
Accepted Manuscript

Instant Collision Resolution for Tag Identification in RFID Networks

Maurizio A. Bonuccelli, Francesca Lonetti, Francesca Martelli

PII: S1570-8705(07)00040-6

DOI: 10.1016/j.adhoc.2007.02.016

Reference: ADHOC 242

To appear in: Ad Hoc Networks

Please cite this article as: M.A. Bonuccelli, F. Lonetti, F. Martelli, Instant Collision Resolution for Tag Identification

in RFID Networks, Ad Hoc Networks (2007), doi: 10.1016/j.adhoc.2007.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.adhoc.2007.02.016
http://dx.doi.org/10.1016/j.adhoc.2007.02.016

ACCEPTED MANUSCRIPT

Instant Collision Resolution for Tag Identification in RFID Networks

Maurizio A. Bonuccelli a,b Francesca Lonetti a,b Francesca Martelli a

aDipartimento di Informatica, Università di Pisa
Largo Pontecorvo 1, Pisa, Italy

bIstituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (CNR)
Via Moruzzi, Pisa, Italy

Abstract

In this paper, we approach the problem of identifying a set of objects in an RFID network. We propose a modified

version of Slotted Aloha protocol to reduce the number of transmission collisions. All tags select a slot to transmit

their ID by generating a random number. If there is a collision in a slot, the reader broadcasts the next identification

request only to tags which collided in that slot. Besides, we present an extensive comparative evaluation of collision

resolution protocols for tag identification problem in RFID networks. After a quick survey of the best performing

RFID tag identification protocols, both deterministic and probabilistic, we present the outcome of intensive simulation

experiments set up to evaluate several metrics, such as the total delay of identification process and the bit complexity of

reader and tags. The last metric is strictly related to energy constraints required by an RFID system. The experiments

point out that our protocol outperform all the other protocols in most cases, and matches them in the others.

Key words: Radio Frequency Identification Networks, Collision Resolution, Medium Access Control, Aloha Based Protocols,
Tree Based Protocols

1. Introduction

Fast and reliable identification of multiple objects
that are present at the same time is very important
in many applications. A very promising technology
for this purpose is Radio Frequency Identification
(RFID), which is fast pervading many application
fields, like public transportation and ticketing, ac-
cess control, production control, animal identifica-
tion, localization of objects and people. An RFID
system consists of radio frequency (RF) tags at-
tached to objects that need to be identified and
one or more networked electromagnetic readers. The
great appeal of RFID technology is that it allows in-
formation to be stored and read without requiring

Email addresses: bonucce@di.unipi.it (Maurizio A.
Bonuccelli), lonetti@di.unipi.it (Francesca Lonetti),
f.martel@di.unipi.it (Francesca Martelli).

either contact or a line of sight between the tag and
the reader. For this contact-less feature, RFID tech-
nology is an attractive alternative to bar code in the
distribution industry and supply chain, since it can
hold more data.

In RFID systems, tags can be active or passive.
Active tags have storage capabilities and are pro-
vided with power sources for computing and trans-
mitting data. Due to the complexity and cost of
mounting a power source onto a tag, active tags are
not practical for use with disposable consumer prod-
ucts. Passive tags instead rely only on RF energy in-
duced by the electromagnetic waves emitted by the
reader, and can have limited storage functionality. In
a typical communication sequence, the reader emits
a continuous radio frequency wave. When a tag en-
ters in the RF field of the reader, it receives energy
from the field, for modulating the signal according
to its stored data. Due to more advanced protocols

Preprint submitted to Elsevier 11 January 2007

ACCEPTED MANUSCRIPT

 and circuit design development, the reliability and
the read range of passive RFID networks continue to
improve, and their cost continue to decrease, which
leads to an increase of passive tags applications.

A very important issue in RFID systems with pas-
sive tags, is complexity, and computing and trans-
mitting capacity of tags in the identification process.
The reader, containing internal storage capacity and
processing power, broadcasts a request message to
tags asking for the unique tag ID, or detailed in-
formation saved in them. After receiving this mes-
sage, all or some tags send their response back to the
reader. If only one tag answers, the reader receives
just one message which is correctly decoded. If two
or more tags answer, their messages will collide on
the RF communication channel and cannot be cor-
rectly received by the reader. An effective system
must avoid, or at least limit, these collisions by using
anti-collision protocols in the identification process.
In this paper, we present a new protocol for limit-
ing such collisions, and evaluate the complexity of
reader and tags required by our and several different
tag identification protocols. The evaluation is about
communication complexity in terms of number of
reader queries and bits sent by reader and tags. An-
other commonly used metric that we evaluate is the
number of time units needed to identify all tags, that
is strictly related to delay of the identification pro-
cess. This evaluation is very useful when designing
an RFID system to foresee energy constraints and
resource requirements.

Thus, a very important issue in RFID applica-
tions is the fast and reliable identification of mul-
tiple tagged objects simultaneously, assuming that
the exact number of tags is not known in advance.
This is a special case of multiple access communi-
cation problem that has been studied extensively in
the past. The solution to this problem is given by
different collision resolution protocols [1]. However,
in RFID applications, the problem is more challeng-
ing and complex, because of the memory and energy
constraints of tags [2–7]. We do not assume that
passive tags can have sensing capabilities to detect
collision, or that they can communicate with other
tags directly, since such assumtions are not realis-
tic. In [3] tags are assumed to have collisions de-
tection capability, which implies a more expensive
and power consuming hardware. In that paper, it is
also assumed that the reader knows the exact num-
ber of tags to be identified. These assumptions help
in solving the collision problem in tag identification
process but are not realistic. The purpose of this

Table 1
Pseudo-code of BS protocol
Reader procedure:

1. channelStatus=2;
2. while(channelStatus> 1) do

3. broadcast(query);
4. receiveAnswers;
5. broadcast(channelStatus);
6. if (channelStatus== 1) then tagIdentification();

Tag procedure:

11. identified = false; myCounter = 0;
12. while (not identified) do

13. receive(query);
14. if (myCounter == 0) then sendAnswer;
15. receive(channelStatus);
16. if (channelStatus > 1) then

if (myCounter == 0) then

17. myCounter+ =rand()%2;
18. else myCounter + +;
19. if (channelStatus <= 1) then

20. myCounter −−;
21. if receivedIDrequest then

22. send myID;
23. identified = true;

paper is twofold: We present a new tags identifica-
tion protocol, and we compare the performance of
the best performing protocols presented so far. This
last aspect of the paper is very useful since no such
comparison has ever been made: When a new pro-
tocol has been proposed, it has been compared with
at most one other protocol. As we shall see in the
paper, the results of our comparison substantially
confirm the performances that were originally pre-
sented along with the protocols.

The paper is organized as follows. In Section 2, we
survey the main known protocols for the tag identi-
fication problem, with more details for the behavior
of those selected to be evaluated (by means of simu-
lation trials) in this paper. In Section 3, we describe
our approach, by highlighting the assumptions we
made. In Section 4 we present simulation setting,
while in Section 5 we show the results of our simula-
tive evaluation. In Section 6, conclusion and future
work complete the paper.

2. Related Work

As usual in medium access control problems, the
proposed protocols for collision resolution in RFID
systems are either probabilistic and deterministic.
The first ones are Aloha-based protocols, the last
ones are Tree-based protocols. There are also hybrid
approaches, where randomization is applied in tree

2

ACCEPTED MANUSCRIPT

 Table 2
Pseudo-code of DFSA protocol
Reader procedure:

1. l0 = NEXP0
; ck = l0;

2. while (ck > 0) do

3. c0 = 0; c1 = 0; ck = 0;
4. broadcast(li);
5. for s = 1 to li do

6. receiveAnswers;
7. if (channelStatus[s]= 1) then

8. tagIdentification();
9. c1++;
10. if (channelStatus[s]> 1) then ck++;
11. if (channelStatus[s]= 0) then c0++;
12. NEXPi

=ChebyshevEstimation(li,c0,c1,ck);
13. li+1=NEXPi

− c1;

Tag procedure:

14. identified = false;
15. while (not identified) do

16. receive(li);
17. s = randomNumber mod li;
18. sendAnswer in slot s;
19. receiveMsg;
20. if Msg = IDrequest then send MyID;
21. identified = true;

schemes [3,8].
In Slotted Aloha based identification protocols,

the time is assumed to be slotted and all tags have a
local clock for synchronization. A time slot is a time
interval in which tags transmit their serial number
or a detailed information saved in them. A read cy-
cle is a tag identifying process that consists of a
frame. A frame is a time interval between requests
of a reader and consists of a number of slots. Each
tag transmits its serial number to the reader in a slot
of a frame, and the reader identifies the tag when
a time slot is used by one tag only. To simplify, it
can be assumed that one slot consists of two sub-
slots, one for probes/response from reader and one
for transmissions from tags. The basic Framed Slot-
ted Aloha protocol [9] uses a fixed frame size and
does not change the size during the process of tag
identification. In this protocol, the reader transmits
to tags the frame size and each tag generates a ran-
dom number j not larger than the frame size, and
then transmits in the jth slot of the frame. With a
fixed size of the frame, if there are too many tags,
most slots will have a collision. On the contrary,
there are many wasted time slots, if a large size of the
frame is used with a small number of tags. The Dy-
namic Framed Slotted Aloha (DFSA) [6,10] proto-
col changes the frame size dynamically. We evaluate
the performance of a DFSA protocol that sets the

Table 3
Pseudo-code of AFSA protocol
Reader procedure:

1. l0 = 128; group = 1; ck = l0;
2. while (ck > 0) do

3. c0 = 0; c1 = 0; ck = 0;
4. broadcast(li , group);
5. for s = 1 to li do

6. receiveAnswers;
7. if (channelStatus[s]= 1) then

8. tagIdentification();
9. c1++;
10. if (channelStatus[s]> 1) then ck++;
11. if (channelStatus[s]= 0) then c0++;
12. Ni =ChebyshevEstimation(li,c0,c1,ck);
13. Ni+1 = Ni − c1;
14. set li+1 and group according to Table 4;

Tag procedure:

15. identified = false;
16. while (not identified) do

17. receive(li, group);
18. s = randomNumber mod li;
19. if(group > 1) then

20. g = randomNumber mod group;
21. if (g = 0) send myID in slot s;
22. else sendAnswer in slot s;
23. receiveMsg;
24. if Msg = IDrequest then send MyID;
25. identified = true;

proper frame size of each read cycle by using Cheby-
shev’s inequality, which says that the outcome of a
random experiment involving a random variable X ,
is very likely close to the expected value of X . Let
c0, c1, ck represent the number of empty slots, of
slots filled with one tag transmission, and of slots
with collision, obtained in a frame, respectively, and
let a0, a1, ak be their expected values. So, by min-
imizing the difference between them, we obtain an
estimation of the number of tags which have trans-
mitted in the last frame. Since our protocol too uses
Chebyshev’s inequality, we shall describe it in Sec-
tion 3.3. Pseudo-code of DFSA protocol is reported
in Table 2. NEXPi

represents the expected number
of unread tags at the beginning of frame i of length
li; the value of channelStatus[s] can be zero, one, or
more than one, representing no tag transmission in
slot s, one transmission, or colliding transmissions,
respectively.

The constraint of this protocol is that the frame
size cannot be increased indefinitely as the num-
ber of tags increases, but it has an upper bound.
This implies a very high number of collisions when
the number of tags exceeds the maximum admitted

3

ACCEPTED MANUSCRIPT

 Table 4
Frame size adjustment for AFSA and LTSA

Estimated unread tags (Ni) Frame size (li) Groups

1 - 11 8 1

12 - 19 16 1

20 - 40 32 1

41 - 81 64 1

82 - 176 128 1

177 - 354 256 1

355 - 707 256 2

708 - 1416 256 4

...

frame size. Such problem is approached in [7], where
an enhanced dynamic Framed Slotted Aloha proto-
col is proposed. We evaluate the performance of this
protocol too, that we call Advanced Framed Slotted
Aloha (AFSA). It works as follows: The size of the
first frame is always set to 128. The size of the next
frames is set according to Table 4. When the number
of unread tags is estimated to be greater than 354,
the reader divides the tags in groups, and chooses
the number of groups that maximize the system effi-
ciency function given by the ratio between the num-
ber of slots filled with one tag transmission and the
current frame size [7]. The reader then broadcasts
the number of groups and tags use this number for a
modulo operation on a randomly generated number.
Only tags for which the modulo is zero will trans-
mit in that frame. Pseudo-code of AFSA protocol is
reported in Table 3.

Tree-based tag anti-collision protocols can have a
longer identification delay than Slotted Aloha based
ones, but they are able to avoid the so called tag
starvation, in which a tag may not be identified for
a long time when involved in repeated collisions.
Among tree-based protocols, there are binary search
protocols [11] and query tree protocols [2]. In binary
search protocols (BS for short), [12,11] the reader
performs identification by recursively splitting the
set of answering tags. Each tag has a counter ini-
tially set to zero. Only tags with counter set to zero
can answer at the reader’s queries. After each tag
transmission, the reader notifies the outcome of the
query: collision, identification, or no-answer. When
tag collision occurs, each tag with counter set to zero
adds a random binary number to its counter. The
other tags increase by one their counters. In such
a way, the set of responding tags is split into two
subsets. After a no-collision transmission, all tags

Table 5
Pseudo-code of QT protocol
Reader procedure:

1. prefix = empty;
2. query(prefix,0);
3. query(prefix,1);

query(char[] prefix,char c):
4. prefix+ = c;

5. broadcast(prefix);
6. receiveAnswers;
7. if (channelStatus= 1) then

tagIdentification();
8. else if (channelStatus> 1) then

9. query(prefix,0);
10. query(prefix,1);

Tag procedure:

11. identified = false;
12. while (not identified) do

13. receive(prefix);
14. offset = prefix.length;
15. if (prefix = myID[0...offset− 1]) then

16. sendAnswer;
17. if receivedIDrequest then send myID;
18. identified = true;

Table 6
Pseudo-code of QTI protocol
Reader procedure:

From step 1 to step 10 of Table 5
11. else if (channelStatus = 0) then

12. prefix− =lastChar;
13. prefix+ =!c;∗

14. queryImp(prefix,0);
15. queryImp(prefix,1);

∗ !char is such that: if char=0, then !char=1, and vice versa.

Table 7
Pseudo-code of QTAA protocol
Reader procedure:

1. prefix = empty;
2. query(prefix,0,0); query(prefix,0,1);
3. query(prefix,1,0); query(prefix,1,1);

query(char[] prefix,char c1, char c2):
4. prefix+ = c1 + c2;
5. broadcast(prefix);
6. receiveAnswers;

7. if (channelStatus= 1) then tagIdentification();
8. else if (channelStatus> 1) then

9. query(prefix,0,0); query(prefix,0,1);
10. query(prefix,1,0); query(prefix,1,1);

4

ACCEPTED MANUSCRIPT

 decrease their counters by one. Pseudo-code of BS
protocol is reported in Table 1.

In query tree protocols (QT), the reader sends a
prefix and tags having the ID matching the prefix an-
swer. If there is a collision, the reader queries for one
bit longer prefix until no collision occurs. Once a tag
is identified, the reader starts a new round of queries
with another prefix. We implemented and tested this
basic version as described in Table 5. In [2], many
improvements of QT protocol have been presented,
for reducing its running time. Among them, the most
important is the one that we call Query Tree Im-
proved (QTI) [2], that avoids the queries that cer-
tainly will produce collisions. Assume that a query
of prefix “q” results in a collision and the query of
prefix “q0,” results in a empty slot. Then, the reader
skips the query prefix “q1” and performs directly
the queries “q10” and “q11.”

We implemented and tested this improved ver-
sion of Query Tree protocol as described in Table 6,
where only reader procedure is reported, since the
tag procedure is the same as in QT protocol (see
Table 5).

Another improvement proposed in [2], is the so
called “aggressive advancement” (QTAA, for short),
in which every internal node of the query tree has
four sons: After the query of prefix “q” resulting
in a collision, the reader does the following queries
“q00,” “q01,” “q10,” “q11.” We implemented and
tested also this version, as defined in Table 7.

Since tags do not need additional memory except
the ID, query tree protocols have the advantage to
be memoryless and for this they require low func-
tional and less expensive tags. However, since they
use prefixes, their performance is sensitive to the dis-
tribution of tag IDs which a reader have to identify.
In Section 5, we show how ID’s distribution affects
the behaviour of query tree protocols.

3. Tree Slotted Aloha protocol

In this section, we present our proposal for tag
identification which we call Tree Slotted Aloha
(TSA) protocol. As we shall see in the next section,
it performs better than the known protocols.

3.1. The basic idea

The basic idea of our TSA identification proto-
col, is to solve a collision as soon as it happens. In
Framed Slotted Aloha protocols, two tags not col-

liding in a frame, can collide in the next frame. In
our approach, the above situation is avoided, since
when a collision occurs in a slot, only the tags gen-
erating such collision are queried in the next read
cycle. As we shall see in the next section, this results
in a better performance.

3.2. The protocol

We consider an RFID system consisting of a
reader and a set of n passive tags. Each tag t ∈
{0, ..., n − 1} has a unique ID string tid ∈ {0, 1}k,
where k is the length of the ID strings. We assume
that the reader does not know the exact number
n of tags present in its communication range, but
it can estimate it. For instance, a human operator
can have a rough idea of the number of tags to
be identified. Alternatively, it can be derived from
the history of previous identification processes, by
using statistical tools. Such an estimation l0 is the
starting frame size.

The protocol is performed in several tag reading
cycles. A reading cycle consists of two steps: in the
first step, the reader broadcasts a request for data by
specifying the frame size li, in the second step each
tag in the communication range of the reader, se-
lects its response slot by generating a random num-
ber in the range [1, ..., li] and transmits its ID in
such a slot. The reader identifies a tag when it re-
ceives the tag ID without collisions. The behavior of
the protocol follows a tree structure. The root node
is the frame in the first reading cycle. Let l0 be the
size of such a frame, Ni being the number of tags
transmitting their ID in slot i, with i ≤ l0, Ni ≥ 0,
∑

i Ni = n. If Ni ≥ 2, there is a collision in slot i.
At the end of each reading cycle, if the reader re-
alizes that collisions occurred, it starts a new read-
ing cycle for each slot where there was a collision.
This corresponds to adding new nodes in the tree,
as sons of the node representing the above reading
cycle, one son for each slot with collisions. The size
of such new cycles is defined as described later, and
the reader broadcasts such a size, together with the
slot number of the previous frame (to address only
the tags colliding in that slot), and the level of the
tree. In each reading cycle, tags store the generated
random number (i.e. the slot in which they trans-
mitted their ID) and increase by one their own tree
level counter, so that they know when are involved in
later communications. Obviously, in each new read-
ing cycle, collisions can occur. Each time a collision

5

ACCEPTED MANUSCRIPT

 Table 8
Reader and Tag procedures in TSA.

Reader procedure:

1. level = 0;
2. l0 = NEXP0

;
3. s = −1;
4. collisionResolution(level,s,l0).

collisionResolution(level,slot,li):
5. broadcast(level, slot, li);
6. for s = 1 to li do

7. receiveAnswers;
8. update c0, c1 and ck;
9. if (channelStatus[s]= 0) then c0 + +;
10. if (channelStatus[s]> 1) then ck + +;
11. if (channelStatus[s]= 1) then

12. tagIdentification();
13. c1 + +;
14.NEXPi

= ChebyshevEstimation(li);

15.li+1 =

⌊

NEXPi
−c1

ck

⌋

;

16.for s = 1 to li do

17. if (channelStatus[s]> 1) then

collisionResolution(level + 1,s,li+1);

Tag procedure:

18. identified = false;

19. myLevel = 0;
20. previousV alue = −1;
21. while (not identified) do

22. receive(level, slot, li);
23. if ((level = myLevel) and (previousV alue = slot))

then

24. s = randomNumber mod li;
25. myLevel + +;
26. previousV alue = s;
27. sendAnswer in slot s;
28. if receivedIDrequest then send myID;
29. else if (myLevel > level) then identified = true;

is sensed, a new node (son of the node representing
the previous cycle) is inserted in the tree, and an-
other reading cycle is started. The whole process is
recursively repeated until no collisions are detected
in a cycle. The reader and tags procedures are shown
in Table 8, and an example of protocol execution is
shown in Figure 1.

Like in Framed Slotted Aloha, TSA is not mem-
oryless, since each tag has to remember the ran-
dom number generated in the previous cycle, and
the level of the tree, as said before. Notice that
the amount of memory needed by each tag is very
small, namely few bits to remember the tree level
and the slot number of the previous reading cycle. In
Section 5, we show that TSA performs better than
AFSA in terms of number of slots needed to identify

� � � �� ������ � ����
level=0 � � � � � � �� � � � � �
level=1 �� � ��� � � ����� �� level=2

level=3

Fig. 1. Example of TSA protocol execution

all tags. As we shall see, our experimental outcomes
are confirmed by the analytical result presented in
[13] about the average size of a random hash tree,
which is asymptotic to 2.3020238n, where n is the
number of uniformly distributed random entries to
be placed in the tree. The tree built by TSA pro-
tocol is identical to such random hash tree, if we
would know the exact number of tags. So, if this
is the case, we can assert that the average number
of slots needed to identify n tags is 2.3020238n. In
other words, if we define the system efficiency as the
ratio between the number of tags and the number
of slots needed to identify them like in [7], it results
that the average system efficiency of TSA protocol
is given by n/2.3020238n = 0.4344. In the same pa-
per [13], the average height of a random hash tree
is also shown. Such an height is proved to grow as
lg2 n, in probability, with uniform distribution. So,
in TSA the amount of bits needed to represent the
tree level is equal to lg2 lg2 n. Such amount is actu-
ally very small: for instance, up to n = 65536, only
lg2 lg2 216 = lg2 16 = 4 bits are needed to repre-
sent the level of TSA tree (in addition to that ones
needed to store the slot number).

3.3. The estimation function

The size of the frame in each reading cycle is com-
puted by using a particular estimation function, sim-
ilar to that used in [6], and defined as follows. At
each reading cycle, we obtain a triple < c0, c1, ck >
quantifying the empty slots, slots in which exactly
one tag transmitted its ID, and slots with collisions,
respectively. We use Chebyshev’s inequality assert-
ing that the outcome of a random experiment involv-
ing a random variable X , is most likely somewhere
near the expected value of X . We use this property
to compute the distance between the effective result
< c0, c1, ck > and the expected result < a0, a1, ak >

6

ACCEPTED MANUSCRIPT

 of a reading cycle. By minimizing such a distance,
defined in equation (1), it is possible to estimate the
number n of tags transmitting in such a cycle.

ǫ(N, c0, c1, ck) = min
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

aN,n
0

aN,n
1

aN,n
≥2

−

c0

c1

ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1)

The triple < a0, a1, ak > entries indicate the ex-
pected number of empty slots, slots filled with one
tag, and slots with collision, respectively. N and n
denote the frame size in the reading cycle and the
number of tags, respectively. When the reader uses
a frame size equal to N , and the number of respond-
ing tags is n, the expected value of the number of
slots with r responding tags is given by

aN,n
r = N ×

(

n

r

)(

1

N

)r (

1 −
1

N

)n−r

.

We assume that the ǫ value in equation (1) is
searched by varying n in the range [c1+2ck, ..., 2(c1+
2ck)], where c1 +2ck represents the minimum possi-
ble value of n. That is, since c1 tags have been iden-
tified, and if there are ck collisions, at least 2ck tags
collided [6]. We set the upper bound of the range
equal to 2(c1 +2ck), since by simulation we saw that
there is no further accuracy in the estimation, if we
set it to higher values. Details about this simula-
tions outcome are not reported here since they are
marginal for this paper. Our tag estimation function
computes the frame size li+1 of reading cycle i+1 as

li+1 =

⌊

ni − ci
1

ci
k

⌋

where ni, ci
1 and ci

k are the estimation, the number
of identified tags, and the number of slots with col-
lisions related to reading cycle i, respectively. In our
tag estimation function, we assume that if ni is the
number of transmitting tags in reading cycle i, the
number of tags transmitting in reading cycle i + 1
will be that one, minus the number of identified tags
(ci

1) in reading cycle i. Besides, since we assume uni-
form distribution of collisions, the number of unread
tags in cycle i + 1 will be the estimated number of
colliding tags in cycle i divided by the number of
slots with collision ci

k. This function is applied for
each reading cycle. Remember that cycle i + 1 cor-
responds to one of the slots of cycle i in which a col-
lision occurred (in terms of tree structure, it is one
sons of node representing cycle i), and so it must be
repeated ci

k times.

3.4. Complexity

Tag identification protocols are usually compared
according to two main performance metrics: time
complexity and bit complexity. The former is the
number of slots issued by the reader for identifying
all tags. The latter is the amount of transmitted bits
by the reader and/or by the tags, and represents the
energy spent in communication. We analyze more
in depth the time complexity, since this is the most
used metric. Besides, as we shall show in the next
section, by reducing the total number of collisions,
our protocol reduces also the bit complexity (with
respect to the Framed Slotted Aloha protocol). No-
tice that, since in TSA, tags store the number of the
last slot in which they transmitted, it is possible to
reduce the bit complexity by changing the protocol
in this way: instead of always sending the whole se-
rial ID number, tags can answer the reader by send-
ing only one bit in each (micro)slot, and later the
reader can query only the not colliding tags by ask-
ing for their ID. This holds if we assume that the
reader can detect collisions by signal strength in-
spection.

4. Simulations Setting

We evaluated the behavior of the presented pro-
tocols by simulation. We implemented and tested
also another version of TSA protocol, that we call
Limited TSA (LTSA). It is equal to TSA except
for a frame size adjustement, that is a power of 2.
This may simplify the tag hardware. In particular,
after computing the expected number of tags trans-
mitting in the previous level reading cycle NEXPi

,
LTSA adjusts the frame size li+1 according to the
values given in Table 4.

We divided the simulation experiments in three
parts. In the first one, we compared the performance
of the protocols under the assumption of initial per-
fect knowledge of the number of tags to be identi-
fied. The purpose of this is to have a fair compari-
son of the protocols, since query tree based ones are
not affected by the estimation (Figures 2-8). In the
second part, we evaluated the variation of perfor-
mance of TSA and AFSA with respect to the error
in the initial estimation (Figures 9-12.) The third
part was set up to get the performance of query tree
based protocols when tag IDs are not uniformly dis-
tributed (Figures 13 and 14.)

7

ACCEPTED MANUSCRIPT

 Table 9
Computation of simulation metrics in Scenario1

BS DFSA AFSA TSA/LTSA QT/QTI/QTAA

T +1 in Step 3. +li in Step 4. +li in Step 4. +li in Step 5. +1 in Step 5.

R +1 in Step 3. +1 in Step 4. +1 in Step 4. +1 in Step 5. +1 in Step 5.

+1 in Step 8. +1 in Step 8.

Tbits +BITSID in Step 14. +BITSID in Step 18. +BITSID in Step 22. +BITSID in Step 27. +BITSID - offset in Step
16.

Rbits +8 in Step 3. +14 in Step 4. +19 in Step 4. +32 in Step 5. +prefix.length

+8 in Step 5. +8 in Step 8. +8 in Step 8. in Step 5.

Table 10
Computation of simulation metrics in Scenario2

BS DFSA AFSA TSA/LTSA QT/QTI/QTAA

T +1 in Step 3. +li in Step 4. +li in Step 4. +li in Step 5. +1 in Step 5.

R +1 in Step 3. +1 in Step 4. +1 in Step 4. +1 in Step 5. +1 in Step 5.

+1 in Step 6. +1 in Step 8. +1 in Step 8. +1 in Step 12. +1 in Step 7.

Tbits +8 in Step 14. +8 in Step 18. +8 in Step 22. +8 in Step 27. +8 in Step 16.

+BITSIDin Step 22. +BITSID in Step 20. +BITSID in Step 24. +BITSID in Step 28. +BITSID in Step 17.

Rbits +8 in Step 3. +14 in Step 4. +19 in Step 4. +32 in Step 5. +prefix.length in Step 5.

+8 in Step 5. +8 in Step 8. +8 in Step 8. +8 in Step 12. +8 in Step 7.

We consider two different system assumptions, re-
sulting in the following scenarios:
– Scenario1: Tags transmit always their ID in BS,

DFSA, AFSA, TSA and LTSA, while in QT, QTI
and QTAA they transmit the suffix of their ID
after receiving a given prefix. When no collision
occurs, in BS, DFSA and AFSA, the reader iden-
tifies the tag and sends a message for stopping it;
in TSA, LTSA, QT, QTI and QTAA, instead, this
message is not necessary since tags realize their
identification by the information included in fol-
lowing requests. In particular, in TSA and LTSA,
a tag realizes its identification after receiving a
query with a level value smaller than its own. In
QT, QTI and QTAA, an identified tag never re-
ceives a prefix matching its ID. This scenario al-
lows lower numbers of reader queries, but greater
amounts of transmitted bits from tags.

– Scenario2: Tags transmit a prefixed byte of data,
a kind of “Hello” packet. When no collision occurs,
the reader issues a further query for getting the
tag ID. This results in a greater numbers of reader
queries, but in lower amounts of transmitted bits
from tags.
In Scenario1, sendAnswer in protocol descrip-

tion of Tables 1 2, 3, 5, 6, 7 and 8 is equal to
sendMyID (at most BITSID bits transmitted),

while in Scenario2 it is equal to sendHelloPacket
(8 bits transmitted). When no collision occurs, the
tagIdentification() procedure consists of sending
an acknowledge message (8 bits transmitted) in
Scenario1 (only in BS, DFSA, AFSA), while in
Scenario2 it consists of asking for the tag ID. No-
tice that, in this last case, we assumed that a time
slot consists of two parts: the former for sending the
answer, and the latter for eventual ID transmission.

We evaluated the following metrics:
(i) The number of transmission slots T ; we will

show the results for this metrics in terms of
system efficiency, given as S = N/T .

(ii) The number of reader queries R.
(iii) The number of bits transmitted by tags Tbits.
(iv) The number of bits transmitted by the reader

Rbits.
These values are computed for both scenarios as

described in Tables 9 and 10 respectively. In partic-
ular, T is increased by li in Slotted Aloha protocols,
and by 1 in query tree protocols. R is increased by
1 each time the reader transmits something. Tbits is
increased by BITSID in Scenario1, while in Sce-

nario2 is increased by 8 each time a tag answers a
query, and once by BITSID for identification. Rbits

is increased by different amounts according to the
transmitted data. We assumed the following values:

8

ACCEPTED MANUSCRIPT

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 100 200 300 400 500 600 700 800 900 1000

S

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 2. S vs N , with NEXP0
= N , BITSID = 48 and

uniformly distributed IDs.

14 bits for representing the frame length, 5 bits for
the group number in AFSA, 4 bits for the tree level
in TSA/LTSA, 8 bits for the IDrequest or the ac-
knowledge message.

In the simulation experiments, we tuned the fol-
lowing parameters:
– The number of tags to be identified N : we tuned

this parameter from 20 to 1000, by increasing it
by 20 in each trial.

– The expected number of tags to be identified
NEXP0

: This value is used by Slotted Aloha
based protocols for setting the initial frame size;
we set this parameter to 2, 5%, 10%, 25%, 50%,
80%, 90% for under-estimation, and to 110%,
120%, 150%, 200%, 300%, 400%, 500% for over-
estimation.

– The length of tags ID BITSID: We assigned to
this parameter the values {48, 96, 128}.

– The type of ID distribution: The uniform one,
and another distribution where groups of tag ID’s
are consecutive. In this last case, the maximum
group size g was set equal to 10%, 20% or 50% of
the number of tags N to be identified, and it was
used in the ID generation in the following way. To-
gether with the smallest ID of a group, which was
uniformly generated, the size was set by gener-
ating another integer random number uniformly
distributed in the range [0..g−1]. The group defi-
nition procedure checks also possible overlappings
with already generated groups. In such a case, an-
other smallest ID for a group was generated, until
no overlapping was achieved.
Finally, each test ran 1000 times, and in the fol-

lowing section we show the obtained results.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 100 200 300 400 500 600 700 800 900 1000

R
bi

ts

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 3. Rbits vs N in Scenario1, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 100 200 300 400 500 600 700 800 900 1000

R
bi

ts

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 4. Rbits vs N in Scenario2, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

5. Simulations results

We show here the results of the simulations of the
protocols described above.

From Figure 2 we can see that the best perform-
ing protocols are QTI and TSA, in terms of total
time needed to identify all tags, when IDs are uni-
formly distributed, and the ID length is 48 bits. For
such a case, in Figures 3, 4, 5, 6, 7 and 8 the values
of Rbits, Tbits and R are shown. Tbits represents the
average number of bits transmitted by each tag. We
observe that in Scenario2 the numbers of transmit-
ted bits by tags, Tbits, are quite small with respect
to the same ones in Scenario1. On the contrary, the
number of reader queries R (and of Rbits) is greater
in Scenario2. Since in RFID systems it is more im-
portant to save energy in tags rather than in read-
ers, then we can conclude that Scenario2 is more
appropriate in this kind of systems.

9

ACCEPTED MANUSCRIPT

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800 900 1000

T
bi

ts

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 5. Tbits vs N in Scenario1, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

T
bi

ts

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 6. Tbits vs N in Scenario2, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

In Figures 9 and 10 we show the performance
of TSA and AFSA with under-estimation; while in
Figures 11 and 12 we show the same with over-
estimation. The reason why TSA performs better
when the initial frame length (equal to NEXP0

) is
a little smaller than the exact value of N , is the re-
duced number of empty slots. In fact, TSA is very
efficient in solving the collisions, and so it is prefer-
able to have a small number of collisions instead of
empty slots. On the converse, AFSA is not efficient
in collision solving, since it puts all the collided tags
in one group, and so in later read cycles we can have
collisions among tags that did not collide earlier.

In Figures 13 and 14 we evaluated the behavior
of QT, QTI and QTAA protocols when the tag IDs
are not uniformly distributed. From Figure 13 we
deduce that the system efficiency increases by aug-
menting the maximum group size g. So, with small
values of g, IDs are distributed in many small groups

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600 700 800 900 1000

R

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 7. R vs N in Scenario1, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 200 300 400 500 600 700 800 900 1000

R

N

TSA
LTSA
AFSA
DFSA

QT
QTI

QTAA
BS

Fig. 8. R vs N in Scenario2, with NEXP0
= N ,

BITSID = 48 and uniformly distributed IDs.

of consecutive IDs, and the reader is forced to is-
sue many queries, since IDs of tags belonging to the
same group are different only at the last bits. From
Figure 14, we notice that this drawback degrades
the performance when the ID length increases.

We conclude that in both scenarios, Tree Slotted
Aloha protocol outperforms all the protocols pre-
sented in literature.

6. Conclusion

In this paper, we investigated the tag identifica-
tion problem in RFID systems. Firstly, we surveyed
the existing proposals for this problem. Then, we
proposed a new probabilistic protocol based on a
modified version of Slotted Aloha protocol, called
Tree Slotted Aloha, to reduce the number of trans-
mission collisions. All tags select a slot to transmit
their ID by generating a random number. If there is

10

ACCEPTED MANUSCRIPT

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 100 200 300 400 500 600 700 800 900 1000

S

N

Nexp0=2
Nexp0=0.05N

Nexp0=0.1N
Nexp0=0.25N

Nexp0=0.5N
Nexp0=0.8N
Nexp0=0.9N

Nexp0=N

Fig. 9. TSA vs NEXP0
, with under-estimation,

BITSID = 48 and uniformly distributed IDs.

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 100 200 300 400 500 600 700 800 900 1000

S

N

Nexp0=2
Nexp0=0.05N

Nexp0=0.1N
Nexp0=0.25N

Nexp0=0.5N
Nexp0=0.8N
Nexp0=0.9N

Nexp0=N

Fig. 10. AFSA vs NEXP0
, with under-estimation,

BITSID = 48 and uniformly distributed IDs.

a collision in a slot, the reader broadcasts the next
identification request only to tags which collided in
that slot.

Then, we presented the results of an intensive sim-
ulation experiment performed with the aim of thor-
oughly comparing the performance of the best RFID
tag identification protocols. We first described in
depth a simulation experiment set up to compare
the performance of the above protocols, under sev-
eral different metrics. Such a performance compari-
son is very useful when designing an RFID system,
and, in our knowledge, was never carried out in the
past. Furthermore, it is very useful for pointing out
the best performing features of RFID tag identifica-
tion protocols, and so for designing new and better
protocols. According to the simulation experiment,
our protocol Tree Slotted Aloha, outperforms all the
other protocols proposed so far.

All the known protocols exhibit an overall system

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

 0.52

 100 200 300 400 500 600 700 800 900 1000

S

N

Nexp0=1.1N
Nexp0=1.2N
Nexp0=1.5N

Nexp0=2N
Nexp0=3N
Nexp0=4N
Nexp0=5N

Nexp0=N

Fig. 11. TSA vs NEXP0
, with over-estimation, BITSID = 48

and uniformly distributed IDs.

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

 100 200 300 400 500 600 700 800 900 1000

S

N

Nexp0=1.1N
Nexp0=1.2N
Nexp0=1.5N

Nexp0=2N
Nexp0=3N
Nexp0=4N
Nexp0=5N

Nexp0=N

Fig. 12. AFSA vs NEXP0
, with over-estimation,

BITSID = 48 and uniformly distributed IDs.

efficiency smaller than 50%. This is obviously not
satisfactory, and so it would be very important to
overcome such a performance limit.

Besides, uniform ID’s distribution have always
been assumed in the past. It would be very inter-
esting to evaluate the performance of the protocols
when such an assumption does not hold, and other
distributions are more proper.

References

[1] M. L. Molle, G. C. Polyzos, Conflict resolution
algorithms and their performance analysis, Technical
report (1993).

[2] C. Law, K. Lee, K.-Y. Siu, Efficient memoryless protocol
for tag identification (extended abstract), in: Proc.
4th International workshop on Discrete Algorithms and
methods for mobile computing and communications
(DIALM ’00), New York, NY, USA, 2000, pp. 75–84.

11

ACCEPTED MANUSCRIPT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 200 300 400 500 600 700 800 900 1000

S

N

QT(g=10%)
QTI(g=10%)

QTAA(g=10%)
QT(g=20%)
QTI(g=20%)

QTAA(g=20%)
QT(g=50%)
QTI(g=50%)

QTAA(g=50%)

Fig. 13. S vs N , with BITSID = 96 and IDs distributed in
groups.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 50 100 150 200 250 300 350 400 450 500

S

N

QT(Bid=48)
QTI(Bid=48)

QTAA(Bid=48)
QT(Bid=96)
QTI(Bid=96)

QTAA(Bid=96)
QT(Bid=128)
QTI(Bid=128)

QTAA(Bid=128)

Fig. 14. S vs N , IDs distributed in groups with g = 10%,
and different values for BID .

[3] A. Micic, A. Nayak, D. Simplot-Ryl, I. Stojmenovic,
A hybrid randomized protocol for RFID tag
identification, in: First IEEE International Workshop
on Next Generation Wireless Networks (WoNGeN ’05),
December 18-21, 2005.

[4] J. Myung, W. Lee, An adaptive memoryless tag anti-
collision protocol for RFID networks, poster paper
ats of 24th IEEE Annual Conference on Computer
Communications (INFOCOM 2005), Miami, Florida,
2005.

[5] F. Zhou, C. Chen, D. Jin, C. Huang, H. Min, Evaluating
and optimizing power consumption of anti-collision
protocols for applications in RFID systems, in: Proc.
of International Symposium on Low Power Electronics
and Design 2004 (ISLPED ’04), New York, NY, USA,
2004, pp. 357–362.

[6] H. Vogt, Efficient object identification with passive
RFID tags, in: Proceedings of International Conference
on Pervasive Computing 2002, 2002, pp. 98–113.

[7] S.-R. Lee, S.-D. Joo, C.-W. Lee, An enhanced
dynamic framed slotted aloha algorithm for RFID tag
identification, in: Proceedings of Mobiquitous 2005,
2005, pp. 166–172.

[8] D. R. Hush, C. Wood, Analysis of tree algorithms for
rfid arbitration, in: First IEEE International Workshop
on Next Generation Wireless Networks (WoNGeN ’05),
August 1998, p. 107.

[9] F. C. Schoute, Dynamic frame length aloha, IEEE
Transactions on Communications COM-31 (4) (1983)

565–568.
[10] K. Finkenzeller, RFID Handbook: Fundamentals

and Applications in Contactless Smart Cards and
Identification, 2nd Edition, John Wiley & Sons, 2003.

[11] M. A.-I. Center, Draft protocol specification for a
900 MHz class 0 radio frequency identification tag,
http://www.epcglobalinc.org (February, 23rd, 2003).

[12] J. I. Capetanakis, Tree algorithms for packet broadcast
channels, IEEE Transactions on Information Theory IT-
25 (1979) 505–515.

[13] L. Devroye, The height and size of random hash trees
and random pebbled hash trees, SIAM Journal on
Computing 28 (4) (1999) 1215–1224.

12

