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PREDICATES FOR STATE CHANGES
VS. PROCESSES FOR EVENT PATTERNS

TOMMASO BOLOGNESI

Abstract. The two informal ‘mental landscapes’ that provide the itivei substratum for state-
oriented and event-oriented formal specifications areudsed, and abstractly characterised as net-
works of constraints. The structuring facilities offeregl the two approaches are contrasted. A
technique is introduced for expanding an event-orientetifipation consisting of a fixed pattern
of interacting processes into a state-oriented specificdtirmed by a complex ‘action predicate’
manipulating a set of state variables. Although by thisdfammation the event and process con-
cepts can be absorbed into the state-based conceptuaWoakneve discuss some good reasons
for regarding these concepts as primitive expressive taald for structuring specifications around
them.

Keywords. D.2.1 Requirements/Specifications, D.2.2 Desigh TootsBechniques — Formal
methods, Process algebra, ASM, B, CSP, High-level Petsi h@TOS, TLA.

1. Introduction

Formal approaches to the behavioural specification of cexpgloncurrent, reac-
tive, distributed systems are often partitioned into skateed and event-based. In
a state-based approach (e.g. Abstract State Machines,[B, [3], TLA [4, 5],
or Z [6]) the emphasis is on the structure of the global systéate. One first
defines an abstract model for that structure, in terms oftaats variables, sets,
relations, functions and, possibly, other mathematicg@aib, and then defines its
discrete perturbations, calleseps operations actions or events Each event is
described individually, and independently from other éseby identifying the
conditions that enable its occurrence (pre-conditionsl)tae effects on the state
(post-conditions): distinct chunks of formal specificatiare used for describing
distinct types of state change.
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In an event-based approach (e.g. CSP [7], CCS [8], or LOTQSJP the em-
phasis is shifted to structures of events in time. One fiesttifies the set of pos-
sible events, usually starting by those that are observélteagystem boundary,
and then specifies the relations among them (e.g. sequesigsglity, indepen-
dence, mutual exclusion). Each chunk of formal specificatiescribes a pattern
involving, typically, several events.

The state-based approach is perhaps more popular, and anaitiaf to many
system and software engineers, although event-based lmgd&chniques are
being increasingly used, especially in the early phasesfoiiare development:
examples are UML use case and interaction diagrams, andaliesSequence
Charts.

In [11] Abadi and Lamport write:

The popular approaches to specification are based on ettites ©r actions. In a
state-based approach, an execution of a system is viewedsaguance of states,
where a state is an assignment of values to some set of compora action-based
approach views an execution as a sequence of actions. Tlifeserd approaches
are, in some sense, equivalent. An action can be modeledtateachange, and a
state can be modeled as an equivalence class of sequenag®n$.aHowever, the

two approaches have traditionally taken very differentrfar directions. State-based
approaches are often rooted in logic, a specification befiognaula in some logical

system. Action-based approaches have tended to use glgamecification being an
object that is manipulated algebraically. Milner's CCSlis tlassic example of an

algebraic formalism.

The fact that the two approaches are in some sense equivilestnot mean
that the choice of one or the other, for practical system Idpweent, is devoid
of any consequence. Conversely, the fact that the two aplpesahave histori-
cally taken different formal directions does not mean thaytare based on two
radically different ways of intuitively conceiving systebehaviours. Unfortu-
nately, the difference between logical and algebraic fatinds tends to obscure
the possible bridges between state-based and event-baséne thinking, and
has favoured the spreading of somewhat rigid, if not dogerettitudes. In our
opinion, the area of formal specification of software andihare systems suffers
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from this circumstance, since engineers and developenmsoangrovided with the
most transparent advice for making effective choices anfiomgal languages.

In this paper we araot concerned with comparing the two specification
paradigms with respect to:

e theoretical expressive power (of course, any reasonablealdanguage in
either family can simulate Turing machines);

e formal semantic foundations;

e support to formal verification techniques.

On the contrary, we are interested in investigating and @simg them relative to:

¢ the type of informal thinking, or brainstorming, that prdes the formalisa-
tion phase;

e the structuring facilities and expressive flexibility thiaey offer during the
formalisation phase.

For our purposes, we say that a formal specification langhagehighexpres-
sive flexibilitywhen it allows one to reduce the gap between informal anddbrm
descriptions: it should be possible to structure the forspacification so that
it closely reflects the informal landscape in the specifieriad, which may in-
volve pictorial elements such as box diagrams, and diftderels of granular-
ity. A highly flexible formal language shall offer constradhat directly corre-
spond to the most typical behavioural scenarios found inptexn concurrent,
reactive, distributed systems. For example, distributediesns are conceived in
terms of complex components that interact with one anothéméth their users;
correspondingly, a flexible formal specification languadallsoffer constructs
for individually specifying these components, and for sfyétg their interaction
patterns. Communication protocols are often conceivedrim$ of complex be-
havioural phases organised in sequence, @agnnection SetypData Transfer
Connection Releas@gain, a flexible language shall offer formal constructs fo
individually describing those phases, and for readily egping their sequencing.
There exists of course a trade-off between expreskxaility and expressive
generality Highly specialised constructs support flexible specifcatbut for a
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relatively narrow class of systems, while more fundameantdigeneric constructs
support less flexible specification, but enjoy wider ap/lility.

It is our opinion that research in formal specification laages has often paid
more attention to analytical power than to expressive flitsipprobably because
these languages have been mainly introduced for overcaimérigmitations of the
existing informal or semi-formal specification languagekich were flexible and
intuitive enough, but not suited to automated analysishispaper we disregard
this trend, and concentrate purely gpecificationflexibility, not on verification

In principle, we would like to refer to the expressive featurof the state-
oriented and event-oriented specificatimaradigms without referring to any ac-
tual formal language. However, for fixing ideas, we shallrbara few funda-
mental constructs and notations from existing languagegpaiticular from the
state-oriented, logic-based language TLA (or TLA+) [4, &)d from the event-
oriented, process algebraic language LOTOS [9, 10].

In Section 2 we consider the generic expressive tools andtating facilities
that come with state-based thinking, as embodied by a nuofheidely known
formal languages based on logics, and we introduce a gediaigdam for pic-
torially representing the underlying ‘mental landscapEbr substantiating our
discussion we use, as an example, a TLA+ specification ofiantaof a multi-
process ring buffer discussed in [12].

In Section 3 we consider the generic expressive tools andtating facili-
ties that come with event-oriented thinking, as embodiegrogess algebras and
process-oriented, concurrent languages. Again, we int®@ general diagram
for representing event-based specifications, and use the, sing buffer exam-
ple. The idea of presenting both state-oriented and ewsstted specifications
as networks of constraints is presented already in [13]clvhiso introduces a
unifying framework for classifying formal specificationniguages based on the
types of constraint that they support.

In Section 4 we show that the gap between the two specificgpi@madigms
is not too large: a three-step expansion technique is inted, that transforms
the event-oriented, LOTOS specification of the ring buffeg the state-oriented,
TLA+ specification. This transformation from processes redirates exploits a

SIU 2004



Predicates for state changes vs. processes for eventnzatter 89

O State variable (read/write)
Write-only variable

O Constant (read-only variable)

C> Active constraint

C> Passive constraint (invariant)

Figure 2.1: The ‘state tapestry’

representation of parallel process compositions in Sumr@ddrts (SOP) form,
that was first introduced in [14]. In light of the introducedrisformation, we
discuss the possible advantages of structuring systerasmstof processes rather
than action predicates.

In Section 5 we summarize our results, provide some conwuadimarks, and
identify some topics for further work.

2. State-oriented formal specification

In this section we first summarize the fundamental elemehtstate-oriented
thinking, by means of a generic diagram that we call ‘stapestry’. Then we
list some existing, widely known state-oriented formalgaages based on logics,
and briefly relate them to the elements of the diagram. Rived introduce the
state-oriented specification of the ring buffer for ill@ging the typical structuring
facilities offered by this paradigm.

2.1. The state tapestry

Figure 2.1 is an attempt to abstractly illustrate the funelaial elements of the
mental picture one is likely to have in mind when starting ecéfication using a
state-oriented formalism. In this early system conceppioase, one is concerned
with identifying:

e The set of usefutonstantqthe fat circles).
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e The state variableqthe normal and dotted circles) that collectively model

the global system state: a global state is an assignmentiwds/éo these
variables. Their types are of varying complexity: one einalay represent
an integer, another a whole data base. The state variadeh@rght of
as preserving their values in time, until some event hapfsts(instanta-
neously) changes them: state variables evolve in discreps.sThe reasons
for singling out write-only variables (the dotted circlesill be clear later,
when relating state-oriented and event-oriented models.

The ‘logics that governs the evolution of the global state. This istru
tured as a set afonstraints(the hexagons), each insisting on some subset of
state variables. These subsets need not be disjoint, aaddrghared vari-
ables are profitably exploited by this approach. We use timerie term
‘constraint’ for neutrality with respect to any actual fahspecification
language. It is quite natural to distinguish between pasaid active con-
straints:

— apassive constraintalled ‘invariant’ in most formal languages, is used
to express a relation among some of the variables that migsirhany
reachable global state;

— anactive constrainis meant to describe a step in the system behaviour.
A step is a pair of successive global states.

When we conceive a state tapestry, what we really intend gorit is the pos-

sibly infinite set of possibly infinite sequences of stepg tha tapestry can go
through, starting from some initial state. In drawing thésgrams, we omit the
representation of the initial states (they must satisfynathriants); in the sequel,
for clarity, we shall also omit the constants.

In synthesis, the state-oriented mental picture is one ebaark of constraints
that establishes both some static properties of the systs) and some rules for
its step-by-step evolution.
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2.2. Formal languages

The concepts of invariant and active constraint are offarader different names,
and with some variants, by several formal specification laggs and models.
Our purpose here is not to give a detailed account and cosagpadf these for-
malisms, but only to help the reader in relating the absitantepts of the state
tapestry with some concrete, familiar language constructs

In Predicate/Transition nets [15, 16] the state is repteseby the distribution
of value-carrying tokens over a setglfces and is modified by the firing dfan-
sitions Transitions are equipped with predicates, and arcs ctinggglaces and
transitions are labelled by multi-sets of terms. A trapnsitcan be fired when it
is possible to find an assignment for the free variables iprigglicate and in the
neighbouring terms such that the predicate is satisfiedf@tetms on the input
arcs denote values of tokens actually available in the sparding input places.
If the transition is fired, these tokens are removed fronr thigices, and new to-
kens are added to the output places, whose values are defittiee terms on the
corresponding output arcs, evaluated under that samenassigg. A transition
is an active constraint that insists on the state varialdpsesented by its neigh-
bouring places. Transition are fired one at a time, thus t&fgan interleaving
constraint policy.

ASM (abstract state machines) [1, 2] offetesof form ‘if condthenupdates,
wherecondis a boolean condition on the state, amutatesis a set of parallel
assignments. The state is described by functions, and ateidthe assignment
of a new value to a function at one point. An ASM rule can be seean active
constraint that insists on the state components accesseddandupdates Syn-
chronous parallelism is the default composition operaioh$M: when writing
a list of rules, one implies thatl enabled rules are executed simultaneously. An
enabled rule is one whosendis satisfied in the current state. Thus, ASM adopts
a synchronous constraint policy.

B [3] offers specific clauses for introducing state variabfer initialising them,
and for defining invariants and operatior@perationsare active constraints, en-
riched by the explicit identification of possible input anatput parameters; they
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involve a pre-condition and a post-condition (the operatlmody’), which is a
set of parallel assignments. Operations may occur one ateg iccording to an
interleaving policy.

Z [6], from which B has borrowed several ideas, describete sthanges by
means ofoperation schemataAssignments are expressed in Z by using the so
called primed decoration X’ denotes the new value assigned to variabla a
step. Z has special decorations for input and output vasablariablex? and
y! occurring in an operation schema are not part of the systata,out are only
used, respectively, for accepting input from, and offermgput to the user of
the operation. The special symb@’‘is used for expressing the fact that some
variables should preserve their value through a step.

In TLA [4, 5] active constraints are representeddmtions these are logical
formulae that must be satisfied by every step. As in Z, thesaulae involve
primed and unprimed variables, and one has to explicitlptiiethe components
of the state that should not vary through a step. Complerrgttan be defined
by composing other actions by logical operators. Most Bibicin TLA+ [5] one
defines a global action, callédiext as thedisjunctionof other actions, following
an interleaving policy.

Of course we have only mentioned the constructs that fornnantan set of
fundamental, state-oriented expressive tools; everydblamguage offers further,
specific constructs, that we are not interested in discggséne.

In order to introduce state-oriented specification exasyple need some no-
tation for expressing active constraints. We borrow sonmesyand terminology
from TLA+, and model an active constraint by antion predicate, involving
primed and unprimed variables (still keeping in mind thé& th a state-based, not
an action-based formalism). The whole, state-orientedigation shall be cen-
tred on an action predicate, which must be satisfied by ewepyis a system run
(TLA uses the ‘box’ temporal operator to this purpose, aomiula TNext’,
we shall implicitly assume that the topmost action predidata specification is
prefixed by this operator).
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buf[0]
in bufi1] out
bufIN-1]

Figure 2.2: Aring buffer

Figure 2.3: State tapestry for the ring buffer

2.3. State-oriented ring buffer

A FIFO ring buffer of capacit\ is pictured in Figure 2.2, which we borrow from
[12], together with the informal description of the systeehbviour:

Theith input value received on chanrialis stored inbuf[i-1 mod N} until it is sent
on channebut Input and output may occur concurrently, but input is eedldnly

when the buffer is not full, and output is enabled only whenlhffer is not empty.

A state tapestry for the ring buffer is shown in Figure 2.3e Tépestry is formed
by 2N constraints cumulatively insisting @iV + 4 variables. More precisely:

e variablesin andoutrepresent the input and output channels;
e bounded integer variablegandr, ranging inZy (the set{0,..., N —1})
indicate the next buffer location to be, respectively, t@ritand read,;
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e each locatiorbuf[i] (: = 1,...,N — 1) is handled by &ill (i) and an
Emptyi) constraint, both of which make use of a state variatlg] in-
dicating whether that location &mpty that is, to be filled (written), ofull,
that is, to be emptied (read).

In [L94b] Lamport compares a two-process and an N-proceds Sfecifica-
tion of the ring buffer. The latter is similar to the versiom Wwave just described,
and that we use throughout the paper, except that bit apagedgg, and a spe-
cial predicatdsNext are used in place ef andr; we found the solution based on
these integer variables a bit more convenient with respeittet comparison with
event-oriented specifications.

Let us now specify the active constraints by action prediat

Filli) 2 ni=w
A ctlli] = “empty”
A etl'i] = “full”
Nin' € Data
A buf'li] =in’
Aw' = (w+ 1) mod N
A UNCHANGED(ctl[x] andbu f[z] for x # i, r, out)

Empty(i) 2 pNi=v

A ctlfi] = “full”
A ctl'i] = “empty”
A out’ = bufli]

A1’ =(r+1) mod N
A UNCHANGED(ctl[x] for = # i, bu f, w, in)

The global action for the ring buffer is:
A . —
Next = Vv 3i e Zy : Fill(i)
V 3i € Zy : Empty(i)
A Fill(i) step writing the input valueirf € Data) into thei” buffer location

(buf’[i] = in") is possible if the location is the one where writing is ex{sal { =
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w), and is emptytl[i] = “empty”); as a consequence; is updated \{’ = (w+1)
mod N) and the location becomes fultt([i] = “full”). The Empty(i) step is
analogously defined.

Thein andoutchannels are conceived here as write-only variables; sjporedl-
ingly, in the definitions above they appear only in primedchforThis fact is not
surprising for variableout, but may appear strange when referred to variable
In writing buf’[i] = in’ we are equating the new values of two state components,
without saying how this new value is determined; we are adgp modelling
abstraction by which the value offered to the buffer via thechannel is 'cre-
ated’ at the same time at which it is written into the buffezdtion, not earlier.
In this way, we are viewing write-only variables as the chasnor gates found
in process algebra: they are locations for hand-shakegerewolus interaction and
communication.

UNCHANGED is a TLA+ predicate identifying the state components thatikh
preserve their values through the step. For examplHANGED(buf, w, in) is
equivalent to:

Abuf' =buf
AN =w
Ain' =in.

In the two occurrences of this predicate we have slightlyadepl from the TLA+
notation when expressing that all components of an arragmxgne are unaf-
fected. Note that the constraint-variable links impliedfUNCHANGED clauses
are not explicitly shown in the state tapestry, since thpyasent, for the specifier,
a sort of secondary state management concern.

Due to the instances of theNCHANGED predicate and to the preconditions
involving variablesw andr, it turns out that anyNextstep of the system may
only satisfy one instance of theill or Emptypredicate; in particular, writing
and reading the buffer are two mutually exclusive evenit ithy they are never
simultaneous.

Note that, as an alternative, we could have defined a twoteonisstate tapestry
consisting of un-parameterizédll andEmptypredicates, in light of the fact that
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every instance oFill (i) (resp.Emptyi)) accessesv (resp.r), and requires = w
(resp.i=r):

Fill 2 A ctljw] = “empty”
A ctl'[w] = “full”
A in' € Data
A buf'lw] = in’
Aw' = (w+ 1) mod N
A UNCHANGED(ctl[x] andbu f[z] for = # w, r, out)
Empty 2 A ctlr] = “full”
A ctl'[r] = “empty”
A out’ = buf]r]
A1 =(r+1) mod N
A UNCHANGED(ctl[x] for = # i, buf, w, in)

Nezxtl = Fill v Empty

However, associating a specific instafé(i) andEmpty(i)with each buffer lo-
cation provides a better basis for comparison with the sues® event-oriented
specification, and also offers an example of applicationxaftential quantifica-
tion.

In conclusion, when thinking of system behaviours in terfrie®@ state tapestry,
and adopting a formal specification language such as TLAeHtbst fundamental
expressive tools and structuring facilities that we arereffl are basically those
found in first order logic, with conjunction typically usedrfspecifying simul-
taneous updates of state variables, disjunction usedsfiimdi alternative action
possibilities at the global level, and existential quacdifion used for a more gen-
eral expression of nondeterministic behaviour.

3. Event-oriented formal specification

This section deals with event-oriented specification, anstructured as the pre-
vious one: we introduce the ‘event tapestry’, we relate thveome existing,
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|:| Event
O Constraint

O State variable

Figure 3.4: The ‘event tapestry’

event-oriented formal languages based on process algabhdaywe provide an
event-oriented specification of the ring buffer for illitng the typical structur-
ing facilities offered by this paradigm.

3.1. The event tapestry

Analogous to Figure 2.1, Figure 3.4 identifies the elemehth® mental land-
scape at the basis of event-oriented formal specificatiothi$ case, in the early
system conception phase one is concerned with identifying:

e The set ofevents(the boxes) that can be observed from the system envi-
ronment. They are thought of as instantaneous manifessatibsimple or
structured values, possibly occurring at some identifiedtion.

e The constraints(the hexagons) that relate event occurrences with one an-
other, and determine possible system behaviours. Eachramsnsists
on some subset of the events: the subsets need not be disjoihindeed
shared events are an essential feature of this approachstr@iots express
relations such as sequential composition, causality,peddence, mutual
exclusion, synchrony, but also relations among the valgesmed by the
interconnected events.

The bipartite graph of Figure 3.4 is indeed so abstract ttedlows for two alter-
native interpretations for the event-boxes.

e Box as event instance - A box represents a single, instamtianevent in-
stance (that is, occurrence), so that infinite behaviouith infinite event
instances, require infinite diagrams. Events may or maynohtide, among
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their parameters, the absolute time of occurrence. Asstmedo: then
one could specify a network of constraints, each insistimg subset of the
events and relating their parameters — in particular, tireings (note that
this is formally equivalent to a state tapestry with only g constraints).
Each solution to the network of constraints would represgparticular set
of timed events, that is, a system behaviour. A simple exarnplk such
a specification style, involving four timed events assedawith a physical
experiment, namely the relativistic measuring of a runriirgn, is illus-
trated in [13]. Conversely, in the family of models calledbefied Event
Structures [17, 18] events only possess an unstructured, lahd the con-
straints are typically limited to causality, mutual exdtus and indepen-
dence.

e Box as event location - A box represents a conceptual or palyslace for
multiple, possibly infinite, event occurrences, so thatdimiiagrams may
also describe infinite behaviours. Even in this case thetmints may or
may not be concerned with time values; for example, one magifypthat
anytwo occurrences of events at locatiaandb, within the same system
run, must be separated by a minimum time delaj,of

In practice, the first approach cannot be used directly fecifging non trivial
systems, but may be useful for representing the underlyéngastics of models
following the second approach. We shall therefore adoptatter, and, for sim-
plicity, shall not consider models handling explicit tinrdarmation. We shall
sloppily use the termnaventfor referring both to an occurrence and to a place (also
calledgate.

An event tapestry identifies the constraints that may ppéte in the occur-
rence of an event, but is ambiguous about two aspects:

¢ Is it allowed for two events to occur simultaneously at digf&t gates? For
modelling a variety of concurrent, reactive, distributgdtems, the ability
to specify synchronicity of distinct events is not impottdn other circum-
stances, for example in hardware design, synchronicityuseful specifica-
tion abstraction. Event-oriented formal languages haen liesigned that
follow either approach, but the ones that follow the formgpear as more
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‘fundamental’, both in historic and in technical sense;sthue stick here to
the basic assumption of event asynchrony.

e Does an event occurring at a given gate always require ttehsynous par-
ticipation of all constraints insisting on that gate? Thiswd appear too
strong a limitation. We do need some flexibility for expragsdifferent
synchronisation or interleaving policies within the sarpedcsfication, de-
pending on the considered gates and constraints. Thus, pexteformal
specifications to allow us to resolve this graphical amijguin a case by
case basis.

In the same way as the concept of event is not completely éedlfrom state-
oriented thinking — a step is an event — the concept of staigsome role in
event-oriented thinking too. It is indeed convenient, anchimon, to think of
constraints as provided with local state information, agicted in Figure 3.4.
State variables encapsulated by constraints may be of pasty

e control state variables — these are used exclusively fantemelering pur-
poses;

e data variables — these are primarily used for modelling datactures, or
concrete objects, and may or may not concur in controllireneerdering.

When we conceive an event tapestry, what we intend to desigithe possibly
infinite set of possibly infinite sequences of events that wegur at the gates,
while satisfying the constraints.

3.2. Formal languages

Process algebras such as CCS [8], CSP [7] and LOTOS [9] ressogime event
as a first class citizen, and provide a notion of process, fitating constraints,
and a few behavioural operators — most notably parallel oitipn — for com-
posing them. Events are interactions among the procesasefotin the system,
or between these and the external environment. In CCS |@aramposition im-
plies two-party synchronisation, while in CSP and LOTOSuigorts multi-party
synchronization.
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In process algebra, behaviours are described by behaviptessions, that are
formed by behavioural operators. In ‘pure’ process algettate information is
coded exclusively in the syntactic structure of the evajvir®haviour expression,
which plays the role of the control state variables mentioakove: it controls
event orderings. In data-enhanced process algebra, statmation can be rep-
resented also by variables, that are used for modelling trépulated data struc-
tures.

In order to introduce event-oriented specification exas)pke need some no-
tation for expressing events and event constraints. Weé gbala few operators,
namelyaction prefix guard choice parallel composition borrowing them from
LOTOS; of course, we shall need alpmcess definitionand process instantia-
tions We shall depart from the standard LOTOS syntax in reprexpaata and
types, and in minor details that we do not even bother meinion

3.3. Event-oriented ring buffer

When adopting an event-oriented thinking mode, we may deatke ring buffer
as the event tapestry shown in Figure 3.5.

The global behaviour of the system is now conceived as aapaminposition
of N+2 constraints insisting on two gates, and constrainingotidering of the
events that occur there. Informally, the constraints afelésvs.

LocalLoop For any given buffer location input and output events referring
to that location must alternate; furthermore, the valuereffl by an output
event must be the same value that was accepted by the prgasuli event.

Inputs The input events must involve tiv buffer locations cyclically.

Outputs The output events must involve thebuffer locations cyclically.

In constraint_ocalLoogi) variablesval andctl play the role of, respectively, vari-
ablesbuf[i] and ctl[i] in the state tapestry of Figure 2.3. We do not need the
indices here because these variables are local to the amnstrhich is already
indexed. The diagram is ambiguous about the subset of edmtstiparticipating

in each occurrence of an or outevent. The intended behaviour here is that every
occurrence of ain (resp.out) event is a two-party synchronisation between the
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in out

LocalLoop(i)

@ @)

Inputs Outputs

Figure 3.5: Event tapestry for the ring buffer

Inputs (resp.Outputd constraint and exactly one instance (the right one!) of the
LocalLoofi) constraint. ConstraintocalLoogi) owns only partial state infor-
mation for deciding whether, say, amevent is possible, and this is provided by
variablectl; the other necessary information is provided by variatlencapsu-
lated in constraintnputs which identifies the next buffer location to be written.
The two constraints can only share this information via echyonisation event.
Therefore, we conceive events as triples involving a gateenggate), the index

of the affected buffer location glot), and the value to be written into, or read
from it (valu€). Thus, the event space is:

{gate.(slot,value) | gate : {in,out}, slot : Zy,value : Data}

Regard apate slot andvalueas field names. The dot separating the gate from
the remaining, parenthesized event parameters is inteadior consistency with
process algebraic notation.

For example, evenin.(0,7) represents the manifestation at gateof value
7 for buffer slot 0. The presence of tistot field is meant to allow processes
InputsandOutputsto enable at any time, by synchronisation, the proper iiggtan
of procesd.ocallLoop

The LOTOS specification of the complete system of conssasprovided be-
low, by the definition of procesRingBuffer
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Ri ngBuffer[in, out] :=
||| Local Loop[in, out](0)
[l
||| Local Loop[in, out](N1)
|[[in, out]]
Inputs[in](0) ||| Cutputs[out](0)

wher e
Local Loop[in, out](i: ZN) :

in!i ?val:Data;

out !i !val;

Local Loop[in, out] (i)

Inputs[in](w. ZN) :=
in!w? :Data;
I nputs[in](w+l nod N)

Qutputs[out] (r: ZN) :=
out !'r ?_: Data;
CQut putsfout] (r+1 nod N)

There is full correspondence between the event tapestriguré-3.5 and the
three-line top behaviour expression of the specificatioovab Each of théN+2
constraints in that figure corresponds to a process inataotiin the multiple par-
allel composition expression. Every process has gate meas) listed in square
brackets, corresponding to the events directly connectdlet constraint in the
graph. This expressions exhibits a pattern that is foungfvequently in LOTOS
specifications, namely a combination of two forms of pataieenposition: inter-
leaving ("

") and selective synchrony|(in, ouf]|’). The former specifies that the
events of the two composed processes must interleave tit@na without any
synchronisation; the latter specifies that events fromwtedomponents occur-
ring at thesynchronisation gate listlentified within the operator itself (gatés
andout) must synchronise, while the other events are still ingael. The inter-
leaving operator is a special case of the selective syngtoparator in which the
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synchronisation gate list is empty. By combining seversiances of these oper-
ators in the expression above, where indentation is usddnmate parentheses,
we achieve the desired synchronisation pattern, that waarexpressed in the
diagram.

Let us now look at the three process definitions followingwher e keyword.

The action denotations, found in the LOTOS text at everyti@mminating with
a semicolon symbol, precisely denote elements of the epatesdefined above.
An action denotation is formed by a gate name followed by zenmore fields,
each preceded by the ‘?’ or the ‘I' symbol. An exclamation krfatlowed by an
expression denotes the value of the expression, while diguesark followed by
a variable declaration denotes any value of the specifies] gmpd binds the fresh
variable to that value. For example, action denotatiom !i ?val : Dat a’
introduces a new variablezl, and binds it to some value iPata; reference to
this value is possible, via the variable, from within theseof the action prefix
operator, as done inout !'i !val’. The processes that share a gate do not
have to control all the fields of the synchronisation evertsuaing there: they
may expresslon’t care conditions on some of them, via the ‘?’ symbol and a
conventional dummy variable represented by the underssariol, as in' i n
Iw ?_:Data’.

In summary, the state variables in the abstract diagramgufri3.5 have been
modelled in the event-oriented LOTOS specification either

e as parameters of a process — varialleandr become parameters of pro-
cessesnputsandOutputs respectively — or

e as internal variables of a process, introduced by the ‘?’ tmy}m variable
val is an internal variable of procet®scalLoop— or

e as an evolving behaviour expression — variattlein the diagram corre-
sponds to the evolving behaviour expression in the body aégsslocal-
Loop which can take two forms, namely the full expression, araith
termediate formout !i ! val ; Local Loop[in, out] (i)’ (afterthe
out event the expression turns into a process instantiatiorghwt equiva-
lent to the full expression). These two forms corresponsheetively, to the
values‘empty” and“full” used in the state-oriented specification.
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In conclusion, while in state-oriented specification wearsi#on predicates and
their logical compositions, in the event-oriented settimg fundamental structur-
ing facilities that we use are processes and process algedparators; in par-
ticular, we have illustrated the use of the two forms of thedamental, parallel
composition operator: interleaving and selective synajpirdn a network of in-
teracting processes, each process specifies partial eetpiits on the ordering
of some events, and on the values of some of their fields; Iphoglerators then
specify which requirements are to be composed at which gaikis particular
usage of parallel composition is known to LOTOS users@sstraint-oriented
specification style

4. Bridging the gap between state-oriented and
event-oriented specification

What is the difference between conceiving a system as a newiaonstraints
on state variables, as done in Section 2, and as a networksframts on events,
as done in Section 3? Are we confronted with two fundamentiiitinct ways
of thinking about system behaviours: action predicatestlagid compositions for
describing state changes on one hand, and processes andotigiositions for
describing event patterns on the other? The purpose ofdbima is to shed some
light on the size and nature of this gap.

The comparison between the two specification para- digméimately le-
gitimised by the fact that both can be given semantic fouodatin terms of
transition systems. In the state-oriented setting, giveninitial statecy; — an
assignment of values to all state variables—, and the (figkdal action predi-
cateNext(possibly interpreted in an environment of other prediciinitions),
transitions take the form:

0 — 0441

where(o;, 0,11) is aNextstep, that is, a pair of states that satisfies predidate
In the event-oriented setting, given the initial behaviexpressiorbez (possibly
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interpreted in an environment of process definitions),diteons take the form:
bex; AR bex;iq

wherebex; is the current behaviour expression, whose interpretaiimaer the
fixed Structural Operational Semantics (SOS) yields ewgnt and the new ex-
pressiorber; 1.

However, for assessing the expressive flexibility of the $pecification paradigms,
as experienced by the specifier, we should not really lookeafibhe-grained level
of individual transitions, but at the coarse grained sytitdevel, where one ma-
nipulates action predicates or processes. One way to needsuidistance’ be-
tween these two ways of structuring system behaviours isviestigate the cost
of converting one into the other.

In the sequel we illustrate a technique for transformingheegiented specifi-
cations into equivalent state-oriented specification® f€bhnique can be applied
to a relatively large and interesting class of specificatidanvolving a constant
number of parallel interacting processes. Key factorsimttansformation are:

e the creation of control state variables for representingvévg behaviour
expressions,

¢ the conversion of gates into write-only state variables, an

e the representation of multiple parallel process compmsitby gate-indexed
sums of products (SOP’s).

We illustrate our technique by converting the LOTOS spedtian of the ring
buffer presented in Section 3.3 into the TLA+ specificatib®ection 2.3.

4.1. Step 1. gate-indexed predicates for the component presses

LOTOS procesRingBufferis defined in Section 3.3 as the parallel composition
of instances of processescall.oop InputsandOutputs Our first transformation
step consists in manipulating those three processes digilly.

Let us start with procesBiputs We wish to describe the dynamics of this
process by means of an action predicate to be iterativelNieabpo a suitable
set of state variables. The process body is defined in terntwafoperators,
namely action prefix and process instantiation. By applyimg SOS rules of
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these operators we derive the following transition schemngrfocesdnputs (or,
more precisely, for its generic instantiation), which yutlptures its dynamics:

Inputs|in](w) in:Lwyd) Inputslin]((w + 1) mod N)

wherew: Zy, d: Data. We say that procedsputsis stable because each tran-
sition in its behaviour relates two expressions exhibitihg same structure (a
process instantiatiors a behaviour expression). Which set of state variables
adequate for describing the universe before and after theuéion of a transition
by procesdnputs and which action predicate relates these two states?Hndig
the stability of the process, we do not need control statevims for represent-
ing evolving behaviour expression information. What chemin the expression
before and after the transition is simply the value of theepss parameter; we
shall therefore create a state variable for recording theskitions. Then, based
on the idea of using write-only state variables for modgllgates, we introduce
state variablén: any event occurring at that gate is modelled by equatifigvith
the tuple of parameters of the event. In conclusion, stdterimation is captured
by the pair(w,in), and the action predicate that describes the evolutionki®f t
state structure, as expressed by the transition scheme abov

S

Inputs;, = Jdummy € Data :
A in' = (w, dummy)
A w' = (w+1) mod N

Analogously, for proces®utputswe derive action predicate:

Outputsoys = ddummy € Data :
A out’ = (r,dummy)
A 1’ = (r+1) mod N

that operates on the pair of state varialileut). We have introduced the name
‘dummy’ for the unnamed variable represented by the undegssymbol in the

original process definitions. Existential quantificatiosrresponds to the ques-
tion marks in the original action denotations, and pregisalptures the fact that
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those (dummy) variables are introduced, but not yet bourad; will, but only at
synchronisation time.

A (LOTOS) process can be active at one gate at atime. ThugrdoessX and
gateg we shall denote by, the action predicate expressing the action capabilities
of that process at that gate: these aredhte-indexed action predicated the
process. A predicat¥, defined adalseindicates that the SOS does not support
the derivation of transitions labelled by an event at gater processX. This is
the case of predicateBiputs,,; and Outputs;,. The global action capabilities
of a process shall be basically expressed by the disjunctidts gate-indexed
predicates.

Consider now procedsocalLoop(see Section 3.3). This process is not stable:
after the firstin event it reaches an intermediate state, and only after anoti
event does it assume again its initial shape, namely arsstsitiation. In light of
the advantages of deriving gate-indexed action predidedes processes that are
stable, we start by turningocalLoopinto one such process, called:

LL[in, out] (i: ZN, ctl: EnptyOrFull, val: Data) :=

[1 [ctl = "enpty"] ->

in!i ?newal : Dat a;

LL[in, out] (i, "full", newval)
[T [ctl = "full"] ->

out 'i !val;

LL[in, out] (i, "enpty", val)

This LOTOS-to-LOTOS transformation reflects the remarkhatend of Section
3.3 about the different ways to represent state informadiailable in LOTOS.
In procesd.L we have modeled the two-step cyclic evolution of the runriieg
haviour expression of procet®calLoopby a control state variabletl; this has
required us to introduce the new variali@ for recording the value accepted at
gatein. The five elements that appear associated with each instdicomstraint
LocalLoopin Figure 3.5, namelyin, out, i, ctl, val), are those that precisely ap-
pear now in the header of procdsds.
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We look now for the state-oriented, TLA+ representationhi§ process, that
is, for a tuple of state variables and for the gate-indexdbm@redicates that
manipulate it. As we did for processhgputsandOutputs we directly derive the
tuple of state variables from the parameters of the stableass, and use the same
identifiers: thus, our state variables &e, out, i, ctl, val).

Turning to the gate-indexed action predicates, we procagtbefore, by con-
sidering the SOS-supported derivation of transitions liertiehaviour expression
—let us call itE — in the body ofLL. Expressiont makes use only of thguard,
action prefix choiceandprocess instantiatiogonstructs (thereby conforming, not
surprisingly, to what is known astate-oriented.OTOS specification style). By
applying the SOS rules of these operators to the expresstotevive the transi-
tion scheme:

LL[in, out](, ctl, val) cvent LL[in,out](i, ctl’, val’)
The topmost operator df is binary choice. According to the SOS rules for this
operator, a transition

B1[|B2 %' B/
is possible in two cases, namely if either

B1 %% B or B2 ¥ B/
where B1, B2 and B’ are behaviour expressions. Correspondingly, referring to
the choice expressiol, we have two cases:

e Case 1. A transition from the first argument of the choice wsesiun the
derivation. Then:

— the guardctl = “empty”] must have been true (by the SOS rule for the
guard operator),

— the event must have occurred at gaie, with two data fields repre-
sented by the bound variableand the yet unbound variabltecwV al
(by the SOS rule of action prefix),

— in the new process instantiation it will bé = i, ctl’ = “full”, and
val’ = newVal (by the SOS rule of process instantiation);
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e Case 2. Atransition from the second argument of the choiceusad in the
derivation. Then:
— the guardctl = “full”] must have been true,
— the event must have occurred at gatet, with two data fields repre-
sented by the bound variableandval,
— in the new process instantiation it will le= i, ctl’ = “empty” and

val' = val.

Notice that, although in defining procekk we have attributed tg, ctl andval
identical formal status, namely that of process parametargablei can be dis-
tinguished from the other two variables in that it is nevdeeted by the tran-
sitions: this variable (the only one to appear in the origpracessLocallLoop

is nothing but a constant index used for distinguishing Ah@rocess instances,
each handling a different buffer location. ThusLik[in, out|(i, ctl, val) denotes
the i** instance of processL, we shall letL L;, (i) and LL,,; (i) denote its as-
sociated gate-indexed action predicates, cumulativedigting on state variables
(in, out, ctl,val). In the body of these predicates, variabkhall never appear in
primed form, while it shall appear as an index«f andval, which are proper
state variables, for avoiding hame collisions when all jpates are composed
into the global, next-state action predicate.

The two transition cases examined above originate fromabertference rules
for the choice operator, but it turns out that they also atterese, separately, the
action capabilities of procedd. at gatesn andout, respectively. Thus, by refor-
mulating in logical form the facts established in the twoasasve readily identify
the two gate-indexed action predicates for ifieinstance of the process:

LL;,(i) = A ctlfi] = “empty”
A ctlfi] = “full”
A dnewVal € Data :
A in' = (i,newVal)

A wval'[i] = newVal
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LLyu(i) = Actlli] = “full”
A ctl'[i] = “empty”
A out’ = (i,valli])

Collectively, the action predicates derived for procedspsits Outputsand LL
manipulate variablegin, out, ctl,val,w,r). Each one of the above definitions
should be complemented by amCHANGED clause expressing conservative as-
signments for the variables it does not explicitly updatez lvave omitted them
for conciseness.

4.2. Step 2: gate-indexed algebraic expressions from patel behaviour
expressions

Let us now consider the top parallel behaviour expressiqgrafessRingBuffer
where we have replaced the instanced.ofalLoopby those ofLL, initialized
with parametectl set to “empty”, and parametgalueset toundef

||| LL[in, out] (0, "enpty", undef)

[l

||| LL[in, out] (N1, "enpty", undef)
[[in, out]]

Inputs[in](0) ||| Cutputs[out](0)

The stability of theN + 2 composed processes and the SOS rules of the parallel
composition operator imply the stability of the whole exggien: any transition
yields a new behaviour expression which is identical to thigirmal one, except
for the actual parameters in process instantiations. Timenglobal state of the
state-oriented specification shall be simply the union efgtate variables ma-
nipulated by the action predicates derived for each proaemmely the already
identified tuple(in, out, ctl, val, w, r), wherectl andval are arrays of siz&/. We
are interested in finding the logical expression that dbesrthe evolution of this
state structure.

In [14] a technique is introduced for deriving, gate by galgebraic expres-
sions abstractly describing the action capabilities of &ipla parallel behaviour
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expression, and for turning this family of expressions tmonvenient graphical
form calledprocess interaction n€PIN). In summary, letting
II = {R[G;] | 1 =1,...,n} be a set of process instantiations, whétgis
the list of gates at which proce$} is potentially active,
G = U;=1,.. nGi be the universe of gates (viewing gate lists as sets),
E be a multiple parallel behaviour expression oMer

that technique allows one to derive frdinand for each gatgin G, an algebraic
expressiorg, formed by the process instantiations (or, more concisefythie
bare process identifiers), by the sum and product operatdtsgroduct *' often
replaced by plain juxtaposition), by zero's and parentbeas follows:

e process instantiatio®; [G;] becomes
— P[G;] (orjustRy), if g € G;
— 0 otherwise;
e parallel operatofS|, whereSis a set of synchronisation gates, becomes
- *if geS
-'+if g¢ S
Thus, ifE is the top parallel expression of procédisigBufferwe derive two gate-
indexed expressions:

Ewm = (LL(O) +---+ LL(N — 1)) * (Inputs + 0)
Eyix = (LL(0)+---+ LL(N —1)) % (0 + Outputs).

Recall that the parameter associated.tois not a proper state variable, but an
index, which can be understood as part of the process idaniiie then turn ev-
ery E, into Sum Of Products form, denot&g*“F. For our example we obtain:

ESOP = LL(0) * Inputs + - -+ + LL(N — 1) * Inputs
E5QF = LL(0) * Outputs + - - - + LL(N — 1) x Outputs

out

A PIN is a bipartite graph formed by process-nodes and gades) process-nodes
are labelled by process instantiations, while gate-nodetabhelled by gate iden-
tifiers; label duplication is admitted only for gate-nod@sprocess-node labelled
by process instantiatiof;[G;] can only be connected to gate-nodes labelled by
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in in .. a in
@ @ o LL(N_l)
out out -t out

< Outputs >

Figure 4.6: A process interaction net for procBésgBuffer

gates that appear ifi;. A gate-node and all the process nodes adjacent to it form
what we call & g,PP)-multiarc whenyg is the label of the gate-node aRdP is the
set of labels of the process-nodes.

Based on the SOP expressiais®” and E59F, we can immediately obtain
the PIN that graphically represents the interaction pd#ss for the original
parallel expression (see Figure 4.6): we create one procass for every pro-
cess instantiation in the parallel expressirand oneg(g,PP)-multiarc for every
product term inEQSOP formed by the sePP of process instantiations (or iden-
tifiers). A PIN can indeed be adopted as a multi-argumentphical operator
for expressing relatively complex process interactionigpas; [14] provides the
(rather obvious) formal semantics for such an operatorpaoees the behavioural
equivalence between the expression and the graph.

Note that the equation P*0 = O precisely characterizes ttietlfeat a process
unable to operate at some gate blocks another processgailisynchronise with
it on that gate.

Let us now see how to use gate-indexed SOP’s for completintyansforma-
tion.
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4.3. Step 3: expanding gate-indexed algebraic expressioby gate-
indexed predicates

Once the product and sum operators are interpreted as llagiopinction and
disjunction,EgSOP can be interpreted as a logical expression describing the di
ferent ways in which events at gagenay occur. These are indeed abstract condi-
tions identifying onlywhich possible process groupings may yield an interaction
at some gate, without sayifgpw each process supports those events. If we now
expand the SOP’s of a parallel expressibhy replacing, in a gate-wise manner,
process instantiations by the gate-indexed action pregigareviously derived,
we obtain a complete logical formulation of the action pbiisies of E, that is,

the complete state-oriented specification.

Consider a generic parallel expressi®mvolving the composition of two pro-
cessesP1 andP2, both insisting on gatea andb. By the conversion rules just
described, the parallel expression yields the two expyas$t, andE;, which
are turned into SOP fornts, °°F andE;,*“”. Based on the definitions of process
P1 (resp.P2) we obtain the action predicat®dl, andP1, (resp.P2, andP2,).
Then, thea-indexed predicateB1, andP2, are substituted for the corresponding
process identifiers appearing i, ", Similarly, P1, and P2, replace the oc-
currences oP1andP2in E;,*°F. The two obtained expressions are composed
by disjunction, thus yielding the final action predicate jethdescribes the action
capabilities of the initial behaviour expressign

Let us apply the procedure to our example. Define two sulistitst

®;, = [LL;, () / LL(3I), i=1, ...,N -1, Inputs,,/Inputs Outputs,/Output$
Do = [LLous (1) 7 LL(I), i =1, ...,N -1, Inputs,,;/Inputs Outputs,;/Output$

Then we have:

F1in = Eilop[q)in]
= LL;(0) x Inputs;, + -+ + LLjp(N — 1) * Inputs;,
Four = EguOtP[CI)OUt]

= LLy(0) *x Outputsous + -+ - + LLoyt (N — 1) * Outputsout
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By switching to logic notation:

F, 2 (LLin(0) A Inputsi,) V -+ -V (LLiyn (N — 1) A Inputs;y,)
= i€ Zn: LLin(i) N Inputs;,
A
Fout = (LLout(0) A Outputsoyt) V - -+ V (LLoyt (N — 1) A OQutputsgys)

Ji € Zn : LLyyt (i) A OutputSoyt

The final action predicate is defined as follows:

>

F = En \ Fout
V 3i € Zy : LLin(i) A Inputs;,
V 3i € Zn : LLoyt (1) A Output sy
Compare now this definition with the state-oriented speatifie of the ring buffer
introduced in Section 2:

Next 2 v 3ie Zy : Fill(i)
vV 3i € Zy : Empty(i)

We need to compare predicdtdl(i) and the conjunctior. L;,, (i) A Inputs;,.
By expansion:
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LL;p(i) N Inputs;, = A ctlli] = “empty”

A ctl'li] = “full?

A dnewVal € Data :
A in' = (i,newVal)
A wval'[i] = newVal

A 3 dummy € Data :
A in' = (w, dummy)
A w = (w+1) mod N

= ANi=w

A ctl]i] = “empty”

A ctl'li] = “full®

A dnewVal € Data :
A in' = (i,newVal)
A wval'[i] = newVal

A w' = (w+1) mod N
On the other hand, by rewriting
in’ € Data — I newVal € Data : in' = newVal
and omitting theUNCHANGED clause, the body dill (i) becomes:

ANl =w

A ctl]i] = “empty”

A ctl'[i] = full
A InewVal € Data : in’ = newVal
A buf'i] = in/

Aw' = (w+1) mod N

By equating arraysal andbuf, the two formulae become equivalent, except for
the structure of variablen, which, in the second case, records also the index of
the buffer location affected by the input operation.

Analogously, we compar&mpty (i) and L Ly, (i) A Outputs,,:. By expan-
sion:
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LLyy(i) N Outputsoyr = A ctlfi] = “full”

A ctl'[i] = “empty”

A out’ = (1,valli])

A 3 dummy € Data :
A out’ = (r,dummy)
A r'=(r+1)mod N

= ANi=r

A ctlfi] = “full”

A ctl'[i] = “empty”

A out’ = (i,valli])

Ar'=(r+1) mod N

On the other hand, by omitting theNCHANGED clause, the body oEmptyi)
is:

Ni=r

A ctlli] = “full”

A ctl'[i] = “empty”

A out’ = bufli]

A1 =(r+1) mod N

Again, the two formulae are equivalent, except for the naofdbe two arrays
and the structure of variabtaut

In conclusion, modulo the refinement to the gate variablehae converted
the process-oriented specification into the state-oritoie.

4.4, Remarks

Which conclusions can we draw about the differences betwegking at system
behaviours in terms of states or events, in light of the alb@resformation?

We have started with a parallel composition of processessiply represent-
ing physical system components, and have ended up withundtgn of action
predicates in which processes and components have bagitsdippeared. The
largest part of the gap is bridged by the crucial Step 2, whafines arexpansion
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of a single parallel behaviour expression into a gate-indeamily of algebraic
expressions, that are in turn expanded in SOP form. On omeveidthink in
terms of interacting components, giving an implicit destoin of their individual
interactions by means of the parallel operators; on the gitle we leave the iden-
tification of system components implicit, while describixplicitly their interac-
tions, case by case. We have us€éd 2 process instances in the event-oriented
specification, an@N action predicate instances in the state-oriented spegifica
of the ring buffer.

In general, where a typical process- and event-orientaddlisation would re-
flect the structure of a (distributed) system, a typical faligation based on action
predicates would basically disregard the system compsnertile directly pro-
viding a more lengthyexplicit enumeration of all their interaction possibilities, in
form of logical disjuncts. In fact, thexplicit description of the system structure
is possible also in the state-based, logical setting: theposition of two subsys-
tems is specified by the logical conjunction of their speatfans, as explained in
Chapter 10 of [5]. However, when using the low level logicpkmtors of con-
junction and disjunction for composing action predicatea bottom-up fashion
and specifying complex interaction patterns, one has toeng eareful in filter-
ing out all the undesired pairings — but only them! Furthéoréfhas to be spent
in providing individual predicates with appropriate instas of theJNCHANGED
clause, which, in general, depend on the context where #digates are to be
used, and on the desired global behaviour. This difficultg/l known as the
frame problem and the considerable, additional specification efforhvblves,
can be fully avoided by using higher level operators, thaevexplicitly designed
for expressing interaction patterns.

5. Conclusions

We have investigated the expressive flexibility and stmietufacilities offered by

two fundamental specification paradigms, state-orienteblesent-oriented, con-
centrating on very basic expressive features. In statstail specification, one is
primarily concerned with modelling the system state by aegadte set of state
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variables, and with specifying the atomic operations thadlifiy the state. In our

state-oriented examples we have adopted a well establish&dl approach, by

which the pre-conditions and post-conditions of operatiare described by ‘ac-
tion predicates’; state variables have global scope, andbeaaccessed by any
predicate. Complex specifications are structured by comgasction predicates

via the operators of predicate logic; advanced behaviqugderties, such as live-
ness, could be specified by using temporal logic operatotsyb have confined

our discussion to simple specifications that deal only watfiety properties.

In event-oriented specification, one is primarily concdrmgth modelling the
space of events, and with specifying event patterns. In wemteoriented exam-
ples we have adopted the process-algebraic approach, awigse patterns are
described by processes. We have conceived a process agathabinay encap-
sulate state information (control and data structures)ism@dble to interact with
other processes in its environment by rendez-vous. Simpleps behaviours are
expressed in terms of guards, action prefix, choice, rambcess instantiation.
Complex specifications are structured by composing presegs parallel com-
position, in its pure interleaving or selective synchrooynis; of course, some
other operators would be available, such as sequentiabgsomomposition and
disruption, but we have confined our discussion to paratieimosition, since this
operator is the key for structuring specifications, and bsedt naturally com-
pares with logical conjunction.

We have illustrated a technique for transforming a fixedgpatbf stable (or
easily stabilized) interacting processes into a compdtsifieal expression manip-
ulating a set of state variables, thus reducing the gap leetwe two paradigms.
We have not addressed the transformation problem in itgérkerality. It might
be interesting to define a transformation technique for treegc (LOTOS) be-
haviour expression in a compositional way, by providindgacpredicates for the
individual behavioural operators, and by building the alleaction predicate in a
syntax-driven way.

In [12] Lamport illustrates the insubstantiality of the ioot of process by for-
mally verifying the equivalence of twdifferent versions of a systemamely the
N-process and the two-process ring buffer, specified iisdnee languagsamely
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TLA, the transformation is completely formal: it uses rutdgogic to rewrite for-
mulae. The work in [12] has been an important source of intipim for our paper,
which has however followed a different path. The transfdiomatechnique we
have illustrated relates two specifications of Haene version of the systegthe
multi-process ring buffer), written in twdifferent formal languagesone being
LOTOS, the other being basically (a subset of) TLA+; and weetdone it by ex-
plicitly taking into account the formal SOS rules of LOTOSha@ther, secondary
difference between the two exercises is that our multisscsersion of the ring
buffer is different from Lamport’s, and has been preferredause it only exploits
the rendez-vous process interaction mechanism, that fitpimre event-oriented
thinking much better than shared variables.

Both exercises lead to the conclusion that ‘processes areinye of the be-
holder’. However, while in [12] Lamport seems to push thismsideration to
the point of disqualifying process-oriented languageslimoat any respect, we
would rather take it as a mere indication that the processegircan be removed
from specification languages without decreashepreticalexpressive power. We
hope we have succeeded in providing some evidence thatgsrbesed languages
such as LOTOS and CSP offer high expresslegibility, at least limited to the
discussed, common application scenarios, while presgfeimal semantic foun-
dations.

Dealing with specification issues, in this paper we have aigr up the ver-
ification challenge posed in [12], which questions the pmltsi to carry out
an equivalence proof for two process-algebraic specifinatof the ring buffer
(the two-process and the multi-process version) pureledbam process alge-
braic laws. While in this case we share the widely diffusethiop that process-
algebraic axiomatic approaches to verification are nota¥fely scalable, we did
work out a proof of equivalence between two LOTOS specificatiof the ring
buffer (the multi-process specification presented herd La@amport's two-process
version), based on the well known concept of bisimulatiowd @an SOS inference
rules. This proof is not presented here for space reasongould be interest-
ing to compare it with the one worked out by Lamport, and tockhghether the
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granularity induced in our proof by the usage of SOS rulesandkmore concise
and readable.

Once the state-oriented and event-oriented specificaicadgms are investi-
gated, and their advantages/disadvantages assesseulah mext step is to study
the various ways in which they could be possibly integrafedr first attempts to
combine constraints on state variables and on events acgliibin [19]. These
led to the definition of the ‘co-notation’ (constraint-arted notation) [20, 21]
an experimental language by which system behaviours capdwfied as hier-
archical compositions of simple and complex constrainth lom events and on
state variables. The co-notation offers invariants, agpieedicates, and a form of
parallel composition similar to that of process algebra.

A lively research area has recently emerged that deals wnidlgiated formal
methods (IFM) [22]; research in this direction typicallyra at designing formal
languages that combine features from process algebra @@R)om state-based
approaches (2); examples are CSP-OZ [23], TCOZ [24], ancL&i[25]. It would
be interesting to investigate the type of informal thinkihgt precedes and sup-
ports formal specification activities based on these lagpgsilaAn attempt to up-
grade the state-oriented formalism of ASM by the inclusibprocess algebraic
operators is presented in [26].

In all the event-oriented formalisms that we have mentipeednts are medi-
ated by state information, be it represented by state Vaggidaying some role in
the pre- and post-conditions of the event, or by the shape e¥alving behaviour
expressions, corresponding to control state informativa.like to conclude this
paper by mentioning an interesting question raised by Latr{ppoa private com-
munication): are ther@ractical, formal, pure event-oriented specification lan-
guages in which events are not mediated by an underlying staicture? The
already mentioned labelled event structures [17, 18] aenaigely stateless for-
malism, but they do not seem to offer the structuring faesirequired for practi-
cal, large-scale applicability.
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