
85

PREDICATES FOR STATE CHANGES
VS. PROCESSES FOR EVENT PATTERNS

TOMMASO BOLOGNESI

Abstract. The two informal ‘mental landscapes’ that provide the intuitive substratum for state-

oriented and event-oriented formal specifications are discussed, and abstractly characterised as net-

works of constraints. The structuring facilities offered by the two approaches are contrasted. A

technique is introduced for expanding an event-oriented specification consisting of a fixed pattern

of interacting processes into a state-oriented specification formed by a complex ‘action predicate’

manipulating a set of state variables. Although by this transformation the event and process con-

cepts can be absorbed into the state-based conceptual framework, we discuss some good reasons

for regarding these concepts as primitive expressive tools, and for structuring specifications around

them.

Keywords. D.2.1 Requirements/Specifications, D.2.2 Design Tools and Techniques — Formal

methods, Process algebra, ASM, B, CSP, High-level Petri nets, LOTOS, TLA.

1. Introduction

Formal approaches to the behavioural specification of complex, concurrent, reac-

tive, distributed systems are often partitioned into state-based and event-based. In

a state-based approach (e.g. Abstract State Machines [1, 2], B [3], TLA [4, 5],

or Z [6]) the emphasis is on the structure of the global systemstate. One first

defines an abstract model for that structure, in terms of constants, variables, sets,

relations, functions and, possibly, other mathematical objects, and then defines its

discrete perturbations, calledsteps, operations, actions, or events. Each event is

described individually, and independently from other events, by identifying the

conditions that enable its occurrence (pre-conditions) and the effects on the state

(post-conditions): distinct chunks of formal specification are used for describing

distinct types of state change.

Studia Informatica Universalis

86 T. Bolognesi

In an event-based approach (e.g. CSP [7], CCS [8], or LOTOS [9, 10]) the em-

phasis is shifted to structures of events in time. One first identifies the set of pos-

sible events, usually starting by those that are observed atthe system boundary,

and then specifies the relations among them (e.g. sequence, causality, indepen-

dence, mutual exclusion). Each chunk of formal specification describes a pattern

involving, typically, several events.

The state-based approach is perhaps more popular, and more familiar to many

system and software engineers, although event-based modelling techniques are

being increasingly used, especially in the early phases of software development:

examples are UML use case and interaction diagrams, and Message Sequence

Charts.

In [11] Abadi and Lamport write:

The popular approaches to specification are based on either states or actions. In a

state-based approach, an execution of a system is viewed as asequence of states,

where a state is an assignment of values to some set of components. An action-based

approach views an execution as a sequence of actions. These different approaches

are, in some sense, equivalent. An action can be modeled as a state change, and a

state can be modeled as an equivalence class of sequences of actions. However, the

two approaches have traditionally taken very different formal directions. State-based

approaches are often rooted in logic, a specification being aformula in some logical

system. Action-based approaches have tended to use algebra, a specification being an

object that is manipulated algebraically. Milner’s CCS is the classic example of an

algebraic formalism.

The fact that the two approaches are in some sense equivalentdoes not mean

that the choice of one or the other, for practical system development, is devoid

of any consequence. Conversely, the fact that the two approaches have histori-

cally taken different formal directions does not mean that they are based on two

radically different ways of intuitively conceiving systembehaviours. Unfortu-

nately, the difference between logical and algebraic foundations tends to obscure

the possible bridges between state-based and event-based intuitive thinking, and

has favoured the spreading of somewhat rigid, if not dogmatic attitudes. In our

opinion, the area of formal specification of software and hardware systems suffers

SIU 2004

Predicates for state changes vs. processes for event patterns 87

from this circumstance, since engineers and developers arenot provided with the

most transparent advice for making effective choices amongformal languages.

In this paper we arenot concerned with comparing the two specification

paradigms with respect to:

• theoretical expressive power (of course, any reasonable formal language in

either family can simulate Turing machines);

• formal semantic foundations;

• support to formal verification techniques.

On the contrary, we are interested in investigating and comparing them relative to:

• the type of informal thinking, or brainstorming, that precedes the formalisa-

tion phase;

• the structuring facilities and expressive flexibility thatthey offer during the

formalisation phase.

For our purposes, we say that a formal specification languagehas highexpres-

sive flexibilitywhen it allows one to reduce the gap between informal and formal

descriptions: it should be possible to structure the formalspecification so that

it closely reflects the informal landscape in the specifier’smind, which may in-

volve pictorial elements such as box diagrams, and different levels of granular-

ity. A highly flexible formal language shall offer constructs that directly corre-

spond to the most typical behavioural scenarios found in complex, concurrent,

reactive, distributed systems. For example, distributed systems are conceived in

terms of complex components that interact with one another and with their users;

correspondingly, a flexible formal specification language shall offer constructs

for individually specifying these components, and for specifying their interaction

patterns. Communication protocols are often conceived in terms of complex be-

havioural phases organised in sequence, e.g.Connection Setup, Data Transfer,

Connection Release; again, a flexible language shall offer formal constructs for

individually describing those phases, and for readily expressing their sequencing.

There exists of course a trade-off between expressiveflexibility and expressive

generality. Highly specialised constructs support flexible specification, but for a

SIU 2004

88 T. Bolognesi

relatively narrow class of systems, while more fundamentaland generic constructs

support less flexible specification, but enjoy wider applicability.

It is our opinion that research in formal specification languages has often paid

more attention to analytical power than to expressive flexibility, probably because

these languages have been mainly introduced for overcomingthe limitations of the

existing informal or semi-formal specification languages,which were flexible and

intuitive enough, but not suited to automated analysis. In this paper we disregard

this trend, and concentrate purely onspecificationflexibility, not onverification.

In principle, we would like to refer to the expressive features of the state-

oriented and event-oriented specificationparadigms, without referring to any ac-

tual formal language. However, for fixing ideas, we shall borrow a few funda-

mental constructs and notations from existing languages, in particular from the

state-oriented, logic-based language TLA (or TLA+) [4, 5],and from the event-

oriented, process algebraic language LOTOS [9, 10].

In Section 2 we consider the generic expressive tools and structuring facilities

that come with state-based thinking, as embodied by a numberof widely known

formal languages based on logics, and we introduce a generaldiagram for pic-

torially representing the underlying ‘mental landscape’.For substantiating our

discussion we use, as an example, a TLA+ specification of a variant of a multi-

process ring buffer discussed in [12].

In Section 3 we consider the generic expressive tools and structuring facili-

ties that come with event-oriented thinking, as embodied byprocess algebras and

process-oriented, concurrent languages. Again, we introduce a general diagram

for representing event-based specifications, and use the same, ring buffer exam-

ple. The idea of presenting both state-oriented and event-oriented specifications

as networks of constraints is presented already in [13], which also introduces a

unifying framework for classifying formal specification languages based on the

types of constraint that they support.

In Section 4 we show that the gap between the two specificationparadigms

is not too large: a three-step expansion technique is introduced, that transforms

the event-oriented, LOTOS specification of the ring buffer,into the state-oriented,

TLA+ specification. This transformation from processes to predicates exploits a

SIU 2004

Predicates for state changes vs. processes for event patterns 89

Figure 2.1: The ‘state tapestry’

representation of parallel process compositions in Sum Of Products (SOP) form,

that was first introduced in [14]. In light of the introduced transformation, we

discuss the possible advantages of structuring systems in terms of processes rather

than action predicates.

In Section 5 we summarize our results, provide some concluding remarks, and

identify some topics for further work.

2. State-oriented formal specification

In this section we first summarize the fundamental elements of state-oriented

thinking, by means of a generic diagram that we call ‘state tapestry’. Then we

list some existing, widely known state-oriented formal languages based on logics,

and briefly relate them to the elements of the diagram. Finally we introduce the

state-oriented specification of the ring buffer for illustrating the typical structuring

facilities offered by this paradigm.

2.1. The state tapestry

Figure 2.1 is an attempt to abstractly illustrate the fundamental elements of the

mental picture one is likely to have in mind when starting a specification using a

state-oriented formalism. In this early system conceptionphase, one is concerned

with identifying:

• The set of usefulconstants(the fat circles).

SIU 2004

90 T. Bolognesi

• The state variables(the normal and dotted circles) that collectively model

the global system state: a global state is an assignment of values to these

variables. Their types are of varying complexity: one circle may represent

an integer, another a whole data base. The state variables are thought of

as preserving their values in time, until some event happensthat (instanta-

neously) changes them: state variables evolve in discrete steps. The reasons

for singling out write-only variables (the dotted circles)will be clear later,

when relating state-oriented and event-oriented models.

• The ‘logics’ that governs the evolution of the global state. This is struc-

tured as a set ofconstraints(the hexagons), each insisting on some subset of

state variables. These subsets need not be disjoint, and indeed shared vari-

ables are profitably exploited by this approach. We use the generic term

‘constraint’ for neutrality with respect to any actual formal specification

language. It is quite natural to distinguish between passive and active con-

straints:

– apassive constraint, called ‘invariant’ in most formal languages, is used

to express a relation among some of the variables that must hold in any

reachable global state;

– anactive constraintis meant to describe a step in the system behaviour.

A step is a pair of successive global states.

When we conceive a state tapestry, what we really intend to describe is the pos-

sibly infinite set of possibly infinite sequences of steps that the tapestry can go

through, starting from some initial state. In drawing thesediagrams, we omit the

representation of the initial states (they must satisfy allinvariants); in the sequel,

for clarity, we shall also omit the constants.

In synthesis, the state-oriented mental picture is one of a network of constraints

that establishes both some static properties of the system state, and some rules for

its step-by-step evolution.

SIU 2004

Predicates for state changes vs. processes for event patterns 91

2.2. Formal languages

The concepts of invariant and active constraint are offered, under different names,

and with some variants, by several formal specification languages and models.

Our purpose here is not to give a detailed account and comparison of these for-

malisms, but only to help the reader in relating the abstractconcepts of the state

tapestry with some concrete, familiar language constructs.

In Predicate/Transition nets [15, 16] the state is represented by the distribution

of value-carrying tokens over a set ofplaces, and is modified by the firing oftran-

sitions. Transitions are equipped with predicates, and arcs connecting places and

transitions are labelled by multi-sets of terms. A transition can be fired when it

is possible to find an assignment for the free variables in itspredicate and in the

neighbouring terms such that the predicate is satisfied and the terms on the input

arcs denote values of tokens actually available in the corresponding input places.

If the transition is fired, these tokens are removed from their places, and new to-

kens are added to the output places, whose values are defined by the terms on the

corresponding output arcs, evaluated under that same assignment. A transition

is an active constraint that insists on the state variables represented by its neigh-

bouring places. Transition are fired one at a time, thus reflecting an interleaving

constraint policy.

ASM (abstract state machines) [1, 2] offerrulesof form ‘if condthenupdates’,

wherecond is a boolean condition on the state, andupdatesis a set of parallel

assignments. The state is described by functions, and an update is the assignment

of a new value to a function at one point. An ASM rule can be seenas an active

constraint that insists on the state components accessed incondandupdates. Syn-

chronous parallelism is the default composition operator in ASM: when writing

a list of rules, one implies thatall enabled rules are executed simultaneously. An

enabled rule is one whosecondis satisfied in the current state. Thus, ASM adopts

a synchronous constraint policy.

B [3] offers specific clauses for introducing state variables, for initialising them,

and for defining invariants and operations.Operationsare active constraints, en-

riched by the explicit identification of possible input and output parameters; they

SIU 2004

92 T. Bolognesi

involve a pre-condition and a post-condition (the operation ‘body’), which is a

set of parallel assignments. Operations may occur one at a time, according to an

interleaving policy.

Z [6], from which B has borrowed several ideas, describes state changes by

means ofoperation schemata. Assignments are expressed in Z by using the so

called primed decoration: x’ denotes the new value assigned to variablex in a

step. Z has special decorations for input and output variables: variablesx? and

y! occurring in an operation schema are not part of the system state, but are only

used, respectively, for accepting input from, and offeringoutput to the user of

the operation. The special symbol ‘Ξ’ is used for expressing the fact that some

variables should preserve their value through a step.

In TLA [4, 5] active constraints are represented byactions: these are logical

formulae that must be satisfied by every step. As in Z, these formulae involve

primed and unprimed variables, and one has to explicitly identify the components

of the state that should not vary through a step. Complex actions can be defined

by composing other actions by logical operators. Most typically, in TLA+ [5] one

defines a global action, calledNext, as thedisjunctionof other actions, following

an interleaving policy.

Of course we have only mentioned the constructs that form a common set of

fundamental, state-oriented expressive tools; every formal language offers further,

specific constructs, that we are not interested in discussing here.

In order to introduce state-oriented specification examples, we need some no-

tation for expressing active constraints. We borrow some syntax and terminology

from TLA+, and model an active constraint by anaction predicate, involving

primed and unprimed variables (still keeping in mind that this is a state-based, not

an action-based formalism). The whole, state-oriented specification shall be cen-

tred on an action predicate, which must be satisfied by every step in a system run

(TLA uses the ‘box’ temporal operator to this purpose, as in formula ‘2Next’;

we shall implicitly assume that the topmost action predicate in a specification is

prefixed by this operator).

SIU 2004

Predicates for state changes vs. processes for event patterns 93

Figure 2.2: A ring buffer

Figure 2.3: State tapestry for the ring buffer

2.3. State-oriented ring buffer

A FIFO ring buffer of capacityN is pictured in Figure 2.2, which we borrow from

[12], together with the informal description of the system behaviour:

The ith input value received on channelin is stored inbuf[i-1 mod N], until it is sent

on channelout. Input and output may occur concurrently, but input is enabled only

when the buffer is not full, and output is enabled only when the buffer is not empty.

A state tapestry for the ring buffer is shown in Figure 2.3. The tapestry is formed

by 2N constraints cumulatively insisting on2N + 4 variables. More precisely:

• variablesin andout represent the input and output channels;

• bounded integer variablesw andr, ranging inZN (the set{0, . . . , N − 1})

indicate the next buffer location to be, respectively, written and read;

SIU 2004

94 T. Bolognesi

• each locationbuf[i] (i = 1, . . . , N − 1) is handled by aFill (i) and an

Empty(i) constraint, both of which make use of a state variablectl[i] in-

dicating whether that location isempty, that is, to be filled (written), orfull,

that is, to be emptied (read).

In [L94b] Lamport compares a two-process and an N-process TLA specifica-

tion of the ring buffer. The latter is similar to the version we have just described,

and that we use throughout the paper, except that bit arrayspp andgg, and a spe-

cial predicateIsNext, are used in place ofw andr; we found the solution based on

these integer variables a bit more convenient with respect to the comparison with

event-oriented specifications.

Let us now specify the active constraints by action predicates.

Fill(i)
4
= ∧ i = w

∧ ctl[i] = “empty”

∧ ctl′[i] = “full”

∧ in′ ∈ Data

∧ buf ′[i] = in′

∧ w′ = (w + 1) mod N

∧ UNCHANGED(ctl[x] andbuf [x] for x 6= i, r, out)

Empty(i)
4
= ∧ i = r

∧ ctl[i] = “full”

∧ ctl′[i] = “empty”

∧ out′ = buf [i]

∧ r′ = (r + 1) mod N

∧ UNCHANGED(ctl[x] for x 6= i, buf , w, in)

The global action for the ring buffer is:

Next
4
= ∨ ∃i ∈ ZN : Fill(i)

∨ ∃i ∈ ZN : Empty(i)

A Fill(i) step writing the input value (in’ ∈ Data) into theith buffer location

(buf’[i] = in’) is possible if the location is the one where writing is expected (i =

SIU 2004

Predicates for state changes vs. processes for event patterns 95

w), and is empty (ctl[i] = “empty”); as a consequence,w is updated (w’ = (w+1)

mod N) and the location becomes full (ctl’ [i] = “full”). The Empty(i) step is

analogously defined.

Thein andoutchannels are conceived here as write-only variables; correspond-

ingly, in the definitions above they appear only in primed form. This fact is not

surprising for variableout, but may appear strange when referred to variablein.

In writing buf’[i] = in’ we are equating the new values of two state components,

without saying how this new value is determined; we are adopting a modelling

abstraction by which the value offered to the buffer via thein channel is ’cre-

ated’ at the same time at which it is written into the buffer location, not earlier.

In this way, we are viewing write-only variables as the channels, or gates found

in process algebra: they are locations for hand-shake, rendez-vous interaction and

communication.

UNCHANGED is a TLA+ predicate identifying the state components that should

preserve their values through the step. For example,UNCHANGED(buf, w, in) is

equivalent to:

∧ buf ′ = buf

∧ w′ = w

∧ in′ = in.

In the two occurrences of this predicate we have slightly departed from the TLA+

notation when expressing that all components of an array except one are unaf-

fected. Note that the constraint-variable links implied bytheUNCHANGED clauses

are not explicitly shown in the state tapestry, since they represent, for the specifier,

a sort of secondary state management concern.

Due to the instances of theUNCHANGED predicate and to the preconditions

involving variablesw and r, it turns out that anyNext-step of the system may

only satisfy one instance of theFill or Emptypredicate; in particular, writing

and reading the buffer are two mutually exclusive events, that is, they are never

simultaneous.

Note that, as an alternative, we could have defined a two-constraint state tapestry

consisting of un-parameterizedFill andEmptypredicates, in light of the fact that

SIU 2004

96 T. Bolognesi

every instance ofFill (i) (resp.Empty(i)) accessesw (resp.r), and requiresi = w

(resp.i = r):

Fill
4
= ∧ ctl[w] = “empty”

∧ ctl′[w] = “full”

∧ in′ ∈ Data

∧ buf ′[w] = in′

∧ w′ = (w + 1) mod N

∧ UNCHANGED(ctl[x] andbuf [x] for x 6= w, r, out)

Empty
4
= ∧ ctl[r] = “full”

∧ ctl′[r] = “empty”

∧ out′ = buf [r]

∧ r′ = (r + 1) mod N

∧ UNCHANGED(ctl[x] for x 6= i, buf , w, in)

Next1
4
= Fill ∨ Empty

However, associating a specific instanceFill(i) andEmpty(i)with each buffer lo-

cation provides a better basis for comparison with the subsequent event-oriented

specification, and also offers an example of application of existential quantifica-

tion.

In conclusion, when thinking of system behaviours in terms of the state tapestry,

and adopting a formal specification language such as TLA+, the most fundamental

expressive tools and structuring facilities that we are offered are basically those

found in first order logic, with conjunction typically used for specifying simul-

taneous updates of state variables, disjunction used for listing alternative action

possibilities at the global level, and existential quantification used for a more gen-

eral expression of nondeterministic behaviour.

3. Event-oriented formal specification

This section deals with event-oriented specification, and is structured as the pre-

vious one: we introduce the ‘event tapestry’, we relate it with some existing,

SIU 2004

Predicates for state changes vs. processes for event patterns 97

Figure 3.4: The ‘event tapestry’

event-oriented formal languages based on process algebra,and we provide an

event-oriented specification of the ring buffer for illustrating the typical structur-

ing facilities offered by this paradigm.

3.1. The event tapestry

Analogous to Figure 2.1, Figure 3.4 identifies the elements of the mental land-

scape at the basis of event-oriented formal specification. In this case, in the early

system conception phase one is concerned with identifying:

• The set ofevents(the boxes) that can be observed from the system envi-

ronment. They are thought of as instantaneous manifestations of simple or

structured values, possibly occurring at some identified location.

• The constraints(the hexagons) that relate event occurrences with one an-

other, and determine possible system behaviours. Each constraint insists

on some subset of the events: the subsets need not be disjoint, and indeed

shared events are an essential feature of this approach. Constraints express

relations such as sequential composition, causality, independence, mutual

exclusion, synchrony, but also relations among the values assumed by the

interconnected events.

The bipartite graph of Figure 3.4 is indeed so abstract that it allows for two alter-

native interpretations for the event-boxes.

• Box as event instance - A box represents a single, instantaneous event in-

stance (that is, occurrence), so that infinite behaviours, with infinite event

instances, require infinite diagrams. Events may or may not include, among

SIU 2004

98 T. Bolognesi

their parameters, the absolute time of occurrence. Assume they do: then

one could specify a network of constraints, each insisting on a subset of the

events and relating their parameters – in particular, theirtimings (note that

this is formally equivalent to a state tapestry with only passive constraints).

Each solution to the network of constraints would representa particular set

of timed events, that is, a system behaviour. A simple example of a such

a specification style, involving four timed events associated with a physical

experiment, namely the relativistic measuring of a runningtrain, is illus-

trated in [13]. Conversely, in the family of models called Labelled Event

Structures [17, 18] events only possess an unstructured label, and the con-

straints are typically limited to causality, mutual exclusion, and indepen-

dence.

• Box as event location - A box represents a conceptual or physical place for

multiple, possibly infinite, event occurrences, so that finite diagrams may

also describe infinite behaviours. Even in this case the constraints may or

may not be concerned with time values; for example, one may specify that

any two occurrences of events at locationsa andb, within the same system

run, must be separated by a minimum time delay oft0.

In practice, the first approach cannot be used directly for specifying non trivial

systems, but may be useful for representing the underlying semantics of models

following the second approach. We shall therefore adopt thelatter, and, for sim-

plicity, shall not consider models handling explicit time information. We shall

sloppily use the termeventfor referring both to an occurrence and to a place (also

calledgate).

An event tapestry identifies the constraints that may participate in the occur-

rence of an event, but is ambiguous about two aspects:

• Is it allowed for two events to occur simultaneously at different gates? For

modelling a variety of concurrent, reactive, distributed systems, the ability

to specify synchronicity of distinct events is not important; in other circum-

stances, for example in hardware design, synchronicity is auseful specifica-

tion abstraction. Event-oriented formal languages have been designed that

follow either approach, but the ones that follow the former appear as more

SIU 2004

Predicates for state changes vs. processes for event patterns 99

‘fundamental’, both in historic and in technical sense; thus we stick here to

the basic assumption of event asynchrony.

• Does an event occurring at a given gate always require the synchronous par-

ticipation of all constraints insisting on that gate? This would appear too

strong a limitation. We do need some flexibility for expressing different

synchronisation or interleaving policies within the same specification, de-

pending on the considered gates and constraints. Thus, we expect formal

specifications to allow us to resolve this graphical ambiguity, on a case by

case basis.

In the same way as the concept of event is not completely excluded from state-

oriented thinking – a step is an event – the concept of state plays some role in

event-oriented thinking too. It is indeed convenient, and common, to think of

constraints as provided with local state information, as depicted in Figure 3.4.

State variables encapsulated by constraints may be of two types:

• control state variables – these are used exclusively for event ordering pur-

poses;

• data variables – these are primarily used for modelling datastructures, or

concrete objects, and may or may not concur in controlling event ordering.

When we conceive an event tapestry, what we intend to describe is the possibly

infinite set of possibly infinite sequences of events that mayoccur at the gates,

while satisfying the constraints.

3.2. Formal languages

Process algebras such as CCS [8], CSP [7] and LOTOS [9] recognise the event

as a first class citizen, and provide a notion of process, for modelling constraints,

and a few behavioural operators – most notably parallel composition – for com-

posing them. Events are interactions among the processes that form the system,

or between these and the external environment. In CCS, parallel composition im-

plies two-party synchronisation, while in CSP and LOTOS it supports multi-party

synchronization.

SIU 2004

100 T. Bolognesi

In process algebra, behaviours are described by behaviour expressions, that are

formed by behavioural operators. In ‘pure’ process algebra, state information is

coded exclusively in the syntactic structure of the evolving behaviour expression,

which plays the role of the control state variables mentioned above: it controls

event orderings. In data-enhanced process algebra, state information can be rep-

resented also by variables, that are used for modelling the manipulated data struc-

tures.

In order to introduce event-oriented specification examples, we need some no-

tation for expressing events and event constraints. We shall use a few operators,

namelyaction prefix, guard, choice, parallel composition, borrowing them from

LOTOS; of course, we shall need alsoprocess definitionsandprocess instantia-

tions. We shall depart from the standard LOTOS syntax in representing data and

types, and in minor details that we do not even bother mentioning.

3.3. Event-oriented ring buffer

When adopting an event-oriented thinking mode, we may conceive the ring buffer

as the event tapestry shown in Figure 3.5.

The global behaviour of the system is now conceived as a special composition

of N+2 constraints insisting on two gates, and constraining theordering of the

events that occur there. Informally, the constraints are asfollows.

LocalLoop For any given buffer locationi, input and output events referring

to that location must alternate; furthermore, the value offered by an output

event must be the same value that was accepted by the preceding input event.

Inputs The input events must involve theN buffer locations cyclically.

Outputs The output events must involve theN buffer locations cyclically.

In constraintLocalLoop(i) variablesval andctl play the role of, respectively, vari-

ablesbuf[i] and ctl[i] in the state tapestry of Figure 2.3. We do not need the

indices here because these variables are local to the constraint, which is already

indexed. The diagram is ambiguous about the subset of constraints participating

in each occurrence of anin or outevent. The intended behaviour here is that every

occurrence of anin (resp.out) event is a two-party synchronisation between the

SIU 2004

Predicates for state changes vs. processes for event patterns 101

Figure 3.5: Event tapestry for the ring buffer

Inputs(resp.Outputs) constraint and exactly one instance (the right one!) of the

LocalLoop(i) constraint. ConstraintLocalLoop(i) owns only partial state infor-

mation for deciding whether, say, anin event is possible, and this is provided by

variablectl; the other necessary information is provided by variablew, encapsu-

lated in constraintInputs, which identifies the next buffer location to be written.

The two constraints can only share this information via a synchronisation event.

Therefore, we conceive events as triples involving a gate name (’gate’), the index

of the affected buffer location (’slot’), and the value to be written into, or read

from it (’value’). Thus, the event space is:

{gate.(slot, value) | gate : {in, out}, slot : ZN , value : Data}

Regard atgate, slot andvalueas field names. The dot separating the gate from

the remaining, parenthesized event parameters is introduced for consistency with

process algebraic notation.

For example, eventin.(0, 7) represents the manifestation at gatein of value

7 for buffer slot 0. The presence of theslot field is meant to allow processes

InputsandOutputsto enable at any time, by synchronisation, the proper instance

of processLocalLoop.

The LOTOS specification of the complete system of constraints is provided be-

low, by the definition of processRingBuffer.

SIU 2004

102 T. Bolognesi

RingBuffer[in, out] :=

||| LocalLoop[in, out](0)

||| ...

||| LocalLoop[in, out](N-1)

|[in, out]|

Inputs[in](0) ||| Outputs[out](0)

where

LocalLoop[in, out](i: ZN) :=

in !i ?val:Data;

out !i !val;

LocalLoop[in, out](i)

Inputs[in](w: ZN) :=

in !w ?_:Data;

Inputs[in](w+1 mod N)

Outputs[out] (r: ZN) :=

out !r ?_: Data;

Outputs[out](r+1 mod N)

There is full correspondence between the event tapestry in Figure 3.5 and the

three-line top behaviour expression of the specification above. Each of theN+2

constraints in that figure corresponds to a process instantiation in the multiple par-

allel composition expression. Every process has gate parameters, listed in square

brackets, corresponding to the events directly connected to the constraint in the

graph. This expressions exhibits a pattern that is found very frequently in LOTOS

specifications, namely a combination of two forms of parallel composition: inter-

leaving (‘|||’) and selective synchrony (‘|[in, out]|’). The former specifies that the

events of the two composed processes must interleave their actions without any

synchronisation; the latter specifies that events from the two components occur-

ring at thesynchronisation gate listidentified within the operator itself (gatesin

andout) must synchronise, while the other events are still interleaved. The inter-

leaving operator is a special case of the selective synchrony operator in which the

SIU 2004

Predicates for state changes vs. processes for event patterns 103

synchronisation gate list is empty. By combining several instances of these oper-

ators in the expression above, where indentation is used to eliminate parentheses,

we achieve the desired synchronisation pattern, that was left unexpressed in the

diagram.

Let us now look at the three process definitions following thewhere keyword.

The action denotations, found in the LOTOS text at every lineterminating with

a semicolon symbol, precisely denote elements of the event space defined above.

An action denotation is formed by a gate name followed by zeroor more fields,

each preceded by the ‘?’ or the ‘!’ symbol. An exclamation mark followed by an

expression denotes the value of the expression, while a question mark followed by

a variable declaration denotes any value of the specified type, and binds the fresh

variable to that value. For example, action denotation‘in !i ?val:Data’

introduces a new variableval, and binds it to some value inData; reference to

this value is possible, via the variable, from within the scope of the action prefix

operator, as done in‘out !i !val’. The processes that share a gate do not

have to control all the fields of the synchronisation events occurring there: they

may expressdon’t careconditions on some of them, via the ‘?’ symbol and a

conventional dummy variable represented by the underscoresymbol, as in‘in

!w ? :Data’.

In summary, the state variables in the abstract diagram of Figure 3.5 have been

modelled in the event-oriented LOTOS specification either

• as parameters of a process – variablesw andr become parameters of pro-

cessesInputsandOutputs, respectively – or

• as internal variables of a process, introduced by the ‘?’ symbol – variable

val is an internal variable of processLocalLoop– or

• as an evolving behaviour expression – variablectl in the diagram corre-

sponds to the evolving behaviour expression in the body of processLocal-

Loop, which can take two forms, namely the full expression, and the in-

termediate form‘out!i!val; LocalLoop[in,out](i)’ (after the

out event the expression turns into a process instantiation, which is equiva-

lent to the full expression). These two forms correspond, respectively, to the

values“empty” and“full” used in the state-oriented specification.

SIU 2004

104 T. Bolognesi

In conclusion, while in state-oriented specification we useaction predicates and

their logical compositions, in the event-oriented settingthe fundamental structur-

ing facilities that we use are processes and process algebraic operators; in par-

ticular, we have illustrated the use of the two forms of the fundamental, parallel

composition operator: interleaving and selective synchrony. In a network of in-

teracting processes, each process specifies partial requirements on the ordering

of some events, and on the values of some of their fields; parallel operators then

specify which requirements are to be composed at which gates. This particular

usage of parallel composition is known to LOTOS users asconstraint-oriented

specification style.

4. Bridging the gap between state-oriented and

event-oriented specification

What is the difference between conceiving a system as a network of constraints

on state variables, as done in Section 2, and as a network of constraints on events,

as done in Section 3? Are we confronted with two fundamentally distinct ways

of thinking about system behaviours: action predicates andtheir compositions for

describing state changes on one hand, and processes and their compositions for

describing event patterns on the other? The purpose of this section is to shed some

light on the size and nature of this gap.

The comparison between the two specification para- digms is ultimately le-

gitimised by the fact that both can be given semantic foundations in terms of

transition systems. In the state-oriented setting, given the initial stateσ0 – an

assignment of values to all state variables–, and the (fixed)global action predi-

cateNext(possibly interpreted in an environment of other predicatedefinitions),

transitions take the form:

σi −→ σi+1

where(σi, σi+1) is aNext-step, that is, a pair of states that satisfies predicateNext.

In the event-oriented setting, given the initial behaviourexpressionbex0 (possibly

SIU 2004

Predicates for state changes vs. processes for event patterns 105

interpreted in an environment of process definitions), transitions take the form:

bexi
ei+1

−→ bexi+1

wherebexi is the current behaviour expression, whose interpretationunder the

fixed Structural Operational Semantics (SOS) yields eventei+1 and the new ex-

pressionbexi+1.

However, for assessing the expressive flexibility of the twospecification paradigms,

as experienced by the specifier, we should not really look at the fine-grained level

of individual transitions, but at the coarse grained syntactic level, where one ma-

nipulates action predicates or processes. One way to measure the ’distance’ be-

tween these two ways of structuring system behaviours is to investigate the cost

of converting one into the other.

In the sequel we illustrate a technique for transforming event-oriented specifi-

cations into equivalent state-oriented specifications. The technique can be applied

to a relatively large and interesting class of specifications, involving a constant

number of parallel interacting processes. Key factors in this transformation are:

• the creation of control state variables for representing evolving behaviour

expressions,

• the conversion of gates into write-only state variables, and

• the representation of multiple parallel process compositions by gate-indexed

sums of products (SOP’s).

We illustrate our technique by converting the LOTOS specification of the ring

buffer presented in Section 3.3 into the TLA+ specification of Section 2.3.

4.1. Step 1: gate-indexed predicates for the component processes

LOTOS processRingBufferis defined in Section 3.3 as the parallel composition

of instances of processesLocalLoop, InputsandOutputs. Our first transformation

step consists in manipulating those three processes individually.

Let us start with processInputs. We wish to describe the dynamics of this

process by means of an action predicate to be iteratively applied to a suitable

set of state variables. The process body is defined in terms oftwo operators,

namely action prefix and process instantiation. By applyingthe SOS rules of

SIU 2004

106 T. Bolognesi

these operators we derive the following transition scheme for processInputs(or,

more precisely, for its generic instantiation), which fully captures its dynamics:

Inputs[in](w)
in.(w,d)
−→ Inputs[in]((w + 1) mod N)

wherew: ZN , d: Data. We say that processInputs is stable, because each tran-

sition in its behaviour relates two expressions exhibitingthe same structure (a

process instantiationis a behaviour expression). Which set of state variables is

adequate for describing the universe before and after the execution of a transition

by processInputs, and which action predicate relates these two states? In light of

the stability of the process, we do not need control state variables for represent-

ing evolving behaviour expression information. What changes in the expression

before and after the transition is simply the value of the process parameterw; we

shall therefore create a state variable for recording theseevolutions. Then, based

on the idea of using write-only state variables for modelling gates, we introduce

state variablein: any event occurring at that gate is modelled by equatingin′ with

the tuple of parameters of the event. In conclusion, state information is captured

by the pair(w, in), and the action predicate that describes the evolutions of this

state structure, as expressed by the transition scheme above, is:

Inputsin
4
= ∃dummy ∈ Data :

∧ in′ = (w, dummy)

∧ w′ = (w + 1) mod N

Analogously, for processOutputswe derive action predicate:

Outputsout
4
= ∃dummy ∈ Data :

∧ out′ = (r, dummy)

∧ r′ = (r + 1) mod N

that operates on the pair of state variables(r, out). We have introduced the name

‘dummy’ for the unnamed variable represented by the underscore symbol in the

original process definitions. Existential quantification corresponds to the ques-

tion marks in the original action denotations, and precisely captures the fact that

SIU 2004

Predicates for state changes vs. processes for event patterns 107

those (dummy) variables are introduced, but not yet bound; they will, but only at

synchronisation time.

A (LOTOS) process can be active at one gate at a time. Thus, forprocessX and

gateg we shall denote byXg the action predicate expressing the action capabilities

of that process at that gate: these are thegate-indexed action predicatesof the

process. A predicateXg defined asfalse indicates that the SOS does not support

the derivation of transitions labelled by an event at gateg for processX. This is

the case of predicatesInputsout andOutputsin. The global action capabilities

of a process shall be basically expressed by the disjunctionof its gate-indexed

predicates.

Consider now processLocalLoop(see Section 3.3). This process is not stable:

after the firstin event it reaches an intermediate state, and only after another out

event does it assume again its initial shape, namely a self-instantiation. In light of

the advantages of deriving gate-indexed action predicatesfrom processes that are

stable, we start by turningLocalLoopinto one such process, calledLL:

LL[in, out] (i: ZN, ctl: EmptyOrFull, val: Data) :=

[] [ctl = "empty"] ->

in !i ?newVal:Data;

LL[in, out] (i, "full", newVal)

[] [ctl = "full"] ->

out !i !val;

LL[in, out] (i, "empty", val)

This LOTOS-to-LOTOS transformation reflects the remarks atthe end of Section

3.3 about the different ways to represent state informationavailable in LOTOS.

In processLL we have modeled the two-step cyclic evolution of the runningbe-

haviour expression of processLocalLoopby a control state variablectl; this has

required us to introduce the new variableval for recording the value accepted at

gatein. The five elements that appear associated with each instance of constraint

LocalLoopin Figure 3.5, namely(in, out, i, ctl, val), are those that precisely ap-

pear now in the header of processLL.

SIU 2004

108 T. Bolognesi

We look now for the state-oriented, TLA+ representation of this process, that

is, for a tuple of state variables and for the gate-indexed action predicates that

manipulate it. As we did for processesInputsandOutputs, we directly derive the

tuple of state variables from the parameters of the stable process, and use the same

identifiers: thus, our state variables are(in, out, i, ctl, val).

Turning to the gate-indexed action predicates, we proceed,as before, by con-

sidering the SOS-supported derivation of transitions for the behaviour expression

– let us call itE – in the body ofLL. ExpressionE makes use only of theguard,

action prefix, choiceandprocess instantiationconstructs (thereby conforming, not

surprisingly, to what is known asstate-orientedLOTOS specification style). By

applying the SOS rules of these operators to the expression we derive the transi-

tion scheme:

LL[in, out](i, ctl, val)
event
−→ LL[in, out](i′, ctl′, val′)

The topmost operator ofE is binary choice. According to the SOS rules for this

operator, a transition

B1[]B2
event
−→ B′

is possible in two cases, namely if either

B1
event
−→ B′ or B2

event
−→ B′,

whereB1, B2 andB′ are behaviour expressions. Correspondingly, referring to

the choice expressionE, we have two cases:

• Case 1. A transition from the first argument of the choice was used in the

derivation. Then:

– the guard[ctl = “empty”] must have been true (by the SOS rule for the

guard operator),

– the event must have occurred at gatein, with two data fields repre-

sented by the bound variablei and the yet unbound variablenewV al

(by the SOS rule of action prefix),

– in the new process instantiation it will bei′ = i, ctl′ = “full”, and

val′ = newV al (by the SOS rule of process instantiation);

SIU 2004

Predicates for state changes vs. processes for event patterns 109

• Case 2. A transition from the second argument of the choice was used in the

derivation. Then:

– the guard[ctl = “full”] must have been true,

– the event must have occurred at gateout, with two data fields repre-

sented by the bound variablesi andval,

– in the new process instantiation it will bei′ = i, ctl′ = “empty” and

val′ = val.

Notice that, although in defining processLL we have attributed toi, ctl andval

identical formal status, namely that of process parameters, variablei can be dis-

tinguished from the other two variables in that it is never affected by the tran-

sitions: this variable (the only one to appear in the original processLocalLoop)

is nothing but a constant index used for distinguishing theN process instances,

each handling a different buffer location. Thus, ifLL[in, out](i, ctl, val) denotes

the ith instance of processLL, we shall letLLin(i) andLLout(i) denote its as-

sociated gate-indexed action predicates, cumulatively insisting on state variables

(in, out, ctl, val). In the body of these predicates, variablei shall never appear in

primed form, while it shall appear as an index ofctl andval, which are proper

state variables, for avoiding name collisions when all predicates are composed

into the global, next-state action predicate.

The two transition cases examined above originate from the two inference rules

for the choice operator, but it turns out that they also characterise, separately, the

action capabilities of processLL at gatesin andout, respectively. Thus, by refor-

mulating in logical form the facts established in the two cases, we readily identify

the two gate-indexed action predicates for theith instance of the process:

LLin(i) = ∧ ctl[i] = “empty”

∧ ctl′[i] = “full”

∧ ∃ newV al ∈ Data :

∧ in′ = (i, newV al)

∧ val′[i] = newV al

SIU 2004

110 T. Bolognesi

LLout(i) = ∧ ctl[i] = “full”

∧ ctl′[i] = “empty”

∧ out′ = (i, val[i])

Collectively, the action predicates derived for processesInputs, OutputsandLL

manipulate variables(in, out, ctl, val, w, r). Each one of the above definitions

should be complemented by anUNCHANGED clause expressing conservative as-

signments for the variables it does not explicitly update: we have omitted them

for conciseness.

4.2. Step 2: gate-indexed algebraic expressions from parallel behaviour

expressions

Let us now consider the top parallel behaviour expression ofprocessRingBuffer,

where we have replaced the instances ofLocalLoopby those ofLL, initialized

with parameterctl set to “empty”, and parametervalueset toundef.

||| LL[in, out](0, "empty", undef)

||| ...

||| LL[in, out](N-1, "empty", undef)

|[in, out]|

Inputs[in](0) ||| Outputs[out](0)

The stability of theN + 2 composed processes and the SOS rules of the parallel

composition operator imply the stability of the whole expression: any transition

yields a new behaviour expression which is identical to the original one, except

for the actual parameters in process instantiations. Then,the global state of the

state-oriented specification shall be simply the union of the state variables ma-

nipulated by the action predicates derived for each process, namely the already

identified tuple(in, out, ctl, val, w, r), wherectl andval are arrays of sizeN . We

are interested in finding the logical expression that describes the evolution of this

state structure.

In [14] a technique is introduced for deriving, gate by gate,algebraic expres-

sions abstractly describing the action capabilities of a multiple parallel behaviour

SIU 2004

Predicates for state changes vs. processes for event patterns 111

expression, and for turning this family of expressions intoa convenient graphical

form calledprocess interaction net(PIN). In summary, letting

Π = {Pi[Gi] | 1 = 1, . . . , n} be a set of process instantiations, whereGi is

the list of gates at which processPi is potentially active,

G = ∪i=1,...,nGi be the universe of gates (viewing gate lists as sets),

E be a multiple parallel behaviour expression overΠ,

that technique allows one to derive fromE, and for each gateg in G, an algebraic

expressionEg formed by the process instantiations (or, more concisely, by the

bare process identifiers), by the sum and product operators (with product ‘*’ often

replaced by plain juxtaposition), by zero’s and parentheses, as follows:

• process instantiationPi[Gi] becomes

– Pi[Gi] (or justPi), if g ∈ Gi

– 0 otherwise;

• parallel operator|S|, whereS is a set of synchronisation gates, becomes

– ’*’ if g∈ S

– ’+’ if g /∈ S.

Thus, ifE is the top parallel expression of processRingBufferwe derive two gate-

indexed expressions:

Ein = (LL(0) + · · · + LL(N − 1)) ∗ (Inputs + 0)

Eout = (LL(0) + · · · + LL(N − 1)) ∗ (0 + Outputs).

Recall that the parameter associated toLL is not a proper state variable, but an

index, which can be understood as part of the process identifier. We then turn ev-

ery Eg into Sum Of Products form, denotedEg
SOP . For our example we obtain:

ESOP
in = LL(0) ∗ Inputs + · · · + LL(N − 1) ∗ Inputs

ESOP
out = LL(0) ∗ Outputs + · · · + LL(N − 1) ∗ Outputs

A PIN is a bipartite graph formed by process-nodes and gate-nodes; process-nodes

are labelled by process instantiations, while gate-nodes are labelled by gate iden-

tifiers; label duplication is admitted only for gate-nodes.A process-node labelled

by process instantiationPi[Gi] can only be connected to gate-nodes labelled by

SIU 2004

112 T. Bolognesi

Figure 4.6: A process interaction net for processRingBuffer

gates that appear inGi. A gate-node and all the process nodes adjacent to it form

what we call a(g,PP)-multiarc wheng is the label of the gate-node andPP is the

set of labels of the process-nodes.

Based on the SOP expressionsESOP
in andESOP

out , we can immediately obtain

the PIN that graphically represents the interaction possibilities for the original

parallel expression (see Figure 4.6): we create one processnode for every pro-

cess instantiation in the parallel expressionE, and one(g,PP)-multiarc for every

product term inEg
SOP formed by the setPP of process instantiations (or iden-

tifiers). A PIN can indeed be adopted as a multi-argument, graphical operator

for expressing relatively complex process interaction patterns; [14] provides the

(rather obvious) formal semantics for such an operator, andproves the behavioural

equivalence between the expression and the graph.

Note that the equation P*0 = 0 precisely characterizes the fact that a process

unable to operate at some gate blocks another process willing to synchronise with

it on that gate.

Let us now see how to use gate-indexed SOP’s for completing our transforma-

tion.

SIU 2004

Predicates for state changes vs. processes for event patterns 113

4.3. Step 3: expanding gate-indexed algebraic expressionsby gate-

indexed predicates

Once the product and sum operators are interpreted as logical conjunction and

disjunction,ESOP
g can be interpreted as a logical expression describing the dif-

ferent ways in which events at gateg may occur. These are indeed abstract condi-

tions identifying onlywhichpossible process groupings may yield an interaction

at some gate, without sayinghoweach process supports those events. If we now

expand the SOP’s of a parallel expressionE by replacing, in a gate-wise manner,

process instantiations by the gate-indexed action predicates previously derived,

we obtain a complete logical formulation of the action possibilities of E, that is,

the complete state-oriented specification.

Consider a generic parallel expressionE involving the composition of two pro-

cesses,P1 andP2, both insisting on gatesa andb. By the conversion rules just

described, the parallel expression yields the two expressions Ea andEb , which

are turned into SOP formsEa
SOP andEb

SOP . Based on the definitions of process

P1 (resp.P2) we obtain the action predicatesP1a andP1b (resp.P2a andP2b).

Then, thea-indexed predicatesP1a andP2a are substituted for the corresponding

process identifiers appearing inEa
SOP . Similarly, P1b andP2b replace the oc-

currences ofP1 andP2 in Eb
SOP . The two obtained expressions are composed

by disjunction, thus yielding the final action predicate, which describes the action

capabilities of the initial behaviour expressionE.

Let us apply the procedure to our example. Define two substitutions:

Φin = [LLin(i) / LL(i), i = 1, ...,N -1, Inputsin /Inputs, Outputsin /Outputs]

Φout = [LLout (i) / LL(i), i = 1, ...,N -1, Inputsout /Inputs, Outputsout /Outputs]

Then we have:

Fin = ESOP
in [Φin]

= LLin(0) ∗ Inputsin + · · · + LLin(N − 1) ∗ Inputsin

Fout = ESOP
out [Φout]

= LLout(0) ∗ Outputsout + · · · + LLout(N − 1) ∗ Outputsout

SIU 2004

114 T. Bolognesi

By switching to logic notation:

Fin
4
= (LLin(0) ∧ Inputsin) ∨ · · · ∨ (LLin(N − 1) ∧ Inputsin)

= ∃i ∈ ZN : LLin(i) ∧ Inputsin

Fout
4
= (LLout(0) ∧ Outputsout) ∨ · · · ∨ (LLout(N − 1) ∧ Outputsout)

= ∃i ∈ ZN : LLout(i) ∧ Outputsout

The final action predicate is defined as follows:

F
4
= Fin ∨ Fout

= ∨ ∃i ∈ ZN : LLin(i) ∧ Inputsin

∨ ∃i ∈ ZN : LLout(i) ∧ Outputsout

Compare now this definition with the state-oriented specification of the ring buffer

introduced in Section 2:

Next
4
= ∨ ∃i ∈ ZN : Fill(i)

∨ ∃i ∈ ZN : Empty(i)

We need to compare predicateFill(i) and the conjunctionLLin(i) ∧ Inputsin.

By expansion:

SIU 2004

Predicates for state changes vs. processes for event patterns 115

LLin(i) ∧ Inputsin = ∧ ctl[i] = “empty”

∧ ctl′[i] = “full”

∧ ∃ newV al ∈ Data :

∧ in′ = (i, newV al)

∧ val′[i] = newV al

∧ ∃ dummy ∈ Data :

∧ in′ = (w, dummy)

∧ w′ = (w + 1) mod N

= ∧ i = w

∧ ctl[i] = “‘empty”

∧ ctl′[i] = “full”

∧ ∃ newV al ∈ Data :

∧ in′ = (i, newV al)

∧ val′[i] = newV al

∧ w′ = (w + 1) mod N

On the other hand, by rewriting

in′ ∈ Data −→ ∃ newV al ∈ Data : in′ = newV al

and omitting theUNCHANGED clause, the body ofFill (i) becomes:

∧ i = w

∧ ctl[i] = “empty”

∧ ctl′[i] = full

∧ ∃newV al ∈ Data : in′ = newV al

∧ buf ′[i] = in′

∧ w′ = (w + 1) mod N

By equating arraysval andbuf, the two formulae become equivalent, except for

the structure of variablein, which, in the second case, records also the index of

the buffer location affected by the input operation.

Analogously, we compareEmpty(i) andLLout(i) ∧ Outputsout. By expan-

sion:

SIU 2004

116 T. Bolognesi

LLout(i) ∧ Outputsout = ∧ ctl[i] = “full”

∧ ctl′[i] = “empty”

∧ out′ = (1, val[i])

∧ ∃ dummy ∈ Data :

∧ out′ = (r, dummy)

∧ r′ = (r + 1) mod N

= ∧ i = r

∧ ctl[i] = “full”

∧ ctl′[i] = “empty”

∧ out′ = (i, val[i])

∧ r′ = (r + 1) mod N

On the other hand, by omitting theUNCHANGED clause, the body ofEmpty(i)

is:

∧ i = r

∧ ctl[i] = “full”

∧ ctl′[i] = “empty”

∧ out′ = buf [i]

∧ r′ = (r + 1) mod N

Again, the two formulae are equivalent, except for the namesof the two arrays

and the structure of variableout.

In conclusion, modulo the refinement to the gate variable, wehave converted

the process-oriented specification into the state-oriented one.

4.4. Remarks

Which conclusions can we draw about the differences betweenthinkingat system

behaviours in terms of states or events, in light of the abovetransformation?

We have started with a parallel composition of processes, possibly represent-

ing physical system components, and have ended up with a disjunction of action

predicates in which processes and components have basically disappeared. The

largest part of the gap is bridged by the crucial Step 2, whichdefines anexpansion

SIU 2004

Predicates for state changes vs. processes for event patterns 117

of a single parallel behaviour expression into a gate-indexed family of algebraic

expressions, that are in turn expanded in SOP form. On one side we think in

terms of interacting components, giving an implicit description of their individual

interactions by means of the parallel operators; on the other side we leave the iden-

tification of system components implicit, while describingexplicitly their interac-

tions, case by case. We have usedN + 2 process instances in the event-oriented

specification, and2N action predicate instances in the state-oriented specification

of the ring buffer.

In general, where a typical process- and event-oriented formalisation would re-

flect the structure of a (distributed) system, a typical formalisation based on action

predicates would basically disregard the system components, while directly pro-

viding a more lengthy,explicit enumeration of all their interaction possibilities, in

form of logical disjuncts. In fact, theexplicit description of the system structure

is possible also in the state-based, logical setting: the composition of two subsys-

tems is specified by the logical conjunction of their specifications, as explained in

Chapter 10 of [5]. However, when using the low level logical operators of con-

junction and disjunction for composing action predicates in a bottom-up fashion

and specifying complex interaction patterns, one has to be very careful in filter-

ing out all the undesired pairings – but only them! Further effort has to be spent

in providing individual predicates with appropriate instances of theUNCHANGED

clause, which, in general, depend on the context where the predicates are to be

used, and on the desired global behaviour. This difficulty, well known as the

frame problem, and the considerable, additional specification effort it involves,

can be fully avoided by using higher level operators, that were explicitly designed

for expressing interaction patterns.

5. Conclusions

We have investigated the expressive flexibility and structuring facilities offered by

two fundamental specification paradigms, state-oriented and event-oriented, con-

centrating on very basic expressive features. In state-oriented specification, one is

primarily concerned with modelling the system state by an adequate set of state

SIU 2004

118 T. Bolognesi

variables, and with specifying the atomic operations that modify the state. In our

state-oriented examples we have adopted a well establishedlogical approach, by

which the pre-conditions and post-conditions of operations are described by ‘ac-

tion predicates’; state variables have global scope, and can be accessed by any

predicate. Complex specifications are structured by composing action predicates

via the operators of predicate logic; advanced behaviouralproperties, such as live-

ness, could be specified by using temporal logic operators, but we have confined

our discussion to simple specifications that deal only with safety properties.

In event-oriented specification, one is primarily concerned with modelling the

space of events, and with specifying event patterns. In our event-oriented exam-

ples we have adopted the process-algebraic approach, in which these patterns are

described by processes. We have conceived a process as an entity that may encap-

sulate state information (control and data structures) andis able to interact with

other processes in its environment by rendez-vous. Simple process behaviours are

expressed in terms of guards, action prefix, choice, recursive process instantiation.

Complex specifications are structured by composing processes via parallel com-

position, in its pure interleaving or selective synchrony forms; of course, some

other operators would be available, such as sequential process composition and

disruption, but we have confined our discussion to parallel composition, since this

operator is the key for structuring specifications, and because it naturally com-

pares with logical conjunction.

We have illustrated a technique for transforming a fixed pattern of stable (or

easily stabilized) interacting processes into a compositelogical expression manip-

ulating a set of state variables, thus reducing the gap between the two paradigms.

We have not addressed the transformation problem in its fullgenerality. It might

be interesting to define a transformation technique for the generic (LOTOS) be-

haviour expression in a compositional way, by providing action predicates for the

individual behavioural operators, and by building the overall action predicate in a

syntax-driven way.

In [12] Lamport illustrates the insubstantiality of the notion of process by for-

mally verifying the equivalence of twodifferent versions of a system, namely the

N-process and the two-process ring buffer, specified in thesame language, namely

SIU 2004

Predicates for state changes vs. processes for event patterns 119

TLA; the transformation is completely formal: it uses rulesof logic to rewrite for-

mulae. The work in [12] has been an important source of inspiration for our paper,

which has however followed a different path. The transformation technique we

have illustrated relates two specifications of thesame version of the system(the

multi-process ring buffer), written in twodifferent formal languages, one being

LOTOS, the other being basically (a subset of) TLA+; and we have done it by ex-

plicitly taking into account the formal SOS rules of LOTOS. Another, secondary

difference between the two exercises is that our multi-process version of the ring

buffer is different from Lamport’s, and has been preferred because it only exploits

the rendez-vous process interaction mechanism, that fits into pure event-oriented

thinking much better than shared variables.

Both exercises lead to the conclusion that ‘processes are inthe eye of the be-

holder’. However, while in [12] Lamport seems to push this consideration to

the point of disqualifying process-oriented languages in almost any respect, we

would rather take it as a mere indication that the process concept can be removed

from specification languages without decreasingtheoreticalexpressive power. We

hope we have succeeded in providing some evidence that process-based languages

such as LOTOS and CSP offer high expressiveflexibility, at least limited to the

discussed, common application scenarios, while preserving formal semantic foun-

dations.

Dealing with specification issues, in this paper we have not taken up the ver-

ification challenge posed in [12], which questions the possibility to carry out

an equivalence proof for two process-algebraic specifications of the ring buffer

(the two-process and the multi-process version) purely based on process alge-

braic laws. While in this case we share the widely diffused opinion that process-

algebraic axiomatic approaches to verification are not effectively scalable, we did

work out a proof of equivalence between two LOTOS specifications of the ring

buffer (the multi-process specification presented here, and Lamport’s two-process

version), based on the well known concept of bisimulation, and on SOS inference

rules. This proof is not presented here for space reasons. Itwould be interest-

ing to compare it with the one worked out by Lamport, and to check whether the

SIU 2004

120 T. Bolognesi

granularity induced in our proof by the usage of SOS rules makes it more concise

and readable.

Once the state-oriented and event-oriented specification paradigms are investi-

gated, and their advantages/disadvantages assessed, a natural next step is to study

the various ways in which they could be possibly integrated.Our first attempts to

combine constraints on state variables and on events are described in [19]. These

led to the definition of the ‘co-notation’ (constraint-oriented notation) [20, 21]

an experimental language by which system behaviours can be specified as hier-

archical compositions of simple and complex constraints both on events and on

state variables. The co-notation offers invariants, action predicates, and a form of

parallel composition similar to that of process algebra.

A lively research area has recently emerged that deals with integrated formal

methods (IFM) [22]; research in this direction typically aims at designing formal

languages that combine features from process algebra (CSP)and from state-based

approaches (Z); examples are CSP-OZ [23], TCOZ [24], and Circus [25]. It would

be interesting to investigate the type of informal thinkingthat precedes and sup-

ports formal specification activities based on these languages. An attempt to up-

grade the state-oriented formalism of ASM by the inclusion of process algebraic

operators is presented in [26].

In all the event-oriented formalisms that we have mentioned, events are medi-

ated by state information, be it represented by state variables playing some role in

the pre- and post-conditions of the event, or by the shape of an evolving behaviour

expressions, corresponding to control state information.We like to conclude this

paper by mentioning an interesting question raised by Lamport (in a private com-

munication): are therepractical, formal, pure event-oriented specification lan-

guages in which events are not mediated by an underlying state structure? The

already mentioned labelled event structures [17, 18] are a genuinely stateless for-

malism, but they do not seem to offer the structuring facilities required for practi-

cal, large-scale applicability.

Acknowledgments

The idea of regarding event gates as state variables emergedafter several lively

SIU 2004

Predicates for state changes vs. processes for event patterns 121

discussions with Egon Boerger, whose purpose was to provideAbstract State Ma-

chines with some of the good expressive features of process algebra. I wish to

express my gratitude to Hacène Fouchal for inviting me to OPODIS’2002, and for

his patience in waiting for my contribution; this paper reflects most of the ideas

that I have presented at that conference, and that I could discuss, in particular,

with the other invited spaker, Leslie Lamport. Finally, many thanks to the latter,

for drawing my attention to his paper ‘Processes are in the Eye of the Beholder’,

and for his prompt and stimulating reactions to some over-optimistic views about

process algebra and event-oriented thinking.

References

[1] Gurevich, Y.: Evolving Algebras 1993 - Lipari Guide. In Boerger, E., ed.: Specification and

Validation Methods, Oxford Univ. Press (1995) 9–36

[2] Boerger, E., Staerk, R.: Abstract State Machines - A Method for High-Level System Design

and Analysis. Springer (2003)

[3] Abrial, J.R.: The B-Book - Assigning Programs to Meanings. Cambridge Univ. Press (1996)

[4] Lamport, L.: The temporal logic of actions. ACM Transactions on Programming Languages

and Systems16 (1994) 872–923

[5] Lamport, L.: Specifying Systems - The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley (2003)

[6] Spivey, J.M.: The Z Notation - A Reference manual. Prentice-Hall (1989)

[7] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

[8] Milner, R.: A Calculus of Communicating Systems. Volume92 of Lecture Notes in Computer

Science. Springer-Verlag (1980)

[9] Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Com-

puter Networks and ISDN Systems14 (1987) 25–59

[10] Brinksma, E.: ISO, Information Processing Systems, Open Systems Interconnection, LOTOS,

a formal description technique based on the temporal ordering of observational behaviour -

IS8807. Technical report, Geneva (1989)

[11] Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Programming Lan-

guages and Systems15 (1993) 73–132

[12] Lamport, L.: Processes are in the eye of the beholder. Theoretical Computer Science179

(1997) 333–351

SIU 2004

122 T. Bolognesi

[13] Bolognesi, T.: A conceptual framework for state-basedand event-based formal behavioural

specification languages. In: Proceedings of IEEE Int. Conf.on Complex Computer Systems

(ICECCS 2004), IEEE Press (2004)

[14] Bolognesi, T.: Deriving graphical representations ofprocess networks from algebraic expres-

sions. Information Processing Letters46 (1993) 289–294

[15] Reisig, W.: Petri Nets - An Introduction. Volume 4 of EATCS Monographs on Theoretical

Computer Science. Springer-Verlag (1985)

[16] Genrich, H.J.: Predicate/transition nets. Lecture Notes in Computer Science254 (1987) 207–

247

[17] Winskel, G.: Events in Computation. PhD thesis, Univ. of Edinburgh (1980)

[18] Winskel, G.: An introduction to event structures. Lecture Notes in Computer Science354

(1989) 364–397

[19] Bolognesi, T., Ciaccio, G.: Cumulating constraints onthe whenand thewhat. In Tenney,

R.L., Amer, P.D., Uyar, M.U., eds.: Formal Description Techniques VI - Proceedings of IFIP

TC6/WG6.1 Sixth International Conference on Formal Description Techniques (FORTE’93),

North-Holland (1993) 433–450

[20] Bolognesi, T.: Expressive flexibility of a constraint-oriented notation. The Computer Journal

40 (1997) 259–277

[21] Bolognesi, T., Accordino, F.: A layer on top of PROLOG for composing behavioural con-

straints. Software Practice and Experience28 (1998) 1415–1435

[22] Grieskamp, W., Santen, T., Stoddart, B., eds.: Proc. 2nd Int. Conference ‘Integrated Formal

Methods’ (IFM 2000), Springer (2000)

[23] Fischer, C.: CSP-OZ: a combination of Object-Z and CSP.In Bowman, H., Derrick, J., eds.:

Proc. 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems

(FMOODS), Chapman and Hall, London (1997) 423–438

[24] Mahony, B.P., Dong, J.S.: Blending Object-Z and Timed CSP: An introduction to TCOZ. In

Futatsugi, K., Kemmerer, R., Torii, K., eds.: The 20th International Conference on Software

Engineering (ICSE’98), Kyoto, Japan, IEEE Computer Society Press (1998) 95–104

[25] Woodcock, J.C.P., Cavalcanti, A.L.C.: The semantics of Circus. In: ZB 2002: Formal Speci-

fication and Development in Z and B, Springer-Verlag (2002)

[26] Bolognesi, T., Boerger, E.: Abstract State Processes.In: Abstract State Machines - Advances

in Theory and Applications (Proceedings of ASM2003 - LNCS 2589), Springer-Verlag (2003)

Authors addresses:

Tommaso Bolognesi

C.N.R. - ISTI

1, Via Moruzzi, 56124

SIU 2004

Predicates for state changes vs. processes for event patterns 123

Pisa, Italy

t.bolognesi@isti.cnr.it

SIU 2004

