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A B S T R A C T   

Natural resources, along with critical raw materials, are increasingly considered a focus for technological ap-
plications. Widely available and inexpensive natural resources, such as zeolite-rich geomaterials, possess minero- 
chemical characteristics that make them very useful in various technological applications, representing a stra-
tegic choice with a strong green connotation. In this research, the possibility of recycling waste powders from 
quarrying operations of zeolite-rich tuffs in technological applications for the construction sector and drug de-
livery was investigated. 

Waste powders collected from quarries operating on the Sorano Formation (Tuscany - Italy), were used for a 
preliminary characterization, performed to evaluate zeolite content and potential pollution deriving from in-
dustrial processing. 

Thereafter, the specific technological characterization was carried out to define the waste attitude to represent 
a promising candidate raw material for Lightweight Expanded Aggregates (LEA) production, partial substitution 
component with pozzolanic activity in cement formulations, carrier for active pharmaceutical molecules. 

Experimental results, obtained following European normative, proved that was possible to produce waste- 
based LEA with comparable features with those reported for currently marketed products, that waste powders 
exhibited pozzolanic activity evidencing the possible use as addition for blended cements and, finally, the use of 
a cationic surfactant determined a surface-modification of natural zeolites (contained in waste samples) which 
encouraged for an early loading trial of active pharmaceutical molecules. 

This research can be safely extended to other quarry waste, with similar mineralogical and chemical 
composition, leading to a strong contribution in the waste management of this sector.   

1. Introduction 

Natural resources are increasingly being used for technological ap-
plications to improve industrial and civil technological processes. 

Along with the concern on critical and strategic raw materials 

(Girtan et al., 2021; European Commission, 2023), there is a growing 
focus on upgrading resources that are widely available and inexpensive 
but reveal surprising and versatile technological characteristics. These 
include natural zeolites, which applications range from established 
utilization, e.g. in agriculture and animal feed (Papaioannou et al., 
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2005; Eroglu et al., 2017) to potential uses with high added value, such 
as pharmaceuticals, environmental remediation, etc. (Cappelletti et al., 
2017; König et al., 2020; Serati-Nouri et al., 2020; Morante-Carballo 
et al., 2021) which have yet to be brought to a level of technological 
readiness suitable for market demands. 

The recent literature offers several examples of novel solutions to 
improve materials and technologies by natural zeolites: drug delivery 
(Servatan et al., 2020) catalysis and chemical processes (Jin et al., 2024; 
Liu and Zhu, 2024); selective adsorption of toxic compounds from waste 
water and the environment (Bogusz et al., 2024; Ismail et al., 2024; Liu 
et al., 2024; Öz, 2024; Zhou et al., 2024); skin protection and health care 
(Fantini et al., 2024); carbon capture (Selim et al., 2024); innovative and 
eco-designed building materials (Vaičiukynienė et al., 2024; Wei et al., 
2024; Yudi et al., 2024; Zhu et al., 2024). 

These opportunities involve raw materials that are not pure zeolites, 
strictly speaking, but more or less extensively zeolitized rocks, where the 
zeolitic component is usually predominant but other phases (crystalline 
and non-crystalline) may be present (Giampaolo et al., 2008; Langella 
et al., 2013; Gentili et al., 2014; Belkin et al., 2016; Mormone et al., 
2018; Rolandi et al., 2019a, 2019b). For this reason, it is essential to 
know in detail the genetic processes that lead to the formation of the 
phases of interest, in order to better understand the variations in the 
zeolite content of the deposit and, consequently, variations in the 
technological properties of the materials that will be used (Giampaolo 
et al., 2008; Bear et al., 2009; Fercia et al., 2009; Langella et al., 2013, 
2022; Bareschino et al., 2017, 2019; Skhvitaridze et al., 2018; Izzo et al., 
2022). 

These resources are, from the point of view of economic geology, 
between well-characterized and widely exploited zeolite deposits 
(Holmes, 1994; St. Cloud Mining Co., 2024) and others with a great 
potential, but underexploited and little known scientifically (de Gennaro 
et al., 2007, 2009; Cappelletti et al., 2011; Graziano et al., 2016; Izzo 
et al., 2022). The challenge is to valorize these natural deposits by 
developing technological solutions that enable the use in applications of 
greater value, although not as demanding as in the case of synthetic 
zeolites. Zeolite-rich deposits that have been exploiting since decades 
can represent a tested to verify how to widen the possible uses towards 
applications with greater added value (Gualtieri et al., 1999; Ver-
eshchagin and Sokolova, 2006; de Gennaro et al., 2008; Pasquino et al., 
2016; Bareschino et al., 2017; Cappelletti et al., 2017; Krajǐsnik et al., 
2018; Liguori et al., 2019; Serati-Nouri et al., 2020; Smiljanić et al., 
2020; Cataldo et al., 2021; Morante-Carballo et al., 2021; Moreno Ríos 
et al., 2022; Noviello et al., 2021; Takarina et al., 2024; Taoufik et al., 
2020). A specific target is the widely available quarry dust from cutting 
and processing these geomaterials for building purposes, thus trans-
forming a waste into an added value by-product. This waste material is 
currently employed in animal farming (dietary supplement, pet litter 
and manure deodorizer) as well as in agriculture as soil amendant and 
slow-release fertilizers (Biesek et al., 2021; Brumovská et al., 2021; 
Cataldo et al., 2021; El-Nile et al., 2021; Herc et al., 2021; Holanda et al., 
2021; Noviello et al., 2021; Wang et al., 2021; Banaszak et al., 2022; 
Feoktistova et al., 2022; Ghoneem et al., 2022; Javed et al., 2022; Vafaee 
and Chaji, 2022; Kumar et al., 2023; Pavlak et al., 2023; Rashid and 
Rafey, 2023). 

The Quaternary volcanism of the central-southern Italy can be a 
suitable case-study, as it emplaced huge volcaniclastic and pyroclastic 
deposits, often deeply affected by intense sin- and post-depositional 
minerogenetic processes leading to the transformation of reactive vol-
canic glass in zeolites, with subsequent lithification of the deposits (de’ 
Gennaro et al., 2000; Cappelletti et al., 2003, 2015; Langella et al., 2013; 
Colella et al., 2017; Novembre et al., 2021; Peccerillo, 2017). The main 
use has been as dimension stones in the building industry, by exploiting 
their low cost, volume weight, mechanical features, and the excellent 
thermal insulation (de’ Gennaro and Langella, 1996). These natural 
zeolites (sometimes occurring in the rock up to 70-80 wt%) have been 
studied, based on the good cation exchange capacity and adsorption 

properties, for various applications (Carbonchi et al., 1999; de Gennaro 
et al., 2004, 2005, 2007, 2008, 2009; Monteiro et al., 2004, 2005; 
Cappelletti et al., 2011, 2017; Liguori et al., 2015, 2019; Dondi et al., 
2016; Özen et al., 2016; Pasquino et al., 2016; Serri et al., 2016; Mer-
curio et al., 2018, 2019; Izzo et al., 2019; Smiljanić et al., 2020, 2021; 
Montesano et al., 2022). 

In this paper, a pyroclastic deposit from the Latera volcano (Vulsini 
Volcanic District, VVD, central Italy) pertaining to the Sorano Forma-
tion, was considered for sampling (Vezzoli et al., 1987; Palladino and 
Simei, 2005; Valentine et al., 2019, Washington, 1906 - Appendix, fig. 
A1). 

From a petrographic point of view, this lithoid yellow tuff, also 
described as D-Ignimbrite, is a very fine-grained trachytic deposit as 
thick as tens of meters with a glass composition (the precursor of the 
zeolites) varying from trachybasalt and phonotephrite to trachyte and 
phonolite (Sparks, 1975; Landi, 1987; Nappi et al., 1987, 1998; Vezzoli 
et al., 1987; Turbeville, 1992; Conticelli et al., 1997; Renzulli et al., 
2018). In addition, the deposits were deeply affected by intense sec-
ondary mineralogical processes, leading to the crystallization of zeolites, 
mainly represented by chabazite (subordinate phillipsite) through the 
transformation of primary volcanic glasses (Cappelletti et al., 1999). 

Waste material from two mining sites was then subjected to minero- 
petrographical characterization and then technological testing. Along 
with about 23,000 tons/year of finished product, approximately 9000 
tons/year of waste is produced (i.e., 40% of the deposit, without waste 
recycling, is landfilled). 

The possibility of reusing these quarry wastes, containing zeolites in 
good quantities, as raw material for technological applications was 
tested for potential applications in the production of lightweight 
expanded aggregate (LEA), as a pozzolanic additive in cement produc-
tion, and as a carrier of pharmacologically active molecules. 

2. Material and methods 

This research is focused on investigating materials sampled from two 
active quarries: C quarry (42◦40’41.27“ N; 11◦42’01.15” E) and P 
quarry (42◦41’25.52“ N; 11◦44’38.29” E), both operating on zeolite-rich 
tuffs from the Sorano Formation (Geological service - Tuscany region. 
Italy, 2013). 

Since identified quarries are mainly devoted to produce dimension 
stones, both samples of building stones and waste powders, were 
collected and identified as follows:  

• C1 and P1 – Quarry finished products – building material produced 
by quarry operations (respectively C and P quarry).  

• C2 and P2 - Powdered sample – waste from quarry operations 
(respectively C and P quarry). 

2.1. Mineralogical composition 

Mineralogical qualitative and quantitative analyses were carried out 
by means of X-ray powder diffraction (XRPD) using a Panalytical X’Pert 
Pro diffractometer, equipped with a RTMS X’Celerator detector with 
monochromed Cu-Kα radiation, operating at 40 kV and 40 mA. Sample 
powders were mill-micronized (<10 μm particle size) by using a Retsch 
XRD-Mill McCrone and added with a 20% Buelher α-alumina for 
quantitative reference and then prepared on the related sample holders 
avoiding isoorientation or non-flat surface. Collecting conditions for 
scans were: range 5–70◦2θ with a step interval of 0.017◦2θ and a time 
per step of 120 s. Mineral phases were identified by the Panalytical 
Highscore Plus 3.0e software and PDF-2/ICSD mineral databases. 
Quantitative analyses were performed by Reference Intensity Ratio – full 
profile (RIR-Rietveld) combined methods (Bish and Howard, 1988; Bish 
and Post, 1993; Rietveld, 1969) using Topas software (version 5.0, 
Bruker, Germany). 
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2.2. Chemical composition 

Chemical analyses were performed using an Axios Panalytical X-ray 
fluorescence (XRF) spectrometer, equipped with six analyzer crystals, 
three primary collimators and two detectors. 

Sample powders were mixed with polyvinyl alcohol and prepared in 
aluminum cups with the bottom first filled with boric acid, to be sure 
that infinite thickness was achieved; the aluminum cup was then com-
pacted with a hydraulic press to obtain flat surface discs. 

Analytical percentage uncertainties are 1–2% relative (Cucciniello 
et al., 2017). The weight Loss on Ignition (L.o.I.), determined by 
gravimetric techniques, was evaluated by firing at 1000 ◦C for 2 h 
sample powders previously dried at 110 ◦C overnight (ASTM Interna-
tional, 2021). 

2.3. Scanning Electron Microscopy – Energy Dispersive Spectrometer 
microanalyses 

Microstructural investigations were performed by means of a Field 
Emission Scanning Electron Microscope equipped with an Energy 
Dispersive Spectrometer (FESEM/EDS; Zeiss Merlin VP Compact 
coupled with Oxford Instruments Microanalysis Unit; Carl-Zeiss- Strasse, 
Oberkochen, Germany) both used for observations and spot analyses. 
Data sets were obtained using an INCA X-stream pulse processor 
(Oberkochen, Germany) (15-kV primary beam voltage, 50–100 A fila-
ment current, variable spot size, from 30,000 to 200,000× magnifica-
tion, 20 mm working distance, and 50 s real-time counting) by means of 
INCA Energy software 5.05 (XPP array and pulse pile-up corrections). 

2.4. Mercury Intrusion Porosimetry 

Mercury Intrusion Porosimetry (MIP) tests were performed using a 
Thermo Finnigan Pascal Hg porosimeter with 140 and 440 devices. The 
first one applies a low mercury pressure up to 400 kPa to introduce 
mercury into the sample and to measure the macroporosity. The second 
one applies a maximum pressure of 400 MPa for the measurement of 
meso-porosity (pore radius ranging from 58 to 0.0019 μm (Rouquerol 
et al., 1994; IUPAC ISO 15901-1-2005, 2005). 

Small but representative fragments (bulky volumes <5 cm3), were 
used, avoiding any changes in the natural distribution of the porous 
space and then dried for 24 h in a vacuum oven at ~70 ◦C. Data were 
processed by SOL.I⋅D (Solver of Intrusion Data), software (Ver. 1.6.6. – 
Thermo Scientific), allowing to determine real and bulk densities, Hg 
open porosity, total pore surface area, and average, median, and modal 
pore radius. Three measurements were the minimum number of average 
data for pore size distribution curve. 

2.5. Thermal analyses 

Powdered starting geomaterials were analyzed by means of simul-
taneous thermal analyses, namely thermogravimetry (TG) and differ-
ential scanning calorimetry (DSC), using a NETZSCH STA 449 F3 Jupiter 
thermoanalyzer, in alumina crucibles. Samples underwent to a dynamic 
heating conditions (heating rate 10 ◦C/min, 40–1250 ◦C range) in ultra- 
pure air. Proteus 6.1.0 software was used for data analysis. 

2.6. Fourier Transform Infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) was performed on 
powdered samples in Attenuated Total Reflectance mode (ATR) using a 
BRUKER Alpha FTIR spectrometer equipped with a diamond crystal 
(Mid-Infrared spectral range 4000–400 cm-1; spectral resolution 4 cm− 1 

and 64 scans for each run). Spectra were acquired and processed with 
the software Opus 7.8.44. 

2.7. Lightweight Expanded Aggregates production 

Firing behavior was evaluated by a preliminary test using a Hot- 
Stage Microscope (HSM - Expert System Solutions - Misura 2) on cy-
lindrical specimens (2 mm diameter, 3 mm height) treated with a 
heating rate of 10 ◦C/min until melting (Dondi et al., 2001). Once 
operative conditions (mainly temperature and firing time) were identi-
fied by means of HSM, a laboratory scale simulation of Lightweight 
Expanded Aggregates (LEA) production was conducted by preparing 
pellets (40 mm in diameter, pressed at 40 MPa and then hand-granulated 
to 3-10 mm in size). The resulting granulate was fired in an electric 
chamber kiln (Nannetti mod. CV). Operative conditions are consistent 
with previous experimental research on zeolite-rich materials (de Gen-
naro et al., 2004, 2007, 2008, 2009; Graziano et al., 2022). 

Physical and technological properties of LEA were tested by deter-
mining: particle size distribution (UNI EN 13055, 2016), bulk density by 
Archimede’s principle (UNI EN 13055, 2016), loose bulk density (UNI 
EN 13055, 2016), strength of particle using a Control Test and 1 MPa*s-1 

as load rate, (average value from 20 tests) and water absorption (UNI EN 
13055, 2016). 

Based on bulk chemistry and mineralogical properties of the fired 
LEA, chemical composition and structural parameters of the glassy 
phase were calculated. The chemical composition was defined by sub-
tracting from the bulk chemistry of the fired body the contribution of 
mineralogical phases, assuming their stoichiometric composition 
weighted on the quantitative phase analysis. Shear viscosity at high 
temperature was estimated by a predictive model based on the chemical 
composition of the liquid phase (Giordano et al., 2008) while pseudo- 
structural parameters were calculated as follows: 

Degree of depolymerization of the melt (NBO/T) defined as the 
number of Non-Bridging Oxygens (NBO) per tetrahedrally coordinated 
cations (Si, Al) as atomic percentage and calculated from the composi-
tion of the vitreous phase. 

Glass network formers (GNF) - From the composition of the liquid 
phase: GNF (atom%) = Si + CCAT, corresponding to Al3+ charge 
compensated by alkali or alkaline earths. 

Charge compensated aluminum in tetrahedral coordination (CCAT) - 
From the composition of the liquid phase: Al3+ charge compensated by 
alkali and alkaline earths: CCAT(atom%) = Na + K + 2Ca + 2 Mg (up to 
max value = Al). 

Glass network modifiers (GNM) - From the composition of the liquid 
phase: alkali and alkaline earths exceeding CCAT: GNM (atom%) = Na 
+ K + 2 Mg + 2Ca – CCAT. 

2.8. Pozzolanic activity 

The pozzolanic activity was evaluated using a standard chemical 
method, accepted as European Standard (Fratini, 1949, 1950; UNI EN 
196-5, 2015). Firstly, tuff-cement blends were prepared by mixing in a 
mortar, 13 g of Portland cement (OPC, CEM I) with 7 g of each tuff 
sample, in such a way tuff was 35% by weight of the binder. Afterwards, 
the above tuff-cement blends were mixed with 100 mL of boiled 
deionized water, stored at 40 ◦C in 500-mL cylindrical polyethylene 
containers. Samples so prepared were kept at 40 ◦C for 8 or 15 days (if 
the test was negative after 8 days). At the end of the experiment, Ca2+

and OH− concentrations in the contact solution are estimated using 
volumetric analysis methods (i.e., complexometric titration with ethyl-
enediaminetetraacetic acid-EDTA and acid-base titration, respectively). 

Collected data (i.e., the average values of runs performed in tripli-
cate) were reported in a plot of Ca(OH)2 (expressed as CaO) solubility at 
40 ◦C as a function of OH concentrations in solution (i.e., vs. alkalinity). 
Points representing under-saturated solutions, and thus proving the 
existence of pozzolanic activity given by the specific mineral addition to 
the OPC, should be under the curve, which means that some of the lime 
resulting from the hydrolysis of the clinker was fixed by the pozzolanic 
materials. On the contrary, points above and on the curve represent 
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over-saturated and saturated solutions, respectively, indicating the lack 
of pozzolanic activity. 

Data collected from Fratini’s plot can be analyzed using the 
following equation: CaOT = (350/[OH]-15), representing the theoretical 
solubility data of Ca(OH)2 (as CaO) at 40 ◦C in the 35–90 mmol/l [OH− ] 
range. To collect further information about the kinetic of the pozzolanic 
reaction, data were also collected at longer time up to 21 days. 

2.9. Cation exchange capacity, external cation exchange capacity, Zeta 
potential and drug loading test 

Exchangeable cations (i.e., Na+, K+, Mg2+, and Ca2+) were extracted 
using the batch exchange method (BEM) in order to assess the cation 
exchange capacity (CEC) of the examined geomaterials (Cappelletti 
et al., 2017). In particular, 1 g of powdered tuff was mixed with 35 mL 
NH4Cl solution (1 M) in nalgene tubes at constant temperature (60 ◦C). 
The solid was separated by centrifugation each 2 h and the exhausted 
solution was replaced with other 35 mL of fresh solution. After at least 
ten runs, the solutions were examined in atomic absorption spectrom-
etry (AAS) and concentration of cations were estimated in meq/g. 

The concentrations of the same exchangeable cations were deter-
mined also after continuous stirring of 2.5 g of powdered tuffs with 30 
mL of cetylpyridinium chloride (CP-Cl) solution (20 mM) for 24 h in 
order to evaluate the external cation exchange capacity (ECEC) of the 
examined geomaterials (Cappelletti et al., 2017). The solutions were 
extracted by centrifugation and then analyzed by means of atomic ab-
sorption spectrophotometry. ECEC was evaluated from the liquid and 
expressed in meq/g. After interaction, the powdered tuff was filtered 
and washed in order to remove the unnecessary surfactant and dried at 
room temperature. This procedure allowed also to obtain, at the same 
time, a surface modified natural zeolite (SMNZ) to perform preliminary 
drug loading tests (i.e., equilibrium sorption isotherm). For this purpose, 
25 mL of ibuprofen sodium salt (IBU), having concentrations ranging 
between 50 and 1000 mg/L, were stirred with 0.1 g of SMNZ for 5 h. 
Then the solutions were extracted by centrifugation and analyzed by 
means of a Shimadzu UV-VIS spectrophotometer. Absorbance was 
measured at λ = 222 nm. Experimental data were fitted using the 
Langmuir equation one of the most used mathematical models 
S=Sm(KCe/1 + KCe) (Langmuir, 1917): where S is the amount of IBU 
sorbed by SMNZ at equilibrium conditions (values expressed in mg/g); 
Sm is the maximum sorption capacity of SMNZ at equilibrium (mg/g); Ce 
the concentration of IBU in the solutions at the equilibrium (mg/L); K is 
a constant (the so-called Langmuir coefficient) expressed in L/mg and 
related to adsorption intensity and binding energy. Sm and K were 
estimated from the slope and intercept of the linearized Langmuir 
equation (plot C/S vs. C). The correlation coefficient R2 was used to 
evaluate the applicability of the Langmuir model. 

Zeta potential can be determined only on the nanometric fraction of 
zeolite samples using a Zetasizer Ultra apparatus (Malvern, USA). Before 
measurements, 50 mL of an aqueous suspension of micronized C1 and P2 
samples were prepared (5 mg/mL) and placed on a flat surface. Subse-
quently, 10 μL aliquots were withdrawn immediately below the sus-
pension surface and poured in 1 mL of DDW. Then, 780 μL of the 
obtained suspension were placed in NanoSizer cuvette to run the 
experiments. 

3. Results and discussion 

3.1. Raw materials characterization 

3.1.1. Mineralogical and chemical composition 
The mineralogical composition consists of zeolites (almost exclu-

sively chabazite and minor phillipsite and analcime) along with K- 
feldspar, mica, plagioclases, and pyroxenes (Table 1). Only for sample 
C1, the presence of calcite is detectable and reported also in literature 
(Gualtieri et al., 1999). The chemical composition is consistent with 

mineralogy (Table 1). In particular, it is evident the high potassium 
content that is a peculiar feature of VVD magmas. Sample C1 has a 
slightly higher value of CaO due to the occurrence of calcite. All samples 
(products and waste) have a very similar composition, and, even if, the 
two waste materials (C2 and P2) exhibit slightly higher values of the 
total zeolite content (TZC), this circumstance is probably related to a 
particle size segregation of the powder, which in certain way promotes a 
zeolite enrichment. At any event, a high zeolites content is beneficial for 
technological applications. 

3.1.2. Scanning Electron Microscopy – Energy Dispersive Spectrometer 
microanalyses 

Scanning electron observations on rock samples highlighted the 
presence of euhedral crystals: firstly zeolites (mainly chabazite along 
with minor phillipsite), smectite and volcanic glass as main constituents 
in samples quarry C and quarry P (Fig. 1) as also reported in literature as 
typically constituting this rock type. Zeolites, in this volcanic deposit, 
form by means of post-depositional minerogenetic processes that led to 
the crystallization of minerals from volcanic glass (Sparks, 1975; Lan-
gella et al., 2013b; Colella et al., 2017). Usually, this process, happens at 
temperatures between 120 and 230 ◦C, too low for feldspatization but 
suitable for zeolitization and by a deep interaction between fresh vol-
canic glass and meteoric water (Laurenzi and Villa, 1987; Cappelletti 
et al., 2003; Giampaolo et al., 2008; Fedele et al., 2008; Bear et al., 2009; 
Langella et al., 2013). Fluids circulation of these waters to leads hy-
drolysis and dissolution of the glass itself with the formation of a 
chemical and thermodynamic environment suitable for zeolites 
crystallization. 

EDS investigations, performed on juvenile elements (volcanic glass), 
confirmed sample’s petrographical classification as phonolites and tra-
chytes in the T.A.S. diagram (Le Bas et al., 1986 - Appendix, fig. A1) with 
a Si/Al ratio always higher in the glasses than in the derived authigenic 
phases. 

3.1.3. Mercury intrusion porosimetry results 
Porosimetric investigations were performed to acquire a complete 

basic characterization of this macroporous tuff and compared with that 
of other Italian pyroclastites used as raw material for similar techno-
logical applications (de Gennaro et al., 2005, 2007; Cappelletti et al., 
2011; Izzo et al., 2022) (Appendix – Table A1). Both samples exhibit 
high accessible porosity values (Table 2). The pore size curves reported a 
unimodal distribution with predominance of macropores (97%) for 

Table 1 
Mineralogical and chemical composition (tr = traces).   

Unit C1 C2 P1 P2 

chabazite wt% 49 52 51 58 
phillipsite 3 2 1 2 
analcime tr tr 1 1 
K-feldspar 17 16 18 14 
plagioclase 4 2 3 2 
pyroxene 5 4 5 4 
mica 3 4 3 3 
calcite 2 tr tr tr 
amorphous 15 18 17 17 
TZC 53 55 54 61  

SiO2 wt% 49.3 49.9 50.2 49.8 
TiO2 0.5 0.5 0.5 0.5 
Al2O3 14.9 15.7 15.3 15.4 
Fe2O3 3.6 3.6 3.6 3.3 
MnO 0.1 0.1 0.1 0.1 
MgO 1.4 1.4 1.5 1.4 
CaO 6.3 5.6 5.5 5.8 
Na2O 0.5 0.5 0.5 0.4 
K2O 6.2 5.0 6.1 5.4 
P2O5 0.1 0.1 0.2 0.1 
Loss on Ignition % 16.5 17.0 15.7 17.1  
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Fig. 1. SEM micrographs of C and P samples (left and right column respectively).  
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both, with pore diameter centered in modal class of 2 μm and 2.7 μm, 
respectively (Appendix – fig. A2). Mesopores are poorly represented. 
Dataset were in line with those of geomaterials of similar geological 
origin (Appendix – Table A1) (Chiodi et al., 1982; Bianchetti et al., 1990; 
Fratini et al., 1990; Jackson et al., 2005; De Casa and Lombardi, 2007; de 
Gennaro et al., 2013). 

3.1.4. Thermal behavior 
Thermal behavior of examined geomaterials can be schematically 

described by three different thermal events occurring: 1) from room 
temperature to 550 ◦C, 2) between 550 and 800 ◦C, 3) up to the final 
temperature of 1050 ◦C (Table 3). The most peculiar response of the 
zeolite-rich material happened during the first thermal range, consisting 
of an endothermic dehydration due to the release of the so-called zeolitic 
water contained in the cages and channel characterizing zeolite frame-
works. The weight losses (ΔW), estimated by thermogravimetry are 
lower in lithoid samples (C1 and P1) rather than powdered ones (C2 and 
P2). This results generally suggest an increase of zeolite content in the 
waste produced by quarries operations. In the thermal range 
550–800 ◦C, there is a weight loss representative of the decomposition of 
carbonates (i.e., calcite) for sample C1, and absent or as traces in the 
remaining samples. At higher temperatures (800–1050 ◦C), DSC analysis 
highlights an exothermic thermal event attributable to a sintering pro-
cess. Residual mass (R.M.) values, in accordance with TZC and previous 
considerations are lower for waste samples. 

3.1.5. Infrared spectroscopic features 
ATR-FTIR spectra of chabazite-rich tuffs from Sorano Formation are 

reported in Appendix – fig. A3. FTIR and revealed the main spectral 
features for samples C1, C2, P1 and P2. All these samples showed a very 
strong band, representative of the asymmetric stretching vibrations of T- 
O bond, close to 998 cm-1. The asymmetric and symmetric stretching 
vibrations in T-O-T bonds are represented by the moderate absorption 
bands at ~762 and 720 cm-1. These three bands are generally diagnostic 
for chabazite since associated to the internal and external framework 
vibrations of Primary and Secondary Building Units (Karge, 2001; 
Byrappa and Kumar, 2007; Mozgawa et al., 2011; Izzo et al., 2019). The 
broader and weaker bands at ca. 3400 and 1640 cm-1 confirm the 
presence of zeolitic water (including hygroscopic one) and could be 

shared by chabazite and other phyllosilicates (i.e., smectite), along with 
the minor bands at 1120, 628, 516 and 460 cm-1. Additional bands at 
1455 and 874 cm-1, in sample C1, are respectively attributable to 
asymmetric C–O and out-of-plane vibrations in calcite (Adler and Kerr, 
1962; Vahur et al., 2016; Mercurio et al., 2018). 

3.2. Technological characterization 

3.2.1. Lightweight expanded aggregates production and characterization 
Waste powders were crude pelletizzed by a 400 kg/cm2 pression by a 

manual pneumatic press and then hand granulated (Fig. 2 a,b). Firing 
conditions were set to be consistent with the geomaterial thermal 
behavior (Table 3) and following suggested temperatures from Hot 
Stage Microscope (HSM) results (Table 4). 

The firing schedule (maximum temperature 1250 ◦C with 5 min 
dwell time) was selected as intermediate between the Tme and Tmve 
temperatures (Table 4), according to previous studies (de Gennaro et al., 
2007, 2009). The maximum volume expansion potentially achievable 
(from 80% to 97%) is adequate for LEA manufacturing. Applying this 
firing schedule to LEA prototypes, a similar appearance was obtained for 
both samples (Fig. 2c,d,e) and bulk density below 1000 kg/m3 (Table 5). 
For this reason, they match the standard definition of “expanded light-
weight aggregate” (UNI EN 13055, 2016). 

The phase composition of such waste-based LEAs consists of a pre-
dominant vitreous phase associated to residual K-feldspar and plagio-
clase (Table 5). In these cases, both bulk viscosity and bloating index are 
mainly controlled by the chemical composition of the vitreous phase 
that was studied along with its physical properties (Kaz’mina, 2010). 

The samples have similar phase composition and features of the 
vitreous phase. The fact that LEAs must be predominantly glassy with a 
limited skeleton, and a viscosity high enough to maintain the spheroidal 
shape, is well known (Cougny, 1990). However, literature data are only 
available for LEA obtained from zeolitic rocks mixed with glass waste 
(Dondi et al., 2016). In this case, the vitreous phase was slightly larger 
(83-90%) with less residual feldspars and quartz than in the present 
study. The shear viscosity was in the 3.3-3.7 log10 Pa⋅s range, i.e. fully 
comparable with reported data (~3.1 log10 Pa⋅s) considering that firing 
at lower temperatures (1110–1210 ◦C range, Dondi et al., 2016) implies 
a viscosity higher than at 1250 ◦C (Table 5). 

The P2-based LEA has a slightly lower viscosity than C2, essentially 
because of its higher amount of glass network modifiers. The calculated 
viscosity values are in accordance with the bulk density achieved for the 
fired specimens, given by a different expansibility. In both cases, the 
shear viscosity is in accordance with the optimal range for lightweight 
aggregates production reported in literature (Molinari et al., 2020; 
Graziano et al., 2022). 

Both waste-based LEAs were studied from the microstructural point 
of view, by means of SEM observations, in terms of quantity and quality 
of both pores and septa constituting the internal expanded structure 
(Appendix- fig. A4). 

Micrographs show that bloating induced the formation of a bimodal 
pores’ classes: a first population with bubbles diameter > 400 μm and a 
second one with bubbles diameter < 150 mm (Table 6). 

The two specimens have comparable microstructural features, and, 
for both, the formation of an external glassy surface plays a key role for a 
possible use in the concrete industry (Mueller et al., 2008; de Gennaro 
et al., 2009; Volland and Brötz, 2015; Graziano et al., 2022). 

Such a surface determines a low aggregates water absorption 
allowing, on the other hand, to keep down the water-cement ratio that 
can be detrimental (if too high) for good concrete formulations (Lo et al., 
2007; Collepardi et al., 2016). Experimentally produced LEAs were 
characterized from the physical-mechanical point of view and achieved 
values were compared to those of some commercial products with a 
similar bulk density value (Table 7, Appendix - Table A2). 

As the other reported commercial products and as other waste-based 
LEA, aggregates manufactured in this research offer a remarkable range 

Table 2 
Porosimetric features.   

Unit C1 P1 

Bulk density g/cm3 1.3 1.1 
Apparent density g/cm3 2.3 2.1 
Accessible porosity % 42.6 48.7 
Total pore volume mm3/g 325.3 446.0 
Total pore surface area m2/g 8.3 8.9 
Average pore diameter mm 0.2 0.2 
Median pore diameter mm 1.4 1.8  

Table 3 
Simultaneous thermal analyses ((a). Endothermic; (b). Exothermic; ΔW. weight 
loss by TG).    

Unit C1 C2 P1 P2 

T < 550 ◦C ΔW % 11.6 14.8 12.2 14.5 
DSC 
(a.b) 

◦C 154 (a) 
÷ 232 
(a) 

149 (a) 
÷ 231 
(a) 

132 (a) 
÷ 240 
(a) 

134 
(a)÷224 
(a) 

550 ◦C < T <
800 ◦C 

ΔW % 2.3 0.1 0.2 0.1 
DSC 
(a.b) 

◦C 668 (a) – – – 

800 ◦C < T <
1050 ◦C 

ΔW % – – 0.1 – 
DSC 
(a.b) 

◦C 905 (b) 891 (b) 898 (b) 901 (b)  

R.M % 87.4 84.8 87.4 85.4  

S.F. Graziano et al.                                                                                                                                                                                                                             



Applied Clay Science 258 (2024) 107451

7

of physical characteristics (e.g., bulk density and water absorption) and 
processing conditions (e.g. firing behavior) and they are completely 
usable for building sector. 

Furthermore, considering the production of lightweight aggregates, 
which is the application with the highest impact for raw material con-
sumption, with regard to the life cycle assessment (LCA) simulation the 
production of zeolite-rich waste-based aggregates present a significantly 
lower environmental burden with respect to the production of com-
mercial ones, mainly due to potential benefits of avoided impact from 
raw materials extraction, transportation and the production phase 
(including burning and expansion with heavy fuel oil). Even when used 
in the mix design of 1 m3 of lightweight concrete with C20/25 strength 
class and 1600 kg/m3 of density, waste-based aggregates present a lower 
impact in all the damage and impact categories (Napolano et al., 2016). 

Fig. 2. LEAs produced from C and P. Crude pelletization (a), crude hand-graining (b), fired cooling (c: C2-based LEA; d: P2-based LEA), internal structure (e).  

Table 4 
Hot Stage Microscope (HSM) results.   

Unit C P  

C1 C2 P1 P2 

Sintering temperature (Ts) ◦C 1156 1134 1156 1158 
Softening temperature (Tr) ◦C 1186 1170 1172 1208 
Melting temperature (Tf) ◦C 1346 1372 1344 1342 
Temperature of maximum expansion 

(Tme) 

◦C 1240 1260 1290 1260 

Temperature of max expansion rate 
(Tmve) 

◦C 1210 1218 1210 1220 

Maximum volume expansion at Tme % 80 97 80 82 
Bloating index unit 0.8 1.1 0.8 0.9  

Table 5 
LEA: firing temperatures; mineralogical, chemical and physical characterization.   

Unit C P 

Firing temperature ◦C 1250 1250 
Bulk density kg/m3 920 990  

K-feldspar wt% 12 13 
Plagioclase 10 9 
Vitreous phase 78 78  

SiO2 wt% 55.4 56.4 
TiO2 0.7 0.8 
Al2O3 19.2 19.5 
Fe2O3 5.4 5.4 
MgO 2.1 2.3 
CaO 9.4 8.2 
MnO 0.2 0.2 
P2O5 0.2 0.3 
Na2O 0.7 0.8 
K2O 6.7 6.3  

Shear viscosity Log10 Pa s 3.1 3.1 
Flow point ◦C 1145 1152 
NBO/T1 unit 0.1 0.1 
GNF2 atom% 28.3 28.6 
CCAT3 8.21 8.3 
GNM4 4.9 3.9  

1 Number of Non-Bridging Oxygens per Tetrahedrally-coordinated cations. 
2 Glass network formers. 
3 Charge compensated aluminum in tetrahedral coordination. 
4 Glass network modifiers. 
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3.2.2. Pozzolanic activity 
The evaluation of the reactivity as pozzolanic materials of the 

analyzed tuffs have been reported in Fig. 3. As expected, all the inves-
tigated samples provide undersaturation conditions (Liguori et al., 2015, 
2019; Özen et al., 2016; Montesano et al., 2022), being positioned under 
the equilibrium Ca(OH)2 solubility curve. This means that zeolites (i.e., 
pozzolanic materials) react with calcium hydroxide, leading to the for-
mation of insoluble calcium aluminate silicate hydrate (C-A-S-H) (acting 
as binding compounds). In fact, zeolites interacting with the solution 
modify its chemistry, decreasing Ca2+ concentration and increasing 
alkalinity. Starting from the empirical formula (see equation chapt. 2), it 
is possible to quantify the pozzolanic activity of the investigated sam-
ples. The results of these calculations are reported in Table 8. The 
reduction of Ca(OH)2 in terms of CaO, can be calculated as pozzolanic 
activity index PA (%) = [(CaOT – CaO)/ CaOT]*100. 

The examined samples, C and P, displayed a high reactivity with 
lime, reaching a PA of 82.8% and 69.8% respectively. Inspecting data at 
longer times (Fig. 3) the maximum percentage of Ca(OH)2 reduction was 
attained after 21 days. 

For this reason, waste here investigated could be used as an active 
additive and a partial substitute in compounds to lower the amount of 
cement used and by consequence contributing to lower also the CO2 
footprint up to 20% as demonstrated in recent studies aimed to partially 
replacing cement with technologically interesting materials (Damtoft 
et al., 2008; Huntzinger and Eatmon, 2009; Van Den Heede and De Belie, 

2012; Miller et al., 2018; Shah et al., 2022; Her et al., 2024; Tokareva 
et al., 2024). 

3.2.3. Surface modification, Zeta (ζ) potential and drug sorption 
Zeta potential (ZP) measurements allowed the detection of the net 

surface charge of samples in the presence/absence of the surface-active 
agent starting from measuring the electrophoretic mobility of the 
colloidal fraction of waste powder. 

The detected ZP values of colloidal particles, the addition of a 
cationic surfactant (surfactant modified samples, respectively C_T and 
P_T), led to a positive shift in ZP of particles, confirming the superficial 
charge inversion (Table 9, Fig. A5). 

This finding suggests a significant affinity between the surfactant 
molecules and, hence, that surfactant does adhere to the zeolite particles 
in the colloidal size scale. Furthermore, it is worth noting that the C_T 
sample exhibited a higher ZP than P_T, thereby hinting at a more 
effective shielding effect of the colloidal zeolite suspension. 

To, preliminarily, evaluate technological performance of chabazite- 
rich rock from Sorano Formation in the uptake of non-steroidal anti- 
inflammatory drug (NSAID), the functionalized geomaterial (waste) 
obtained after interaction with CP-Cl was tested by means of equilibrium 
sorption test using IBU solutions (Fig. 4). 

Chabazite-rich rock from Sorano Formation functionalized with CP- 
Cl has a maximum sorption capacity Sm ≈ 10.6 mg/g (K = 0.0834 L/ 
meq; R2 = 0.997). The asymptotic shape of the equilibrium isotherm 
suggests a favorable sorption of IBU by the examined geomaterials after 
surface modification. Taking into the account the total zeolite content of 
these geomaterials, the results here obtained could be considered quite 
consistent with data from literature for chabazite- and phillipsite-rich 
geomaterials (Serri et al., 2016; Mercurio et al., 2018; Izzo et al., 
2019). Zeolite content could influence the surfactant sorption capacity 
(i.e., ECEC value) of starting geomaterial and consequently the perfor-
mance of SMNZ on the uptake of NSAIDs. Geomaterials modified with 

Table 6 
LEA: microstructural investigations.  

Surface aspect Unit C P 

glassy glassy 

Pores 1st population mm 700–1000 400–1100 
Pores 2st population 40–100 55–120 
Septa 50–300 100–450 
Pores shape – distribution Rounded – homogeneus Elongated – homogeneus  

Table 7 
LEA: physical-mechanical characterization.   

Unit C P 

Particle size distribution mm 03–10 03–10 
Bulk density kg/m3 920 990 
Loose bulk density 660 515 
Water absorption (24 h) % 3 2.93 
Strength of particle MPa 0.3 0.3  

Fig. 3. Results of Fratini’s test. Solid lines represent Ca(OH)2 solubility curve (left) and Pozzolanic reactivity percentage as a function of curing time (right).  

Table 8 
OH and CaO concentrations and CaOT and PA evaluations (OH and CaO taken 
from the Ca(OH)2 solubility curve; CaOT and PA result from the formulas).   

Unit C P 

8 
days 

15 
days 

21 
days 

8 
days 

15 
days 

21 
days 

OH- mmol/ 
L 

42.7 48.2 50.0 42.2 44.3 42.2 
[CaO] 2.2 1.2 0.93 3.9 1.5 1.3 
[CaO]T 12.6 10.5 10.1 12.8 11.9 12.8 
PA % 82.8 89.0 90.7 69.8 87.3 89.8  
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chlorinated surfactants such as CP-Cl, but also benzalkonium chloride or 
hexadecyltrimethylammonium chloride, form onto the surface of natu-
ral zeolite a patchy bilayer that led to a complex sorption process 
characterized by a predominant external anion exchange of drugs mol-
ecules and a subordinate partition into the hydrophobic portion of 
micelle. The hydrophobicity and molecular conformation of both sur-
factant and drug also play a significant role in the technological per-
formance of SMNZs. Previous investigations demonstrate that natural 
zeolite functionalized with hexadecyltrimethylammonium chloride can 
sorb higher concentration of NSAIDs. Nevertheless, CP-Cl is considered 
more suitable for pharmaceutical preparations (Serri et al., 2016; Mer-
curio et al., 2018; Izzo et al., 2019). 

For the same SMNZs, different performances can be noticed as a 
function of the type of drug. For example, the concentration of diclo-
fenac sodium that can be sorbed by a SMNZ is generally twice than 
ibuprofen because of the higher hydrophobicity and minor steric hin-
drance of diclofenac that can be trapped more easily into the internal 
portion of micelle (Pasquino et al., 2016). 

In the light of these first results, the NSAID sorption capacity of 
surfactant modified chabazite-rich geomaterials form Sorano Formation 
hardly seems adequate for a real pharmaceutical application. However, 
further investigations are required although the technological perfor-
mance of these geomaterials appear likely compatible for environmental 
applications such as the removal of some NSAIDs from waste waters, 
often considered in the last years as contaminants of emerging concern 
(Izzo et al., 2019). 

4. Conclusions 

Zeolite-rich rocks can be excellent raw materials for various uses, but 
sustainability of mining operations needs to be enhanced by improving 
resource efficiency. For this purpose, the chance of upgrading with profit 
a quarry waste into a by-product utilized in high-profile technological 
applications is a game changer concept even though it requires a specific 
technological characterization. 

This research has demonstrated the feasibility of using a zeolite-rich 
quarry waste (collected from the Sorano formation) in various applica-
tions, such as the production of lightweight expanded aggregates (LEA), 
the pozzolanic addition in the production of cement and the possibility 
to act as carrier for pharmacologically active molecules. This is a step 
forward to prevent landfill disposal of about 40% of the volcaniclastic 
deposit. 

Lightweight aggregates with water absorption below 3% and density 
of 920-990 kg/m3 are pretty in line with the products on the marketed. 
In addition, these LEAs can play an important role in concrete mix 
design as absolutely not detrimental to the water-cement ratio. Waste- 
based LEA can therefore be considered a good candidate for the 
manufacturing of lightweight concretes, contributing to improve ther-
mal and acoustical insulation. 

The zeolite-rich waste reacts with calcium hydroxide, leading to the 
formation of insoluble calcium aluminate silicate hydrate, and acting as 
binding compound. Its pozzolanic activity qualifies the material as 
suitable to produce cement mixtures with satisfactory mechanical 
strength. Tested samples provided undersaturation conditions with the 
maximum percentage of Ca(OH)2 reduction (around 91%) attained after 
15 days. 

Although the technological performance of these geomaterials ap-
pears compatible for environmental applications, such as the removal of 
some NSAIDs from waste waters, often considered in the last years as 
emerging contaminants, further investigations are required. Surface 
charge reversion of the superficial modified samples, going from -30 to 
+20 mV/TotCount (average ζ-potential values), allowed an early uptake 
of non-steroidal anti-inflammatory drugs, even if low values of ECEC 
(0.06 meq/g) along with a maximum sorption capacity Sm ≈ 10.6 mg/g 
hardly seem adequate for a real pharmaceutical application. 

According to results reported in the present research, zeolite-rich 
waste can be used as secondary raw material, representing a green 
alternative to the disposal. By this way, low grade natural resources, 
such as volcaniclastic deposits, can play a more important role as useful 
and versatile technological materials, enhancing the economies of ter-
ritories and the industrial development, also from an environmental 
perspective. Therefore, this study should also spur stakeholders to pro-
mote new combined applied research approaches that can raise funding 
from both the private and public sectors. 
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