
THE ROLE OF FORMAL METHODS IN DEVELOPING A DIS-
TRIBUITED RAILWAY INTERLOCKING SYSTEM

M. Banci1, A. Fantechi2, S. Gnesi1
1 Formal Methods && Tools Group, ISTI - CNR,
Address: Via G. Moruzzi, 1, Pisa, Italy, I-56124.
Phone: (+39) 050.3152918, Fax: (+39) 050.3152810, e-mail: {m.banci|s.gnesi}@isti.cnr.it
2 Università degli Studi di Firenze, Dipartimento di Sistemi e Informatica,
Address: Via S. Marta, 3, Firenze, Italy, I-50139
Phone: (+39) 055.4796265, Fax: (+39) 055.4796363, e-mail: fantechi@dsi.unifi.it

Abstract: The development of computer controlled Railway Interlocking Systems (RIS) has seen an
increasing interest in the use of Formal Methods, due to their ability to precisely specify the logical
rules that guarantee the safe establishment of routes for trains through a railway yard. Recently, a trend
has emerged about the use of statecharts as a standard formalism to produce precise specifications of
RIS. This paper describes an experience in modelling a railway interlocking system using statecharts.
Our study has addressed the problem from a “geographic”, distributed, point of view: that is, our model
is composed by models of single physical entities (points, signals, etc..) that collectively implement the
interlocking rules, without any centralized database of rules, which is on the other hand a typical way of
implementing such a system (what we call “functional” approach).
We show how a distributed model of this kind may be used to develop a distributed implementation,
that employs physically distributed controllers communicating through a “safe” field bus. Ensuring
safety of this kind of RIS is entirely based on formal verification.
Keywords: Railway signalling, interlocking, safety critical systems, formal specification, Statecharts,
distributed system, field bus

1. INTRODUCTION

A Railway Interlocking System (RIS) is a set of
devices and equipments for the safe es-
tablishment of routes for trains through a railway

yard. Electronic signalling systems have replaced
(and actually are still replacing) old relay-based

interlocking systems due to their advantages in
terms of:

• less dependency on operator’s failure;
• self diagnostic system checks to improve

reliability;
• possibility of global control of wide areas;
• increased capacity in terms of smaller route

setting times and greater number of simul-
taneously live routes.

 Typically, a RIS receives a route request; the
answer to this request has to go through a series
of checks and actions.
 The aim of these checks and actions is to
guarantee that no train can be driven into a route
occupied by another train. Before the computer-
ised interlocking system allows a signal aspect to
display green, it checks that the train's route is
clear of trains and that all points are locked in the
correct positions.

 The case of Formal Methods in the devel-
opment of RISs is evident from the list of checks
and actions needed to establish the system be-
haviour, and there is a considerable literature
about formalization of interlocking systems (see
for example Bacherini et. al. 2003; Cimatti et. al.
1998; Foschi et. al. 2003).
 Inside the EuroInterlocking project a trend
has developed towards the use of finite state
machines for modelling interlocking rules, as
Koenig & Einer (2003) described. In particular, a
richer form of machines, namely the Statecharts
(Harel 1987; Harel et. al. 1987), has been con-
sidered suitable to express the sequences of
checks and actions typical of an interlocking
system. Both the UML dialect (OMG 1999) and
the Statemate dialect (Harel & Politi 1998) of
Statecharts have been considered.

 This paper is based on this idea, describing
an experience of modelling a railway interlock-
ing system using Statecharts and furthermore
implementing the model in a distributed system.
Our study has addressed the problem from a
“geographic”, distributed, point of view, rather
than a “functional”, centralized, point of view:
that is, our model is made up by models of single
physical entities (points, signals, etc..) that
collectively implement the interlocking rules,
without any centralized database of rules and any
centralized equipments managing the whole
system, which is a typical way of approaching
the problem.
 The main aim of this study is to investigate
the feasibility of the geographic approach for the
development of a distributed interlocking sys-
tem; one of the most interesting issues we are
expecting to evaluate, and which has actually
motivated our work, is to transpose and imple-
ment our geographic model in a distributed
system, using devices with a local embedded
control program, and communicating among
them using a field bus, that is, basing on a tech-
nology largely used in automotive and other
industrial applications.
 Following this approach, formal verification
becomes the most important way to guarantee
the global safety of the system.

2. GEOGRAPHIC AND FUNCTIONAL
MODELLING

A RIS is an embedded system that ensures the
safe operation of the devices in a railway station.
Such a system controls an arrangement of signals
and track points so interconnected that their
functions shall be performed in proper sequence
and for which interlocking rules are defined in
order to guarantee safe operations. A simple (the
simplest) example of RIS, that we will use in the
paper as a case study, refers to the layout shown
in the Figure 1, and is based on a real Italian
Interlocking System, as described by Debarbieri
et. al. 1987.

 Interlocking rules are obviously the core of
the system, so their correctness is the main
objective to be addressed by a formal specifica-
tion. The rules aim at allowing only the safe
combinations of switches positions, signals and
trains in a station in order to avoid collisions.
The signal indications, handled by the interlock-
ing system, govern the correct use of the routes,
authorizing the movement of trains.
 The rules usually enforce a predefined
sequence of actions: issuing a route request
command usually first triggers a check that all
the track elements involved in the route are free;
in the case, commands are issued for the posi-
tioning of points for that route and for locking
the track elements. This phase may be followed
by a global centralized control over the correct
state of the commanded elements, after which the
route is locked and signal indications for the
route are set.

2.1 A functional approach

Most of computer based interlocking systems use
(in their implementation and/or formal specifica-
tion) some form of centralized data base where
the rules of the interlocking logic are stored. The
main feature of this approach consists in generat-
ing the rules by adopting a design methodology
focused on functions, such as the switch points
checking function, the routes setting function or
the routes verification as illustrated in Fringuelli
et. al. (1992). This is why we call this approach
“functional”. These functions are designed
basing on a “condition table” (control table),
which indicates all of the conditions that have to
be satisfied before a signal can be switched from
red to green to admit a train into the track section
beyond (Kolk 1998). The placement of the yard
equipments is ignored in this design methodol-
ogy, it does not exist a direct correlation between
the geographic position on the yard of a device
and the function that controls it, as implemented
in the RIS.

Fig. 1. The simplest railway yard layout.

 For this reason it is a hard task to identify
the parts of the system stimulated by external
events. A specification or implementation fol-
lowing this approach is a melting pot of func-
tionalities not easy to separate. The geographic
information of the yard is not available any more
after the RIS functional description.

2.2 A geographic approach

A different approach can consider distributing
the knowledge of the interlocking rules to objects
modelling the geographic placement of physical
elements.
 An example of geographic specification is
the EURIS language (EUropean Railway Inter-
locking Specification), which is a visual and
graphical specification language for railway
control systems (Berger et. al. 1993; Fokkink &
Hollingshead 1998). By using this language it is
possible to build in a component-based way the
control system from the layout of the station to
model. The EURIS specification language,
proposed in 1992 and used at Siemens, is able to
specify different railway yards using the same
generic specification components. Actually it
consists of a set of standardized railway control
components (Van Dijk et. al. 1998), which
should be composed together easily, increasing
the speed of development and permitting the
reuse of components. Each element includes a set
of rules inside it, which are able to adjust to
different layout configurations. Because EURIS
is a graphical language another advantage is that
specifications are easy to read, since they imme-
diately represent the physical position of ele-
ments in the yard.
 The geographic approach reflects directly
the placement of the devices on the yard. This
point has inspired our proposal for the develop-
ment of a D-RIS (Distributed Railways Inter-
locking System); though the specification is done
as a centralized piece of work, on which formal
verification can be carried on, its geographic
structure allows a slicing into independent,
distributed, units that can be individually imple-
mented and physically located close to the
relevant yard entities.
 Distribution of control has already been
applied in railway signalling when the movement
of trains on a line is concerned: equipment is
distributed along the line and connected by fast
communication lines, two examples are given in
Bacherini et. al. (2003) and Haxthausen &

Peleska (2000). Distribution of the control of a
complex railway yard has not been attempted so
far due to the perceived higher safety of a cen-
tralized control, based on a single database (the
so called “condition table”) containing all the
rules for a safe movement of the trains within a
yard.
 The interest in distributing the control of a
railway yard may be given by the much lower
costs of the interconnections between physical
entities, that may be reduced to a single bus and
a single power line.
 Our proposal aims at establishing a devel-
opment cycle for RISs in this direction, fulfilling
the demanding safety concerns by means of
extensive usage of formal verification.

3. STATECHARTS

The Statecharts formalism (Harel 1987) is an
extension of the classic formalism of Finite State
Machines (FSM), to allow hierarchical parallel
interacting state machines to be specified. Tran-
sition from a state to another of a single machine
(a statechart) is driven by trigger events, which
can refer to the state of other machines or to
global variables; therefore, the communication
activity between statecharts is performed using
broadcasting: every event is sent to the whole
system, and can be received from any other part
of the system. During a transition the actions
generate events, (similar to a Mealy machine)
which are triggered by conditions on other
transitions or on global variables. Chains of
internal events generated by only one external
event are possible.
 The hierarchy feature of Statecharts permits
to slice a system into well defined subsystems, so
reducing the complexity, and permitting to build
a structured model with concurrent parts. The
system can be decomposed using AND-states,
which evolve singularly and in a parallel way.
 Two main dialects of Statecharts are actually
used: UML (Unified Modelling Language) State
Diagrams (OMG 1999) and Statemate State-
charts (Harel et. al. 1990).

3.1 The Statemate tool

In this paper, we follow the style of Statemate
Statecharts. The I-Logix Statemate tool (I-Logix
2003; Klose & Damm 2001) supports the editing
of the graphical Statecharts notation, but more
importantly allows the complete (centralized)

system specification to be executed and graphi-
cally simulated, permitting to explore any sce-
narios determining the system correctness, and
evaluating whether the specification meets the
requirements. The Statemate simulator allows to
execute the model, permitting to verify the
behaviour examining the animation of the system
and producing test scenarios that may be used in
order to test the target system. Furthermore it
allows animating panels to have an evidence of
the model behaviour, so that we can generate
easily “what-if” scenarios. Statemate provides
also the automatic generation of a C-based or
Ada-based prototyping source code based on the
model.
 This feature happens to be important for our
study, since it permits to generate the code for
the distributed devices starting from the global
model obtained by joining geographic objects
and then slicing it in a set of modules imple-
mentable on each controller, physically located
to each device.
 Another important recent add-on to State-
mate is a powerful model checker, which is
obviously an advantage in terms of the confi-
dence that can be acquired on the specification
correctness. These features of Statemate make it
currently superior w.r.t. UML-based tools which
allow only editing of State Diagrams.
 The Statemate tool supports also another sort
of charts, useful to build a structured system: the
Activity Chart. Activity charts can be viewed as
multi-level (hierarchical) data-flow diagrams
(DFD). An activity chart describes the functional
decomposition of system’s capability into func-
tions, or activities, organized into hierarchies.
This hierarchy details the functional components,
or activities, that the system is capable of carry-
ing out, and how these components communicate
through information flow among them. The
behaviour of each activity is described using
statecharts. In this study the activities are used to
represent the distributed devices on the yard and
therefore a controlling statechart is associated to
each device.

4. STATECHARTS GEOGRAPHIC
MODEL SPECIFICATION

We have used a methodology to design an inter-
locking system starting from its layout and
ending in its distributed operational specification.
Using this methodology we do not use any sort

of global summarizing variables, which is usual
instead for a functional approach.
 With the term summarizing variable we
mean a variable whose values depend from the
values of a set of other single variables, each
related to a physical entity of the layout. As an
example we can consider a variable associated to
a route, that is true if and only if at least one of
the variables recording the occupancy of the
track circuits belonging to the route is set to true.
The use of summarizing variables, though useful
for abstracting certain global aspects of the
system, makes the model more distant from the
physical topology, and so it is less interesting for
our approach. Note that the variable associated to
a route of a functional model corresponds to a
route reservation relay in a relay-based RIS. In
our proposal, we therefore loose the uniqueness
of such information in the system, since it is
replicated and distributed over several objects.
 The experience discussed in this paper has
been actually preceded by a modelling by State-
mate statecharts of the same interlocking system,
using a classical functional approach: we started
by a condition table, which defines the condi-
tions that have to be respected. Specific modules
were dedicated to record commanded routes;
these modules had the responsibility of checking
whether the interested track circuits were free; as
is evident from the context, those modules had
only logical function and had no correlation with
physical devices.
 On the contrary, in the geographic approach
it is a module dedicated to the management of
each track circuit that has the responsibility to
check its compatibility with commanded routes
and with other events happening in the system.
In the same way, all the activities performed by
functional objects have been distributed to these
geographic objects. There is not a single core of
the RIS, but each device has its own logics that
checks every command coming from the other
devices and elaborating them performs the
correct action independent from the decision of
the other objects. Hence, the control for example
of the correct position of a particular switch point
is performed from all the interested elements to
that position and not by a single object dedicated
to the management of all the switch points.

Fig. 2. An example of routing.

 Each object of the model implements the
rules that interest only that object. If, for exam-
ple, we consider the three semaphore of Figure 2,
the model will include an object for each sema-
phore. The object related to the semaphore 4,
which permits the movement of a train on the
right direction, should control that the red lights
of semaphores 3 right and 2 left are fired and
also that the green lights are switched off. This
control is done not looking at a global summariz-
ing variable, which in the example would show
that the route is free, but communicating with the
objects that control the other semaphores and
devices.
 In this way, we obtain a model whose struc-
ture reflects the layout of the railway yard so that
we can easily implement it in a distributed
system. This has positive effects on the readabil-
ity of the model and on its reliability, because of
the redundant checks replicated on many differ-
ent devices independent among them.
On the other hand, we loose on generality: in the
functional approach the module handling all
switch points can be generic, and it is the condi-
tion table that embeds the knowledge about the
specific rules for the railway yard. The objects
that we have designed have not a generic behav-
iour usable in any different geographic layout
(like EURIS): we have to redesign them for any
different station, though following expected
patterns with predetermined rules. The generali-
zation was not our main concern, which has been
left for future work.
 The consequences of this geographic ap-
proach are:

• The structure of the model reflects the geo-
graphic topology of the yard.

• The elements of the model replicate the
behaviour of the physical components of
the yard.

• The elements of the model embed all the
logical rules interesting the corresponding
physical components (in order to avoid the
usage of summarizing variables).

• The model will be able to be translated di-
rectly to a physically distributed implemen-
tation.

 In a previous work presented at FMICS ’04
workshop (Banci & Fantechi 2004) we have
analyzed the benefits of the geographic approach
in the modelling of a RIS from the point of view
of regression test case generation in case of
changes to the topology of the yard.
 The last consequence of the above list
suggests instead to push forward an innovative
philosophy in the implementation of a RIS, that
bases on the success distributed controllers are
enjoying in other safety critical fields, such as
automotive. This is what constitute the proposal
which we present in this paper. In particular, we
go on in this chapter by detailing the geographic
Statemate model of the RIS. This model is still a
centralised piece of work, that can be simulated
and validated on a host machine.
 Deployment over distributed targets will be
described in section 5. Safety concerns are
addressed both in section 5 and in section 6, in
which the whole proposed development cycle is
discussed.

4.1 Structure of the geographic layered model

The geographic model is built following a lay-
ered abstraction, which consists of three layers:
Command (human) layer, Logical layer and
Physical layer (Figure 3). The first layer (Com-
mand) is dedicated to the interaction with opera-
tors or other systems, which send commands to
the RIS.

Fig. 3. Illustration of the layered interlocking architecture.

 At the lowest level (Physical), there are the
yard devices and equipments, which have to be
commanded and controlled by the RIS and in
which the single FSM controlling them will be
implemented. This level is constituted of the
actual device interfaces, with actual variables
used to control the yard. The middle level is the
core of the RIS, where the interlocking rules are
specified in a centralized way. It is formed by a
separate object for each physical device. Figure 4
shows how the objects are interconnected with
the command and the physical layer. The state of
any object is one to one related with the actual
state of physical device, and for this reason it will
be able to be implemented directly on device
controllers. Every object related to a particular
route is able to receive the command requesting
that route, in which case it performs suitable
controls toward the physical layer and the other
objects of the logical layer. When a route reserva-
tion command is sent by an external system (also
human), this message is sent to all the objects
related to that route. Then all the objects evaluate
their rules interacting each other, passing values
of variables, to confirm the received command.

Fig. 4. Illustration of inter-object communication.

 Inside each object it is therefore inserted only
a slice of the logic, that is usually centralized in a
classical functional approach. Every object is all
the time active and elaborates the information
coming from other objects. In the model does not
exist any coordinator object, but they are all to
the same level and they embed the logic permit-
ting them to coordinate among themselves: e.g. if
a route command was sent, each object interested
by this route would perform a control action on
the other objects: this action is done by all the
objects in parallel and independently.

Fig. 5. The first level of the statechart model and the distribution of the internal activity charts.

4.2 The statecharts model specification

The system is specified combining the geo-
graphic elements as it is illustrated in Figure 3
and 4. Each geographic element is defined by an
activity chart specified using the Statemate
statechart formalism. As shown in Figure 5, the
main level of the model consists of an activity
chart, composed by several activities, which are
strictly related to physical objects placed on the
yard. At a lower level each block is formed with
a set of nested subactivities and statecharts that
implement the interlocking rules of single de-
vices. We can note that the topology of this level
is exactly corresponding to the geographic layout
of the yard (refer to Figure 1). As we said previ-
ously, statecharts interact among them using
shared variables. Shared variables are therefore
used to implement the communication between
objects: every block checks which is the state of
other nearby objects snooping some of their state
variables.

An example of the statechart describing the
behaviour of an activity is shown in Figure 6
where a track circuit manager is illustrated: the
figure shows the use of a logical state such as
that used to reserve the object. These local states
are needed because we do not have any global
object that records which elements are in use, so
the control logic has been decentralized. We can
note that the chart communicates with plenty of
other objects, such as semaphores and other
distinct track circuits, by looking at shared
variables. Indeed, interlocking rules are distrib-
uted over the conditions for the transitions in
each activity chart.
 Figure 7 represents the statechart controlling
a green light: when an operator (either human or
system) gives a command, this statechart and all
the other statecharts controls that the track
circuits related to it are reserved and the track
circuits incompatible with it are free. Though
each chart works in parallel with the others, they
are strictly interrelated by this massive usage of
shared variables.

Fig. 6. A track circuit statechart.

Fig. 7. The statechart controlling the green light of a semaphore.

5. THE DISTRIBUTED SYSTEM
ARCHITECTURE

We have observed that the geographic approach
used to model the RIS keeps the original topol-
ogy of the system, and this fact has inspired our
proposal to physically distribute the control by
deploying each activity in a separate controller
physically close to the controlled entity. The
distribution consists in generating slices of the
geographic model as is illustrated by the Figure
8. An obstacle to physical code distribution is
however represented by the shared variables used
in the model for communication between the
separate activities. The semantics of Statecharts
requires that every activity is able to read and
write shared variables at any step. In a distrib-
uted implementation, variables need either to be
associated to an activity, which should provide
for safe reading and writing by other activities,
or to be replicated among the interested activi-
ties, and in this case consistency of the replicas
should be guaranteed.
 The synchronous nature of the operation of
Statecharts considers variables values to be read
at the beginning of a step. Only when the evalua-
tion of variables has dictated the live transitions
that can be fired, one of them is fired and the
associated actions, including writing on vari-

ables, are performed. It is possible to perform
automatically checks that guarantee that no
conflict is raised about simultaneously writing of
a variable by two activities, in order to avoid race
conditions.
 This operational semantics allows to con-
sider a distributed implementation based on the
adoption of a field bus, by which variable values
are broadcasted at the beginning of a new opera-
tion step, and by which writing commands
issued by (one and only one) activity are con-
veyed to the owner of the variable at the end of
the step.
 Indeed, our idea is based on the rapid devel-
opment of safe field bus area: we think that the
market is now mature to accept this kind of
approach in the railway area as well, given the
large number of applications of field buses in
different safety-concerned industrial areas: from
factory automation to fly-by-wire and drive-by-
wire, in avionics and automotive areas respec-
tively.
 Due to the synchronous operations typical of
Statecharts, a good candidate to act as the basic
platform, on which our approach is based, is the
architecture named TTA (Time Triggered Archi-
tecture) as Kopetz & Bauer 2003 described.

Fig. 8. Development cycle

Fig. 9. The network devices deployment.

 This architecture has been created for the
implementation of dependable distributed em-
bedded systems, and permits to decompose a
large real-time application into nodes: obviously
the main critical feature consists of the commu-
nication mechanism and the synchronization one.
In the TTA, the system maintains a fault tolerant
global time at every node. This global time
permits to reduce the communication complexity
allowing the use of shared variables for commu-
nication purposes; events that happen in the
distributed system at different nodes at the same
global clock-tick have to be considered simulta-
neous. The TTP (Time Triggered Protocol) is in
charge of guaranteeing the consistency of differ-
ent views of the same variable at any given clock
tick.
 Another issue that should be taken into
account is given by the safety requirements in
case of a fault. In our proposals, faults can occur
in any distributed controller. The basic safety
requirements, to be achieved both by exploiting
the fault tolerant features of the bus protocol, and
by properly designing the distributed compo-
nents, are that:

• any failure of a component is reduced to a
crash of the component itself, so that a fail-
silent policy is enforced;

• the presence of a silent component does not
undermine the safe operation of the inter-
locking; that is, no route for which the
failed component is needed can be set and
acknowledged.

 For increased availability, we can add the
requirement:

• any failed (fail-silent) component does not
affect the correct setting of a route which is
totally (geographically) independent from
the component interested by the failure.

 Note that the distributed system is formed
from redundant controls, which are located at
every device (Figure 9). The redundancy of the
controls exhibited by the geographic approach
can be considered as a positive safety measure: a

decision about the establishing of a route is taken
only if all the controls have been successful; the
controls are redundant, but diverse and inde-
pendent, hence they constitute a safeguard
against software faults. Note that this safety
measure is not due to the exploitation of the TTA
architecture (or of any other suitably fault toler-
ant bus), but is intrinsic in the model.
 The system architecture is completed by a
monitoring computer (or more than one com-
puters) attached to the bus, able to read the
variables values that are exchanged on the field
bus, which uses such data for diagnostics, for
displaying to the humans the state of the yard
and of the interlocking system, and for logging
data about the system. The monitoring computer
can also be used as an added safety measures by
taking in charge the forcing of the system in a
safe state in case it detects anomalous variable
values.

6. DEVELOPMENT CYCLE

What is needed to implement a distributed RIS
can be summarized in the following development
cycle, which includes validation activities as
well:

1. Condition table:
This table is taken as the contractual input for the
process, and fully describes the interlocking rules
according to the given yard topology.

2. Statemate design using geographic ap-
proach:

As described in section 4, a geographic model
using activity and statecharts is developed.

3. Validation of distributed design:
The geographic model is validated by means of
two different alternative methods (which actually
should be both applied for increased safety):

3.1 tests played by simulation:
We are able to simulate the whole model with
the Statemate simulator tool, which permits to

interact directly by using a panel appropriately
created as well (Figure 10).
 Extensive tests should be carried on defining
suitable test scenarios, on the basis of the infor-
mation given by the condition table.

3.2 Condition table based safety properties
proved by MC:

Safety properties described by the condition table
should be defined so that they cover the overall
safety requirements. Typically, properties of the
kind: “two conflicting routes can never be set
simultaneously” should be expressed and veri-
fied of the model by a model checker (typically,
the Statemate model checker). Model checking is
able to guarantee that such properties are always
satisfied by the model, while simulation may
leave some dangerous execution paths unex-
ploited.

4. Fault injection:
Extensive verification, again by simulation
and/or model checking, should be done in order
to validate the fail-safe behaviour of the model.
Typically, faults should be injected in the model
(e.g. by forcing a fail silent behaviour of some
objects) in order to test the overall safety of the
system in presence of faults.

5. Automatic code generation
5.1 Statemate code generation:

From the statechart geographic centralized model
it is also possible to generate C or ADA code by
using the automatic code generator tool, which is
part of the Statemate tool, for every single de-
vice. Because of the detailed nature of the model,
the code generated is immediately usable without

need of any other translation into lower level
languages, except for the communication inter-
face which is not part of the requirement specifi-
cation. The resulting code shares with the geo-
graphic model the correspondence between
software modules and yard devices. For this
reason there is the possibility to generate code
for each module, to be deployed on a local
controller.

5.2 Shared variables implemented through
field bus protocol:

The variables which are shared between the
obtained software components should instead be
implemented basing on the safe protocol estab-
lished to this purpose over the adopted field bus.

6. Physical deployment and integration:
Deployment of the various modules over the
distributed controllers connected to the field bus
is now possible.

7. System in field testing:
Though the extensive validation effort carried on
the model and the automatic generation of code
is enough to guarantee the safety of the system,
in field testing is necessary to guarantee that any
possible interference from the physical world
does not undermine the safety and functionality
of the system.

 In our experiments we have addressed parts
1, 2, 3.1 above, and we are currently working on
issues 3.2 and 4; we also are investigating the
current industrial field bus state of the art, in
order to complete our study of the feasibility of
our proposal.

Fig. 10. The simulation control panel.

7. CONCLUSIONS

The experience we have presented is part of a
wider research project aiming at investigating the
design of RIS by means of different Statechart
dialects and different commercial tools that
support Statecharts, such as for example State-
flow (MathWorks), Telelogic TAU Generation 2
(Telelogic), RealTime Studio (Artisan Software),
visualSTATE (IAR Systems). In this paper we
have pushed a geographic approach to the mod-
elling of RISs to the point that the interlocking
logic can be entirely distributed on “in the field”
local controllers, following a trend consolidated
in automotive and avionics applications, based
on the use of robust field-bus. We have shown
that in this approach formal verification gets the
role of the primary method to asses the safety of
the system.

REFERENCES

S. Bacherini, S. Bianchi, L. Capecchi, C.
Becheri, A. Felleca, A. Fantechi, E. Spinicci
(2003).
Modelling a Railway Signalling System us-
ing SDL, Proceedings of the International
Symposium on Formal Methods for Railway
Operation and Control Systems (FORMS
2003), Budapest, Hungary, 15-16 May 2003.

M. Banci, A. Fantechi (2004).
Geographical vs. Functional modelling by
Statecharts of Interlocking Systems, Pro-
ceeding of the Ninth International Workshop
on Formal Methods for Industrial Critical
Systems (FMICS 04), Linz, Austria, 20-21
September 2004.

J. Berger, P. Middelraad, and A.J. Smith (1993).
EURIS, The EUropean Railway Interlocking
Specification. UIC, Commission 7A/16,
1992. In IRSE Proceedings 1992/93, pages
70-82, 1993.

A. Cimatti, F. Giunchiglia, G. Mongardi, D.
Romano, F. Torielli and P. Traverso (1998).
Formal Verification of a Railway Interlock-
ing System using Model Checking, Formal
Aspects of Computing, Vol 10, 361-380.

P. E. Debarbieri, F. Valdambrini, E. Antonelli
(1987).

A.C.E.I. Telecomandati per linee a semplice
binario, schemi I0/19. CIFI Collana di testi
per la preparazione agli esami di abilitazio-
ne, Quaderno 12, 1987.

W. J. Fokkink, P. R. Hollingshead, (1998).
Verification of Interlockings: from Control
Tables to Ladder Logic Diagrams, Proceed-
ings of the 3rd Workshop on Formal Meth-
ods for Industrial Critical Systems -FMICS
‘98.

U. Foschi, M. Giuliani, A. Morzenti, M. Pradel-
la, P. San Pietro (2003).
The role of formal methods in software pro-
curement for the railway transportation in-
dustry, Symposium on Formal Methods for
Railway Operation and Control Systems
(FORMS 2003), Budapest, Hungary, 15-16
May 2003.

B. Fringuelli, E. Lamma, P. Mello, G. Santocchia
(1992).
Knowledge Based Technology for Control-
ling Railway Stations. In IEEE Intelligent
Systems, Volume: 7, Issue: 6, Dec. 1992,
Pages: 45-52.

D. Harel (1987).
Statecharts: A Visual Formalism for Com-
plex Systems. Sci. Comput. Programming 8
(1987), 231-274.

D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull Trauring,
M. Trakhtenbrot, (1990)
STATEMATE: A Working Environment for
the Development of Complex Reactive Sys-
tems, IEEE Transactions on Software Engi-
neering, Vol. 16, N. 4, April 1990, pp. 403-
414.

D. Harel, A. Pnueli, J. Schmidt and R. Sherman
(1987).
On the Formal Semantics of Statecharts,
Proc. 2nd IEEE Symp. on Logic in Com-
puter Science, Ithaca, NY, 1987, pp. 5464.

D. Harel and M. Politi (1998).
Modelling Reactive Systems with State-
charts: The STATEMATE Approach,
McGraw Hill, 1998. (Early version titled:
The Languages of STATEMATE, I-Logix,
Inc., Andover, MA, 1991.)

A. E. Haxthausen, J. Peleska (2000)
Formal Development and Verification of a
Distributed Railway Control System, IEEE
Transactions on Software Engineering, Vol.
26, No. 8, pp. 687-701.

J. Klose, W. Damm, (2001).
Verification of a Radio Based Signalling
System Using the STATEMATE Verifica-
tion Environment , Formal Methods in Sys-
tem Design, 19(2).

N. H. Köenig, S. Einer (2003).
The EuroInterlocking Formalized Functional
Requirements Approach (EIFFRA), Sympo-
sium on Formal Methods for Railway Op-
eration and Control Systems (FORMS
2003), Budapest, Hungary, 15-16 May 2003.

G. Kolk (1998).
Formal methods: Possibilities and difficul-
ties in a railway environment from a user
perspective. In Proceedings of the Third In-
ternational Workshop on Formal Methods
for Industrial Critical Systems, May 25-26,
1998.

H. Kopetz, G. Bauer (2003).
The Time-Triggered Architecture, Proceed-
ing of the IEEE Special Issue on Modelling
and Design of Embedded Software. Vol. 91,
Issue: 1 Jan 2003, 112-126.

Object Management Group, (1999).
Unified Modelling Language Specification,
Version 1.5,
http://www.omg.org/technology/documents/f
ormal/uml.htm.

Statemate Magnum (2003)
Simulation Reference Manual. I-Logix Inc.
Burlington, MA USA, 2003.

F. Van Dijk, W. Fokkink, G. Kolk, P. Van de
Ven and B. Van Vlijmen, (1998).
EURIS, a Specification Method for Distrib-
uted Interlockings, Proc. SAFECOMP ’98,
Heidelberg, Germany, October 5-7, 1998, in
Lecture Notes in Computer Science, vol.
1516, Springer.

