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Abstract: The development of computer controlled Railway Interlocking Systems (RIS) has seen an 
increasing interest in the use of Formal Methods, due to their ability to precisely specify the logical 
rules that guarantee the safe establishment of routes for trains through a railway yard. Recently, a trend 
has emerged about the use of statecharts as a standard formalism to produce precise specifications of 
RIS. This paper describes an experience in modelling a railway interlocking system using statecharts. 
Our study has addressed the problem from a “geographic”, distributed, point of view: that is, our model 
is composed by models of single physical entities (points, signals, etc..) that collectively implement the 
interlocking rules, without any centralized database of rules, which is on the other hand a typical way of 
implementing such a system (what we call “functional” approach).  
We show how a distributed model of this kind may be used to develop a distributed implementation, 
that employs physically distributed controllers communicating through a “safe” field bus. Ensuring 
safety of this kind of RIS is entirely based on formal verification.  
Keywords: Railway signalling, interlocking, safety critical systems, formal specification, Statecharts, 
distributed system, field bus  

1. INTRODUCTION  

A Railway Interlocking System (RIS) is a set of 
devices and equipments for the safe es-
tablishment of routes for trains through a railway 

yard. Electronic signalling systems have replaced 
(and actually are still replacing) old relay-based 

interlocking systems due to their advantages in 
terms of:  

• less dependency on operator’s failure;  
• self diagnostic system checks to improve 

reliability;  
• possibility of global control of wide areas; 
• increased capacity in terms of smaller route 

setting times and greater number of simul-
taneously live routes. 

  Typically, a RIS receives a route request; the 
answer to this request has to go through a series 
of checks and actions.  
  The aim of these checks and actions is to 
guarantee that no train can be driven into a route 
occupied by another train. Before the computer-
ised interlocking system allows a signal aspect to 
display green, it checks that the train's route is  
clear of trains and that all points are locked in the 
correct positions.  

  The case of Formal Methods in the devel-
opment of RISs is evident from the list of checks 
and actions needed to establish the system be-
haviour, and there is a considerable literature 
about formalization of interlocking systems (see 
for example Bacherini et. al. 2003; Cimatti et. al. 
1998; Foschi et. al. 2003).  
  Inside the EuroInterlocking project a trend 
has developed towards the use of finite state 
machines for modelling interlocking rules, as 
Koenig & Einer (2003) described. In particular, a 
richer form of machines, namely the Statecharts 
(Harel 1987; Harel et. al. 1987), has been con-
sidered suitable to express the sequences of 
checks and actions typical of an interlocking 
system. Both the UML dialect (OMG 1999) and 
the Statemate dialect (Harel & Politi 1998) of 
Statecharts have been considered. 



  This paper is based on this idea, describing 
an experience of modelling a railway interlock-
ing system using Statecharts and furthermore 
implementing the model in a distributed system. 
Our study has addressed the problem from a 
“geographic”, distributed, point of view, rather 
than a “functional”, centralized, point of view: 
that is, our model is made up by models of single 
physical entities (points, signals, etc..) that 
collectively implement the interlocking rules, 
without any centralized database of rules and any 
centralized equipments managing the whole 
system, which is a typical way of approaching 
the problem. 
  The main aim of this study is to investigate 
the feasibility of the geographic approach for the 
development of a distributed interlocking sys-
tem; one of the most interesting issues we are 
expecting to evaluate, and which has actually 
motivated our work, is to transpose and imple-
ment our geographic model in a distributed 
system, using devices with a local embedded 
control program, and communicating among 
them using a field bus, that is, basing on a tech-
nology largely used in automotive and other 
industrial applications.  
  Following this approach, formal verification 
becomes the most important way to guarantee 
the global safety of the system. 

2. GEOGRAPHIC AND FUNCTIONAL 
MODELLING  

A RIS is an embedded system that ensures the 
safe operation of the devices in a railway station. 
Such a system controls an arrangement of signals 
and track points so interconnected that their 
functions shall be performed in proper sequence 
and for which interlocking rules are defined in 
order to guarantee safe operations. A simple (the 
simplest) example of RIS, that we will use in the 
paper as a case study, refers to the layout shown 
in the Figure 1, and is based on a real Italian 
Interlocking System, as described by Debarbieri 
et. al. 1987. 

  Interlocking rules are obviously the core of 
the system, so their correctness is the main 
objective to be addressed by a formal specifica-
tion. The rules aim at allowing only the safe 
combinations of switches positions, signals and 
trains in a station in order to avoid collisions. 
The signal indications, handled by the interlock-
ing system, govern the correct use of the routes, 
authorizing the movement of trains.  
  The rules usually enforce a predefined 
sequence of actions: issuing a route request 
command usually first triggers a check that all 
the track elements involved in the route are free; 
in the case, commands are issued for the posi-
tioning of points for that route and for locking 
the track elements. This phase may be followed 
by a global centralized control over the correct 
state of the commanded elements, after which the 
route is locked and signal indications for the 
route are set. 

2.1 A functional approach  

Most of computer based interlocking systems use 
(in their implementation and/or formal specifica-
tion) some form of centralized data base where 
the rules of the interlocking logic are stored. The 
main feature of this approach consists in generat-
ing the rules by adopting a design methodology 
focused on functions, such as the switch points 
checking function, the routes setting function or 
the routes verification as illustrated in Fringuelli 
et. al. (1992). This is why we call this approach 
“functional”. These functions are designed 
basing on a “condition table” (control table), 
which indicates all of the conditions that have to 
be satisfied before a signal can be switched from 
red to green to admit a train into the track section 
beyond (Kolk 1998). The placement of the yard 
equipments is ignored in this design methodol-
ogy, it does not exist a direct correlation between 
the geographic position on the yard of a device 
and the function that controls it, as implemented 
in the RIS.  

Fig. 1. The simplest railway yard layout.  



  For this reason it is a hard task to identify 
the parts of the system stimulated by external 
events. A specification or implementation fol-
lowing this approach is a melting pot of func-
tionalities not easy to separate. The geographic 
information of the yard is not available any more 
after the RIS functional description. 

2.2 A geographic approach  

A different approach can consider distributing 
the knowledge of the interlocking rules to objects 
modelling the geographic placement of physical 
elements. 
  An example of geographic specification is 
the EURIS language (EUropean Railway Inter-
locking Specification), which is a visual and 
graphical specification language for railway 
control systems (Berger et. al. 1993; Fokkink & 
Hollingshead 1998). By using this language it is 
possible to build in a component-based way the 
control system from the layout of the station to 
model. The EURIS specification language, 
proposed in 1992 and used at Siemens, is able to 
specify different railway yards using the same 
generic specification components. Actually it 
consists of a set of standardized railway control 
components (Van Dijk et. al. 1998), which 
should be composed together easily, increasing 
the speed of development and permitting the 
reuse of components. Each element includes a set 
of rules inside it, which are able to adjust to 
different layout configurations. Because EURIS 
is a graphical language another advantage is that 
specifications are easy to read, since they imme-
diately represent the physical position of ele-
ments in the yard.  
  The geographic approach reflects directly 
the placement of the devices on the yard. This 
point has inspired our proposal for the develop-
ment of a D-RIS (Distributed Railways Inter-
locking System); though the specification is done 
as a centralized piece of work, on which formal 
verification can be carried on, its geographic 
structure allows a slicing into independent, 
distributed, units that can be individually imple-
mented and physically located close to the 
relevant yard entities. 
  Distribution of control has already been 
applied in railway signalling when the movement 
of trains on a line is concerned: equipment is 
distributed along the line and connected by fast 
communication lines, two examples are given in 
Bacherini et. al. (2003) and Haxthausen & 

Peleska (2000). Distribution of the control of a 
complex railway yard has not been attempted so 
far due to the perceived higher safety of a cen-
tralized control,  based on a single database (the 
so called “condition table”) containing all the 
rules for a safe movement of the trains within a 
yard. 
  The interest in distributing the control of a 
railway yard may be given by the much lower 
costs of the interconnections between physical 
entities, that may be reduced to a single bus and 
a single power line. 
  Our proposal aims at establishing a devel-
opment cycle for RISs in this direction, fulfilling 
the demanding safety concerns by means of 
extensive usage of formal verification. 

3. STATECHARTS  

The Statecharts formalism (Harel 1987) is an 
extension of the classic formalism of Finite State 
Machines (FSM), to allow hierarchical parallel 
interacting state machines to be specified. Tran-
sition from a state to another of a single machine 
(a statechart) is driven by trigger events, which 
can refer to the state of other machines or to 
global variables; therefore, the communication 
activity between statecharts is performed using 
broadcasting: every event is sent to the whole 
system, and can be received from any other part 
of the system. During a transition the actions 
generate events, (similar to a Mealy machine) 
which are triggered by conditions on other 
transitions or on global variables. Chains of 
internal events generated by only one external 
event are possible.  
  The hierarchy feature of Statecharts permits 
to slice a system into well defined subsystems, so 
reducing the complexity, and permitting to build 
a structured model with concurrent parts. The 
system can be decomposed using AND-states, 
which evolve singularly and in a parallel way. 
  Two main dialects of Statecharts are actually 
used: UML (Unified Modelling Language) State 
Diagrams (OMG 1999) and Statemate State-
charts (Harel et. al. 1990). 

3.1 The Statemate tool  

In this paper, we follow the style of Statemate 
Statecharts. The I-Logix Statemate tool (I-Logix 
2003; Klose & Damm 2001) supports the editing 
of the graphical Statecharts notation, but more 
importantly allows the complete (centralized) 



system specification to be executed and graphi-
cally simulated, permitting to explore any sce-
narios determining the system correctness, and 
evaluating whether the specification meets the 
requirements. The Statemate simulator allows to 
execute the model, permitting to verify the 
behaviour examining the animation of the system 
and producing test scenarios that may be used in 
order to test the target system. Furthermore it 
allows animating panels to have an evidence of 
the model behaviour, so that we can generate 
easily “what-if” scenarios. Statemate provides 
also the automatic generation of a C-based or 
Ada-based prototyping source code based on the 
model. 
  This feature happens to be important for our 
study, since it permits to generate the code for 
the distributed devices starting from the global 
model obtained by joining geographic objects 
and then slicing it in a set of modules imple-
mentable on each controller, physically located 
to each device.  
  Another important recent add-on to State-
mate is a powerful model checker, which is 
obviously an advantage in terms of the confi-
dence that can be acquired on the specification 
correctness. These features of Statemate make it 
currently superior w.r.t. UML-based tools which 
allow only editing of State Diagrams.  
  The Statemate tool supports also another sort 
of charts, useful to build a structured system: the 
Activity Chart. Activity charts can be viewed as 
multi-level (hierarchical) data-flow diagrams 
(DFD). An activity chart describes the functional 
decomposition of system’s capability into func-
tions, or activities, organized into hierarchies. 
This hierarchy details the functional components, 
or activities, that the system is capable of carry-
ing out, and how these components communicate 
through information flow among them. The 
behaviour of each activity is described using 
statecharts. In this study the activities are used to 
represent the distributed devices on the yard and 
therefore a controlling statechart is associated to 
each device. 

4. STATECHARTS GEOGRAPHIC 
MODEL SPECIFICATION  

We have used a methodology to design an inter-
locking system starting from its layout and 
ending in its distributed operational specification.  
Using this methodology we do not use any sort 

of global summarizing variables, which is usual 
instead for a functional approach.  
  With the term summarizing variable we 
mean a variable whose values depend from the 
values of a set of other single variables, each 
related to a physical entity of the layout. As an 
example we can consider a variable associated to 
a route, that is true if and only if at least one of 
the variables recording the occupancy of the 
track circuits belonging to the route is set to true. 
The use of summarizing variables, though useful 
for abstracting certain global aspects of the 
system, makes the model more distant from the 
physical topology, and so it is less interesting for 
our approach. Note that the variable associated to 
a route of a functional model corresponds to a 
route reservation relay in a relay-based RIS. In 
our proposal, we therefore loose the uniqueness 
of such information in the system, since it is 
replicated and distributed over several objects.   
  The experience discussed in this paper has 
been actually preceded by a modelling by State-
mate statecharts of the same interlocking system, 
using a classical functional approach: we started 
by a condition table, which defines the condi-
tions that have to be respected. Specific modules 
were dedicated to record commanded routes; 
these modules had the responsibility of checking 
whether the interested track circuits were free; as 
is evident from the context, those modules had 
only logical function and had no correlation with 
physical devices. 
  On the contrary, in the geographic approach 
it is a module dedicated to the management of 
each track circuit that has the responsibility to 
check its compatibility with commanded routes 
and with other events happening in the system. 
In the same way, all the activities performed by 
functional objects have been distributed to these 
geographic objects. There is not a single core of 
the RIS, but each device has its own logics that 
checks every command coming from the other 
devices and elaborating them performs the 
correct action independent from the decision of 
the other objects. Hence, the control for example 
of the correct position of a particular switch point 
is performed from all the interested elements to 
that position and not by a single object dedicated 
to the management of all the switch points. 



 

Fig. 2. An example of routing.  

  Each object of the model implements the 
rules that interest only that object. If, for exam-
ple, we consider the three semaphore of Figure 2, 
the model will include an object for each sema-
phore. The object related to the semaphore 4, 
which permits the movement of a train on the 
right direction, should control that the red lights 
of semaphores 3 right and 2 left are fired and 
also that the green lights are switched off. This 
control is done not looking at a global summariz-
ing variable, which in the example would show 
that the route is free, but communicating with the 
objects that control the other semaphores and 
devices.  
  In this way, we obtain a model whose struc-
ture reflects the layout of the railway yard so that 
we can easily implement it in a distributed 
system. This has positive effects on the readabil-
ity of the model and on its reliability, because of 
the redundant checks replicated on many differ-
ent devices independent among them. 
On the other hand, we loose on generality: in the 
functional approach the module handling all 
switch points can be generic, and it is the condi-
tion table that embeds the knowledge about the 
specific rules for the railway yard. The objects 
that we have designed have not a generic behav-
iour usable in any different geographic layout 
(like EURIS): we have to redesign them for any 
different station, though following expected 
patterns with predetermined rules. The generali-
zation was not our main concern, which has been 
left for future work. 
  The consequences of this geographic ap-
proach are:  

• The structure of the model reflects the geo-
graphic topology of the yard.  

• The elements of the model replicate the 
behaviour of the physical components of 
the yard.  

• The elements of the model embed all the 
logical rules interesting the corresponding 
physical components (in order to avoid the 
usage of summarizing variables). 

• The model will be able to be translated di-
rectly to a physically distributed implemen-
tation. 

  In a previous work presented at FMICS ’04 
workshop (Banci & Fantechi 2004) we have 
analyzed the benefits of the geographic approach 
in the modelling of a RIS from the point of view 
of regression test case generation in case of 
changes to the topology of the yard. 
  The last consequence of the above list 
suggests instead to push forward an innovative 
philosophy in the implementation of a RIS, that 
bases on the success distributed controllers are 
enjoying in other safety critical fields, such as 
automotive. This is what constitute the proposal 
which we present in this paper. In particular, we 
go on in this chapter by detailing the geographic 
Statemate model of the RIS. This model is still a 
centralised piece of work, that can be simulated 
and validated on a host machine. 
  Deployment over distributed targets will be 
described in section 5. Safety concerns are 
addressed both in section 5 and in section 6, in 
which the whole proposed development cycle is 
discussed. 

4.1 Structure of the geographic layered model  

The geographic model is built following a lay-
ered abstraction, which consists of three layers: 
Command (human) layer, Logical layer and 
Physical layer (Figure 3). The first layer (Com-
mand) is dedicated to the interaction with opera-
tors or other systems, which send commands to 
the RIS. 



Fig. 3. Illustration of the layered interlocking architecture. 

  At the lowest level (Physical), there are the 
yard devices and equipments, which have to be 
commanded and controlled by the RIS and in 
which the single FSM controlling them will be 
implemented. This level is constituted of the 
actual device interfaces, with actual variables 
used to control the yard. The middle level is the 
core of the RIS, where the interlocking rules are 
specified in a centralized way. It is formed by a 
separate object for each physical device. Figure 4 
shows how the objects are interconnected with 
the command and the physical layer. The state of 
any object is one to one related with the actual 
state of physical device, and for this reason it will 
be able to be implemented directly on device 
controllers. Every object related to a particular 
route is able to receive the command requesting 
that route, in which case it performs suitable 
controls toward the physical layer and the other 
objects of the logical layer. When a route reserva-
tion command is sent by an external system (also 
human), this message is sent to all the objects 
related to that route. Then all the objects evaluate 
their rules interacting each other, passing values 
of variables, to confirm the received command.  

 

Fig. 4. Illustration of inter-object communication. 

  Inside each object it is therefore inserted only 
a slice of the logic, that is usually centralized in a 
classical functional approach. Every object is all 
the time active and elaborates the information 
coming from other objects. In the model does not 
exist any coordinator object, but they are all to 
the same level and they embed the logic permit-
ting them to coordinate among themselves: e.g. if 
a route command was sent, each object interested 
by this route would perform a control action on 
the other objects: this action is done by all the 
objects in parallel and independently.  

 



 

Fig. 5. The first level of the statechart model and the distribution of the internal activity charts.  

4.2 The statecharts model specification 

The system is specified combining the geo-
graphic elements as it is illustrated in Figure 3 
and 4. Each geographic element is defined by an 
activity chart specified using the Statemate 
statechart formalism. As shown in Figure 5, the 
main level of the model consists of an activity 
chart, composed by several activities, which are 
strictly related to physical objects placed on the 
yard. At a lower level each block is formed with 
a set of nested subactivities and statecharts that 
implement the interlocking rules of single de-
vices. We can note that the topology of this level 
is exactly corresponding to the geographic layout 
of the yard (refer to Figure 1). As we said previ-
ously, statecharts interact among them using 
shared variables. Shared variables are therefore 
used to implement the communication between 
objects: every block checks which is the state of 
other nearby objects snooping some of their state 
variables. 
   
 
 

 
 
An example of the statechart describing the 
behaviour of an activity is shown in Figure 6 
where a track circuit manager is illustrated: the 
figure shows the use of a logical state such as 
that used to reserve the object. These local states 
are needed because we do not have any global 
object that records which elements are in use, so 
the control logic has been decentralized. We can 
note that the chart communicates with plenty of 
other objects, such as semaphores and other 
distinct track circuits, by looking at shared 
variables. Indeed, interlocking rules are distrib-
uted over the conditions for the transitions in 
each activity chart.  
  Figure 7 represents the statechart controlling 
a green light: when an operator (either human or 
system) gives a command, this statechart and all 
the other statecharts controls that the track 
circuits related to it are reserved and the track 
circuits incompatible with it are free. Though 
each chart works in parallel with the others, they 
are strictly interrelated by this massive usage of 
shared variables. 



Fig. 6. A track circuit statechart. 

 

 

Fig. 7. The statechart controlling the green light of a semaphore.  



5. THE DISTRIBUTED SYSTEM        
ARCHITECTURE 

We have observed that the geographic approach 
used to model the RIS keeps the original topol-
ogy of the system, and this fact has inspired our 
proposal to physically distribute the control by 
deploying each activity in a separate controller 
physically close to the controlled entity. The 
distribution consists in generating slices of the 
geographic model as is illustrated by the Figure 
8. An obstacle to physical code distribution is 
however represented by the shared variables used 
in the model for communication between the 
separate activities. The semantics of Statecharts 
requires that every activity is able to read and 
write shared variables at any step. In a distrib-
uted implementation, variables need either to be 
associated to an activity, which should provide 
for safe reading and writing by other activities, 
or to be replicated among the interested activi-
ties, and in this case consistency of the replicas 
should be guaranteed. 
 The synchronous nature of the operation of 
Statecharts considers variables values to be read 
at the beginning of a step. Only when the evalua-
tion of variables has dictated the live transitions 
that can be fired, one of them is fired and the 
associated actions, including writing on vari-

ables, are performed. It is possible to perform 
automatically checks that guarantee that no 
conflict is raised about simultaneously writing of 
a variable by two activities, in order to avoid race 
conditions.  
 This operational semantics allows to con-
sider a distributed implementation based on the 
adoption of a field bus, by which variable values 
are broadcasted at the beginning of a new opera-
tion step, and  by which writing commands 
issued by (one and only one) activity are con-
veyed to the owner of the variable at the end of 
the step. 
  Indeed, our idea is based on the rapid devel-
opment of safe field bus area: we think that the 
market is now mature to accept this kind of 
approach in the railway area as well, given the 
large number of applications of field buses in 
different safety-concerned industrial areas: from 
factory automation to fly-by-wire and drive-by-
wire, in avionics and automotive areas respec-
tively. 
 Due to the synchronous operations typical of 
Statecharts, a good candidate to act as the basic 
platform, on which our approach is based, is the 
architecture named TTA (Time Triggered Archi-
tecture) as Kopetz & Bauer 2003 described. 
 
  

 

Fig. 8. Development cycle  

 



 

Fig. 9. The network devices deployment.

 This architecture has been created for the 
implementation of dependable distributed em-
bedded systems, and permits to decompose a 
large real-time application into nodes: obviously 
the main critical feature consists of the commu-
nication mechanism and the synchronization one. 
In the TTA, the system maintains a fault tolerant 
global time at every node. This global time 
permits to reduce the communication complexity 
allowing the use of shared variables for commu-
nication purposes; events that happen in the 
distributed system at different nodes at the same 
global clock-tick have to be considered simulta-
neous. The TTP (Time Triggered Protocol) is in 
charge of guaranteeing the consistency of differ-
ent views of the same variable at any given clock 
tick. 
  Another issue that should be taken into 
account is given by the safety requirements in 
case of a fault.  In our proposals, faults can occur 
in any distributed controller. The basic safety 
requirements, to be achieved both by exploiting 
the fault tolerant features of the bus protocol, and 
by properly designing the distributed compo-
nents, are that:  

• any failure of a component is reduced to a 
crash of the component itself, so that a fail-
silent policy is enforced; 

• the presence of a silent component does not 
undermine the safe operation of the inter-
locking; that is, no route for which the 
failed component is needed can be set and 
acknowledged. 

  For increased availability, we can add the 
requirement:  

• any failed (fail-silent) component does not 
affect the correct setting of a route which is 
totally (geographically) independent from 
the component interested by the failure. 

 Note that the distributed system is formed 
from redundant controls, which are located at 
every device (Figure 9). The redundancy of the 
controls exhibited by the geographic approach 
can be considered as a positive safety measure: a 

decision about the establishing of a route is taken 
only if all the controls have been successful; the 
controls are redundant, but diverse and inde-
pendent, hence they constitute a safeguard 
against software faults. Note that this safety 
measure is not due to the exploitation of the TTA 
architecture (or of any other suitably fault toler-
ant bus), but is intrinsic in the model. 
  The system architecture is completed by a 
monitoring computer (or more than one com-
puters) attached to the bus, able to read the 
variables values that are exchanged on the field 
bus, which uses such data for diagnostics, for 
displaying to the humans the state of the yard 
and of the interlocking system, and for logging 
data about the system. The monitoring computer 
can also be used as an added safety measures by 
taking in charge the forcing of the system in a 
safe state in case it detects anomalous variable 
values. 

6. DEVELOPMENT CYCLE 

What is needed to implement a distributed RIS 
can be summarized in the following development 
cycle, which includes validation activities as 
well: 
 

1. Condition table: 
This table is taken as the contractual input for the 
process, and fully describes the interlocking rules 
according to the given yard topology. 

2. Statemate design using geographic ap-
proach: 

As described in section 4, a geographic model 
using activity and statecharts is developed. 

3. Validation of distributed design: 
The geographic model is validated by means of 
two different alternative methods (which actually 
should be both applied for increased safety): 

3.1 tests played by simulation: 
We are able to simulate the whole model with 
the Statemate simulator tool, which permits to 



interact directly by using a panel appropriately 
created as well (Figure 10). 
 Extensive tests should be carried on defining 
suitable test scenarios, on the basis of the infor-
mation given by the condition table. 

3.2 Condition table based safety properties 
proved by MC: 

Safety properties described by the condition table 
should be defined so that they cover the overall 
safety requirements. Typically, properties of the 
kind: “two conflicting routes can never be set 
simultaneously” should be expressed and veri-
fied of the model by a model checker (typically, 
the Statemate model checker). Model checking is 
able to guarantee that such properties are always 
satisfied by the model, while simulation may 
leave some dangerous execution paths unex-
ploited.  

4. Fault injection: 
Extensive verification, again by simulation 
and/or model checking, should be done in order 
to validate the fail-safe behaviour of the model. 
Typically, faults should be injected in the model 
(e.g. by forcing a fail silent behaviour of some 
objects) in order to test the overall safety of the 
system in presence of faults. 

5. Automatic code generation 
5.1 Statemate code generation: 

From the statechart geographic centralized model 
it is also possible to generate C or ADA code by 
using the automatic code generator tool, which is 
part of the Statemate tool, for every single de-
vice. Because of the detailed nature of the model, 
the code generated is immediately usable without 

need of any other translation into lower level 
languages, except for the communication inter-
face which is not part of the requirement specifi-
cation. The resulting code shares with the geo-
graphic model the correspondence between 
software modules and yard devices. For this 
reason there is the possibility to generate code 
for each module, to be deployed on a local 
controller. 

5.2 Shared variables implemented through 
field bus protocol: 

The variables which are shared between the 
obtained software components should instead be 
implemented basing on the safe protocol estab-
lished to this purpose over the adopted field bus. 

6. Physical deployment and integration: 
Deployment of the various modules over the 
distributed controllers connected to the field bus 
is now possible. 

7. System in field testing: 
Though the extensive validation effort carried on 
the model and the automatic generation of code 
is enough to guarantee the safety of the system, 
in field testing is necessary to guarantee that any 
possible interference from the physical world 
does not undermine the safety and functionality 
of the system. 
 
  In our experiments we have addressed parts 
1, 2, 3.1 above, and we are currently working on 
issues 3.2 and 4; we also are investigating the 
current industrial field bus state of the art, in 
order to complete our study of the feasibility of 
our proposal. 

 

 

Fig. 10. The simulation control panel. 



7. CONCLUSIONS 

The experience we have presented is part of a 
wider research project aiming at investigating the 
design of RIS by means of different Statechart 
dialects and different commercial tools that 
support Statecharts, such as for example State-
flow (MathWorks), Telelogic TAU Generation 2 
(Telelogic), RealTime Studio (Artisan Software), 
visualSTATE (IAR Systems). In this paper we 
have pushed a geographic approach to the mod-
elling of RISs to the point that the interlocking 
logic can be entirely distributed on “in the field” 
local controllers, following a trend consolidated 
in automotive and avionics applications, based 
on the use of robust field-bus. We have shown 
that in this approach formal verification gets the 
role of the primary method to asses the safety of 
the system. 
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