Scheduling Hard-Real-Time Tasks with Backup Phasing Delay

Alan A. Bertoss} Luigi V. Mancini? Alessandra Menapace
! Dipartimento di Scienze dell'Informazione 2Dipartimento di Informatica
Universita di Bologna, Bologna, Italy Universita di Roma “La Sapienza”, Roma, Italy
bertossi@cs.unibo.it lv.mancini@di.uniromal.it

Abstract. This paper presents several fault-tolerant ex- fixed-priority, preemptive algorithm for a single processo
tensions of the Rate-Monotonic First-Fit multiprocessor where the task with shortest period has the highest pri-
scheduling algorithm handling both active and passive taskority: the ready task with highest priority is executed on
copies. In particular, the technique of backup phasingydela the processor suspending, if necessary, a running task with
is used to reduce the portions of active task copies that mustower priority. TheCompletion Time Te¢CTT), devised by
be always executed and to deallocate active task copies adoseph and Pandya [14], is also used for checking schedu-
soon as their primary task copies have been successfully extability of a set of fixed-priority tasks on a single proces-
ecuted. Itis also shown how to employ this technique while sor. RM has been generalized to multiprocessor systems
considering passive task duplication so as to over-bodk eac by Dhall and Liu [11], who proposed theate-Monotonic
processor with many passive task copies, assigning tasks té-irst-Fit (RMFF) heuristic, where tasks are considered by
processors in such a way that tasks with equal or multiple RM priority order and assigned to the first processor in
periods have a high chance to be assigned to the same prowhich they fit.
cessor, and partitioning the processors into groups t@avoi A gimple technique to achieve fault-tolerance in hard-
the mix of primary, active, and passive task copies on the o5 time multiprocessor systems consists in replicating
same processor. Extensive simulations reveal a remarkabley a5t two sets of processors the schedule obtained for the
saving of both the overall number of processors used and th&, 5 jt-tolerant case (i.e. by employing active duplica
total cpmputatlon time of thg schedulability test (ach@éve ion for all tasks), but this approach, studied by Oh and Son
especially by two new algorithms, callé&RR3 andS-PR- 1517 for RM scheduling, presents the disadvantage of re-

PASS with respect to previously proposed algorithms. quiring many processors. They show that on the average
Keywords: fault-tolerance, hard-real-time systems, mul- 4094, extra processors are required compared to the lower

tiprocessors, periodic tasks, Rate-Monotonic scheduling 1,5nd needed to schedule all the primary and active backup

copies. In the case of multiprocessors, the use of passive
1 Introduction task copies has the advantage of over-booking the proces-

sors: many passive copies of primary copies assigned to

Hard-real-time computing systems are widely used in differer_lt processors can _be scheduled on the same proces-

our society, e.g. for periodically executing monitor andco ~ SOT during the same time interval - under the assumption of a
trol functions. Such systems are characterized by periodi-Singlé processorfailure, only one of such passive copits wi
cally occurring tasks which have to be preemptively sched- P€ actually executed. Ghosh, Melhem and Mosse [12] stud-
uled on identical processors in such a way that each task€d this technique in the case of aperiodic non-preemptive
occurrence has to be completely executed by a hard dead@Sks and achieved high acceptance ratio postponing as
line, which often coincides with the end of the task period. Much as possible the execution of passive backup copies. A
Since the purpose of a hard-real-time system is to provideh®uristic was introduced in [5], calleault-Tolerant Rate-
time-critical services to its environment, the system rbest ~ Monotonic First-Fit(FTRMFF), which extends theMFF al-
capable of providing such a service even in the presence of°rithm by combining in the same schedule both active and
failures. Thus fault-tolerance plays a vital role in theigas ~ Passive task duplication, thus exploiting the advantages o
of hard-real-time systems. both types of duplication.

Since the hard-real-time scheduling problem is NP-hard, = The present paper considers the problem of preemptively
even if only a single processor is available [18], several scheduling a set of independent periodic tasks on a mul-
heuristics for scheduling periodic tasks on uniprocessdra tiprocessor system. In particular, we extend the RMFF
multiprocessor systems have been proposed. Liu and Layscheduling algorithm to tolerate permanent processor fail
land [20] proposed th&ate-Monotoni¢RM) algorithm, a ures that can affect more tasks at a time. In other words

when a processor fails, all the primary copies executedrequired to assign each task. Thus, the processors can be
on that processor are considered to be failed. The fault-partitioned into groups so as to avoid the mix of primary,
tolerance is provided by combining passive and active du-active, and passive copies on the same group and reduce the
plication, preferring passive duplication whenever palssi overall number oCTT invocations. Finally, when all tasks
Furthermore, we consider thEhasing delaytechnique to have low utilization factors, one could employ only passive
extend the=TRMFF heuristic and to improve the schedule duplication.

of the backup copies. Thghasing delayechnique, intro- The remaining part of this paper is structured as follows.
duced in [22, 1], allows the delay of a passive copy until Section 2 gives the notation, the fault-tolerant system as-
the completion time of its primary copy so that the passive sumptions, and a formal definition of the scheduling prob-
copy is executed only when the primary task fails. More- lem. Section 3 deals with th&ctive Resource Reclaiming
over, the phasing delay enables to reduce the length of thg ARR) strategy, which exploits the backup phasing delay to
worst case overlapping interval between a primary and its schedule the active copies as late as possible within their
active copy, so that only a small fraction of the computa- periods and to permit the deallocation of active copies as
tion of the active copy must be executed in the absence ofsoon as their primary copies have been successfully exe-
failure of the primary copy. Indeed, a disadvantage of ac- cuted. In order to reduce the number@fT invocations,

tive task duplication is an excess of redundant computationthe active resource reclaiming technique is combined with
due to useless portions of active copies which are executed partitioning of the processors into at most three groups
after their corresponding primary copies have been suecess(algorithmsARR1, ARR2 andARRS3). Section 4 introduces
fully completed. Therefore, one could deallocate the unex- the S-PRIORITY algorithm, where processors are also par-
ecuted portion of an active copy as soon as a primary copytitioned into groups but tasks are assigned to processors by
has been successfully completed, thus reusing the pracessdollowing the S priority [6] in such a way that tasks with

for the execution of another task. This can be achieved byequal or multiple periods have a high chance to be assigned
forcing the scheduling of the active copies as late as possi-to the same processor. In Section 5, BASSIVEalgorithm

ble within their periods, thus reducing the initial portsoof is presented, which considers only passive task duplicatio
active copies that must be always executed before the comand then th&-PRIORITYandPASSIVEalgorithms are com-
pletion of their corresponding primary copies. Note that bined to derive th&-PR-PASSalgorithm. Section 6 reports
although the techniques of postponing, over-booking andextensive simulations where all the algorithms proposed in
time deallocation of passive copies have been proposed irthis paper are compared. The simulation results show a
[12], their application to active copies has not been inves- remarkable saving of both the number of processors used
tigated to our knowledge so far. Indeed, a passive backupand the total computation times achieved especially by the
copy can be simply delayed until the completion time of ARR3andS-PR-PASSlgorithms.

its primary copy to maximize the over-booking and deal-

location of passive copies. However, the over-bookingand2 problem formulation and assumptions
deallocation of active copies are more difficult since thesy r
quire to establish exactly the computation overlap between
an active copy and its primary copy. Such a computation
overlap is determined by the unrelated preemptions cause
by higher priority tasks. This paper considers the phasing
delay, the over-booking and the time deallocation of active 7 = (R;, Ty, C;, Dy)

backup copies and generalizes these optimizations in a task

set Composed of both active and passive Copies' thus ComWhereRi is thereleasetime, that is, the time of the first

bining together all the techniques proposed in [22, 5, 12]. invocation,T; is the invocation (or request, or arrivalg-
riod, C; is the (worst casejomputation timeandD; is the
In order to reduce further both the number of processorsdeadline The ratioU; = % is called thdoad (or utiliza-
needed and the running time for task assignment, it is alsotion) of taskr; and cannot be greater tharfor the task to
shown how to combine the phasing delay with other known be schedulable. Each periodic task leads to an infinite se-
techniques. For instance, instead of assigning tasks to proquence of occurrences. Tle— th occurrence of task;
cessors following the Rate-Monotonic order, one could con- is ready for execution at timR; + (k — 1)T; and, in order
sider other assignment orders, such as3hmiority, pro- to meet its deadline, must complete its execution — that re-
posed by Burchard, Liebeherr, Oh and Son [6], which has quiresC; time units — no later than timg; + (k—1)T;+D;.
the effect of grouping together on the same processor those To better understand the algorithms presented in this
tasks whose periods are equal or multiple, since this couldpaper, two results due to Liu and Layland [20] are re-
produce a more compact schedule and thus employs lessalled about static priority-driven scheduling. Consider
processors. However, the computation time of the scheduset{r,...,m,} of periodic tasks, indexed by decreasing
lability test is related to the number of invocationsGiT priority, such thaD; = T; fori=1,...,n.

This section gives a formal definition of the scheduling
roblem and a precise specification of the fault-tolerance
odel. Aperiodictaskr; is characterized by the tuple:

Theorem 2.1 The longest response time (i.e. difference be- functioning; (2) all non-faulty processors can commurecat
tween completion and release time) &atyoccurrence ofa with each other; (3) a faulty processor cannot cause incor-
taskr; occurs when it is requested at a critical instant, that rect behavior in a non-faulty processor (that is, processor
is, simultaneously with all higher priority tasks (e.g. wahe are independent as regard to failures); and (4) the failtire o
Ri =Re =...=Rj). a processoP; is detected by the remaining non-faulty pro-
cessors after the failure, but within the instant corresion
Theorem 2.2 A periodic task set can be scheduled by a ing to the closest task completion time of a task scheduled
fixed-priority preemptive algorithm provided that the dead on P;. Each (primary) task is assumed to have a backup
line of thefirst request of each task starting from a critical copy with the same parameters. In particular, for the sake
instant is met. of simplicity, it is assumed that each backup copy has the
same computation time as its primary copy, and that a sin-
e gle permanent processor failure has to be tolerated, unless
rival times of thg taskg are assumed tobe O e=R; = otherwise stated. However, the results could be genedalize
... = Ry = 0, since this assumption takes care of the Worst v, 4, |arate many permanent processor failures even when
possible case. As a consequence, to check the schedulgpg o copies of the same task have different computation
bility of any taskr;, it is sufficient to check whether; is times.
schedulable within its first periofd, T'] by its first dead- The algorithms presented here introduce fault-tolerance
line D;, when it is scheduled with all higher pnprlty tasks by extendingRMFF in a natural way. Two copies for each
{m1,..., i1} Moreover, we also assume, as in [;1] and task are used, grimary copy and abackupcopy, such
[20], that all the tasks arnedependentamely, there is no that each backup copy has the samw priority as its

precedence relation among them. For the sake of simplic-.,. o5 onding primary copy. The task set thus becomes
ity, we assume that all the task deadlines coincide with the{T1 - Tair1, Tain2 Tan_1,Ton}, Wherers;.; and
b) PR) 1 b 1)t n—1» nf» 1

end of the task periods, in symbol®; = T;. However, .. denote the primary cony and the backup copv. respec-
the above results and ti@ompletion Time TegCTT) have ;f/’g@ of the samFe) task.y by P copy, Tesp

?eeln elxtendeoll in _[2h3] relaxing th(ljshassumptll(;m,l hekrjlce the " A'brimary copyrs1 of a task is always executed, while
ault tolerant algorithms presented here could also be geNyi hackup copyrs is executed according to its status,

eralized wherD; S_ L. _ _) which can be active or passive. If the status is active, then
. Below, the basic formulation ofTT is reportgd which o110 is always executed, while if it is passive, then, is
W_'" be used to test whether a j[ask can b? gsggned 0a gxecuted only when the primary copy fails. In other words,
given processor. CTT determines the minimd, such ;ihough both active and passive copies of the primary tasks
that: are statically assigned to processors, passive copiesare a
Wy, tually executed only when a failure of the corresponding
[T, w (1) primary copy occurs, see [5] for further details.

Due to the above results, in the following all the first ar-

WL =Cy + Z Cj

j€hp(h)

wherehp(h) denotes the subset of tasks with higher priority 3 The Active Resource Reclaiming Algo-
than 7, already assigned to the same processor, ahd rithms
denotes thevorst-case response tinoé

This section deals with th&ctive Resource Reclaiming
Remark 2.3 A taskn, can be scheduled on a processor to- (ARR) algorithms which use the phasing delay of active
gether with all higher priority tasks if and only if: copies with the purpose of: (1) forcing the active copies to
be scheduled as late as possible within their periods, so as
to minimize their overlap with their corresponding primary
copies; (2) permitting the deallocation of unfinished aetiv

fault-tolerant scheduling problem considered in the prese copies as soon as their corresponding primary copies have
paper consists in finding an order in which all the periodic b_eenfsuchcessfully _execfuter?, ®) Leusmg the free processor
task occurrences have to be executed on a set of identical ™€ Or the execution of other tasks.

processors (using preemption and backup copies, when nec- The algorithms presented in the rest of this paper, while

essary) so as to meet all the task deadlines, even in the pre%ssigning the tasks to the processors, determine whether a
ence of a processor failure, and to minimize the total num- ackup copy has to be passive or active. Indeed_(:th‘l‘e
berm of processors used. returns the worst-case response titig , ; of each primary

As for the fault-tolerance model, we assume that the fail- €OPY 72i+1 0N the processor it is_ assigned to'ﬂfﬂ fails,
ure characteristics of the multiprocessor system are the fo Epere arelsi1 — WQH_ 1 time units for recovering the task.
lowing: (1) processors fail in a fail-stop manner, that is a ' WO C8S€S may arise:
processor is either operational (i.e. non-faulty) or cease 1. If Tgi 11 — Wai1 > Caiya, then the time interval

Wy < Ty

Given n periodic independent tasksry,...,m}, the

between the finish time of the primary copy and the Such a time is equal to the minimum betwedesn , o
end of the period is large enough to completely exe- and the worst case overlapping interval:

cute the backup copy, and thug, , is chosen to be
passive.

2. If Tgir1 — Wair1 < Caipa, the backup copysiio 3.1 Maximum phasing delay of an active copy
is chosen to be active, since its execution must begin
before the finish time of its primary copy. In order to justify the introduction of the parameter
) . .. dmaxy;io to delay the execution of an active copy o,

We now introduce with the help of the example in Fig- 55 me thatv,,, » has been already computed for the worst
ure 1 the scheduling strategy used for active copies. In,qqqipie case which, by Theorems 2.1 and 2.2, arises when
the best case, a primary copyi,1 is executed with N0 e tack copyr,» starts in phase with all the task copies
preemption at the beginning of its period, while its active already assigned to the same processor, Bay(see the

copy i+ is executed with no preemption at the end of gyt g psection for all the details on hdWis. - is actually
its period as shown in the figure. Sineg.- is active, computed).

Coira > Taoy1 — Woia1 and thus a minimum computa- If Wairo < Taiy: thenmsiso can be scheduled ofy
tional overlap of2Cq; 42 — To; 41 > 0 time exists between n

i and delayed bylmaxg; o = Tojr1 — Wairo uUnits. Note
T2i+1 @ndmip. Therefore, the active Copy;.» canbe ex- yhat quch a delay has the sole purpose of reducing the
ecuted either for @;42 — To;41 time, if the primary copy

. ; 4 worst case overlapping interval between an active copy and
Toi11 IS successfully completed, or f&ry; o time, if the

! ; ;) its primary copy during their execution and cannot cause
primary copy fails. Note that, in the absence of failures, th ;. i--orrect schedule oR.. Indeed, a phasing delay of

remainingl's; ;1 — Coiy1 time units of the unfinished active dmaxsiss > 0 for the first occurrence (and also the suc-
copy can be reused. _ _ cessive occurrences) of; ., can cause neither a response
In general, the length of the computation overlap is larger 4o greater thaWa; .o, which already includes the worst

than the minimum 2> — Toiyy and itis difficultto be heqinle case, nor a change in the task priorities. If the
determined exactly, due to the scheduling of higher pyiorit .t invocation Of a1 has admaxs; - delay (equal to

tasks which cause unrelated preemptions of bgthl and Tais1 — Waits), then the first occurrence of;.» will be
Toi+2. FOr this reason, theorst case overlapping interval completed no later than:

betweenm; o, and its primary copyr;; is introduced as
an upper bound. Such interval starts from the release timedmaxg;i1o+Waite = (Taoit1 — Waire) + Waito = Taiy1.
of the active copy;+2 and ends at the worst case response
time of the primary copyr;1. To reduce the length of

the worst case overlapping interval, the only way consists

in delaying the release time of the active capy, . This) . .
is the rule employed by th&RR strategy, which determines the_ execution. Note that, durmg the schedulapmty tda, 1
active copyr;2 may be considered as a replicamf, 1,

in advance during the schedulability test the time interval characterized by theameparameters@a ., Ta;)
an active copy can be delayed and when it can be deallo- y P 242, B2042))

cated in the absence of failures of the primary copy. In or- and thus with no phase delay (iBs;;» = 0). In contrast,

der to determine the value of tiphasing delayimaxaiy., gtﬁaﬁaﬂﬁlzzggutt)iﬁzigaci adorlreITa}: ziigzdg'?;?mdiggg g<])rflheafter
of an active copy, consider the assignment of tasks;) y y

andrs; o thatWy; 2 has been computed IGTT.
' Given any phasing delaymaxs;i+2 > 0, the following
1. A primary copyms;1 iS assigned, say, to processor results hold.
Py, and thus its worst-case response tifWg; ; is
computed byCTT. Assume thail's;i 11 — Waip1 <
Coi12 and thus the backup copy,.. » is active.

’ .
C'oi42 = min{Caito, Waiy1—dmaxagita} > 2Cai40—Tait1.

Thus the completion of the active copy.. o is guaranteed
by the end of the period of its primary copy. 1, although
the period of the active copy is delayeddaxs; 5 during

Remark 3.1 If the k-th occurrence ofy; 42 is invoked at

timedmaxo; 2 + (k — 1)Tai42, then it will be completed at

most by time

2. The active copyr;o is assigned, say, tBy # Py,
and its worst-case response timéws; .. The pa-
rameterdmaxs; 2, Which gives the maximum phas- Remark 3.2 Let 7,5 andrs;41 be the active and primary
ing delay applicable t@y; > withoutm;, missesits copies of the same task, and M, be the worst-case
deadline, is: response time of;.». If 742 has a phasing delay

dmaxgiro + (k — 1)Tairo + Wajio.

dmax2i+2 = T2i+1 - W2i+2~ dmaXQH_g = T2i+1 — WQH_Q

3. Let(’5 - denote the computation time of a portion With respect torsi; and Py = P(7si41) fails during the
of the active copy that has to be always executed. k-th occurrence ofy; 1, then,; . terminates by:Ts; 1.

Ph primary primary primary primary

SNUNNNNNN

active

Pk % active % active % active

W

\ \ \ \ \
0 7 14 21 28

Figure 1. A schedule for the primary copy and the active copy o f the same task having minimum
computation overlap.

3.2 Worst-case response time of an active copy ful:

In order to determine the maximum phasing delay, as ex- primary(P;) = {7211 : P(72i41) -
plained in the previous subsection, a particular care has backup(P;) = {7oit2 : P(72i12) -
to be taken while computing the worst-case response time
W10 Of an active copyr;.o. Indeed, the worst-case re-
sponse time must be equal to:

Waito = max{Wa;12(NF), Wai12(OF)}

where Wy, 42 (NF) and Wy 2 (OF) represent the worst-
case response time in the absence of failures and in the cas€he setsprimary(P;) andbackup(P;) represent the pri-
of one failure, respectively. mary and backup copies assigned to proceBsoiT he set
active(P;) includes the active backup copies assigned to
3.3 Determining the portion of active copy to be processo;. The setpassRecovery(P;, P¢) consists of
always executed the passive copies assignedRg such that their primary
copies are assigned &, namely, this set contains all the
In this subsection, the formula for computif;i.2, the passive backup copies that procesBpmust start schedul-
portion of active copy to be always executed, is considereding when a failure of processdt; is detected. The set
in details. We know thaty;; terminates withinWs; act Recovery(P;, P¢) denotes the active copies assigned to
units after the beginning of the period, whitg_» cannot P; with primary copies assigned R, namely, this set con-
start beforedmaxs;» units after the beginning of the pe- tains all the active backup copies that procesgpmust

active(P;) = {mait2 € backup(P;) : miyo IS &
passRecover(Pj, Pg) = {72 € backup(P;) : P(72iy1) = P¢, Toiyo IS pé
actRecover(Pj, P¢) = {Tait2 € backup(P;) : P(72iy1) = Pg, Toiqo IS 8

recover(P;, P¢) = passRecover(P;, P¢) U actRecover (T

riod. keep executing whef®; fails. Finally, recover(Pj, P)
Since 4o is active, the quantitfoi1 — dmaxsiio gives the union between the last two sets.

represents the worst case overlapping interval of theectiv. The following definition has to be added to those above,

copy that may be executed before the primary copy: to take into account the active copies whose computation

terminates. In order to determine whethet, > has to be can be performed only partially because their correspandin

completely executed or not, a final test is needed: primary copies successfully complete. Let

o if dmaxg; o+ Coiyro < Wayt1, thenan occurrence of
Toi+2 May exist that terminates before the completion
of 741, Since the worst case arises whep., starts Remark 3.3
at timedmaxo; 2 and is executed with no preemption
for Cai2 time units, and henc€’s; o = Cajyo;

shortActive(P;, Pr) = {242 € backup(P;) : P(72it+1) # Pr, Tiqo is act

shortActive(P;, Pr) denotes the active copies whose cor-
responding primary copies are not assignedoand that
o if dmaxaiio+ Caira > Waip1, thenthe execution of ~ could be partially executed. Note that, by definition: (1)
Tair2 MUSt necessarily continue beyold,; 1, and shortActive(P;, Py) N actRecover(Pj, Py) = () and
the maximum portion of the active copy that has to be shortActive(Pj, P¢) U actRecover(Pj, Pr) = active(P;).

executed befor&y; ; is indeedC’ 512 = Waipq — That is the active copies oR; are partitioned in two
dmaxa;i o. sets:shortActive(P;, P¢) containing the active copies that
could be partially executed angtt Recover(P;, P¢) con-
3.4 Assignment of tasks to processors taining the active copies that must be completly executed;

and (2) the particular sethortActive(P;, P;) indicates
Let P(m,) denote the processor to which the (primary or that all the active copies imctive(P;) could be partially
backup) copyn, is assigned. The following notation is use- executedno active copy orP; can have its primary copy

on the same processr, and thusshort Active(P;, Pj) =
active(P;)).

The task copies are considered by decreaRiMgriorities
and assigned to processors following frest-Fit heuris-
tic. The schedulability test is theTT executed on task sets
determined according to the following considerations.

To assign a task copy, to a processoP;, two feasi-
bility tests,NoFaultCTTandOneFaultCTT have to be ex-
ecuted on proper sets, which depend on the characteristic

and OneFaultCTFgi+1, Pj, Pr) for all
Py # Pj are satisfied. If there is no such
processor, then set tom+1 and assign
T2i+1 t0 Pry. ComputeWsi ;.

(12) If T2i+1 — W2i+1 < CQi+2, then set

T2i+2 tO active, otherwise setqi+s to
passive andimaxaii2 t0 Waiy1.

(13) If T2i+2 is

active, then assign it to the first proces-
sor P; for which NoFaultCTTfi+2, P;)

and OneFaultCTTgit2, Pj, P(12i+1))

are satisfied. If there is no such proces-

sor, then setn to m + 1 and assigro;42

to Pp,.

(1.3.1) Consider Waiio =
max{W2i+2 (NF),W2i+2(OF)},
where Wi 2(NF) is the worst-
case response time computed by
NoFaultCTT, whileWy;2(OF) is
that computed by OneFaultCTT. Set
dmaxaiy2 = Tait1 — Waiqa.

(1.3.2) Compute the partial computa-
tion time:

(i.e. primary, active, or passive) of the task copyand
on the potential failed processBg. The testOneFaultCTT
is exactly the same as described in [5] whileFaultCTT
is obtained from that of [5] by replacingctive(P;) with
shortActive(P;, P;). The definition of the two feasibility
tests are reported for completeness in Appendix 1.

In the following, we expand on the implementation of
NoFaultCTTto cope with theARR strategy. In the absence
of failure, to check whethet, (either primary or active) can
be scheduled oR;, determine the minimurky, satisfying

W W
Wy =Cu+ Z CQk+1’V b -‘-i- Z E2k+2’7 b -‘

Toky1 Toxi2
Tok+1€hp(h) + Tox+2€hp(h) *

Cor — Wait1 — dmaxoite if dmaxaiys + Coipo >
a2 Caiqo otherwise

where : . o
(1.4) If T2i42 is passive, then assign it to the

Coxto if 7, is active andrxi2 € actRecover(Pj, P(1,-1)) first processorP; for Wh_iCh O_neFauIt—
Eowyo = { Clowyn if (IS primary andry o € shortActive(P;, Py)) or CTT(2i+2, Py, P(72i41)) is satisfied. If

(s is active andry o € shortActive(P;, P(m,_1))) there is no suc_h processor, thenseto
m + 1 and assigrsit2 t0 Py,

(2) Return the numbern of processors used and
the schedule so found.

and check whether
Wy < Ty

Note that the two alternatives fdfoy o follow from the
definition of NoFaultCTT In particular, to schedule an ac-
tive copym, together with other active copiegyo on pro-
cessofP;, the entire computation tim€s42 must be con-
sidered wherry 2 belongs to the active copies whose pri- primary(P;) U shortActive(P;, P;) by means of th&M
mary copies are assigned &, 1) (m is an active copy, 4igorithm. 'As soon as a prin%ar)j copy..1 completes its
henceP(n, 1) denotes the processor to which the primary o, ecution, a “successful completion” message is sent to the
copy,—1 is assigned). In the other case,.» canbe par- -, 5cass0r where the backup copy is allocated. If such a
tially executed and the computation tifi€si;» is consid- ¢,y is passive, then no action is taken, while if it is active
ered. o , _ . thenits execution is immediately suspended. If a failure of
A high-level description of the algorithm for assigning 5cessop; is detected at timé, e.g., the successful com-
tasks to processors, callédRR1, is given below. Its cor- pletion message oh;. ;1 is not received by P; . ») by time
rectness follows from Remarks 3.1 and 3.2 and from theewhich corresponds to the completion timeref. 1, then a
correctness o€ TT. Recovenprocedure is invoked. SuchRecovenprocedure
ARR1 can be obtained from that in [5] by replaciagtive(P;)
with shortActive(P;, P;). Moreover, such procedure can
(0) Letthe task copiesi, 72, . .., Ton—1, T2n b in- be extended to tolerate more than one processor failure with
dexed by increasing periods and setltthe a technique related to that described in [5].
numberm of processors used.

3.5 Recovery from a failure

Once the task copies are assigned, each procd3sor
executes, in the absence of failures, the task copies in

(1) Repeatthe following steps for=0,...,n—1: 3.6 Reducing the number ofcTT invocations

(1.1) Assign the primary copyri+i to the

first proces-
sorP; for which NoFaultCTT{2i+1, P;)

In the ARR1 assignment procedure seen above, each task
copy is assigned to the first processor to which it fits, thus

mixing together primary, active, and passive copies on thesuch an ordering. Observe that, in this case, when assigning
same processor. In this way, however, m@w's are re- 73, to any processdpy,, tasks withRM priority smaller than
quired to assign each task, thus increasing the computatiothat of7;, can be already assignedRg. Therefore, besides
time of the schedulability test. to test for schedulability of;, together with the tasks in

In order to reduce the number Gff T invocations, the hp(j;), aCTT must be performed again for eagh already
active resource reclaiming technigue can be combined withassigned tdy,, with T; > T;,.
a partitioning of the processors into two or three groups so In this way, however, the worst-case response times of
as to avoid to mix together primary, active, and passive taskthe primary copies are known only wheti the primary

copies on the same processor. copies have been assigned to the processors. Therefore,
The simplest version to be implemented is clearly that in to assign a backup copy, its status (active/passive) can be
which three groups of processors are used, denoRaRs, determined only after that the assignment of all the pri-

where there is a first group of processors for the primary mary copies is completed. In order to maintain unchanged

copies, a second group for the active copies, and a third onghe worst-case response times of the primary copies, the

for the passive copies. However, two groups can also bebackup copies are assigned to a second group of proces-

used (versiomRR2), the first group for both primary and sors, following thes priority order. Thus the primary copies

active copies (which indeed are handled in a very similar 1, 73, ..., 72,_1 are first assigned to a group of processors,

way) and the second one for the passive copies. ARR2 and then the backup copies, 74, . . ., 7oy, are successively

andARR3 algorithms can be easily derived from tABR1 assigned to the other group of processors. Remember, how-

algorithm explained above, and thus are not described hereever, that thes priority is used only for assigning tasks to

in details. processors, since all the tasks assigned to the same proces-
The advantage oARR3 is that of requiring les€TT in- sor are then scheduled by the usR&l priority.

vocations tharARR1 and ARR2. Indeed, usingARR3, at

mostm CTT's are needed to assign a primary copy, for a 5 The passiveand s-Pr-Passalgorithms

total of O(nm) CTT's, wheren is the number of primary

copies andn the number of processors _em_ployed._ In con- In an ideal situation, only passive duplication should be

trast, when USiN@\RR1 andARRz for assigning a primary used, since in this case redundant computations are per-

copy toa processd?_j, besides to check for schedulability formed only when needed after a failure. In contrast, ac-

n Fhe absgnce of failures, one needs to check for SChewlafive copies require at least a partial computation even in

bility also in the case of a failure to any processor othemtha the absence of failures. This section presents two algo-

P;, for a total ofO(nm?) CTTs. rithms that employ only passive duplication: whenever
) Toir1—Wair1 < Coi2 @anew processor is used to schedule

4 Thes-priORITYalgorithm T2i+1, hence only passive backup copies can be employed

to tolerate failures. Clearly, this is not possible in akes,
This section discusses a variant of thBR strategy but only when

where tasks are assigned to processors without following

the Rate-Monotonic priority. In particular, we consider an Cait1 + Caiyz < Taipa i=0,...,n—1,

other' assignmeqt priority, called heBePRIORITY, wh?ch which, under our assumptiofis;;1 — Caiya, becomes

was introduced in [6] and has the effect of grouping to- .. " " ¢, < lfori=o0 1 s in thi

gether on the same processor those tasks whose periods are®+! = Tapy = 3 o1 =U....,n— 1, sInCeIn this

equal or multiple, thus producing a more compact schedule®@S€ the pir;)odhof ea_ch task is Iong _enough_ to_perr]mn the
in many cases. It is worth noting that, once the tasks aree;(z(;:ﬂﬁ:‘eo oth a primary copy and its passive in the case

assigned to processors, they are scheduled on each singl% The fi laorith e he RM oriori
processor by means of the us@ah algorithm. e firstalgorithm, calle@ASSIVE uses the RM priority
@oth to assign tasks to processors and to schedule the tasks

In order to assign to the same processor those task ioned h laorith b
whose periods are equal or multiple, the priority ordering assigne to each processor. HSSIVEalgorithm can be
described as follows.

given in [6] can be used. Considettasks{y,..., 7} in-
dexed byRM priorities, that is, withT; < ... < Ty. For PASSIVE
each task; compute)
(0) Let the task copiesi, 72, ..., Ton—1, Ton D€
S; = log, T; — UOgQ TiJ i=1,....k indexed by increasing
periods, set td the numbernn of processors
and used, and set to passive all the backup copies
consider the permutatiofl,2,...,k) — (j1,J2,---,Jk) T2, T4, -, T2n—2, T2n
such that{r;,,..., 7, } are ordered b priorities, namely (1) Repeat the following steps for=0,...,n —

Sj, < ... <8Sj.. Then assign tasks to processors following 1:

(1.1) Assign the primary copyr;it+: to the [1, Timax], While the computation timé€; is an integer uni-

first processorP; for which NoFault- formly distributed in[1, o'T;], wherea = max; T is an up-
CTT(r2i+1, Pj), per bound for the task load.,, . is fixed to500, and each
OneFaultCTTtzi+1, Py, Pr) backup copy has the same period and computation time as

for eachP; # Pj, and the condition
(Tair1 — Wair1 > Caip2) are all sat-
isfied. If there is no such processor, then
setm tom + 1 and assign;4i1 to Pr,.
ComputeWait1, and setdmaxasito to

its primary copy. Three values fer are chosen, namely,
0.2, 0.5, and0.8. For the chosen anda, the experimentis
repeated 30 times. The performance metric in all the exper-
iments is the numbeX of processors used by an algorithm

Woaii1. to sche(_jule both primary a_md backup cqpies. A_n(_ather use-

(1.2) Assignri.» to the first processdp; for ful metric should be the ratl%, whereNj is the mlmmum .
which number of processors to schedule only the primary copies,
OneFaultCTTta 2, Py, P(2i41)) IS smce— — 1 gives the ratio of additional processors intro-
satisfied. If there is no such processor, duced to tolerate a processor failure. Since an optimal task
then setmn to m + 1 and assigrra;2 to assignment is hard to be found for large task S€tsis re-
Pm. placed by its lower bound, which is obtained by summing

(2) Return the numbem of processors used and up all the loads of the primary copies.
the schedule so found. For the chosenn and «, the j — th experiment

gives N;, Uj, and % Since the experiment is repeated
PRIORITY algorithms previously presented. As in t8e 30 times, the average results are computed as follows:

30 30 N
PRIORITY algorithm, all the primary copies are first as- w0 (Z N;)/30, U = (= Us)/30, and g =
signed to a group of processors following taeriorities. (X2 o)/30 All the algorithms were written in C and
The schedulability test of any primary copy,+1 on any runona Dlgltal Alpha-Server 2100, Model 5/250. The out-
processoiP; consists in the following steps, where all the come of the experiments is given in Figure 2 (for the sake
CTT's are executed on task sets containing only primary of clarity, the results foARR1 andARR3, which are similar
copies: to those ofARR2, will be reported only in Figure 3 but not
) in Figure 2).
- aCTTon{mi1} Uhp(2i+1); Figure 2 shows the rati§ for the experiments, wheié
- aCTTon {mis1} U {mir1} Uhp(2k + 1) for each is the lower bound for scheduling only the primary (_:opies,
Tors1 already assigned t®; such thatTo, i > and_N the_ numt_)erof processors requm_ad by the various al-
Toiit; ?S?rnhm, including also theTRMFFalgorithm presented in
- acheckto verify wheth€lg; 11 —Wai11 > Caita, in By observing Figure 2, one notes that, when= 0.2,
order to guarantee that there is enough time to sched-PASSIVEandARR2 behave a§ TRMFFsince in this case alll
ule the passive copy within the same period (other- the tasks have a low load and thus bBTRMFFandARR2
wise, 9;+1 IS assigned to a new processor). employ almost exclusively the passive duplication. When
= 0.2, the best performance is given by tReeRIORITY
andS PR-PASSalgorithms. Wherw = 0.5 anda = 0.8,
FTRMFFis the worst algorithm. In thee = 0.5 case,S-
PR-PASSandARR?2 have the best performance, while in the
«a = 0.8 case the best algorithm BRR2. Indeed, in this
latter case, almost all tasks have a high load and thus the
active duplication is almost exclusively employed. There-
fore, ARR2 gains benefits from the active resource reclaim-
ing strategy where active copies are executed only pattiall
6 Simulation results Observe also that far = 0.2 anda = 0.5 the S-PR-PASS
algorithm can tolerate a failure by using a number of proces-
In the previous sections, theMFF algorithm has been sors close to the minimum number of processors required in
extended leading to six fault-tolerant algorithmaRR1, the non fault-tolerant case, since the corresponding %ﬁio
ARR2, ARR3, PASSIVE S-PRIORITY, and S-PR-PASS In is close to 1.
this section, simulation experiments are reported in order Oh and Son [21] report the performance of their best RM
to evaluate the performance of the different algorithms. scheduling algorithm to achieve fault-tolerance considger
As in [3, 6], large task sets with at most= 600 tasks multiple backup copies. They show that on the average 40%
are generated. The parameters of eachtpake chosen as extra processors are required compared to the lower bound
follows. The periodr}; is an integer uniformly distributed in L which is equal to the sum of all the loads of the primary

The S-PR-PASSalgorithm combines theASSIVEandS-

During the assignment of the primary copies,eFault-
CTT is needed, since primary and passive copies are as-
signed to two different groups of processors. Once all the
primary copies are assigned, tBePR-PASSalgorithm as-
signs all the passive copies following again gheriorities.

As in thePASSIVEalgorithm,S-PR-PASQuses the RM pri-
ority to schedule the tasks assigned to each processor.

24f S-PRIORITY —=—] , Running time
ol PASSIVE —+— | a % gain (seconds)
R | n=400 | n=100 n=300 n=600
02 0% | 81 1818 1509
R 1 PASSIVE 05 15% | 150 2405 1693
1.6 7 08 _ —
14 T 02 12% | 10 44 12,1
12 S-PRIORTY | 05 85% | 09 48 19.3
1 L L L L L L L L L ‘ 0‘8 3%].O 8.4 39.4
100 150 200 250 3’\cj>gmbs:<()) ! tasz[t(c;o 450 500 550 600 02 13% 12 60 193
S-PR-PASS 05 1% | 13 93 36.6
T 08 _ _
PASSIVE —e— 0.2 0% 18.7 3212 2792
1 ARR] 05 & | 134 1069 424
1 08 7% | 178 1589 7153

N/U

1
1
0.2 12% 3.5 33.6 188.1
1
1

1 ARR2 05 5% | 84 872 400

— b 08 5% | 163 160 698

—3 02 8% 14 84 28.6

2 1 ARR3 05 0% | 17 123 564
Yoo 1‘50 2‘00 ‘250 ‘300 3‘50 4(‘30 4‘50 5‘;00 éso 600 08 14% 25 21.6 114.1

Number of tasks

24 | pETRMEE A Figure 3. Performance and running times of
. the proposed algorithms. The second col-
, e — umn reports the percentage of gain intro-
duced by the proposed algorithms with re-
2 ' spect to the FTRMFFalgorithm in [5].
1.6
14
a=0.8
1.2
Yoo 150 200 250 300 0 400 450 500 550 600 spect toFTRMFF (for instance, thes-PR-PASSalgorithm
Number of tasks with o = 0.5 employs 21% less processors tHaRMFF).
Figure 2. Ratio N/U of the number N of These values are computed for= 400 only, since for

n > 400 the gain remains almost the same. Moreover,

processors for scheduling both primary and) =
Figure 3 reports also the average computation time of the

backup copies and the lower bound U for

scheduling only the primary copies. N/U -1 six assignment algorithms,.for = 100, n = 300, and
gives the ratio of additional processors intro- n = 600. The average running times BTRMFFare com-
duced to tolerate a processor failure. parable to those ARR1 and are not reported explicitly. A

circle in the figure outlines the entries with the highestpro
cessor gains or the lowest running time.
By observing Figure 3, it is possible to choose the best
algorithm depending on the characteristics of the task set,
copies and backup copies. If each task has one backupaking into account not only the number of processors used
copy with the same computation time as its primary then in the schedule, but also the running time of the assignment
the lower bound L becomes twice the lower bound U con- algorithm. Note that the running times in this figure are
sidered here, and thus 180% extra processors are requirethose required by the assignment algorithm, which is per-
by [21] with respect to U. In contrast, Figure 2 shows that formed off-line only once. The algorithms for the actual
the extra processors needed by our best algorithms rangeask scheduling and for recovering from a failure are per-
from 20% to 80% with respect to the lower bound U. formed on-line and are much faster. Indeed, all the schedu-
The performance of all the new algorithms introduced lability tests and all the task sets to be scheduled on the pro
in this paper (including alsaRR1 andARR3) are summa- cessors in the case of a failure were previously computed
rized in Figure 3. In this figure, the second column reports off-line by the assignment algorithm.
the percentage gained by the proposed algorithms with re- One can note in Figure 3 thaRR2 has a good proces-

sor gain for all values of, and thusARR2 can handle task
sets with different characteristics. The good number of pro
cessors found, however, may require a high running time.
Disregarding the running time, th&RR1 algorithm is that
using the lowest number of processors wler- 0.8. In-
stead S-PRIORITYhas the smallest running time, but this is
paid in terms of a higher number of processors. The trade-
off processors/time suggests to choose the assignment algo
rithm as follows:

(8]

&l

e S-PR-PASSfast and effective fonr = 0.2 anda

0.5; [10]

e ARRS3, with low number of processors and running
time fora = 0.8. [11]
7 Conclusions (12]

In this paper, several fault-tolerant extensions to the [13
RMFF algorithm have been presented that improve the per-
formance, reducing both the number of processors needegy)
for the schedule and the running time of the assignment al-
gorithm, with respect to previously presented algorithms.

Several questions still remain to be explored. For exam-
ple, a schedulability condition could be used which is only
sufficient, such as those proposed in [20] and [6], but easierl16]
and faster to verify than the necessary and suffio=mt.

In addition, to reduce the number of processors needed, one
could employ either a new task ordering different from both (7]
the RM and thes priority for the task assignment, or new

heuristics different from the First-Fit heuristics. 18]

However, it does not seem straightforward to find new
heuristics which can lead to better performance. For in-
stance, we tried to assign the primary copies to the lessl9l
loaded processors, since one expects that such a criterium
would simplify the scheduling of the passive copies, but
the outcome of the resulting experiments was worse than2o
ARRL

[15]

References (21]
[1] N. Audsley, K. Tindell, A. Burns. The end of line for stattyclic 22]
scheduling?Proc. Euromicro Workshop on Real-Time Systegts
41, June 1993.
[23]

[2] A.A.Bertossi, A. Fusiello. Rate-monotonic schedulfiog hard-real-
time systemsEuropean Journal of Operational Researghf, 429-
443, 1997.

[3] A.A. Bertossi, A. Fusiello, L.V. Mancini. Fault-tolerd deadline-
monotonic algorithm for scheduling hard-real-time tasksoc.
11th IEEE International Parallel Processing Symposjut83-138,
Geneva, Switzerland, April 1997.

[4] A.A. Bertossi, L.V. Mancini. Scheduling algorithms fdiault-
tolerance in hard-real-time systenieal-Time Systen 229-245,
1994.

[5] A.A. Bertossi, L.V. Mancini, F. Rossini. Fault-toleranrate-
monotonic first-fit scheduling in hard-real-time systet&B&E Trans-
actions on Parallel and Distributed Syster®, 934-945, September
1999.

[6] A.Burchard, J. Liebherr, Y. Oh, S.H. Son. New strated@sassign-

ing real-time tasks to multiprocessor systefi&€E Transactions on
Computersi4, 1429-1442, 1995.

[7] A. Burns, R. Davis, S. Punnekkat. Feasibility analysfsfault-

tolerant real-time task set8roc. Euromicro Workshop on Real-Time
System9-33, June 1996.

G. Buttazzo. Hard Real-Time Computing SystefReal time systems
seriesVol 23, 2nd Edition, ISBN 0-387-23137-4, Springer Verlag,
2005.

M. Caccamo, G. Buttazzo. Optimal scheduling for faoletant and
firm real-time systemsProc. IEEE Conference on Real-Time Com-
puting Systems and Applicatigrisiroshima, Japan, Oct. 1998.

H. Chetto, M Chetto An adaptive scheduling algorithnm fault-
tolerant real-time system&oftware Engineering Journab3-100,
1991.

S. Dhall, C.L. Liu. On a real-time scheduling proble®perations
Researct26, 127-141, 1978.

S. Ghosh, R. Melhem, D. Mosse. Fault-tolerance thragjteduling
of aperiodic tasks in hard-real-time systerftSEE Transactions on
Parallel and Distributed Systen® 272-284, 1997.

] S. Ghosh, R. Melhem, D. Mosse, J.S. Sarma. Fault-tolerate-

monotonic schedulingReal Time Systenib, 149-181, 1998.

M. Joseph, P. Pandya. Finding response times in airaalgdystem.
The Computer Journ&9, 390-395, 1986.

M.H. Klein, J.P. Lehoczky, R. Rajkumar. Rate-monotorinaly-
sis for real-time industrial computindEEE Computer 24-33, Jan.
1994.

C.M. Krishna, K.G. Shin. On scheduling tasks with a ¢uiecovery
from failure. IEEE Transactions on ComputeB5, 448-454, May
1986.

S. Lauzac, R. Melhem, D. Mosse. An Improved Rate-momiotéd-
mission Control and its Application&EE Transactions on Comput-
ers52(3), March 2003.

J.Y. Leung, M.L. Merrill, A note on preemptive schedi periodic
real-time taskslnformation Processing Letterkl, 115-118, 1980.

F. Liberato, R. Melhem, D. Mosse, Tolerance to Multifl@nsient
Faults for Aperiodic Tasks in Hard Real-time SystetBEE Trans-
actions on Computer9(9), Sep 2000.

C.L. Liu, J.W. Layland. Scheduling algorithms for mptogram-
ming in a hard-real-time environme@dburnal of the ACM20, 46-61,
1973.

Y. Oh, S.H. Son. Enhancing fault-tolerance in rate-otonic
schedulingReal-Time Systenys 315-329, 1994.

K. Tindell. Adding time-offsets to schedulability dgsis. Technical
Report YCS-221Dept. of Computer Science, University of York,
1994.

K. Tindell, A. Burns, A.J. Wellings. An extendible amarch for ana-
lyzing fixed-priority hard-real-time taskReal-Time Systents 133-
151, 1994.

