of models and algorithms for trajectory data mining
and analysis.
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