
Scalable Similarity Self Join in a Metric DHT
System?

Claudio Gennaro

ISTI-CNR
Pisa, Italy

claudio.gennaro@isti.cnr.it

Abstract. Efficient processing of similarity joins is important for a large
class of data analysis and data-mining applications. This primitive finds
all pairs of records within a predefined distance threshold of each other.
We present MCAN+, an extension of MCAN (a Content-Addressable
Network for metric objects) to support similarity self join queries. The
challenge of the proposed approach is to address the problem of the in-
trinsic quadratic complexity of similarity joins, with the aim of bounding
the elaboration time, by involving an increasing number of computational
nodes as the dataset size grows. To test the scalability of MCAN+, we
used a real-life dataset of color features extracted from one million images
of the Flickr photo sharing website.

1 Introduction

Similarity join is a database primitive that finds all pairs of objects within a
predefined distance threshold of each other. The similarity join has been suc-
cessfully applied to a large class of applications, data analysis, data mining,
location-based applications, and time-series analysis. This search paradigm has
recently been generalized into a model in which a set of objects can only be
pair-wise compared through a distance measure d satisfying the metric space
properties (i.e, the positivity, symmetry, and triangle inequality).

The problem of similarity join emerges naturally in a variety of applications
where the user is not only interested in the properties of single data objects but
also in the properties of the data set as a whole, as, for instance, in data mining
applications. For illustration, consider a document collection of books and a
collection of compact disk documents. A possible search request can require to
find all pairs of books and compact disks which have similar titles.

However, the quadratic computational complexity of similarity joins prevents
from applications on large data collections. To give an idea, let us consider a
database of one million records. For computing the similarity self join, we need

? This work was partially supported by the SAPIR (Search In Audio Visual Content
Using Peer-to-Peer IR) project, funded by the European Commission under IST
FP6 (Sixth Framework Programme) and by the NeP4B project (Networked Peers
for Business), funded by the Italian government.

a number of distance evaluations of the order of one thousand billions. This is
the main focus of our paper, in which we extend the existing metric distributed
data structure, MCAN [4, 5], to efficiently support similarity self join searches.

This work refines and extends prior work [6] by simplifying the insertion and
the search algorithms, allowing less space occupation, and by providing a new
experimental evaluation.

The remainder of our paper is organized as follows: In Section 2, we introduce
and discuss our new approach to similarity self join based on the extension of the
distributed data structure MCAN . The experimental evaluation of our approach
is presented in Section 3. Section 4 concludes the article.

2 The MCAN+

The MCAN+ is an extension of the MCAN distributed data structure [4, 5] a
Content-Addressable Network [7] for metric space objects. In the following, we
provide a brief overview of the MCAN . We then present the MCAN+ and show
the differences with the original MCAN structure.

Our system is based on the well-known CAN (Content-Addressable Network),
which is a DHT (distributed hash table) that uses a function for mapping “keys”
onto “values” in order to assign them a position in the table. In a CAN, the table
is composed of a finite set of individual network nodes (peers). Each peer of the
network is dynamically associated with a partition of a n-dimensional Cartesian
space. The principle of the CAN is to divide the space in a finite number of
distinct rectangular regions, each of them associated to one and only one peer
of the network. The peers are responsible for storing and searching of objects
covered by their region. Moreover, each peer is aware of the peers that cover
adjacent regions, i.e., its neighbors. More precisely, for an n-dimensional space,
two regions are neighbors if their sides overlap along n − 1 dimensions and
are adjacent along one dimension. Since in metric spaces only distance among
objects is known and it is not possible to exploit any knowledge of coordinate
information, in MCAN we use the pivot paradigm for projecting objects of the
metric space into n-dimensional vectors.

In particular, let t1, . . . , tn be a set of pivots (usually selected from the metric
dataset X), we project an object x ∈ D, by means of the function F defined as:

F (x) : D → Rn = (d(x, t1), d(x, t2), . . . d(x, tn)) (1)

This virtual coordinate space is used to store the object x in the MCAN struc-
ture, specifically in the peer that owns the zone where the point F (x) lies. Note
that, the coordinate space of the MCAN is not Cartesian since a distance be-
tween two objects in MCAN is evaluated by means of the d∞ distance (instead
of the Euclidean distance), defined as d∞(x, y) = maxn

i |d(x, ti)−d(y, ti)|. Rout-
ing in MCAN works in the same manner as for the original CAN structures. An
MCAN peer maintains a coordinate routing table that holds the IP address and
virtual coordinate zones of each of its immediate neighbors in the coordinate
space.

We use the lower case letter for indicating a metric space objects x ∈ D,
the overlined small letter for denoting its corresponding vector in the coordinate
space x = F (x) ∈ Rn. Moreover, we denote a peer of MCAN by the bold
symbol p. Since there is no possibility of confusion, we use the same symbol
d(.) for indicating the distance between metric objects and for indicating the
d∞ distance between the corresponding points in the coordinate space, e.g.,
d(x, y) = d∞(F (x), F (y)), where x = F (x) and y = F (y). It is important to
note that, the distance d(x, y) is contractive, therefore d(x, y) ≤ d(x, y) always
holds.

Each peer p maintains its region (a hyper-rectangle) information referred as
p.R and stores all objects x such that x ∈ p.R. The peer p also maintains the set
of the neighbor peers’ information p.M = {h1, . . . ,hh}. Moreover, during the
creation of the structure of MCAN , we assign a unique numeric identifier i with
each peer, which we denote as p.id. While p(i) denotes the peer corresponding
to the identifier i. For further details about MCAN , please see [4].

2.1 Similarity Self Join in MCAN+

The similarity join is a search primitive that combines objects of two sets X =
{x1, ..., xN} and Y = {y1, ..., yM} into one set such that X

sim
./ Y = {〈xi, yj〉 ∈

X × Y | d(xi, yj) ≤ ε},. Where the threshold ε is a non negative real number. If
the sets X and Y coincide, we talk about the Similarity Self Join (SSJ). In this
article, we only concentrate on this version of similarity joins.

The idea behind the MCAN+ is to enlarge by µ/2 peers’ bounding regions
p.R equally in all directions so that they overlap their neighbors’ regions. This
principle ensures that for each pair 〈x, y〉 for which d(x, y) ≤ ε, there always
exists at least one region of a peer where the pair occurs, for all ε such that
0 ≤ ε ≤ µ. Figure 1 illustrates the basic principle of this strategy; the rectangle
depicted in grey and bounded by a dashed line represents the region managed
by a peer of the MCAN+. However, unlike MCAN the peer maintains a bound-
ing region that overlaps of µ/2 the regions of its neighbors. The darker inner-
most rectangles represent the original bounding regions of MCAN . The peers of
MCAN+ keep track of this region, which we refer to as core region, and denote
by p.R (exactly as in MCAN). Moreover, we call the overlapping rectangle ex-
tended region and we denote it by the symbol p.E. As explained above, since in
MCAN+ the regions may overlap, some objects are replicated on more peers. As
it easy to understand, the greater is µ the greater is the replication. This aspect
implies that the insertion algorithm of MCAN+ is more sophisticated than the
one of standard CAN structures, as explained above.

The outline of the SSJ algorithm is as follows: each peer executes the join
query (on its subset) independently. The partial results from all peers are then
concatenated and form the final answer. The SSJ in a peer can be evaluated
by a simple exhaustive algorithm that processes all pairs contained in the peer’s
region. Let m be the number of objects, this algorithm, often referred in literature
to as Nested Loop (NL), processes about m2/2 pairs. Note that, since MCAN+

works in a contractive (d∞) space, when we find a pairs of objects 〈x, y〉 for
which d(x, y) ≤ ε, in order to know if the pair belongs to the result, we must
also check if d(x, y) ≤ ε.

An important issue arises in the application of this simple algorithm: the
problem of duplicate pairs in the result of the join query. This fact is caused by
the copies of objects which are stored into distinct peers. However, during the
construction of MCAN+ we append extra information with each indexed object.
In particular, each metric object x of MCAN+ has the attribute x.Own, which
is a set that keeps track of the ids of the peers that hold.

Peers’
extended
regions

Peers’ core
regions

Ep .2

Rp .2

2

µ

2

µ

x
y

z
Rp .1

Ep .1

p1.id=1
p2.id=2
x.Own={1}
y.Own={1, 2}
z.Own={1, 2}
CheckDist(1, 〈x, y〉)=true
CheckDist(1, 〈z, y〉)=true
CheckDist(2, 〈z, y〉)=false

Fig. 1. Illustration of the various zones of a peer of MCAN+.

Algorithm 1 includes the function SimilaritySelfJoin, which takes the id k of
a peer and the threshold ε as input parameters and returns the set of qualifying
pairs of the peer i. We use a procedural approach to present MCAN+ algorithms,
by implicitly assuming that the parameters of functions and procedures are sent
via a message-passing interface. Algorithm 1 simply starts invoking the func-
tion SimilaritySelfJoin on all peers of MCAN+, and collects the results coming
from them. Function SimilaritySelfJoin invokes in turn the NestedLoop function,
which takes as input the threshold ε and returns the set of the pairs that poten-
tially belongs to the result set and which have to be checked using the actual
metric distance d.

However, before evaluating the distance of each pair returned, it assesses if
other peers have a replica of it. To achieve this task, SimilaritySelfJoin exploits
the function CheckDist, which takes the id k of the peer and 〈x, y〉 as inputs,
and returns a boolean that indicates whether or not the pair must be considered.
To better understand the behavior of SimilaritySelfJoin, please see Figure 1,
which illustrates the zones of a peer where an object can lay. The principle of
the CheckDist algorithm is simple if we observe that the problem of replication
occurs when the objects of a pair are owned by distinct peers. The idea here

is to exploit the ids of the peers (maintained in x.Own) to decide which one
must consider the pair, for instance, by allowing the peer with the lowest id to
consider the pair (however, any other determinist scheme based on ids would
work as well).

Algorithm 1 Similarity Self Join Algortihm

S := ∅;
for each p ∈ MCAN+

S := S
⋃

SimilaritySelfJoin(p.id, ε);
end for each

function SimilaritySelfJoin(k, ε): set
P := NestedLoop(ε);
R := ∅;
for each 〈x, y〉 ∈ P

if CheckDist(k, 〈x, y〉) then
if d(x, y) ≤ ε then

〈x, y〉 → R;
end if

end if
end for each
return R;

end function

function CheckDist(k,〈x, y〉):boolean
CheckDist := false;
if min(x.Own

⋂
y.Own) = k then

CheckDist := true;
end if

end function

Algorithm 2 Insertion Algortihm

procedure Insert(i, x)
if x ∈ p(i).R then

i → x.Own;
for each h ∈ p(i).M

x.Own := x.Own
⋃

Replicate(h.id, x, i);
end for each
Store(x);

else
h := GetNrstNghbr(p.M, x);
Insert(h.id, x);

end if
end procedure

function Replicate(i, x, j): set
if x ∈ p(i).E then

i → x.Own;
for each h ∈ p(i).M

if h.id 6= j then
x.Own := x.Own

⋃
Replicate(h.id, x, i);

end if
end for each
Store(x);
return x.Own;

end if
end function

Since all peers of MCAN+ respect the same scheme, there is no risk to produce
duplicate pairs.

In order to exploit this SSJ algorithm, MCAN+ must employ an insertion
algorithm more sophisticated than the one used in MCAN . The insertion oper-
ation can start from any peer p of the MCAN+, and initiates by mapping the
object x to insert into the virtual coordinate space using function F (). Then, if
x = F (x) ∈ p.R, x is stored in p. On the contrary, if x /∈ p.R the peer must
forward the insertion request to its neighbor peer closer to the point x. The
objective is to find the peer h for which x ∈ h.R, minimizing the number of
messages. So far, the insertion algorithm works exactly as in MCAN . However,
after this preliminary phase, the peer that stores the object must start a second
phase, which implements the replication principle of MCAN+, as described in
Algorithm 2. The algorithm includes procedure Insert and function Replicate.
Procedure Insert accomplishes the first phase of the insertion operation and has
two input parameters: the id i of the peer that takes care of the insertion and
the object x to be inserted. The peer checks if the object belongs to its core
region. If so, it sets x.own to i, stores the object, and sends a copy of it to its
neighbors (by mean of the Replicate function). The function returns the set of
peers’ ids that share the object x.

3 Performance Evaluation

In order to demonstrate the suitability of MCAN+ to the problem of SSJ, we
have conducted several experiments using a large real-life dataset of MPEG-7
Scalable Color Descriptors extracted from one million images of Flickr photo
sharing website [2]. The distance used for this visual descriptor is the L1, as
suggested by the MPEG-7 standard [1].

To give an idea of the computational cost of the SSJ, it is useful to observe
that the time complexity of the NL algorithm is N ·(N−1)

2 , for which we estimate
a computation time of more than five days, using a machine equipped with an
Intel 2.13GHz processor. The values of the thresholds ε produce a number of
pairs that range from about 2.5 millions (for ε = 0) to about 4 millions (for
ε = 5) of the five hundred billions of possible pairs.

We analyzed the behavior of a MCAN+ involving 10 pivots for mapping
the metric space in a 10–dimensional vector space. For selection the pivots, we
use the Incremental Selection algorithm described in [3]. Since in this work we
concentrate our attention on scalability issues, we start from a dataset of size
125,000 and duplicate its size until we reach the maximum size of one million ob-
jects. At each step of dataset duplication we try to keep the number of objects in
each peer up to about 18,000 (this means about 162 millions of pairs processing
which experimentally corresponds to the acceptable computation time of about
80 seconds) by doubling the number of peers accordingly (a peer can be split into
two peers maintaining half of the original region). Therefore, datasets of sizes
128,000, 250,000, 500,000, and 1,000,000, were processed using 8, 16, 32, and 64
peers, respectively. The objective of this study is to try to bound the total simi-
larity join computation time by exploiting the parallelism of peer computations.
Note that, before inserting the dataset in MCAN+, we have randomly mixed it
to prevent influence of the order of images acquisition on the performance of
scalability experiments.

It is important to remark that, in a real scenario as the one we are evaluating,
the calculation of the distance function d has typically a high computational
cost. Therefore, the main objective of a metric-based data structure is to reduce
the number of distance computations at query time. The number of distance
computations is typically considered as an indicator of the structure efficiency.
During the evaluation of the NL in a peer, we can employ the knowledge of
the precalculated distances with respect to the reference objects to get a lower
bound of the distance d(x, y); allowing us to discard some distance computation.
This technique is often known as pivot filtering. On the other hand, to give a fair
comparison, in the experimental evaluation we consider both the total number
of pairs processed by a peer that is given by m2/2 (m is the number of objects
of the peer), and the actual number of distance computations (considering the
pivot filtering). The former amount can be seen as an upper bound for the
computational cost of the SSJ, while the latter one represents in some way a
lower bound for the computational cost. The actual computational time will fall
in between these two figures, in fact the actual cost may also depend on the cost

0.01

0.1

1

10

100

1000

125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

dataset size ×1000

Parallel cost for ε = 5

lower bound♦
♦

♦
♦

♦
upper bound

+ + + +

+
0.1

1

10

100

1000

10000

125 250 500 1000

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
s
×1

0
6

dataset size ×1000

Sequential cost for ε = 5

lower bound

♦
♦

♦
♦

♦
upper bound

+
+

+
+

+

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

125 250 500 1000

R

dataset size ×1000

Replication factor

♦

♦

♦

♦

Fig. 2. Parallel and sequential costs, and replication factor of MCAN+ (µ = 5).

for pivot filtering, the cost for implementing the duplicate avoidance, the cost
for the disk access, etc.

Concerning the global costs, we use the following two characteristics to mea-
sure the computational costs of a query:

– sequential distance computations – the sum of the number of distance com-
putations of the SSJ on all peers,

– parallel distance computations – the maximal number of distance computa-
tions among the SSJ performed by all peers in parallel.

In Figure 2 we report the parallel distance computations of an SSJ with ε = 5
as function of dataset size.

Figure 2 reports the sequential distance computations during the SSJ op-
eration with ε = 5 as function of dataset size. These experiments reflect the
intuition that the total number of distance is almost linear in the size of dataset
(both axes use logarithmic scales).

The price that we must pay to obtain the results of the SSJ in few seconds
instead of waiting hours, is the space occupation. We define the replication factor
R of MCAN+ as the ratio N∗/N , where N is the size of the dataset and N∗ the
number of objects (comprising also replicas) stored in MCAN+. Therefore, it is

R = 1 for µ = 0 (corresponding with the standard MCAN) and it is R > 1 for
µ > 0.

Experiments of Figure 2 study as R grows when we increase the number
of peers to meet increasing sizes of the dataset and same µ = 5. It must be
highlighted that the extra space due to replication grows almost linearly as we
increases the number of peers.

4 Conclusion

Although a number of distribute data structures have been recently proposed to
support similarity range and nearest neighbors queries on metric spaces, there
are only few approaches that aim at efficiently supporting similarity joins. In
this article, we have analyzed an implementation strategy for similarity self join
based on the MCAN+ DHT.

We have highlighted the strengths and weaknesses of our solution: if from one
hand we are able to approach the problem of quadratic computational complexity
of similarity join in terms of search time, on the other hand, we must pay a price
in terms of space occupation, which is, however, less than 13% in worst case
analyzed.

This problem of space occupation can, however, not only be tolerated in dis-
tributed environments such as Peer-to-Peer computing infrastructures, but can
be beneficial in terms of fault tolerance, redundancy, and efficiency. Concerning
the latter aspect, if the proposed partition scheme is also employed, as we expect,
for dealing with range and k-nearest neighbor queries, the replication will have
a positive impact to the number of cells involved during the query processing.

References

1. Mpeg requirements group, mpeg-7 overview, 2003. Doc. ISO/IEC
JTC1/SC29/WG11N5525.

2. CoPhIR (content-based photo image retrieval), 2008. http://cophir.isti.cnr.it/.
3. B. Bustos, G. Navarro, and E. Chvez. Pivot selection techniques for proximity

searching in metric spaces. In Proc. of the XXI Conference of the Chilean Computer
Science Society (SCCC’01), pages 33–40, 2001.

4. F. Falchi, C. Gennaro, and P. Zezula. A Content Addressable Network for Similarity
Search in Metric Spaces. In Proc. of the 2nd DBISP2P Workshop, volume 4125 of
LNCS, pages 98–110. Springer, 2005.

5. F. Falchi, C. Gennaro, and P. Zezula. Nearest neighbor search in metric spaces
through content-addressable networks. Inf. Process. Manage., 43(3):665–683, 2007.

6. C. Gennaro. A Content-Addressable Network for Similarity Join in Metric Spaces. In
Proceedings of the Third International Conference on Scalable Information Systems
(Infoscale 2008). ACM Press, June 2008.

7. S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable
content-addressable network. In SIGCOMM ’01, pages 161–172, 2001.

