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ABSTRACT: The power of quantum chemistry to predict the
ground and excited state properties of complex chemical systems has
driven the development of computational quantum chemistry
software, integrating advances in theory, applied mathematics, and
computer science. The emergence of new computational paradigms
associated with exascale technologies also poses significant
challenges that require a flexible forward strategy to take full
advantage of existing and forthcoming computational resources. In
this context, the sustainability and interoperability of computational
chemistry software development are among the most pressing issues.
In this perspective, we discuss software infrastructure needs and
investments with an eye to fully utilize exascale resources and
provide unique computational tools for next-generation science
problems and scientific discoveries.

■ INTRODUCTION
The emergence of new computational technologies offers a
unique opportunity to tackle important chemistry problems
using methodologies and their implementations designed to
take full advantage of exascale computational resources. Access
to these state-of-the-art resources provides a means to define a
new level of interoperability to propagate interaction-driven
models across spatial and temporal scales. In this perspective, we
discuss the role and importance of the sustainability of
computational chemistry software development, focusing on
scientific challenges, theoretical formulations, algorithms,
languages/programming models, hardware, and developer
communities. Computational chemistry suites developed over
the past decade (for example, ABINIT, ACES, BAGEL,
CASTEP, C2PK, CHARMM, CFOUR, COLUMBUS, DFTB
+, DIRAC, eT1.0, FLOSIC, GAMESS, Gaussian, Molcas,
Molpro, MPQC, MRCC, NECI, NWChem, Octopus, ONE-
TEP, ORCA, PSI4, PySCF, Q-Chem, QMCPACK, Quantum
ESPRESSO, SIESTA, TeraChem, Tyrbomole, VASP, and
others; see refs 1−32) have integrated novel electronic structure
methods of increasing computational complexity with applied
mathematics algorithms and efficient computer science tools to
utilize existing and emerging computing architectures effec-
tively. Co-design efforts have been key to integrating novel

approaches in electronic structure theories, computer science,
and applied mathematics. The latter has also been supported by
new programming models, focusing on modularity, interlan-
guage operability, and application programming interface
design, rather than the creation of monolithic programs.
Taken together, all of these advances have allowed developers
and users to tackle complex chemical problems, develop
workflows, and provide insights into how existing method-
ologies can be extended to the next level of complexity.

Here, we concentrate on future directions for the coexistence
and cross-fertilization of various computational models and
emerging technologies. Possible roadblocks that may result in
the loss of sustainability of the software development process are
also considered. Special attention is given to the elements of the
stewardship program that are directly related to the develop-
ment, curation, hardening, and distribution of the scientific
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software needed for the efficient and productive utilization of
next-generation high-performance computing (HPC) systems.
Lastly, we emphasize the importance of training the next
generation of domain and computer scientists.

Our strategy for developing software for simulating complex
chemical processes is based on specialized modules and libraries
that consider complicated dependencies between particular
classes of methodologies and corresponding software compo-
nents defined through solvers, models and algebraic complexity,
numerical representations, runtimes, parallelization strategies,
and specialized computational kernels. The following topics
have to be properly addressed to meet the future needs in
computational chemistry:

• Effective utilization of sparsity of multidimensional
tensors in reduced-scaling models.

• Seamless integration of several levels of parallelism in the
computational workflows.

• Operation/communication optimization of sparse mod-
els and workflows.

• New domain-specific languages (DSLs) to deal with the
algebraic complexity of models that effectively utilize
sparsity in high-accuracy computational models.

• Support for parallel models on new architectures and
accelerators.

• Coupling of methods to enable multiscale modeling on
complex chemical landscapes.

• Support for programming models that enable rapid
prototyping and interfacing between new methods,
algorithms, and applications, that utilize all the above
advances.

The importance of these developments will significantly increase
with the routine utilization of exascale platforms planned for the
next decade.

To ensure software integrity, continuous integration with
stringent testing requirements, code analysis tools, coding
standards, and other best practices will be crucial. In the near
future, extending profiling capabilities to record detailed
execution information will allow for the investigation of
bottlenecks while keeping a record of the execution choices
made over the course of the application run. These data will be
crucial for reproducibility as they will allow us to re-evaluate the
problem with the same execution choices. Furthermore, the
existence of an engaged user base and associated consulting
support is crucial for ensuring the scientific reproducibility of the
results obtained with the developed software and assists in long-
term planning for development that caters to the needs of the
scientific community at large.

The establishment of a sustainable software ecosystem in the
future calls for the implementation of targeted support
mechanisms to facilitate the design, development, maintenance,
and scientific applications. Due to the rapid evolution of
hardware technology, new factors must be taken into account to

Figure 1. Visualization of layers of scientific challenges. The central core contains fundamental challenges based on the chemical elements that
compose target systems, which determine their computational complexity. These core pillars are articulated in the Scientific Challenges and
Discoveries section. The intermediate layer contains transversal issues to all pillars of different origins ranging from the quantum mechanical nature of
the problems to the emergence of disruptive new technologies. The outer circle illustrates examples of challenging systems and problems from the
recent scientific literature.
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guide the design of next-generation software. The integration of
multidisciplinary research, including advanced theoretical
formulations, applied mathematics, high-performance comput-
ing, and computer science, is an essential component of the
strategy, with a focus on addressing outstanding problems in
chemical and materials science. Simultaneously, the provision of
training for the next generation of researchers is crucial.
Collaboration with industrial partners in relevant areas such as
cloud computing may offer an alternative means of enabling
scalable research software for the broader user community. This
perspective builds upon earlier discussions on software develop-
ment strategies,33−35 incorporating the experiences gained in the
development of exa-scale software and broader aspects of
scientific software sustainability.1−32

We first focus on scientific challenges that require novel
computational chemistry approaches and tools; this is followed
by theoretical methodologies, programming models, and a
sustainable computational chemistry ecosystem.

■ SCIENTIFIC CHALLENGES AND DISCOVERIES
Many scientific challenges (see Figure 1 for examples) are
triggered by technological demand, which sets the goals of
computational chemistry/physics research. While the list of
scientific applications is large, it is encouraging that they can be
tackled with novel and robust theoretical, applied mathematics,
and computational tools that provide predictive modeling
capacities of the underlying electronic and structural properties
of molecules and materials in tandem with emerging computa-
tional technologies. Here, we list a few areas that can capitalize
on these advancements.

(1) Battery Technology: Research in this context is aimed at
developing more power, through cheaper processes that
produce denser and lighter batteries. A typical battery is
comprised of two electrodes (anode and cathode), a
separator between the electrodes, and an electrolyte. Ions
emitted by one electrode reach the other electrode
through the electrolyte, cyclically. New active materials
are needed for electrodes and electrolytes,36−38 while the
use of multicharged ions is desired to continue increasing
the power generation in a safe and efficient manner.

(2) Clean (solar) energy: Most commercial solar panels have
an efficiency between 15% and 21%, with peaks around
50%. Research on materials and interfaces, as well as on
electron and energy transfer, aided by computational
tools,34,39 aims at raising these numbers while reducing
the cost for users. In addition, the development of liquid
fuels using solar-driven processes has gained significant
interest as a method to use our existing liquid fuel
infrastructure in a compatible manner.40

(3) Design of Catalysts:41 90% of chemical processes
producing commercial chemicals involve catalytic pro-
cesses,42 and catalysts are usually tailored for specific
applications. Catalysts enable faster and more efficient
chemical reactions, by lowering activation energies. By
modifying branching ratios, they are also capable of
enhancing the amount of desired products while at the
same time reducing the amount of undesired products.
Computational design of catalysts34 has the potential to
accelerate the affordable realization of desired reactions in
search of new biodegradable plastics, new pharmaceut-
icals, environmentally safe fuels and fertilizers, and viable
solutions to the critical materials problem.43,44

(4) Rational Materials Design:45 High-throughput calcula-
tions of the structural and electronic properties of
materials, along with accurate prediction of various
spectroscopic features, produce databases that can be
used to synthesize an advanced material that is optimal for
a specific application such as, for instance, a material
harder than diamond. For an optimal management of this
strategy, the databases should include many different
material categories, including as many chemical elements
as possible in different abundances and in different crystal
symmetries. Furthermore, they should include not only
bulk materials but also surfaces and interfaces. Materials
design includes the development of materials and
chemicals for quantum hardware,46 as well as the
exploitation of quantum hardware to predict the proper-
ties of materials and chemical systems and reactions.47

(5) Biological Chemistry: Studies in this context may impact
the production of microbes for energy applications and
recycling processes,48 as well as understanding funda-
mental genetic mechanisms49 and finding solutions to
genetic defects.50,51

(6) Separation Science:52 Understanding the origin of and
achieving selectivity in separation science is a fundamental
issue, where it is important to discern small differences in
weak interactions between molecules and substrates. The
challenge is especially relevant to carbon dioxide and
methane separation since, like the desirable atmospheric
components (molecular nitrogen and oxygen), the
interactions between substrate and adsorbate depend
largely on the polarizability of the adsorbate. It is also
essential in the separation of materials that are critical for
our technological society, such as the rare earth
elements.53−55

(7) Heavy Element Chemistry: The f-elements that appear at
the bottom of the periodic table (lanthanides and
actinides) are relevant for technologies related to energy
and national security. f-electron systems are characterized
by the simultaneous presence of itinerant (delocalized)
and highly localized states and interactions between
them.54,56−58 While lanthanide chemistry can be mostly
understood by studying the impact of changing the size of
the metal atom to tune the properties of a molecular
complex, actinides do not exhibit the same periodic
trends, a fact that requires the use of advanced electronic
structure methods beyond mean-field approaches and
accurate treatments of relativistic and correlation
effects.59,60

(8) Gas Phase Chemistry:61−63 Most energy production
processes involve combustion, a gas-phase chemical
process even with liquid and solid fuels; those fuels may
be either renewable (e.g., biofuels) or nonrenewable (e.g.,
fossil fuels). In addition to energy production, the
characterizations of soot formation, nitrogen oxides, and
other reaction products are also important to a broad
range of scientific challenges.

(9) Strong Field Physics: Strong field interactions between
ultrafast intense fields (attosecond pulses) and matter has
led to a plethora of new physical phenomena, such as
multiphoton ionization, above-threshold ionization, non-
sequential double ionization, high harmonic generation,
attosecond pulse generation, coherent X-ray generation,
etc. This has led to the field of attosecond science, which
represents a new frontier in fundamental ultrafast studies
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in the atomic, molecular, and the condensed phases
requiring new theoretical developments.64−69 In this
context, the challenge of describing unbound electronic
states is particularly compelling.70,71

(10) Ultrafast Science: Emerging X-ray free electron laser
(XFEL) sources like the Linac Coherent Light Source
(LCLS)72−76 offer new types of probes of matter with
unprecedented spatial and temporal resolutions. The
ability of these probes to spatially resolve coherent motion
in complex systems is crucial for harnessing electronic,
vibrational, vibronic (coupled electronic/vibrational)
coherences, coherent solute−solvent motions, charge
flow between electron/proton donor−acceptor sites, and
control of intramolecular electron and proton motion on
ultrafast time scales.

Addressing the challenges outlined in the examples above
requires the close integration between state-of-the-art theoreti-
cal methodologies and high-performance-computing tools to
take advantage of exascale architectures.

■ THEORETICAL METHODOLOGIES
In this Section, we provide a brief overview of computational
chemistry methodologies that, due to their efficiency in
capturing correlation effects, their ability to scale across time
and spatial domains, and their potential in utilizing exascale
computational resources, are vital elements in existing and
forthcoming computing hardware infrastructures (see Figure 2).

These formulations are crucial in addressing the science
problems discussed in the previous Section. The wealth of
methodologies employed in modeling chemical processes also
requires discussing use cases and possible limitations, illustrated
by the juxtaposition of the salient features of electronic structure
methods.
Quantum Chemistry Frameworks. The nonrelativistic

and relativistic frameworks are the two foundations in electronic
structure theory that define the fundamental interactions in
chemical and materials systems:
The Schrödinger f ramework is the foundation of nonrelativistic

electronic structure theory. The underlying one-component
electronic wave functions, in the exact limit, are eigenfunctions
of the total spin angular momentum S2 as well as the spin
projection along an arbitrary axis, Sz, which is built-in as a
constraint to the electronic structure methods. In the
Schrödinger framework, electron spin is a good quantum
number, and the speed of light is treated as c = ∞.
The Dirac f ramework introduces relativistic effects through the

Dirac-Coulomb-Breit Hamiltonian77−79 that operates on a two-
or four-component wave function. Relativistic effects are known
to be extremely important for describing heavy-element
chemistry and accurate prediction of spectral signatures; scalar
relativistic effects cause significant contractions of the core
electron shells, while vector-based relativistic effects (e.g., spin−
orbit, spin−spin interactions) modulate the optical and
magnetic properties of chemical complexes in response to
external perturbations.
The quantum f ield f ramework is a next frontier in electronic

structure theory with an even more detailed description of the
interactions. In quantum field theory, photon-mediated
electron-positron correlations are introduced, which can alter
the energetic ordering of quantum states, such as the well-known
Lamb shift in spectroscopy. For electronic systems, the time-
dependent photons can be traced out via equal time integration,
giving rise to an effective quantum field method. The energetic
contribution from the quantum field is much smaller than the
Dirac-Coulomb-Breit Hamiltonian but increases significantly
toward heavy-element and highly charged states.
Classes of Many-Body Methodologies. Orbital-based

models of electronic structure are the foundation of qualitative
reasoning in chemistry and physics as well as the bedrock of the
modern quantitative toolkit for electronic structure.

• The 1-body (mean-field) electronic structure models
such as Kohn−Sham (KS) Density Functional Theory
(DFT) and Hartree−Fock (HF) are the dominant
models used for practical computations in chemistry
and physics today. Although computationally efficient
(with N( )3 computational cost in conventional form,
with more sophisticated forms approaching linear scaling;
N stands for the system size), the simplicity of 1-body
models precludes their broad ability to describe complex
electron correlations, such as those due to the coupling of
spin degrees of freedom in open-shell systems and
especially excited states, as well as nonlocal interactions.
Nevertheless, the permanent workhorse status of such
models demands continuing algorithmic developments of
such methods to improve efficiency/portability, as well as
new conceptual developments addressing known artifacts
such as self-interaction errors.80−82

• The many-body models rely on the 1-body models (HF,
DFT) as starting points to provide them with a reference

Figure 2. A “connected diagram” illustrates the hierarchy of methods
and synergies between various formulations toward providing the
required accuracy level for the ever-growing complexity and size of
outstanding chemical problems.
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wave function, Green’s function, nodal surfaces, etc. The
rich landscape of many-body methods can be coarsely
categorized into (a) wave function-based methods
[configuration interaction (also known as exact diagonal-
ization), density matrix renormalization group (DMRG)
and other tensor network methods, variational Quantum
Monte Carlo (QMC)], (b) wave operator-based methods
(coupled-cluster (CC),83,84 many-body perturbation
theory (MBPT)), (c) Green’s function-based methods
(GW, Bethe-Salpeter Equation), and (d) diffusion and
auxiliary-field QMC. These methods are fundamentally
more expensive than the 1-body methods, either due to
the prefactor (diffusion QMC) or complexity (high-order
polynomial scaling, such as N( )7 for CCSD(T),85 and
up to N( )ne for full-CI diagonalization; ne designates the
number of electrons). Although algorithmic develop-
ments and numerical approximations can reduce the cost/
complexity of some many-body methods (even to
linear86), the worst-case exponential scaling is unavoid-
able to approach exactness.

Although the reach of orbital-based descriptions of electronic
structure is often augmented by coupling to the approximate
models, such as classical atomistic force fields (QM/MM
embedding) or orbital-free DFT methods (QM/QM embed-
ding), addressing the scientific challenges (including those
identified in Section II) will involve breakthrough developments
of the orbital-based toolkit.
Specific Many-Body Classifications. Choice of Funda-

mental Variable.
• Wave function (ψ) methods offer the possibility to

construct a hierarchical system of approximations for
ground and excited states. Their main drawback is their
high cost: intrinsic scaling with system size N is poor.

• Density-functional (ρ) methods are by far the most
efficient because all of the information about the ground
state is compressed into a simple scalar function, the
density. The blessing of DFT is also its curse: functionals
are simple but uncontrolled and, in several instances, not
transferable across system sizes.

• Green’s function (G) methods form the fundamental
variable for many-body perturbation theory (MBPT).
Although a Green’s function can be constructed by itself,
it can also incorporate the formulations based on ρ and ψ.

Single-Reference vs Multireference Formulations. It is
useful to classify the various methods into single reference
(SR) and multireference (MR).87−91 SR approaches usually
start from a single (often closed shell) Slater determinant,
whereas MR methods allow the inclusion of several (many)
configurations (determinants or configuration state functions
(CSFs)) as a starting point. Many popular variational and
perturbational methods are available, among which the Møller−
Plesset perturbation theory and coupled cluster theory rank
among the most popular SR ab initio methods. For the sake of
convenience, DFT methods based on the Kohn−Sham theory
may also be included as SR methods here.

These methods have demonstrated marvelous success in
calculating ground state properties and electronic excitations in
the Franck−Condon region, i.e., near the ground state
minimum. In view of this success, why do we need MR
methods? The answer is given by the increasing importance of
treating more complex problems like the treatment of carbon-
based polyradicaloid low-bandgap nanomaterials, transition

metal and lanthanide complexes, and bond-breaking processes.
In all of these cases (and many more), strongly correlated, quasi-
degenerate orbital schemes are encountered for which SR
methods quickly reach their limits. When discussing MR
methods, one often separates the treatment of the strongly
coupled near-degenerate electronic configurations from the
weakly coupled configurations. To handle the strongly coupled
subspace, one can use a brute force CI treatment or
systematically improvable types of ansatz, such as provided by
the density matrix renormalization group79,92−95 (DMRG)
method and the graphically contracted functions (GCF)
approach,96−98 which can treat much larger CSF expansion
sizes. On top of this, many methods have been introduced to
handle the more weakly coupled configurations, including
variational methods, such as the MR configuration interac-
tion99,100 (MRCI) method, MR perturbation theories (with
CASPT2101−104 and NEVPT2105,106 as the prominent repre-
sentatives), multiconfiguration pair-density functional
theory107,108 (MC-PDFT) (which combines a functional of
the pair density with a multiconfiguration self-consistent field
(MCSCF) wave function), and multi-Slater determinant
auxiliary field quantum Monte Carlo methods.109,110 Stochastic
sampling techniques can also be used more broadly in the
electronic structure problem, for example, to treat all
correlations in the full-CI quantum Monte Carlo111 (FCIQMC)
method, or in hybrid approaches that combine stochastic and
many-body methods.112 Significant advancements have also
been made in the extension of SR CC theories into the strongly
correlated regime through the implementation of alternative
design principles.113−116

Green’s Function Formulation. The foundation of the
Green’s function approach is the Dyson equation, which
encapsulates the properties of the many-body system through
one-body operators. A conceptual merit of the one-particle
many-body Green’s function (MBGF) is its ability to directly
calculate the key electronic properties of the ionization and
attachment processes without resorting to separate calculations
for different states. Typical one-particle MBGF approaches can
usually be derived from the many-body perturbation expansions
for the matrix of one-particle Green’s function G and/or for the
related self-energy Σ via the Dyson equation. For example, in the
Hedin formulation,117 the theory consists of a set of five closed
equations, which can be expanded via perturbation theory as a
set of Feynman diagrams in powers of the screened Coulomb
interaction,W. Many-body effects are captured, formally exactly,
in the self-energy Σ of the one-body Green’s function. Much of
the complexity is embedded in the frequency dependence of W
and Σ. TheGW approximation may be viewed as an extension of
the Hartree−Fock approximation, with W replacing v in the
exchange. Alternatively, Green’s functions can be formulated
using coupled-cluster theory (GFCC),118−122 the algebraic
diagrammatic construction (ADC) approach,123−125 and
perturbative many-body expansions of the self-energy (Σ).126,127

These approaches vary in the degree of complexity in the way
the many-body effects are handled. When these effects become
crucial, as often featured by satellite states in the ionization
process out of the inner valence band, where poles will appear in
the analytical structure of the self-energy, a proper description of
the poles in the analytical structure of the self-energy is required.

Ground vs Excited State Methods. Currently, an over-
whelming number of quantum chemical calculations are applied
to the electronic ground state. The key aspect shared by all of the
methods and required for predictive results is the ability to
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capture complex electron correlation effects. In this family of
many-body approaches, DFT is arguably the most popular
method that is broadly applicable. However, although computa-
tionally more expensive, wave function based methods (for
example, Møller−Plesset perturbation theory, coupled cluster,
configuration interaction, DMRG, etc.) offer the possibility to
construct systematically improvable classes of approximation,
where the achievable accuracies are intimately tied to the
available computational resources. Green’s function methods
provide a complementary way of addressing the ground-state
electronic structure problem.128−130

Most of the above-mentioned methods are systematically
extendable to compute excited states. The most commonly used
approaches are linear-response (LR) formulations (for example,
LR-TDDFT and LR-CC131−135), equation-of-motion coupled-
cluster (EOMCC) methods,136−140 spin-flip variants,141 ADC
formulations, multireference active space formulations, in either
perturbative or iterative flavors, and many others. All these
methods have been used extensively to compute a range of linear
and nonlinear spectroscopies spanning broad energy ranges (IR,
UV/vis, and X-ray) and nonadiabatic photodynamics simu-
lations.

Over the last two decades, significant advances have been
made in real-time (RT) approaches, which go beyond the
perturbative regime (for example, RT-TDDFT, RT-CC, RT-
Green’s Function). Real-time approaches provide an unprece-
dented view of electron dynamics on the atto- and femto-second
time scales, with vast potential to yield new insights into the
complex electronic behavior of molecules and materials.142

Multicomponent Systems. Recent efforts in electronic
structure theory have also focused on extensions to multi-
component systems, where additional components include spin
degrees of freedom, a quantized electromagnetic field, and/or
the nuclear wave function. For spin-driven electronic dynamics,
such as intersystem crossing events, spin-couplings, and
relativistic effects, variational treatments within the two- or
four-component Dirac framework are needed.77−79,143 The
coupling of a molecule to a quantized electromagnetic field, real-
time quantum electrodynamics (QED),144 has led to studies of
photon absorption and emission and simulations of cavity QED
experiments. For many light-driven dynamics in chemical
systems, quantum mechanical representations of proton
dynamics have been demonstrated with the nuclear−electronic
orbital (NEO) approach in the context of multicomponent RT-
TDDFT and CC formulations for molecular systems.145,146 By
treating protons and electrons quantum mechanically at the
same level of theory, NEO formulations automatically capture
essential features such as vibrational zero-point energy, proton
delocalization, vibrational anharmonicity, and non-Born−
Oppenheimer effects. Although QED-enabled real-time meth-
ods have emerged as a useful tool to study novel photon-driven
chemical processes, a complete theory requires a full first-
principles QED electronic structure theory treatment with
photon-mediated coupling between electrons and positrons and
the treatment of retardation with the frequency-dependent Breit
Hamiltonian. A key challenge in the development of first-
principles methodologies for multicomponent systems is
developing systematically improvable and accurate formulations
on top of self-consistent field methods.147−149

Embedding Methods. One route to balancing computational
cost and accuracy can be achieved by considering the relatively
local nature of chemical interactions. Interesting chemical
phenomena tend to be localized to the active areas of extended

electronic systems. Following this observation, it is possible to
split a larger system into an active subsystem, which can be
tackled with an accurate level of theory that would be prohibitive
for the full system, and the environment, which is treated at a
cost-efficient level that provides broadly acceptable accuracy on
larger systems. Over the years, a variety of schemes have been
developed around the concept of embedding subsystems150−155

at different electronic structure theory levels, including
ONIOM,156,157 DFT embedding,151,158,159 partition
DFT,160,161 fragment methods,162−165 potential-functional
embedding,166 embedded mean-field theory (EMFT),167

Green’s function embedding,168,169 self-energy embed-
ding,170,171 EOMCC embedding,172 density matrix embedding
theory (DMET),173−177 stochastic embedding DFT,178 dynam-
ical mean-field theory (DMFT),179−181 and projector-based
embedding.182−186

Molecular Dynamics. The time-scale problem in chemistry
can often be solved with Born−Oppenheimer molecular
dynamics (BOMD) simulations.187,188 Typically, Newton’s
equations of motion for the (classical) atomic positions are
integrated, step-by-step, to generate the molecular trajectories,
where the interatomic forces are calculated on-the-fly from the
ground state electronic structure for each new configuration. For
light nuclei such as hydrogen, the case has been previously
made189 that for BOMD simulations it is more appropriate to
consider their nuclear statistical nature via Feynman path
integral simulations,190 which are complex linear quantum
superpositions of classical trajectories.191 A major limitation of
this approach is the large computational cost in the iterative
optimization of the electronic ground state that is required prior
to each force evaluation. Insufficient convergence may lead to
nonphysical dynamics with nonconservative forces. The
problem is particularly challenging in combination with low
numerical precision or linear scaling methods. Time-reversible
extrapolation methods have been developed to solve these
problems. New formulations based on a backward error analysis
or a shadow Hamiltonian approach in combination with Car−
Parrinello-like extended Lagrangian techniques have also been
introduced to reduce the computation cost and improve the
accuracy and long-term stability.

To reach the time scale necessary for many problems, it is not
possible to use direct molecular dynamics simulations. Instead,
various accelerated molecular dynamics methods can be used to
boost the effective time scale, often by multiple orders of
magnitude. However, in general, these methods are applicable
only to special rare event dynamics. For floppy dynamic systems
that are common in chemistry and molecular biology, we can
instead use accelerated sampling techniques or Monte Carlo
methods, although the actual time scale is then lost.

Multiscale Methods. To computationally and efficiently
model many important chemical and molecular processes on
large length and time scales requires the seamless integration of
degrees of freedom with different representations as well as
external influences and environmental effects. Early efforts to
couple quantum methods with classical and continuum methods
have been demonstrated and reviewed192,193 and will continue
to be necessary even as variable-accuracy quantum methods
begin to approach length scales that are currently associated with
force-field models. As in the cases of quantum methods, it is
anticipated that methodological domains will include the
following: (1) regions where classical charge-transfer and
polarizable response is needed,194 (2) regions where only
polarizability (electrical or magnetic) needs to be addressed, and
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(3) other regions that simply required classical force fields or
elastic continuum theories. Similar to the case of coupling
quantum-mechanical methods, the requisite coarse-graining will
require improved strategies for ensuring that the resulting
interatomic forces associated with atoms near methodological
boundaries are invariant to whether or not the forces are
calculated with either the less- or more- sophisticated methods.
Additionally, by coupling variable length-scale methodologies,
dynamics simulations within these formulations will require
variable time-scale simulations and the ability to realistically shift
dynamical simulations when discontinuous stimuli from the
external environment occur.

■ COMPUTATIONAL APPROACHES
Enabling predictive simulations on emerging architectures
hinges upon effectively utilizing the computational resources
to address the inherent numerical scaling of theoretical
formulations, including efficient solvers, interoperable models,
numerical representations, and novel programming models
(Figure 3). These requirements need a stable and sustainable
programming environment since solutions in terms of improve-
ments of existing methods or the development of new methods

will be a continuous process that needs interaction between
different programming paradigms and program developers.
Numerical Scaling. The computational cost of canonical

(i.e., without additional numerical assumptions) quantum-
mechanical electronic structure calculations scales, in general,
with the cube, N3, of the system size, N, or worse, which
correlates with the expected accuracy of the predictions. For
example, the ubiquitous CCSD(T) method scales asN7 with the
system size, which allows one to tackle systems composed of
10−100 light atoms.195 In contrast, approaches such as DFT
methodologies scale typically as N3 and can handle much larger
systems.

Despite this steep canonical scaling, it is often possible to
reduce the scaling of electronic structure calculations due to
additional physical features of the solution. Reduced scaling
methods based on mean-field methods like HF and DFT
typically rely on the locality of the orbitals (or Wannier
functions, using Kohn’s nearsightedness principle). The
electronic locality occurs in nonmetallic systems or for materials
at a high electronic temperature. Divide−and−conquer schemes
or numerically thresholded sparse matrix algebra can then be
used to take advantage of the electronic locality to achieve linear

Figure 3. Schematic representation of the interdependencies between various theoretical formulations and software components needed for modern-
era computational chemistry.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00419
J. Chem. Theory Comput. 2023, 19, 7056−7076

7062

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00419?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00419?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00419?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00419?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00419?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


scaling complexity. Some of the key problems with linear scaling
electronic structure theory include the following: 1) a reduced
numerical accuracy with errors that often are difficult to control;
2) a high computational prefactor, where the linear scaling
advantage kicks in only for very large systems; and 3) additional
overhead associated with parallelism.

In correlated wave function methods, reduced scaling is
achieved by taking advantage of the rapid decay of many-
electron correlations with distances in most chemical situations;
truncation of these interactions can be achieved in several ways,
including (1) truncation of incremental many-body expansions
for the energy based on the partitioning of the system into
fragments of the size larger than the quantum correlation length
of the system162−165 and (2) truncations of the operators and
wave functions directly by representing them in a form that
reveals their sparse structure. In molecular applications, this
means using spatially localized basis sets (AOs, localized MOs,
and finite/spectral elements), pair-natural orbitals (PNOs), or
domain-local pair natural orbital (DLPNO) methods, to
mention only a few strategies.86,196−203 A significant effort has
been devoted to extend the reduced-scaling problems beyond
typical ground-state applications to excited-state or linear
response methodologies formulated in the time or frequency
domains.204−206 The numerical error of many-body methods
also suffers from slow asymptotic decay due to the singularity of
the Coulomb electron−electron interaction and the resulting
cusps in the electronic wave function. This translates into rapid
asymptotic growth of the computational cost with the desired
precision; most importantly, the use of small basis sets results in
unacceptably significant errors. To address this problem,
explicitly correlated formalisms, specifically in the form of the
R12/F12 methods, build in the cusp-like structure into the wave
function via terms dependent on the interelectronic distances.
One of the pressing issues in computational chemistry will be
integrating the F12/R12 methods with various reduced-scaling
frameworks.207−209

Machine Learning.The ability to generate large amounts of
high-quality data from ab initio theory is a prerequisite for data-
driven machine-learning techniques. These new technologies
are based on information theory and artificial intelligence and
are rapidly evolving into a new field of research in computational
chemistry. Such new machine learning methods often comple-
ment or can, in some instances, even replace many traditional
approaches in computational chemistry.210−216 Particularly
fruitful areas of the application of machine learning in theoretical
and computational chemistry include the design of interatomic
potentials for molecular dynamics simulations, the development
of new exchange-correlation functionals in DFT, and the
prediction of properties of chemical systems. Despite the
success of machine learning in computational chemistry, there
are good reasons for some caution. Often the underlying
physical mechanism for a predicted property, e.g., that generated
by a deep neural network, is missing. The accumulation of
knowledge from machine learning will therefore be limited, and
errors will be hard to detect. Often machine learning models act
like an interpolation between already explored data points and
cannot be used to discover new unexpected phenomena.
Interatomic forces are governed by long-range electrostatic
interactions between the positive nuclear charges and the
negative charges of the relaxed electron density,217 which cannot
be captured by commonly used machine learned force fields, in
which the energy is cast as a sum of atomic terms. Incorporating
electrostatic interactions into machine-learned force field

models of this type will then be like modified versions of
traditional polarizable flexible charge models, where the long-
range charge interactions and relaxations are included
separately. Nevertheless, machine learning in computational
chemistry is undoubtedly here to stay.

■ PROGRAMMING MODELS AND SOFTWARE
INTEGRATION
Software Development Challenges for Modern Com-

puting. While certain computational chemistry workloads can
be supported by consumer grade computing platforms, the true
power of quantum chemistry to affect change and influence
scientific inquiry relies on its effective utilization of high-
performance computational (HPC) resources, supported by
funding agencies in the US and worldwide. A driving force for
the success of computational chemistry has been its ability to
adapt to an ever evolving computational landscape and to
quickly adopt emerging performance-driven technologies.
Historically, this adaptation has focused on central processing
unit (CPU) architectures, which have been the dominant design
feature in both consumer and HPC platforms across virtually all
industries for the last half century. While the pervasiveness of
CPUs has supported progress in this domain, it has also
contributed to a degree of complacency among developers
regarding the importance of performance-portability, extensi-
bility, and other hardware-aware considerations in their software
efforts. In recent years, it has been recognized218−220 that
addressing these challenges represents a sizable hurdle for
software sustainability efforts in computational chemistry, and
the identification of long-term solutions is critical for these
efforts in the years to come.

With the inevitable demise of Moore’s law, modern HPC has
adopted the use of specialized hardware for performance critical
computation over the general purpose, power-intensive
capabilities of CPU processors. While the homogeneity of
CPU design has historically allowed for a certain level of
hardware-software codesign in computational chemistry,
particularly in its use of numerical linear algebra, it is clear
that the dominance of graphics, artificial intelligence (AI), and
machine learning (ML) will be the primary driver for specialized
hardware innovation in the years to come. This paradigm shift is
best represented by the introduction of accelerators, such as
graphics processing units (GPU) and, more recently, AI-driven
hardware such as tensor cores and tensor processing units
(TPU), into the HPC ecosystem. In addition to a need for the
development of novel programming models, compiler tech-
nologies, and optimized libraries to target these platforms, the
move to accelerators often requires the re-evaluation of
algorithmic design due to fundamental differences in execution
strategies being appropriate only for particular classes of
workloads (e.g., vectorized, low precision, and high arithmetic-
intensity). AI-hardware’s low mixed-precision floating-point
operations, in particular, add new challenges to the numerical
accuracy, algorithm stability, and convergence estimates for
quantum chemical methodologies.221−224

While there has been an enormous effort afforded to the
incorporation of modern HPC platforms into the scientific
computing and computational chemistry ecosystems,220−227

these efforts have been fraught with challenges and cannot yet be
considered as mature as their legacy counterparts targeting CPU
architectures. Outstanding challenges and opportunities in these
areas include how best to leverage low-precision arithmetic for
computational chemistry applications and how to develop new
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or map existing algorithms onto particular compute patterns
(such as tensor contractions, convolutions, etc.) − especially for
kernels which are traditionally not linear algebra based, and how
to rebalance existing codes by navigating trade-offs between
sparse and dense linear algebra. For computational chemistry to
remain viable, it is critical for its associated software and method
development efforts to continue to evolve with modern HPC
and to adopt defensive, flexible programming philosophies to
better prepare them for the current and future architectures. In
this section, we review a number of topics salient to low- and
high-level abstractions that are required to address these
challenges in modern computational chemistry software.
Low-Level Abstractions. It has long been recognized in

computational chemistry that compiler technology alone is often
insufficient to achieve the peak performance of critical kernels on
modern compute systems. As such, details regarding hardware
design must be considered when attempting to develop
performant software. This statement is equally true for software
targeting either CPU- or accelerator-based architectures.
However, the vast majority of the workflow design of chemistry
software is not performance critical, and there typically exist only
a handful of algorithmic kernels that need to be optimized for
target architectures. Due to the size and complexity of typical
chemistry software packages, to completely refactor code bases
for each architecture of interest is impractical, and sustainable
software efforts should strive to lessen developer effort to
achieve performance portability to the largest extent possible. In
this Section, we examine strategies to encapsulate and abstract
low-level hardware-specific optimization for the development of
sustainable computational chemistry software.

The development of performant computational chemistry
software is particularly challenging in comparison to other
scientific disciplines due to the relatively large number of
performance critical kernels that comprise typical algorithmic
workflows. A certain number of these kernels are generic in the
sense that they are common to other areas of scientific
computing, such as matrix and tensor algebra (multiplication,
decompositions, etc.) and Fourier transforms to name a few. For
these kernels, chemistry software can often rely on community
software in the form of libraries (e.g., BLAS,228 LAPACK,229

ScaLAPACK,230 and ELPA231−233) to act as sufficiently general
low-level abstractions. Recent years have also seen the assembly
of software collections for targeting HPC architectures, such as
the Extreme-scale Scientific Software Stack (E4S)234,235 and the
Extreme-scale Scientific Software Development Kit (xSDK).236

Typically, these libraries are released in a manner that targets a
specific architecture of interest (CPU/accelerator, shared/
distributed memory) and made accessible by standardized
Application Programming Interfaces (APIs). Such specialization
has led to the development of chemistry-community driven
abstraction layers such as the Electronic Structure Infrastructure
(ELSI),237 the Basic Matrix Library for quantum chemistry
(BML),238 and the CECAM Electronic Structure Library
(ESL).239 For particular chemistry applications, many perform-
ance critical, low-level abstractions are able to be satisfied by
these libraries alone, but for other applications, there exist a
number of domain-specific kernels that cannot be satisfied by
generic community software.

Many computational chemistry methods rely on domain-
specific kernels to perform a number of performance critical
tasks. These kernels are most common in applications working
with basis representations (e.g., Gaussian and Slater type
orbitals, numeric atomic orbitals, wavelets, etc.) of integrodiffer-

ential operators encountered in physical Hamiltonians. For
example, in atomic-orbital-based electronic structure theory, the
evaluation and manipulation of the electron repulsion integral
(ERI) tensor, or its various decompositions, are highly sensitive
to underlying hardware details and constitute a fair majority of
the computational work encountered in these applications.
While it would be possible to leverage community software in
the implementation of many of these kernels, it is often the case
that the development of highly specialized kernels and
algorithms leads to significant performance improvements on
modern hardware. For example, the development of highly
optimized recursions240−250 and chemistry-specific quadrature
schemes251−256 for operator integral evaluation and contrac-
tion257,258 are known to outperform generic numerical integral
machinery on both CPU and accelerator architectures. In
addition, domain-driven tensor frameworks259−262 typically
outperform generic tensor frameworks for computational
chemistry workloads. As such, many chemistry-community
driven libraries have been developed for low-level operations
such as analytical (e.g., libint,263 libcint,264 and simint265) and
numerical (e.g., GauXC,266−268 libGridXC239) operator inte-
grals, functional evaluation (libxc,269 XCfun,270 ExchCXX266),
and tensor algebra (e.g., TiledArray,259,260 TAMM,261 and the
Cyclops Tensor Framework (CTF)262) to name a few. The
development and optimization of these libraries is challenging;
thus, it is of critical interest to the development of sustainable
computational chemistry software that these kernels be
implemented in a performance portable manner.

As with the implementation of many performance critical
kernels, optimization of chemistry-specific kernels is highly
hardware specific. For CPU-based architectures, leveraging
single-instruction multiple-data (SIMD) and fused multiply add
(FMA) capabilities is paramount to achieving peak perform-
ance. While typically generated by optimizing compilers, explicit
SIMD optimization can be performed in a portable manner
through the use of low-level abstractions such as vector
intrinsics, as has been explored in several integral libra-
ries.263−265 The situation is complicated on accelerator based
architectures which often rely on vendor-specific programming
models (e.g., CUDA271 for NVIDIA GPUs and HIP for AMD
GPUs) to directly manipulate hardware capabilities. To avoid
refactoring code bases for each accelerator, several attempts have
been made by the compiler community to develop unified
programming models over multiple accelerator backends (e.g.,
OpenMP,272 OpenACC,273 OpenCL,274 SYCL). In addition,
software-driven performance portability layers (e.g., Kokkos275

and RAJA276) have also been explored. While such efforts have
proven to be fruitful for some cases,277 such approaches have
limited features and performance portability to be universally
applicable.

Despite significant efforts in developing performance portable
software within particular classes of hardware, it is often the case
that, in some sense, the execution strategies for chemistry
workflows must be optimized themselves, apart from low-level
hardware-specific implementation details. For example, CPU-
based ERI libraries typically expose integral evaluation at the
granularity of individual shell-quartets, while efficient accel-
erator algorithms require a much coarser granularity to achieve
good performance. Design choices such as these lead to
unsustainable development practices where large portions of
code bases must be refactored for different classes of hardware
regardless of the implementation details of performance critical
kernels. The need to avoid (or at least minimize) such
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refactoring creates a somewhat niche role that can be occupied
by a “middle-layer”. This middle-layer is designed to decouple
the low-level and high-level layers from one another. As the
quantum chemistry software stack complexity continues to
increase, middle-layers like PluginPlay278 � a framework for
developing modular scientific software, where the developer
chooses the module granularity � will become increasingly
important to help bridge the gap between low-level and high-
level abstractions, the distinction between which is becoming
increasingly blurry.
High-Level Abstractions. Reflecting the hierarchical

structure of the formal abstractions of our chemistry
applications, it is natural to hide the low-level abstractions,
which deal with the hardware at its lowest levels of granularity,
under a layer of domain-specific high-level abstractions. Layered
design can help improve sustainability by insulating implemen-
tations of models and algorithms from the disruptive changes in
low-level implementation details (kernels, programming mod-
els, architecture). When properly executed, it also naturally
makes composition easier by insulating the users of high-level
abstractions from low-level implementation details.

The high-level abstractions can take many forms depending
on the particulars of the methods, algorithms, and even details of
numerical representations. Perhaps the most notable example
from electronic structure is tensor algebra libraries/frameworks,
which support or encompass the implementation of many-body
electronic structure methods in algebraic (second-quantized)
representation. Tensor Contraction Engine (TCE)279,280

supported the composition of complex many-body methods
from a high-level operator specification in a domain-specific
language. The implementation of the resulting tensor algebra on
a distributed partitioned global address space (PGAS) runtime
Global Arrays (GA)281 was also compiler-generated. In addition
to many improvements and generalizations (SMITH,282

SMITH3283) of TCE, a major refinement of its ideas is
becoming possible by decoupling of the high-level operator
algebra and tensor algebra layers, the latter including
components for optimization (e.g., factorization) of the algebra
of symmetric tensors284 and its implementation using generic

tensor frameworks (including distributed and heterogene-
ous).285−289 Similar high-level abstractions can be found in
other areas of electronic structure, e.g., tensor network
computation290 and DFT.291

Yet higher up the abstraction ladder, the focus switches from
the representation of electronic states to solvers for the
associated quantum and classical equations-of-motion (e.g.,
nonequilibrium time-dependent electronic structure, Born−
Oppenheimer and nonadiabatic dynamics, etc.). For performing
such tasks there exist multiple “frameworks” (ASE,292 New-
tonX,293 SHARC,294 QCEngine,295 among others296,297) for
abstracting (interfacing to) standalone packages; such frame-
works can be viewed as domain-specific specializations of
generic workflow components. The highest level of abstraction
is also where, typically, the computational chemistry and
machine learning models meet.298

In practice, both high- and low-level software abstractions are
critical for the development of performant computational
chemistry software, particularly in the modern computing era.
However, the development and maintenance of such
abstractions are time- and resource-consuming, posing a
considerable hurdle for sustainable software design. In the
following Section, we examine development practices for
sustainability in computational chemistry software.

■ TRANSITIONING TO SUSTAINABLE
COMPUTATIONAL CHEMISTRY SOFTWARE

Most computational chemistry methods have very high space
and time complexities. In order for these methods to be
applicable to realistic rather than toy systems, developers need to
spend a considerable amount of time optimizing the software.
Historically, these optimizations have been done on a per code
basis leading to a somewhat substantial amount of “reinventing
the wheel”; e.g., nearly every electronic structure package
contains an implementation of the self-consistent field (SCF)
method, Møller−Plesset perturbation theory, and coupled
cluster theory, which have been hand-tuned by the developers
of the package. Even if a developer wanted to repurpose an
algorithm from another package, this is often very difficult

Figure 4. A “word web” highlighting the many considerations that go into designing, writing, and stewarding sustainable software.
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because most algorithms have been developed with a “just get
something working” mindset. Broadly speaking, this often
means that the developers (i) did not write documentation
(especially developer documentation), (ii) spent little to no time
on design, (iii) accepted a very tight coupling with the rest of the
package, and (iv) skimped on test coverage. The fact that the
resulting software tends to contain a large amount of technical
debt and anecdotal evidence suggests that unwillingness to
address this technical debt is often the reason why developers
choose to reimplement algorithms (often perpetuating the
cycle). Here, we argue that with the rate at which computational
chemistry, software engineering, and computer hardware are
currently advancing, the field of computational chemistry can no
longer afford to accept this mindset. If we want to stay at the
forefront of scientific advancement, then we need to work
together to develop and maintain sustainable and interoperable
software. Figure 4 is meant to accompany the present discussion
by providing a succinct summary of the main topics discussed in
this section.

Actually defining what it means for computational chemistry
software to be sustainable is a tricky task, especially since
advancements in other fields “move the goal posts”. Presently,
we adopt the simple and practical definition that sustainable
software outlives the original use cases and can survive change.
This means that the software can readily be adapted to new use
cases, leveraged by different teams, and ported to new hardware.
The software may be either open or closed source, but its public-
facing APIs and user interfaces must be stable and well
documented. The software and the data it produces should be
standardized and curated to ensure both remain accessible at
later times. Throughout the process, it is imperative that the high
space and time complexity of computational chemistry be kept
in mind; namely, all of the above must be done in a performance-
aware manner.

In practical terms, this suggests that computational chemistry
software must be designed in a modular and encapsulated
manner. The modules should be as decoupled as possible in
order to facilitate refactoring, integration, and rapid-prototyp-
ing. The corollary to this point is that modularity should be used
to ensure a separation-of-concerns. While many quantum-
chemistry packages are modular at the level of computing an
energy or an energy gradient, we need to go far beyond that,
including, but not limited to nonadiabatic couplings, building
integrals, forming the Fock matrix, scanning potential energy
surfaces, and numeric solvers. Smaller, more fine-grained
modules are easier to maintain, tune, and properly credit than
monolithic modules. It is also much easier to ensure the
correctness and reproducibility for fine-grained modules.

From the perspective of sustainability, the computer language
a module is written in tends to be less important than the
languages for which it provides APIs for. For example, C-
bindings exist for many Fortran libraries, and an increasing
number of C/C++ libraries also provide Python bindings.
Generally speaking, computational science is moving away from
Fortran. While software written in Fortran is likely to persist for
some time, it is our present recommendation that developers
prioritize providing C/C++ and Python APIs regardless of the
language in which the module is written. C/C++ retains critical
roles in the software implementation ecosystem as the most
widely used languages for low-level implementation. However,
we note that in scientific computing and machine learning
Python has emerged as a glue language capable of calling
disparate pieces of software, in a cohesive manner, even if the

software is written in different languages. Combined with the
fact that many languages have the ability to interface with
Python, this suggests that Python can conceivably serve as a
common API. The performance limitations of Python remain a
relevant consideration, even in its use as a glue language.
However, this may be ameliorated by the growing availability of
Python just-in-time (JIT) compilers, such as PyTorch,299

JAX,300 etc., which utilize the Python syntax, but do not actually
execute code via the Python interpreter. Increasing examples of
Python based quantum chemistry frameworks and APIs, such as
PySCF,301,302 NWChemEx,303 Psi4,304,305 Dalton,306 Gator307

etc., showcase the potential of this approach.
Beyond modularity, sustainability also suggests that the

software be readily extensible and customizable, which in turn
requires a flexible and general infrastructure. However, this can
be challenging, particularly for computational chemistry
software, which often has predefined functionalities and highly
optimized, hard-to-modify implementations. Introducing de-
coupled, fine-grained modules with proper interfaces for
extensions can partially address this issue. A more compre-
hensive solution is to develop modular software that is amenable
to meta-programming (writing code that uses other code as
input). Meta-programming allows other developers to pro-
gramatically, and noninvasively, extend and customize existing
code. A particularly relevant example is given by recent
autodifferentiation efforts308−316 which, as the name suggests,
are able to automatically compute analytic derivatives of a
numerical routine. Meta-programming offers a major advantage
to users outside of the chemical sciences (e.g., workers in
machine learning and quantum information theory) as they can
not only perform chemistry simulations but also extend and
incorporate parts of the software into their own projects. By
increasing the number of people from diverse communities
using or contributing to the software, the likelihood of the
software becoming obsolete is reduced. Over time, an ecosystem
may form around the platform, where an interconnected
community of developers and users from various fields can
provide support, feedback, and resources that help the software
continue to improve and evolve. This may also help to address
some of the challenges associated with retaining developers and
securing funding, as discussed below.

Another major piece of sustainability is stewardship. Here,
stewardship entails tasks beyond initial method development
meant to ensure that the software remains viable over the long-
term. To have staying power, software needs to be stable,
accessible, reproducible, and reliable, which comes from good
design, extensive testing, outstanding documentation, robust
deployment strategies, and community engagement. In practice,
designing for the dynamic nature of science is hard, but semantic
versioning combined with good version control practices can
help minimize the damage when designs need to change.
Extensive testing requires more than unit testing and includes
the following: integration, performance, deployment, and
acceptance testing. Testing should be combined with code
coverage to ensure that the code is indeed exhaustively tested.
Developer and user documentation, tutorials, and resources are
extremely important to ensure the software can outlive any
particular developer’s involvement. Without such resources,
using or extending the software is time-consuming and difficult.
The software should be deployed in a manner that facilitates an
easy setup and reliable access. A somewhat underappreciated
point pertaining to robust deployment is that it becomes
essential to treat the software’s infrastructure, such as the build
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system, testing harnesses, code generators, and continuous
integration workflows, as code too. Engaging the user
community ensures that the software gets used, improved, and
further vetted. It is worth noting that part of supporting the user
community is providing computer science and engineering
resources, since many members of the community are scientists
by trade.

While one can envision sustainable software which lacks
interoperability, the reality is that without interoperability, it is
extremely time-consuming to develop and steward software. For
our purposes, interoperability means that two pieces of software
“just work” together. For components to exhibit true
interoperability, it must be possible to swap the components
with no work other than telling the framework to use the new
component. This means no glue code, data conversions,
language barriers, or additional configuration. In practice, this
is more of an ideal to strive for than is a characteristic of the
actual software. Nonetheless, it is something we as a community
should strive for and work toward if we want to avoid reinventing
the wheel. It is important to realize that interoperability must be
a community effort since we must agree on common standards
for data and APIs. Inevitably, because of the large amount of
technical debt in most packages, there will be a large upfront cost
to move to interoperability, so the conversion is best done piece
wise.

The last piece of sustainability is growing and retaining the
overall computational chemistry community. Without users or
developers working together, the field will slowly die. Anecdotal
evidence from the Exascale Computing Project shows that
developers of scientific software are in high demand by industry,
particularly by tech companies. Hence, sustainability requires
retaining these developers. We note that we are specifically
focused on retaining and expanding the number of developers in
permanent positions (such as in professor and scientist roles);
positions such as student and post doctoral researchers are by
design supposed to turn over. Historically, retention has been
difficult for many reasons, chief among them being credit, salary
and benefits, and difficulty securing external funding. Credit is an
issue since many universities or laboratories do not appreciate
software development as much as they appreciate publishing,
patents, and conference presentations. Industry, on the other
hand, has a strong appreciation for how important software
development is, which is reflected in the salaries and benefits
that they are willing to offer to retain their developers. While it is
unlikely that universities or government laboratories will ever
match industry salaries, addressing the credit issue could go a
long way toward retention as would lowering the barrier to
securing external funding for software development activities.

Moving forward, it is the recommendation of the authors that
a higher emphasis be placed on ensuring that computational
chemistry software is sustainable and properly stewarded.
Admittedly, not every research avenue pans out, so there still
needs to be an initial proof-of-concept/“just get something
working” phase. What we are arguing instead is that once an idea
has been vetted, developers must disseminate the feature in a
sustainable manner. At present, this can admittedly be a tall
order; therefore, we also recommend that the community
pursue true interoperability and build software infrastructure,
such as reusable frameworks, which can leverage the
interoperability to facilitate sustainability. We also note there
are several existing scientific research software communities
from which we can take cues, such as Research Software
Alliance,317 Better Scientific Software,318 US Research Software

Sustainability Institute,319 and the Molecular Sciences Software
Institute.320 Notably, these organizations have already consid-
ered many of the issues mentioned above in depth and provided
suggestions. The last recommendation is to ensure that our
stakeholders (funding agencies, journals, universities, etc.) are
also prioritizing sustainable computational chemistry.

Finally, we note that there are many open questions and
challenges related to sustainability. Perhaps the foremost of
these concerns is the availability of sustainable funding. For
larger projects, software stewardship is a full time job, and
finding the funds to support stewardship positions is
challenging. One potential solution is to monetize the software.
This is not without its own challenges though. For example,
interfacing and interacting with both open-source and closed-
source software can be tricky, not just scientifically but also
legally. Another potential hurdle faced by closed-source software
is ensuring that the scientific results are reproducible.
Admittedly, this is also a problem for open-source codes, too;
however, users of open-source codes can always fall back to
reading the source as a last resort. We refer the reader elsewhere
for a deeper discussion of choosing the commercial route for the
sustainability of a specific software package.33

Sustainability also faces challenges related to education. Since
most scientific research software deals with highly technical
subject matter, finding someone who understands the science
and is skilled in software engineering is difficult. Furthermore,
many existing software engineering solutions can not be
immediately ported to scientific software simply because the
software was never designed to accommodate them. The net
result is that we need to develop a new approach to education
that teaches fundamental science from the perspective of
software engineering. That said, we do not purport to have the
answers to these challenges, but they are challenges that the
community will need to contend with if we want to transition to
sustainable software in computational chemistry.

■ CONCLUSIONS AND FUTURE OUTLOOK
Computational chemistry forms a complicated ecosystem that
embraces formulations driven by various design principles and
scenarios for synergies and interoperability between them,
leading to unique and predictive computational frameworks
working across multiple scales and complexities. Therefore, a
sustainable chemistry software development effort requires the
interplay among electronic structure theory, applied mathe-
matics, and computer science.

With the advent of exascale computing and new computa-
tional paradigms associated with rapid advances in cloud
computing, edge computing, and broad utilization of machine
learning models, computational chemistry is facing deep
transformations and challenges, leading to a new level of
computational abilities needed for understanding critical
societal challenges. New computational tools will allow for
modeling processes and properties for system sizes and
accuracies, which were impossible to attain in the last decades.
For example, exascale computing offers a unique chance to
integrate various representations of quantum mechanics based
on the wave functions, density, and Green’s function approaches
that capture complex correlation effects across spatial and
temporal scales for the ground- and excited-states of complex
systems.

For these challenges to be addressed, the scientific community
needs to work synergistically with public and private funders to
address problems related to sustainable computational chem-
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istry development based on the integration of broad classes of
parallel computing tools, algorithms, and programming models.
As essential elements underpinning this effort, one should
mention the need for integrating hardware and application
kernels for various types of formalisms and using modular low-
level abstractions encapsulating basic information to ensure the
high efficiency of scientific software. High-level abstraction in
the software’s design, maintenance, and interoperability is
needed to compose many-body methods through the use of
domain-specific languages and flexible tools for distributed
computing and runtimes. These factors play a critical role in
making software readily extensible and customizable as well as
user-friendly for complex chemical workflows.

The lasting effects of adapting to the unprecedented
computational capabilities can only be achieved if a coordinated
effort is implemented to retain a qualified workforce and provide
communication/collaboration conduits for multidisciplinary
teams to provide efficient frameworks capable not only of
supporting but also driving new scientific efforts.
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