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I. INTRODUCTION

tervals are nested)

The linear stability analysis of the zero-th order equilib-
rium distribution functions pertaining to nonlinear, collision-
less Vlasov equilibria needs solve a linear eigenvalue problem
for the operator governing their small-amplitude perturba-
tions.

Besinceived as an initial value differential problem and
solved by the Green function technique.

If the Green function has “virtual” poles in its non physical
Riemann sheet, the corresponding oscillations (the virtual
modes, not proper eigenfunctions) can be represented as a
superposition of the eigenfunctions belonging the continuous
spectrum [2, 3]. These are the Landau damped oscillations
and appear in kinetic as well inhomogeneous fluid systems
[2, 3]. They can be used to enhance resonance absorption
of electromagnetic waves [4, 5] and to explain wave atten-
uation in non dissipative homogeneous stochasitic media as
yet another form of Landau damping [6].

Another method [7] to treat linear oscillations about an
equilibrium state consists in transforming the differential op-
erator acting on the perturbations of the equilibrium into an
integral operator. A regularization technique of the singu-
lar Cauchy kernel of this operator separates the subset of the
eigenfunctions belonging to the continuous spectrum and the
subset of virtual modes, these latter as again being due to
the zeroes of a certain dispersion function in its non physical
Riemann sheet. This method was applied to both electro-
static oscillations of a cold inhomogeneous plasma [3] and to
fully elecromagnetic oscillations in a kinetic plasma [9].

In this report we use this approach, and in order to cater
also for the recently discovered singularities [10] of the equi-
librium distribution functions, we develop our treatment in
the space of the Fourier transformed velocity]| ], where
they are well behaved.

This allows us to find a useful technique to reconstruct
the permittivity of the medium directly from the functional
shape of the eigenfunction in the transformed space.

II. NOTATIONS, ASSUMPTIONS AND
BOUNDARY CONDITIONS

Let ® and (Z), denote the steady state and perturbation
electric potential in the plasma,

@ = (& — min )/, ¢ = ¢/, (1)

the corresponding quantities, normalized to ®g = max ® —
min ®, e the elementary charge, a = e,i a label for the elec-
tron and ion quantities, Z,e the particle charges,

Vo =29, -Vi=Zi(®-1) = Zi(Vo/| Zo| — 1), (2)

the normalized electron and ion potential energies in the
steady state potential ®, m, the electron’s mass, ng a density
scale,

no/[me/ (€®0)](Fa + fa) /1 Zal (3)

the one-particle velocity distributions and F, and fa their
normalized steady state and perturbation parts. ~

We assume that ¢ depends on space coordinate z, ¢ on x
and time ¢, F on z and velocity coordinate v and f on z, v, t,
respectively normalized to

A= \/[etbo/(élﬂ'ner)], vg = /(e®o/Mme), w;l = L/vg, (4)

and we denote by

bo(z) = /_ dte 1 3(z, 1), (5)
faw(,q) :[ dt[ dvei(qvf‘*’t)fa(x,v,t), (6)
Fo(z,q) = /OO dvel®” Fyo (z,v) (7)

the Fourier transforms of the electric potential perturbation
and of the particle distributions.
We introduce the vector

|fw> = [few(xvq)afiw(xaanrﬂ (8)

the particle mass raito p, = M4 /Me, the free streaming and
interaction operators

0? Zeo/ 14 0
S — _ @/ € (s} 9
dz2dq [ 0 Zi/w |’ ©)
K =HD,'P,, (10)
where a “” denotes differentiation with respect to x,
_ ZeFe/Me _ZeFe/,U/e
H==q [ Zik s —ZiF /|7 (11)

and, given a generic function g(z, q),

D;'g= /dm’g(wﬂq), (12)
Pog = g(,0). (13)

Using the above definitions, the linerized electron and ion
Vlasov-Poisson equations are

wlfw>_s‘fw> :K|fw>7 (14)
(b(/,,/; :PO(few _fiw)' (15)

In the following, the solution of Egs. (14) and (15) will be
given in terms of the eigenfunctions (labelled by a superscript
0)

ngc)r)se> = [ch)r)se ($7 Q)7 0]T7 (16)
D) = 0, x{2% (2, )", (17)
(D) = D7 Pyl (D)) (18)

of the free streaming equation (or also ballistic or Liouville
equation (Eq. (14)), unperturbed by the interaction operator

)

2\ 2z, , ,
73);%(] - qu@’xéoﬁ‘s‘* = ox()e (19)
(03

and of Poisson equation (Eq. (15)), which have o as eigen-
value and satisfy the boundary conditions

if || — oo, ® — const. then
X(aogsa N pfﬁ;eisﬂkaam, wng)sa _ ezcz;eisakomz7 (20)
Sq = &, (21)



where p’e and €2 are complex quantities, and k. is a real

constant. In Eq. (18)7 &00) “ is proportional to the pertur-
bation electric field generated by the particles of species «
distributed according to the eigenfunction X( )go‘.

The conditions in Eqgs. (20)-(21) are justified by observ-
ing that, when x takes large values, the steady state po-
tential ® of a double layer approaches a constant value and
the plasma becomes homogeneous: Eqs. (20)-(21) prescribe
that, in these conditions, the solution of Egs. (15) and (19)
approach a sinusoidal, right-moving (s, = +) or left-moving
(sa = —) wave and that its spatial mean approaches zero.

A vanishing value of the boundary amplitudes p’e and €2
applies if, e.g. only outgoing or ingoing waves exist at the
boundary or if X&O(ZS“ describes reflected or trapped particles
which are unable to reach one or both boundaries. These
conditions are appropriate for the scattering or also emission
of radiation by the non monotonic double layer.

III. THE UNPERTURBED EIGENVALUE
PROBLEM FOR THE NONMONOTONIC DOUBLE
LAYER

The solution of Eq. (19) is

X&gii = Ca’ya e 180 0Cara Fisaq| Bas, ‘/|BOK'Y<1 |7 (22)

where C,.,,, is a normalization constant, s, = = was defined

in Eq. (21),
Bar, () = Sa/{2[7a + Va(2)]/ e}, (23)

xT d:L,/
Eava (95) = /xma ma (24)

Yo and z.., are real quantities, and a new label 7, was
introduced accordingly.

For Xﬁf’gig in Eq. (22) not to be exponentially unbounded,
Yo + V must be non negative. This implies thatt, if v, < 0,
then, in (Eq. (24)), = and x., take values only in .-
dependent intervals

Gy < T < bayy Gaye < Taye < bary, (25)

bounded, at least on one side, by points at which particles
of species « are reflected. If v, > 0, then v, + V, is always
positive and particles of species a move over the whole z-
interval: in this case, we set aq~, = —00, by, = 0.

Specifically, for the steady state potential profile of the
nonmonotonic double layer ([14], Fig. 1)

d(z) = {2,/U/[(1 4 ,/U)coth(rz/2) — (1 — ,/U)]}*(26)
0<U<1 (27)

and for 7, < 0, electrons move over two disjoint, semi-infinite
intervals labelled in the following by the subscript 1 or 2:
thus the endpoint b, (1) (Egs. (29) and (B7)) corresponds
to the right electron reflection point and the left endpoint
ey (1) (Eq. (29)) extends to the left boundary of the double
layer; the left endpoint a2y (Eqs. (30) and (B8)) corre-
sponds to the left electron reflection point and the endpoint
bevyo(2) (Eq. (30)) extends to the right boundary of the dou-
ble layer. For v, > 0, electrons move over an infinite interval:

the endpoints ey, (1) and be,, (1) (Eqgs. (28)) extend respec-
tively to the left and right boundary of the double layer.
The electron eigenfunctions are thus defined in the following
intervals

if 7, > 0 then

—00 = e, (1) <& < ey 1) =00, Teqo 1y =0, (28)
if £ <0and — |Z,|U < v, < 0 then
00 = oy, (1) <& < ey (1) = Teno(1) <0, (29)
ifz>0and —|Ze] <7 <0 then
0 < Zeye(2) = lere(2) < T < Doy, (2) = 00 (30)

The lower v, bounds in Egs. (29) and (30) are given by
the requirement that, in each z-interval, v, + V, > 0, i.e.
Yo > min(—V,) (Egs. (1) and (2) and Fig. 1). The choice of
the integration bound .., , positioned at one of the electron
reflection points, is so made that, as v — 07, Tey 1) =
beyo (1) (Eq. (29)) and 2ey, (2) = deqy(2) (Eq. (30)) coalesce at
the position of the maximum steady state electron potential
energy (z =0, Fig. 1 and Appendix B for details) at which
Tey, is based for all positive 7.’s (Eq. (28)).

For vy < —Zi(1 — U), ions move over a finite interval:
thus the endpoints a;, (1) (Egs. (33) and (B13)) and biy,(1)
(Egs. (33) and (B12)) correspond respectively to the left and
right ion reflection points. For —Z;(1 — U) < ; < 0, ions
overcome the steady state potential barrier —V; = —Z;(1-U)
(Egs. (26) and (2) and Fig. 1): they thus move over a semi-
infinite interval and the endpoint aj, (1) extends to the left
boundary of the double layer (Eq. (32)). For 4 > 0, ions
move over an infinite interval and by, (1) extends to the right
boundary of the double layer (Eq. (31)). In all acases, the
ion eigenfunctions are defined in one single interval:

if 73 > 0 then

—00 = Gy (1) < T < biyy(1) = 00, Tiy (1) = OO, (31)
if —Zi(1-U) <% <0 then

—00 = Gy (1) < T < biys(1) = Tiny(1) < 00, (32)
if —Z; <~ < —Zi(1—U) then

=00 < Gy (1) < T < biyy(1) = Timy(1) < 0. (33)

The lower ; bound in Eq. (33) is given by the requirement
that v + Vi > 0, i.e. (Egs. (1), (2) and Fig. 1) v >
min(—V;) = —Z;. The choice of the integration bound z;,,,
positioned at the ion reflection point, is so made that, as
% — 07, T,y = biyy1) (Eq. (32)) approaches oo, the
position of the maximum steady state ion potential energy
at which x;,,(1) is based for all positive 7;’s (Eq. (31)).

The above analysis of the reflection points induces a dis-
tinction of the electron eigenfunctions, which we make by
a further label v, , indicating the z-interval in which the
eigenfunctions is defined:

if x < 0 then ve,, =1, (34)
if x > 0 then ve,, = 2. (35)
To maintain uniqueness of notation, a label 14, will be
also introduced for the ion eigenfunctions, although, for the

steady state potential profile of Eq. (26), it will take one
only value. We set

given o, Ya, Vaye = 1... Nayas Véwa =1...Nay,, (36)

if Vo, # Vg, then X(O S ) 7 X ()sa (37)

ATV (Va'ya (XJ’YCY(V/ )’



where
ifr <O0and — |Ze|U < 7. < 0 then Ng,, =2, (38)
ifx > 0and — |Z| < 7. < 0 then Ny, =2, (39)
if 7 > 0 then Ny, =1, (40)
if Y > —Z; then Njfyi = 1. (41)

In the following, the unperturbed eigenfunctions will be
set to zero outside the intervals where they are defined. This
leads to the two equivalent conditions:

given 7 > —|Zs| and = ¢ (Gaq, (va., ) Parya (va,,)) then
(O)Sa _
XCXU’YQ(UQ’YQ) - 0’ (42)
given = € (Gaq, (vas, ) Parya (vasr,)) T and 7o < =V, (x) then
(©)se =0. (43)

Xaova(vase)

For steady states endowed with asymmetric potential pro-
files, such as in Eq. (26), the above introduced distinction
of the electron eigenfunctions is morphologically motivated:
there isn’t any way to relate the two eigenfunctions by sym-
metry considerations as, e.g., for bell-shaped solitary wave
seady state potential profiles (in which the eigenfunctions
are related by reflection-symmetry), or periodic steady state
potential profiles (in which the eigenfunctions are related by
translation-symmetry and collated in Bloch form).

That difference is also physically well grounded, and in
fact useful to analyze situations in which perturbations of
the electron distribution function are confined to one partic-
ular interval. These arise, e.g., when a low energy electron
perturbing population is injected at only one plasma end it
cannot overcome the potential barrier set by the potential of
Eq. (26) at = = 0.

With the limitations analyzed in Eqs. (2

(0)sa

8)-(33), the phase
of the eigenfunctions xas~.. (Eq. (22)) is real and, being the

normalization constants also real (Egs. (68)-(70) and (73)
below), the following properties are verified by inspection:

) _Q)a (44)

One last property of the eigenfunctions arises, for v, < 0,
near a reflection point aq~, (Egs. (30) and (33)) because, for
T ™ Qay,, Bay, (2) = 280,/(% — day,)/B (B being a suitable
constant, Eq. (23)) and thus, developing £+, in Eq. (24),
Eq. (22) gives

(0)50

X (2, q) = x (07 ==

0)sa
Xooya (x,q) =xY (LE

Xa(=0)va

Sa —isin(oB,/[r — aay,])
2@ —aw B

if © >~ aq~, then Xg)g;z ~ Can,

(45)
A similar expression holds when x approaches a reflection
point ba, (Egs. (29), (32) and (33)).

Beside the particle distribution eigenfunctions X&O(,zf,fﬁ, in
the following treatment we shall also need the electric field
eigenfunctions (Eq. (18))

Vhons (@) = Dy Poxanys =

Qaova

—i5008ayq (') C —i800€an~q (T)
e v e
Co [ dz’ — Y% 46
7“/ T Bay. ()] 180 » (46)

where we used the change of integration variable

x dx/
1= bana (@) = / B, ()] 47)

In the following treatment, 1/}&00)3;3 will not be needed outside

the a-intervals specified in Eqs. (28)-(33) and it can be set
to zero there:

given v,
0)sq
,(/J‘(lo)"‘fa(’/a'ya) = 07 (48)
Vars)r Paya(vas)) T and 7o < =V (x) then
0)sq
wéa)'ya(ua,m) =0. (49)
(37), ( 4) and (45) also hold
for the electric field eigenfunctions wag (Eq. (46)):
if Vo, # Vi, then wa(er/Z(uam) =+ XaocziZ(uM X (50)
Sa —Sa 0)sa
D3 (2,q) = ¥ (2,q) = 5% (2, -q),  (51)

and

> —|Za| and @ & (Gary, (vas, )> Parya (vas,,)) then

given = € (Ao, (

Properties analogous to Egs.

if oz~ o, then w((loo_f{“ ~ Ca,ya 1S + bln(g/@\/['x aa"/a}) .
(52)
In conclusion, the pair Xg‘);ig, ES,)f,j (Egs. (22)-(24) and
(46)), defined in the a-intervals specified in Egs. (28)-(33),
and vanishing otherwise (Eqs. (42), (43) and (48)), is the
sought solution of the unperturbed Vlasov-Poisson problem
(Egs. (15) and (19)). Also, when z takes large values, the
steady state potential ® (Eq. (26)) approaches a constant
value, the plasma becomes homogeneous, {q, (Eq. (24)) is

approximately proportional to (const. + z) and thus Xfﬁ}ig

(Eq. (22)) and 55 (Eq
tions of Eq. (20).
According to the above considerations, the real number
Yo is a continuous degeneracy parameter; the species label «
(Egs. (16) and (17)), the phase sign s, (Eq. (21)) and, for
a =e, 7 < 0, the electron domain label ve,, (Eq. (36)) are
discrete degeneracy parameters; two eigenfunctions having
a different value of any of these parameters are solutions of
Egs. (15) and (19) corresponding to the same eigenvalue o.

. (46)) meet the boundary condi-

IV. ORTHOGONALITY OF THE UNPERTURBED

EIGENFUBCTIONS
To analyze the orthogonality of two vectors
(fora) = [fara1(@:0), fara2(@,@)]" and |fs) =
[fﬂ'yél (1:7 Q)a fB'y;32(:177 Q)]T such that
if z ¢ (aayesbay. ) then fo,, =0, (53)
if ¢ (aﬁfy%,bg,yé) then f,g,y;j =0, (54)

we introduce their scalar product

<fowycx ‘fﬂ’y}) =
ba/hcm
[ / A4(faros Sy (55)

Gapya)
(fa'yaafﬁ'y;j) = §R(fory(,tlf,ﬁfy;fl + fafy(,th,ny;Q)a (56)

where @ and the overbar give the real part and complex
conjugation and the z-integration bounds

Tafyay, = MaX(Gay,; A5y, ), (57)

baﬁ%ﬁ/,’; = min(ba%,bﬁ%). (58)



delimit xz-integration to the interval where the integrand does
not identically vanish. The actual values of these bounds will
be given in Appendix C

Because of the definition of the vectors \X&sz»syﬂ (Egs. (16)

and (17)), the quantity <X803§Z|X2i/7/> vanishes if § # a.
5

Also, substituting Eq. (22) into Eq. (55), the part involving
g-integration

/ " Qgetlsa Basa (#1541 Basy, ()1 _

— 00

278(0| Ban, (2)] — 84| Bany, (2)]) (59)

vanishes if s4|Ban, (7)| # s4,|Bay, ()|, which certainly oc-
curs when the phase signs s, and s/, (Eq. (21)) are different.

Furthermore, since any of the electron eigenfunctions
Xi(f)f)’j:(l)’
(29), (42) and (37)), it is orthogonal to any of the eigenfunc-
tions Xi?,)/ic/@) defined in domain 2, which in turn vanishes
in domain 1 (Egs. (30), (42) and (37)).

On the other hand, when § = « and s/, = s4, Egs. (55)
and (59) give

defined in domain 1, vanishes in domain 2 (Egs.

Sa 0((1 —
(0% Xy, ) =

Xom'ya ao’vyl,

Yo . ’
dte18a(0=Dt5(~, — A1), (60)

Nava

27 ey ‘Ca’ya |2%

where we used the change of integration variable given in Eq.
(47) and, according to Eqgs. (28)-(42), (57) and (58), the ¢-

integration limits Ny, = ava (Gary, ) a0d Cavy = Eare (bars )
are, for the electron eigenfunctions,

if v > 0 then 7ey, = —00, ey, = 00, (61)
if —[Ze] <7 <0and x < bey, (1) then
Neve = =09 Cene = 0, (62)
if —[Ze] <7 <0and x> aey,(2) then
Neve = 0, Cey, = 00 (63)
and, for the ion eigenfunctions,
if 7 > 0 then 75,1y = —00, Giyy1) = 0, (64)
if —Zi(1-U) <~ <0 then
My (1) = =00 Gimy(1) = 0, (65)
if —Z; <~ <—=Zi(1-"U) then
Ny (1) = —Linss Giver) = 0, (66)
where
bivi (1)
T = [ dlbp@l <o 1)
i (1)

We thus see that, when the t-integration interval in Eq.
(60) is infinite (Egs. (61)), the eigenfunctions may be made
orthonormal for any real value of o and ¢’ (continuous spec-
trum) by setting

if 7o > 0 then Co, = 1/(27 /). (68)

A continuous spectrum also arises when the t-integration in-
terval is semi-infinite (Egs. (62)-(65)). In this case orthonor-
mality is ensured, provided

if —|Ze| <7 <0then Cey, = 1/(/27\/phe), (69)
if —Zi(1-U)<~ <0thenC, =1/(/2m/m). (70)

Last, when the t-integration interval is finite (Eq. (66)) a
discrete ion spectrum

0 = Oiym = 20m) Ty, 0" = Giyyy = 27m [Ty, (72)

appears, where the mode numbers m,m’ are integers. Or-
thonormality in Eq. (60) is thus attained by setting

if —Z, <y< —Zi(]. — U) then Cim = 1/\/(2’/T/1,i’ri%). (73)

In conclusion, the constants given in Egs. (68)-(73) ensure
that the orthonormality relation

Sa (O)S/
<Xg¢00)’y(, |X5<7’WBZ;> = 5045500’6%7;, 65(1523 (74)

holds, where d,4 is Kronecker’s symbol if a,a’ belong to a
discrete set, and Dirac’s 6(a — a’) function if they belong to
a continuous set.

Figs. 2 and 3 depict the eigenfunctions respectively cor-
responding to free and reflected electrons (Egs. (28) and
(29),(30)) and to free, reflected and trapped ions (Egs. (31),
(32) and (33)). They are plotted by inserting the model po-
tential (Eq. (26)) into Eq. (2), and eventually into Eq. (22)
and (60), through quadrature of Eq. (24), and by adopt-
ing the values of the normalization constants given in Egs.
(68)-(73).

V. THE PERTURBED EIGENVALUE PROBLEM
FOR THE MULTIDOMAIN DOUBLE LAYER

We seek the eigenfunctions of the perturbed eigenvalue
problem of Eq. (14) by an expansion in terms of the unper-
turbed eigenfunctions XSS,)% (Egs. (22)-(24) and (68)-(73))
extended over their spectrum and over all of their possible
degeneracy parameters. Taking into account Eq. (43), we
write

N,
Bg

SED Y B30 I)>

B=e,i” ~ vh=1 sg==£ o’
sg ’o (0)sp
Xﬁ(yé)(wag 77[3)‘)(50/7;3(,,;3)% (75)

where X;fu,)(w7 o',75) is a suitable coefficient, v is the co-
8

ordinate domain label, and Ng,, was defined in Egs. (38)-

(41).

In Eq. (75), the integration over 74 includes the values
of 7;3 specified in Egs. (61)-(65) pertaining to the contin-
uous spectrum: in this case, the sum over ¢’ continuously
extends over the whole real axis. Furthermore, if z is such
that —Vi(z) < =Zi(1-U) (i.e. ®(x) < U, Eq. (2)), then the
integration over v/ extending from —V; to —Z;(1 — U) per-
tains to the discrete ion spectrum (Eq. (66)): in this case
the sum over o’ extends over that spectrum (Eq. (72)).



Next, we substitute Eq. (75) into Eq. (14) and we take
(O)Sa
O‘O"Ya (Va’Ya

0)s
(0)sa )’s are orthonormal, we have
aa'Ya v )

( )X;((XV )(UJ,O', 704) =

the scalar product by (x
and (5

)| according to Egs. (55)
6). Since the |

Nﬁw
5
(O)ba (0)

aa"y(,(uan{a)| Z / d’y Z |\Ij (76)

B=e,i"” — u 5=1

where (Egs. (10), (11) and (46))
W8 ) = D D X (w o AR HWG (). (77)
B (v 2 B() B Bo' v (vh)
sg==x o’

Now, xgi‘;(yw , vanishes outside the interval
(arva (vary)r Pava(vary)) (Ea.  (42)) and thus Eq.  (76)
reads

( )Xa?ya )(wv g, 704) =
Aaya (Varyg ) ©
Z / dx/ dvj
B=e,i” “ava(vaya) —Vs(x)
NB’YZ;
Z haﬂ(ua,m i) (Jf, 05 Vo 7/5)5 (78)
l/é:l
where, according to Egs. (55) and (56), we set
ha,@(z/aa,a i) ('T7 W, 05 Yo 7}3’) =
° 0)sa
| @ ¥ ). (1)

Eq. (78) will now be developed in detail for electrons
(v =€) in domain 1 (e, = 1) and for v < 0:

= Z Heﬁ(l)(w707 ,Ye)a

B=e,i

(w—0) X (W, 0,7) (80)

where

eve (1) o0
Hee(l)(w>av'7e) :/ dl‘/ ( d’}/éhee(l;l)(l'7w70',’)/e7’Yé),
a Ve(z)

eve (1)

(81)

bere (1) o0
Hei(l)(w,o',’}/e) :/ d:t/ ( )d’}/i/hei(l;l)(xawa0378771/)'
Vi(z
(82)

QGeve(1)

In the integral extending over negative ~., we omitted the
contribution of the vanishing quantity fee(1;2) (Eqs. (79) and
(D2)). in that extending over positive 7., we omitted the
sum over the electron domain label v because, for v, > 0,
Neyr =1 (Eq. (40)). We also omitted the sum over the ion
domain label 14, because Ni,» =1 (Eq. (41)).

Taking into account that, in domain 1 (Eq. (2
D,

9) and Fig.

-VJ>0,

Gey, (1) = =00, —Ve(ter, (1)) = —[Ze|U,

if —|Ze]U < e <0then — Ve(beve(l)) = Yes

it — | Zo|U < 4% < 0 then [<V] 7 (72) = beys 1),

and inverting the integration order in Eq. (81) according to
Eq. (E4), which applies when —V, monotonically increases
(Eq. (83)), and to Egs. (84)-(86), we have

if 7o < 0 then Hee(1)(w,0,7) =

Ve , bc’vé(l)
d, d
—|Ze|U ae

eve (1)

eve (1)
/MJ’ deheagiin) (@0, 0, Yer 1) +

eve(1)

xhce(l;l)(x7 W, 0, Ve, ly(la) +

eve (1)
‘/d%/ Ao (@ @, 7,7, 1L)-

Qerye (1)

(87)

In the integral extending over positive «., we omitted the
sum over the electron domain label 1; because, for v, > 0,
Neyr = 1 (Eq. (40)). Furthermore, in the first 4/-integral,
we also extend integration from v, = —|Z,|U down to v, =
—|Ze| < —|Zo|U (note that U < 1, Eq. (27)): this does not
change the value of that integral because hee(1;1) identically
vanishes for < 0 and v, < |Z.|U (Egs. (79) and (D22)).
Last, using the definitions of the z-integration bounds (Egs.
(57), (58) and (C4)), we rewrite Eq. (87) as

if v < 0 then Hee(1)(w,,7) =

0 eevevL (1)
/lf%/ Aheorn) (@0, 0,70, 7L). (88)
|z

Qeeveyl (1)

In a similar way, taking into account that, in domain 1,

—V/ <0, (89)
oro(1) = =00, =Vi(@er, (1)) = —Zi(1 = U), (90)
if —[Zc] <7 <O0then —Vi(bey, (1)) =775 (91)
if —Zi <~{ < Zi(1-"U) then
(VA () = @iy ), (92)
where
N = —Zi(1+7e/|Zel), (93)

we invert the integration order in Eq. (82) according to Eq.
(E7), which applies when —V; monotonically decreases (Eq.
(89)), and to Egs. (90)-(92):

if v < 0 then Hei(1)(w,0,7.) =

-Z;(1-U) , beve (1) )
/ d/71 / dxhei(l;l)(x7wag,’76a’}/i) +
" a

iv/ (1)

o , berye(1) .
/ d’Y] / dxhei(l;l) (x,w,a, ’Yev'yi)'
—Z(1-U) Qe (1)

Due to Egs. (79) and (D9), the first 4/-integral of Eq. (94)
remains unchanged if we replace its lower integration bound
~ by —Z; which, due to Eq. (D7), is certainly not larger
than 7. In the second v{-integral of Eq. (94), @ey, (1) = 00
(Eq. (29)) and so does a1y because 7 > —Zi(1 — U)
(Eq. (31)). Thus @y, (1) may well be replaced by aj,/ (1) in
that integral. In turn be, (1) and aj, (1) may be renamed
according to the definitions of the z-integration endpoints
(Eq. (C5)), and Eq. (94) may be rewritten as

(94)

if 7o < 0 then Hei(1)(w,0,7.) =

0 eivev! (1)
/ d%/ dzhei(i;1) (2, w, o, Yer Vi)
—\z;

ewwf /(1)

(95)



Inserting Eqgs. (88) and (95) into Eq. (80) we obtain

if 7o < 0 then (w — o)X (81)(“’70’ VYe) =

S
e
Rl , beeyert (1)
/ d'ye/ d
_‘Ze| a,

eevevs (1)

Rl , bei"rewi’(l) ,
/ d’Y1 / dajhei(l;l) (ZE,W,O’, ’Yea’Yi)a (96)
A

Peiver] (1)

xhee(l;l) (JJ, W, 0,5 Ve ’}/é) +

Finally, reverting to the definitions of hee(1;1) and hei1;1)
(Egs. (77) and (79)), we realize that Eq. (96) is a particular
case (in which o = e, ve,, = 1) of the general form involving

only the basic quantites, i.e. the eigenfunctions Xﬁfgig and
e
IS Nﬁwb
=X, ywow =Y [ XYY
B=e,i” ~1Zsl sg=* o/ vj=1
Sa53 / / S8 1!
Ga/g(yam;y/ﬁ)(a’a ﬁm’Yﬁ)Xg(Vé)(WvU a’Yﬁ) (97)
where
Sasg ’ 1y _ 7 (0)sa (0)sg
GO‘B(VQWQ V) (U’ 95 Ya 75) - <Xoco"ya(1/a%l)|H|’(/),Bglry/’3(yl’3)>?
(98)
and (...|...) precisely denotes the scalar product defined in

Egs. (55) and (56).

A similar procedure applies, in Eqgs. (80)-(82), to the elec-
tron egenfunctions for negative v, in domain 2 (Appendix
F), to the electron egenfunctions for positive v, (Appendix

G) and to the ion eigenfunctions (Appendix H) an it also
leads to Eqs. (97) and (98).

VI. THE INTEGRAL KERNELS

Taking into account the symmetry relations in Eq. (44)
and that K in Eq. (10) is real, the following relations hold
for the integral kernels (Eq. (98))

G;ﬁ_(aa Ulv’You'V,/H) = Gl_g(@ U/a'You’Y;?)a (99)
Gli (0,0 7a,75) = G (0,0" 70, 75) =
G:;(O-7 _U/a’ya77;3)' (100)

We now proceed to the calculation of the matrix elements
defined in Eq. (98), starting with GX*(o,0’,7,7%). Since
we can write (Eqgs. (22) and (46))

XQse = elsatlBoral (—is, o)y (032 /| Bos, |, (101)
and (Egs. (10), (22) and (18))
ZoFp0%
0 e lon
Ky =—a| o o (10
i 17/)(,0/%/,“1
ZoFob %)% [ e
KX =q wz%)Z% fie | (103)
107y ZiEz/}io‘”y:'/Mi

Eq. (98) gives

G(j_e+(o'7 U/”Yevfyé) = _(Ze/,ue) X

beeyers o
- / dz / dgx it aFe(@)o %, =

eeve Vs

beoyens

Az[(i0) QWO /| Ber 1%

e0Ye Teo’yl

—(Zef )R { /

Geeverd

o .
/ dqe“q'Be”e'qu(Q)} :

Taking into account that (Eq. (7)) F, is the Fourier trans-
form of the steady state distribution function F, (in turn a
function of the particle energy w = p,v?/2 — V,,), we have

(104)

oo
/ dqe—iSaqlBa"{a Iqu(q) — 27T1[8Fa/a’0] |U:Sa|Ba»m | =

— 00

QWI[MQvaF&/aw] |U:Sa|Ba~{a |

27180 |Bara | [Ha0F o /OW]|y=s. | B (105)

aval®

Now, we set

N;Sw) = OF,(w) /0w =

[0F o (1av® /2 + Va) /00] ) (1av), (106)
so that

(0F /0] o=, .,

[Fo(hav?/2 = Vo)llomsu|Bara| =

Fo(pal2(a + Va)/pal /2 = Va) = Fa(va)
and Eq. (105) reduces to

(107)

/ dqe—is(yq‘Ba'mqua = 27riua5a|Ba'ya|F~‘(;(’Ya)~ (108)

Since F,(v,) is a real function independent of z, Eq. (104)
reads

G:e—i_(o-) 0-/7767’76/3) = 271—0_(26//’1’8) X

beeryen! _
- ! o
peiR [ a0, (109)
or also, taking into account Eq. (46),
GGJ:re+ (07 OJ’ Yes Vé) = 2770'08% Ce’yé Zeﬁ'e/(’ye) X
beann?
eeve vl 1 . 1 —io’ ,
% dl’,ﬁ@la&ewe (x)i/e gcve (Qf) (110)
Georen, io —io

Here, due to Egs. (C4) and (C4), the electron-electron
kernel (Eq. (110)) reduces to

1 ~
G;tj_ (U’ 0/7 Ve ’V(/e) = 271—08% Ce'yé ;ZeFe/(’ye) X

be min(ve,v4) . .
R dae'7ere (@) 710 ey (@), (111)

®e min(ve,vh)

In a similar way, from Egs. (98) and (103), we find the
ion-ion kernel:

1 -
Gi—ii_—‘r(o—v Jla ’Yi»’}/i/) = 727rCify;Ci»y;§ZiF}/(’Yi) X

b. . /
i min(vj,y{) ioi~. (x)—ic’€
Vi ]xel &iny () —i f,ﬂ,i(I). (112)

i min (v )



Yaking the integration bounds from Eqs. (C5)-(?7), the
cross-species kernels are

1 -
G (0,0 Yo, ) = _QWCeveCiv;;ZeFé(’Ye) %

bei“rewi’

R de!“Eere ()71 8y (@), (113)
Peivey]
and
1 ~
G (o0, y,7L) = QWCiineyé;ZiF{(ﬂyi) X
bie ive . .
R WW dgel8im (@) =i €y () (114)
Gievivg

For combinations of the signs s, and 5’5 different from ++,

the matrix elements GZ}S’S in Eq. (98) can be calculated from
Eqgs. (111)-(112), using the symmetry relations in Eqgs. (99)
and (100).

We end this section by pointing out that, because of the
particle masses fi.; appearing in the denominators of the
matrix elements in Eqgs. (111)-(112), the largest of them is
Gee, followed by G, Gie and, last, Gj;.

VII. THE HOMOGENEOUS ELECTRON
INTEGRAL KERNELS

To better understand the nature of the kernels G.3 (Egs.
(111)-(112)), and the way they contribute to the coefficients
Xo (Eq. (77)) and to the eigenfunctions xa. (Eq. (75)), we
consider first a simplified situation in which the ion mass is
infinite and the potential ¢ is a constant which, without loss
of generality, we set to zero.

Eq. (97) and (98) also arise, by a trivial exchange of the
z and 7 order of integration in Eq. (76), when the steady
state potential ® (and thus V,,) is a constant. In this case,
there are no reflection points and, in Egs. (55), (56) and
(97), we must set

if ® = const. then

aaﬁ’)’of}’;g = —00, baﬁf}’a’)’;g = 00, ’Yaﬂo(’/a'yd) = 0 (115)
In this case, from Eqs. (23) and (2), we have
|Beve| = \/(27e/ p1e) (116)
and the integral in Eq. (111) reduces to
(o)
/ duei® S @/ Bee|—io’ [ da/Bo,, _
/Oo dzeilo/v@ve/ne)—a' [ /(27¢/ne)}x _
218(0/\/(27e/ pe) = 0"/ \/(27¢/ pte))- (117)
Using the identity
5(f(x)) = [Jdf /da|sm—oo] ~to(a — —00), (118)

where —oo is the root of f(x) = 0, we transform Eq. (117)
into

oo
/ duei? 42/ |Berel~io” [ du/B,, _
— 00

1 o U/ 0,2 _
Tr|6[*0//\/(2’Yé/ﬂe)]8’yé|6(76 [ / ] ’Ye)
1 I O'/ 0_2 —
o e ooy e~ /o)

1
T o e D )]

113/2
5 — [0 fo]*e) =

3(ve = [0'/oye) =

- Pe|7e
| — o' (pe/2)3/?|

o278/ el
2Ll 3 o o) =
1212 3/2
2 elTL g o — o) (119)
Therefore, Eq. (111) gives
1 ZF!
G;"'(U, 0/,%,’}/.;) — *,L(%) X
NN
11]0"12 |26 / 10|32
REATLZL 0~ o) (120)
or
Gl (0,0" 7e, ) =
0" gee(,76)0(7e — [0 /01> 7e), (121)
where
( = Z|2 /2! 3 122
Gee (0, Ye) = Ze|2e/ pel c(ve)/lol”. (122)
Likewise, using Egs. (99) and (100), we have
Geo (0,0",7e,70) = GicF (0,07, 7e, %) (123)
G;_(Uv 0J778”7é) = G;:_(O’, UIv'Ye,'yf/:) =
—0"gee (7, 76)0 (72 — [0//0]2"/6)' (124)

VIII. THE ELECTRON HOMOGENEOUS

EIGENVALUE PROBLEM

If, as assumed in Section VII, the ion mass is infinite, in
Eq. (??) taken for electrons (a = e) only the term involving

Geg®e survives and we have
oo oo
(0 —w) X3 (w,0,7) = Z / do’/ dvl
si==% —00 0

G (0,07, Yer VL) X (w, 07, L), (125)

If, in Eq. (125), we change the signs of w and o and then the
sign of the integration variable ¢/, and we take into account
that the matrix elements G, as defined in Egs. (121)-(124),
are even functions of o and odd functions of o', we easily
prove that XF (—w, —o,7.) and XF (w, 0, Y. ) satisfy the same
linear equation, and thus

Xei(_w70'7 7@) = Xe:t(w? —0, 'Ye)- (126)



Substituting the matrix elements G,‘:gsé from Egs. (121)-
(124) into Eq. (125) and, performing the «/ integration, we
find

(w - O—)Xei(wvoa 76) = 966(07 P)/e) [w do'o’ x
[Xét(wva/’ [UI/U]Q'Ye) - XJ(W,UI, [0”/0’]2’}/6)}.

Egs. (127) is the eigenvalue problem for the electron eigen-
functions in a homogeneous medium.

(127)

IX. THE SUPERPOSITION COEFFICIENTS X

Because of the symmetry relation given in Eq. (126), the
eigenvalue problem in Eq. (127) needs be solved only for
w > 0. We seek solutions to this equation in the form

Xét(wv g, 7‘3) = Aét(o-7 76)5(0- - w) -

Ye:t(a'a'}/e)
oc—w
for w > 0.

P (128)

Substituting Eq. (128) into Egs. (127), we have

Ye:t(o'? 'Ye) = gee(a', ’Ye)/ do'o’ x

Yo (o' o' /o)

o —w

YeF (o', [o" /o1*ve)

o —w

AZ(0,[0'/o)*7e)é(0" —w) — P

AF(o,[0"/0]*7e)d(0" —w) + P , (129)
forw >0
and, carrying out the ¢’ integration,

Y:ei(a-7 /YE) :gee(Ua ’Ye) X
[eS) + o o’ 0.2
{wAff(a,[w/U]Q’ye)—P/ do_/o_/Ye ( ’[ / ]’76)_

/

oo o —w
wAT (0, [w/o]*ve)+
sl YT (o' / 2 o
P/ da_la_l e (U ?I[U /U] ’)/ )} , (130)
oo o' —w
for w > 0.
This integral equation is solved by setting
Yei(U? Ye) = 0gee(T, 'Ye) (131)
and
g
= A (0, [w/0]Pe) —
/ do'o /O' ' Gee(o 7[0//0]2%) (132)
o —w ’
for w > 0.
We now use the identity
o 1 1 1
— = — 133
wo' —w o —-w + w (133)
and, in substituting
ZQe eS/QF/ /OJQQ
el 12 o = LRSS g

from Eq. (122) into Eq. (132), we take into account that
0'gec (0", [0" /0]?76) is an odd function of o', and integrates
to 0. Thus,

AE(0,70) =1+

Ze|2'7e/ﬂe3/2p/oo do'o’ I([ //w] Ye)

1
o3 o —o (135)

— 00

for o > 0,

where, since A multiplies §(o —w), we replaced w by o and
w>0byo>0=|o]=0.
From Egs. (131) and (135) it is thus seen that
X:(wv g, ’Ye) =X (w> g, ’Ye)v
for w > 0.

(136)

X. THE SPACE FOURIER TRANSFORM OF THE
PERTURBED ELECTRON EIGENFUNCTION

20 . . I .
) ionic contributions (see discus-
. (75) reads

Neglecting the O(ufl/
sion at the end of Section VI), Eq

Xew (2, q) /do/ dy} x

(X (w, 0" AT (@ q) +

X7 (w, 0" AN, (. 9)). (137)

Because of the symmetry relations given in Eq. (44), we

have
(z,q) / do’ / dvyl x

X (w, =0 AX DY, (2,q) +

X7 (w, =o' xS (), (138)

or, changing the sign of the integration variable ¢’

Xe(—w)(T,q) = / dU/ dy} x

(X (w, 0/ AN (2, 0) +

X: (w,0 AN o (2, 0)], (139)

and using the symmetry relations given in Eq. (44),

Xe(—w)(T,q) = / dﬂ/ dy} x

[Xe+ (W, 9 7’76))220')'1:’ (.’IJ, _Q> +

X (w0 AR (@, —q)].

(140)
Finally, taking into account that the coefficients X are real,
we have that

Xe(—w)(I7Q) = J_Cew(l',*Q) (141)
Because of this symmetry relation, we may restrict the anal-
ysis of Eq. (137) for w > 0 only.



When w > 0, further using Eq. (136), we reduce Eq. (137)
to

Xew (T, q) / do’ / Ay X (w0, 9L) x

(0)+ (0)— (z,q)].

Xeormy (@) + Xegry
Substituting the zero order eigenfunctionb from Eqgs. (77)-
(?7) taken for electrons (a = e), Eq. (142) becomes

XeUJ(I’q):@W\/,u/ da/ dy’X+w G,VQ)X

1
B

(142)

el(=a '@/Beys +aBeyr) +e —i(=o’ I/Be’yé+de’yé)i| . (143)
ey,

In the integral involving A8/ Bery +aBes) o make the
substitution (we remind that in the homogeneous case being

considered, |Bey,| = \/(27e/ke))

|B9'Ye| = \/(278/,”9) =v> 077&9 = ,uevz/Qa (144)
o = kv, (145)
Since v > 0, the limits for the new variables are
Ye=0=>v=0, 7, =00=v =00, (146)
c=—0=k=—-00,0=00=k=00 (147)
Likewise, in the integral involving e ~'(77%/Beaz TaBe00) iy g,
(143), we set
|Beve| = \/(27e/ﬂe) =-0v>0,7%= MeU2/2 (148)
o= —kv. (149)
Since v < 0, the limits for the new variables now are
Ye=0=0v=0, 7o =00 =v=—00, (150)
0g=-00=k=00,0=00=k=—00. (151)
The Jacobian of these transformations is
0o /0k o /v tv £k | 2
e/ Ok D7/ ‘ 0 pev | FHevs  (152)

where the upper sign is for the transformation given in Eqgs.
(144) and (145) and the lower sign is for that given in Egs.
(148) and (149). In this way, Eq. (143) becomes

e

@r o)

{/ dk:'/ dv'v' X (w, kv, pe[v])?/2) x

1( k' w+qv

/ dk:'/O dv'v' X (w, KV, pe[v]?/2)
ei(fk':erqv’)} —

e / dk'e™Fe x
27 J_
/ Q0|0 | X (w0, KV, pelo' 2 /2).

This shows that

Xew (LIZ‘, Q) =

(153)

o) = e [ QUI0X 'l P20 (150

10

is the space Fourier transform of xew (2, q) according to the
definitions

/ dze™ ye, (2, q), (155)

Xekw

Xew(T,q) = (156)

dke Y re
7r/_Oo e " Xekw(q)-

Changing the sign of k and of the integration variable v’
in Eq. (154) and taking into account that X is real, we
prove that
(157)

Xe(—k)w (@) = Xekw(q) = Xekw(—9)-

Using this result and the symmetry relations established in
Eq. (141), we also prove that

Xek(—w)(Q) - )_(e(—k)w(fln = Xekw(fq) = )_(ekw(Q)v (158)
so that we may restrict the analysis of Eq. (154) for k > 0
and w > 0 only.

Substituting X+ from Eq. (124)

Ze 1
X (w, kv, pev?/2) = (1} —w/k) — k2 i X
i A (R0 A R 50
kv — (w+10) /K] kv — (w—1i0)/k] |’

forw >0and k>0

into Eq. (154), we distinguish two cases. If ¢ — ¢’ > 0, we
close the v’-integration path in Eq. (154) in the upper half
complex v’ plane by an anti-clock-wise half-circle whose ra-
dius we let become infinite. The integral certainly converges
because €4~ is bounded over the whole upper half v’
plane: in particular the contribution from the integration
along the half circle vanishes when its radius tends to infin-
ity because, on that half circle, the integrand

i+ o L Ze 1

v ~ = -
k pek? 2im

oo
ela”’ / dq'q F.(q')e 4" (160)
— 00
either phase-mixes to 0 for ®v’ # 0, [v'| — oo or vanishes
exponentially for o' = 0,|v'| —oo . Furthermore, since
only the pole at v = w/k + i0 lies within the integration
path, only the first term in the square brackets in Eq. (159)
gives a non zero contribution to the integral in Eq. (154).
In that term, ¢’ > 0 and thus the assumption ¢ — ¢’ > 0 we
made for the present sub-case, implies that ¢ > 0. By the
residue theorem we thus find

1q[(w+10)/k]
Xekw (q) :ZC k X

|:1_ kg/ dq/q’F( ) —iq’[w+i0) /K]

forw >0, k> 0andq > 0.

(161)

Likewise, if ¢ — ¢’ < 0, we close the v'-integration path
in Eq. (154) by a clock-wise half-circle of infinite radius in
the lower half complex v’ plane. In this case, only the pole
at v/ = w/k — i0 lies within the integration path and only
the second term in the second line of Eq. (159) gives a non
zero contribution to the integral in Eq. (154). In that term,
¢’ < 0 and thus the assumption ¢ — ¢’ < 0 we made for



the present sub-case, implies that if ¢ < 0. By the residue
theorem we thus find

lw
Yok (q) = kk elal(w—i0)/k] o
By / Ad'q/ Folg)e 10/ (162)

forw >0, k> 0and q <0.

Clearly, once the limit to the real axis in the exponential
factors is taken, Egs. (161) and (162) give the same result.
In conclusion we may state that

Lhew
Xekw (q) = \/k

. Z s
elqw/k |:1 7 kg/ dq ( /)eflq w/k

forw>0,/<:>0

(163)

is the eigenfunction of the perturbed Vlasov operator for
k > 0, w > 0 and for all values of ¢q. For the other signs of k
and w the eigenfunction is to be calculated according to the
symmetry relations given in Egs. (157) and (158).

A further symmetry relation may be established as follows:

N
R

. Zoe [T1 L
e~law/k [1 — 22 / dq' ' Fu()e /| (164)
e 0

forw >0, k> 0.

Xekw (7(1) =

As a way of check, we change the sign of the integration

variable ¢’ and taking into account that Fy(—q) = F.(q),
Eq. (164) reads
HeW
Xekw(_Q) = \/kQ
—iqw/k 1 Ze qd ' Fo(d iw/k| _
‘ uek? Jo 10F(d)e a
Xekw(q)a (165>

forw >0, k> 0.

which complies with the symmetry relation established in
Eq. (157).

We may now state the main result of our work. Since
Xekw(q), the Fourier transform of a smooth function of ve-
locity, must vanish as ¢ — oo by Lebesgue’s lemma, from
Eq. (163) we have that

Ze [ o
1— / dq'q Fe(q')e /% = 0.
0

pek?

(166)

XI. THE PERTURBED ELECTRON

EIGENFUNCTION

From the analysis in Section X, we see that the perturbed
electron eigenfunction corresponding to the eigenvalue w,
which may obviously range ove the entire real axis, has none
of the degeneracies affecting the unperturbed eigenfunctions
given in Eqgs. (?77)-(??7). We may thus state that the spec-
trum of the Vlasov operator is continuous and simple.

11

Using the symmetry relations established in Egs.
we rewrite Eq. (156) as

(157),

1 e .
ch(xa q) = ;5}%/ dkeilkackw (Q) (167)
0

Further using the other symmetry established in Eq. (157)
we see that

Xew(_xv Q) = Xew(xa _q)a (168)

so that we may restrict our analysis to the case = > 0.
In substituting for xerw(q), we first consider the case ¢ > 0.
Using Eq. (161)

Xew(m q) \/Me %/ dkjf —ikx X

J— Ze X
pek?

/ Aq'q' Fulq el q><w+10)/k]

forw >0, ¢ > 0and z > 0.

|:eiq(w+i0)/k

(169)

Exchanging the order of the k and ¢’ integration Eq. (169)
reads

1 < w ;
» _ 97§R dk—= —i(kz—q(w+i0)/k) _
Xew(T,q) = /1 - {/0 12¢

Z, [9
= / dq'q'F.
Lo

/ k=t )(w+lo>/k1} (170)
0
forw>0, g>0and x> 0.
We now use the identity
/OO dtefpttuflefa/(élt) _
0
2(a/(4p)]"* K, (lap]'/?) (171)

for Ra > 0.

The first k-integral in Eq. (170) reduces to the general form
given in Eq. (171) for

a =4i[(w+10)q|, p=iz, v=—1 (172)
and, taking the limit to the real w-axis, we have
3?/ dk%eq(qu(wm)/k) _
0
2wR([(w +i0)g/z] V2K _1(2[—(w + i0)zq]*/?)) =
—Ww[wq/x]_l/Q%H(_Ql)(Q[wa:q]l/z) =
mwlwg/z) "2 I (2wzq]'?) =
mwlwg/z] "2 I (2w ?) (173)

forw >0, ¢ > 0and z > 0,

where J, K and H® denote the Bessel, the modified Bessel
and the Hankel functions respectively. Notice that the inte-
gral defined in Eq. (173) is well behaved as ¢ — 0.
Likewise, the second k-integral in Eq. (170) reduces to the
general form given in Eq. (171) for v = —3 and we can write

R / dk%e—i[kﬂﬂ—(q—q')(w-i-io)/k] _
0

q') /)" Js(2wx(q — ¢')]'?)
forw >0, ¢g>¢q¢ >0andz > 0.

(174)

ol -



Notice that the integral given in Eq. (174) is well behaved
as ¢ — ¢’
When ¢ < 0, we use Eq. (162) to write

Xew(T,q) = \/U'e { / dk
0
Ze [“agqr.

He Jq

/OO dk}:ie—i[kx—(q—q')(w—w)/k]]
0

forw >0, g <0andz > 0.

i(kz—q(w— 10)/k)

(¢)x

(175)

The first k-integral in Eq. (175) reduces to the general form
given in Eq. (171) for

a = 4i[(w —i0)q], p =iz, v = —1 (176)
and, taking the limit to the real w-axis, we have
%/DO Ak e—ilke—q(w—i0)/k) _
L2
0
2wR([(w — 10)g/a] 2K 1 (2[(w — 10)zq]'/?)) =
2wR(ilwlgl /2] /2K (2lwelq[]'/?)) = 0 (177)

forw >0, g <0and z > 0.

Likewise, the second k-integral in Eq. (175) reduces to the
general form given in Eq. (171) for v = —3 and we can write

g:g/oo dk%e*i[kw*(qw’)(w+10)/k] =0. (178)
0

forw >0, g<q <0andz > 0.

XII. CONCLUSIONS

In this way, the electron eigenfunction pertaining to the
particles reflected at = = ae,, (1) (Eq. (29)) is different from
(and indeed orthogonal to, as we shall see) the one pertaining
to the particles reflected at & = aey (2) (Eq. (30)), even for
the same values of o, 7, and se. No such difference needs be
introduced for the ion eigenfunctions and if v, > 0, because
no reflection points exist and the electron eigenfunction is
defined for —oco < x < o0.

In this work we described a technique to find the permit-
tivity of an electron gas to electrostatic perturbations. This
technique is worked out in the space of the Fourier trans-
formed velocity coordinate, the g-space and it is based upon
a judicious construction of the eigenfunctions of the Vlasov
operator as a superposition of those of its free-streaming part
(the Liouville operator)[1].

The choice of the superposition coefficients provides the
eigenfunctions in a form akin to that found in Ref. [11] by
an entirely different method.

The peculiarity of these eigenfunctions is that their limit
value, as the coordinate ¢ tends to infinity, is proportional
to the permittivity of the electron gas to electrostatic per-
turbations, as found, e.g., in Ref. [15]. Since this limit must
vanish, by Lebesgue’s lemma, our technique directly provides
the dispersion equation for the electrostatic perturbations.
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As a way of example, we applied this technique to an ho-
mogeneous ionized electron gas over a neutralizing, infinite
mass, ion background, but its general formulation may well
be used in the case of an inhomogeneous, electron and finite
mass ion gas.

Appendix A: Reduction of Ampére’s Equation

In physicsl units, Ampére’s law for the electric field E and
currnet j is

OF . . .
— = —dn] = —Arj =41 ja
7 7 ) 7ra]

jo = Qa / oo, (A1)

where the sum is extended over all the particle species a of
charge Q. Using the notation of Section II, and setting

E=—®y¢, (A2)
we have
(I)O 8&/ Za ~
TWPE = 4dmngevg za: @Jm
where
Jo = / dov f,, (A3)
are the normalised particle fluxes. Eq. (A3) reduces to
(I>0 26¢/ Za ~
wp T = 4mngevy za: m]a, (A4)
or
d¢'  Amnge? Mevd Zo ~ Zo ~
_— = a — T 1Ja- A5
at mwge%:;HMj é;wdj (A5)

Now, from Eq. (5), we see that d$/dt is the inverse w-
Fourier transform of iw¢,,. Also, taking the g-derivative of

both sides of Eq. (6)
/ dw/ dvivel@v=wt f

afocw
we see that v fa is the inverse ¢- and w-Fourier transform of
—10 faw/0q. Thus, taking the direct ¢-Fourier transform of
Eq. (A5), we have

(A6)

. Zo
IWQ%) = Z w]awv (A7)

—;i - ~ *iqv&fﬂ
QW[de[mdqe 9q

If the g-integral converges, we may invert the order of v and
q integration and, using the identity ffooo dve™ = 276(q),

we find

¢ =

where

(A8)

_jiw)/w> Ja = _iafaW/8q|q:0' (AQ)

_i(jew



Appendix B: Reflection Points and Eigenfunction
Phases in the Nonmonotonic Double Layer

To reduce the integral in Eq. (24), we first make the sub-
stitution

2,/U/[(1 4 JU)coth(kz/2) — (1 — JU)] = u, (B1)
whence
(1+,/U)coth(kz/2)u =2,/U + (1 - /U)u,
coth(kr/2) = (1 - U +2,/U/u)/(1+ JU), (B2)
and
dr 2 -2 /U/u?
" T 1[0 U2 U/ + SO 1+ U
B 2014 U)? -2 /U/u?
T @U -2 U/u)2+2/U0/u) 1+ U
1+ /U _ 1 n 1 — Glu). (B3)
I-w(u+ WU) 1-u u+ U

Then we insert the potential ® (Eq. (26)) into the electron
potential energy —V, = —|Z,|® (Eq. (2)) and then in the
electron eigenfunction phase (Egs. (23) and (24)) to get

_He /“ dt G(t)
T 26 e (e 1 Ze]t?)

where G(t) was defined in Eq. (B3) and ue-, is a constant
to be determined so that &, in Eq. (B4) be real, as follows:

(B4)

if — |Z.] < % < 0 then
either u < U, (1) = —/[7e/Zel,
or u > ue’ye(2) = \/|79/Ze"

(B5)
(B6)
To the quantities uey, (1) and e, (2) respectively correspond,

through Eq. (B2), the values of the reflection points be, (1)
and @e, (2) reported in Egs. (29) and (30) of the main text:

if —|Ze|] <7e <0 then

1- /U-2/U NN
bﬂem:icothl( S ﬂﬁ“”/ '>, (B7)

) 1— /U+2 U/ /|Ve/Ze
Qery(2) = Zcoth™! v VUl e/ 2 . (B8)
© K 1+ \/U
Asv. — 07 in Eq. (B5) and (B6), tey, (1) and e, (2) coalesce
to zero. This is why, for 7, > 0, we set

if e > 0 then ue,, = 0. (B9)

To this value of ucy, corresponds, through Eq. (B2), the
value of z.,, = 0 reported in Eq. (28) of the main text.

Similar considerations apply to the ion eigenfunction
phase (Eq. (24)). Inserting the potential ® (Eq. (26)) into
the ion potential energy —Vi = —Zi(1 — @) (Eq. (2)) and
then in Egs. (23) and (24), we have

R G(t)
5“¢%Z;&¢m+z—zw’

(B10)

where G(t) was defined in Eq. (B3). If 7 < 0, then, for &.,
in Eq. (B10) to be real, the following conditions must be
met

if —Z; <~ <0 then

— Uiy, <u< Uiy, = \/(1 —I—’VI/ZI) (B].l)

To the quantities ui,, and —u;,, respectively correspond,
through Eq. (132), the values of the reflection points z;., (1) =
biv; (1) and Tiy (1) = ajy,(1) reported in Eqgs. (32) and (33) of
the main text:

if —Z; < 7 <0 then bi'y;(l) =
1— /U+2/[U/(1+v/Z;
gcoth_1 v \/[ /( i/ %)) , (B12)
K 1+ \/U
if —Zi <% <—%(1-U)then ajy1) =
) 1— /U-2/[U/(14+v/Z;
2 ot ( VU= 2070 + ) ”) e
K

1+ /U

Here, the reflection point a;,(1) exists as a real quantity only
if —Z; <y < —=Zi(1 =U), because the argument of coth™?
must be smaller than —1.

As v — 07 in Eq. (B12), w,, — 1. This is why, for
v > 0, we set

if 75 > 0 then u;,, = 1. (B14)

To this value of w;, corresponds, through Eq. (B2), the
value of x;, (1) = oo reported in Eq. (31) of the main text.
We now arrange Eqgs. (B4) and (B10) in a single formula

_ Ve [ Gt)
é-a_\/zﬁ‘//q;a’yadt\/(y'azottﬂ)_
:7;: [L(t) + L., (B15)
where
}/e = Ve K :Zi—i—’yi’ (B16)
du 1
L(w) = / T T -
ds
—/S\/(Ya_Za+2Za8—Za52)’ (B17)
with s =1 — u, (B18)
du 1
L(u) = / N ety
dr
/ /(Yo = Zaa = 2Zo1\JU — Zor?)’ (B19)
with r =u+,/U. (B20)

These two integrals may in turn be written in a single
formula

Li(u) = —1(-1,1 =), Ir(u) =I(/U,u+,/U), (B21)
where

d
I(b,w) = / %, R= /(W —2Z.bw — Zouw?®), (B22)

Wo =Y, — Z,b°. (B23)



Following Ref. [16, formula 2.266 p. 84], we have

if Wy, > 0 then I(b,w) =
1 w

] B24
Wa W — Zabw + JWaR' (B24)
1 Wea + Zobw
if W, < 0 then I(b,w) = tan ! —& __—¢ B25
b} = gt = e B2

Appendix C: Relative Positions of the Reflection Points
and Nonvanishing Domains for ha.g
To calculate the z-integration bounds in Eqgs. (55)-(58)
(C1)
(C2)

Tafyary), = max(aan, , agy,);
baﬂmvg = min(bar,, bb’vl’;)

we need determine the endpoints aa,., bay,, Ay bgq,[;
of the intervals in which the eigenfunctions do not identi-
cally vanish (Eqgs. (42) and (48)) and their relative position.
These endpoints are either reflection points or boundaries of
the double layer and they were defined in Egs. (28)-(30) for
electrons and in Eqs (31)-(33) for ions.

Specifically, when v, < 0 and v, < 0 and when 7 <
—Zi(1-U)and v < —=Z/(1 —U) in domain 1 or v < 0 and
~{ < 0 in domain 2, inspection of Fig. 1 shows that

if vo <, then aay < Gary.s bavy, = bay,, (C3)

When 7, and/or ~; exceed 0, then ae,, and/or a.,; approach
—00 and be,, or beys approach oo (Eq. (28)). Also, when v;
and/or v/ exceed —Zi(1 — U), but remain negative, then
@iy, (1) and/or a1y = approach —oo (Eq. (31)). When v
and/or 7 exceed 0, then b, (1) and/or biy; (1) approach oo
(Egs. (31)-(32)). In all cases, the relations in Eq. (C3)
holds, possibly with the equal sign holding. This proves Eq.
(C4) below.

When a # 3, the labels (1) or (2) need be applied to
GaBryar, and baﬁﬂmvé when the endpoints aey, (1), bevy.(1);
Goy; (1), beyza) (EQ: (29)) OF Geye(2): boye(2): Geny(2): beyy(2)
(Eq. (30)) are used in Egs. (C1) and (C2

Specifically, in domain 1, for all values of e, Gey, (1) = —00
(Egs. (28) and (29)). If v < =Zi(1 = U), then a;(1) > —o0
and, if { > —Z;i(1 — U), then aj1) = —oo (Eq. (32)): in
both cases, ae, (1) never exceeds a;,/(1). This proves the first
of Eq. (C5) below.

In domain 2, for all values of e, bey, (2) = 00 (Egs. (28)
and (30)). If 7/ < 0, then biy:(1) < 00 and, if v > 0, then
biy/(1) = o0 (Eq. (28)): in both cases, bi,/(1) never exceeds
bev,(2)- This proves the first of Eq. (C6) below.

In domian 1, for 7. < 0 and for all values of 4, biy/(1) >
0 > bey, (1) (Egs. (29) and (32)). This proves the first of Eq.
(C7) below.

In domain 2, for 7, < 0 and for all values of 7/, Ain(1) <
0 < @eqy,(2) (Egs. (30) and (33)). This proves the first of Eq.
(C8) below.

If v > 0, then b67 (1) = oo (Eq. (28)); If 7{ < 0, then
bw’ < 00 and if v/ > 0, then b,,yf = 00. In both cases bw’

never exceeds be, (1): this proves the first of Eq. (C9);
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(8): Tt of <
—U), then
this

Last, if 7o > 0, then ae, 2y = —oo (Eq.
—Zi(1 = U), then aiyy > —o0 and, if v > —Zi(1
Qjny = —00. In both cases ac,,(2) never exceeds iyl
proves the first of Eq. (C10).

The ordering relations between the endpoints thus give the
following x-integration bounds.

Gaorarl, = Gamin(va,v,)r Paovar, = bamin(ya,v,)- (C4)
Oeiey{(1) = Gin{(1): Tieysy)(1) = Bins(1)5 (C5)
Deivent(2) = bing (1) bieming(2) = bins(1)- (C6)

if 7o < 0 or 1 < 0 then
beiner! (1) = Derye(1)s bieyinz(1) = berz(1), (C7)
Qeinen{(2) = Gene(2)) Tieying(2) = Qe (2); (C8)
if 7o > 0 or 7, > 0 then
beiret (1) = bing(1)s Bieninz (1) = bin(1)- (C9)
beinent (2) = bint(1)s Gieyiny(2) = Q). (C10)

The other relations appearing in the second columns of
Egs. (C5)-(C10) are reported for ease of reference and they
follow from the obvious symmetry of Egs. (C1) and (C2):

(C11)

Gafyayy = QBovsrlys Daprary = bpars, -

Appendix D: Nonvanishing z-intervals for hqg

The contribution of the unperturbed oscillations of par-
ticles of species 8 to the perturbed oscillations of particles
of species o depends on the z-intervals where the functions
haﬂ(yam;,,é)(x,o, Yo V5) (Egs. (77))-(79) do not identically
vanish. In turn, the extent of these intervals depends on
the degeneracy parameters 7, and 72,, as we shall presently
determine.

Specifically, in Eq. (77), \I/(O) L)) is based on the un-

(©)sp all of

perturbed electric potential eigenfunctions wﬁ SATAL
which involve the same value of v} so that, due to Eq. (48),

given v and @ ¢ (ag,y, bs,, ) then \Il,(@(;)é =0. (D1)
It immediately follows from Egs. (29), (30), (42) and (D1)
that
if 76 < 0,7 < 0 and Ve, 7# Ve, then
Nee(Veryivene) (T30 Yes Ye) = 0, (D2)
and
if z > 0and 7. < 0 then hye(v,., ;1) (T, 0,%a;ve) = 0, (D3)

if z <0and e < 0 then hoe(u,., 2) (%, 0,70, %) = 0. (D4)

We further observe that, since, in domain 1, —V; is a de-
creasing function of z (Eq. (2) and Fig. 1), given two points

a and b, —Vi(a) < —=Vi(b) = a > b. Then, from the relations
if r <Oand — |Z| <7 <0then — Vi(bey, (1)) =7, (D5)
ifx<0and —Z; < < Zi(1 — U) then
—Vilaiy, (1)) = %, (D6)



where
% = =21+ /| Z|), (D7)
we have
if £ <0, v <0and~y; <7 then @iy, (1) > bey, (1) (D8)

In this circumstance, the interval (Gey,(1);bey.(1)) Where
(O 32 # 0 (BEq. (42)) and (@i, (1), biy, (1)) Where ‘1’1(3) #0

Xaoya

(Eq. (D1)) are disjoint, so that, according to Egs. (D1) and
(79),

if <0, 7. <0andy <7 then hei(1;1)(7,0,%,7) = 0.
(D9)
A similar argument applies in domain 2 where —V; mono-
tonically increases, so that —V;(b) < —Vi(a) = a > b. Then,
from the relations

if £ >0and — |Zc| <7e <O0then — Vi(dey,(2))
ifz>0and — Z; < <0then — Vi(bi'yi(l))

=, (D10)

we have

if >0, 7% <0and v <7 then aey (2) > biyy1).  (D12)

In this circumstance, the interval (ae%(g),be%(z)) where

Xose # 0 (Ba. (42)) and (aiy,(1), biny(1y) where WY % 0
(Eq. (D1)) are disjoint, so that, according to Eqgs. (Dl) and
(79),

if z > 07 Ye < 0 and 7 < ’Yl* then hei(2;1)(xa g, ’Ye»’Yi) =0.
(D13)
We further observe that, since, in domain 1, —V, is an
increasing function of x (Eq. (2) and Fig. 1), given two
points a and b, —Ve(a) > —Vo(b) = a > b. Then, from the
relations

if —Zi<y< —Zi(l — U) then — Ve(aim(l)) = ’}/:, (D14)
if vi > —Z;i(1 = U) then — Vi(aiy,1)) = —|Ze|U, (D15)
if Yo < 0 then — Vve(be%(l)) = Ye, (D16)
we have
if z <0 and v, < —Veq then aiy (1) > bey (1), (D17)
where
—~Veo = max(yy, —|Ze|U) i.e. (D18)
if —Zi<~v<—-Zi(1-U)then — Ve, =75, (D19)
if %> —Zi(1—U) then — Vog = —|ZJU  (D20)
and
Ve = —1Ze|(1 + /%), (D21)

In this circumstance,

(0)5\
IU’Y:

(Eq. (D
(79)7

the interval (aiy(1),0biy,(1)) where

#0 (Bq. (42)) and (aey,(1), bey, (1)) Where B (1 20
1)) are disjoint, so that, according to Eqgs. (Dl) and

if z < 0and v, < —Viq then hie(1;1) (7, 0,%,7.) = 0,(D22)
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Last, since, in domain 2, —V} is an decreasing function of

z (Eq. (2) and Fig. 1), given two points a and b, —V,(b) >
—Ve(a) = a > b. Then, from the relations
if —Zy <9 <0then — Vo(biy,1)) =2, (D23)
if 3 > 0 then by, (1) = 0o and — Ve (biy, (1)) = —|Ze|, (D24)
if —]Ze] <7 <0 then Vi(aey,(2)) = Yo, (D25)
we have
if # > 0 and 7. < =V then ae., (2) > biy;1).  (D26)
where
—Vep = max (v, —|Ze]) i.e. (D27)
if —Z; <~ <0then —Vy =177, (D28)
if v > 0 then — Vi = —|Ze|. (D29)

In this circumstance, the interval (aiy(1),0biy;(1)) where

Xl(o_o)j # 0 (Eq. (42)) and (Gey,(2); beye(2)) Where \Ilg?y)e(z) #0
(Eq. (D1)) are disjoint, so that, according to Egs. (D1) and
(79),

if x > 0 and v, < —V¢p then hie(1;2) (z,0,7,7.) = 0,(D30)

Appendix E: Inversion of the Integration Order

Given real numbers a < b and ¢ and the generic functions
f(z,y) and g(z) < ¢, when g is not a constant, we write

I:/bdm/;)dyf(x,y):
/gj:) deh/ (¢ /dyf 2 Y),

where t = g(x), h(t) = g~ (t) and b/ (t) = [g’(x)\xzh(t))]_l

If ¢ is an increasing function of x, then g(b) > ¢ > g(a) and
we further write

g(b) g(b)
I= dth/(t dyf(h(t),y) +
L@ <% yf(h(t), )

9(b) c
/ dth/(t) /
g(a) g(b)

Then we interchange the order of integration according to

Fubini’s rule:
y
dy /
(a)

g(b)
I= /
g(a)

(E1)

dyf(h(t),y). (E2)

dth/ () f(h(t),y) +

g
c g(b) ,
[ oan [ amosae.) (E3)
g(b) g(a)
and, reverting to the x variable, we finally get
if b>a, ¢'(x) # 0in (a,b) and g(b) > g(a) then
b c
[ae [ dusen -
g(x)
g(b) 9 ()
/ dy/ daf(z,y) +
g(a a
b
[y [ sy (E4)
g(b) a



On the other hand, if g is a decreasing function of z, then

g(a) >t > g(b) and, in place of Eq. (E2), we write
g(a) g(a)
T== [ Cawe) [ aurni.w) -
g(b) t

g(a) c
/ dth/(t) /
g(b) g(a)

We again interchange the order of integration, so that

g(a) y
I—- /g(b) dy / ath’ (£)f (h(t), v) ~

g(a)
/ dy / deh/(t
g(b

and we finally revert to the x variable to get

dyf(h(t),y). (E5)

(h(t),y)

if b>a, ¢'(z) #0in (a,b) and g(a)

b c
/ de [ dyf(e,y) =
a g(x)

g(a) b
/ dy / def(z,y) +
g(b) 9= (y)
c b
/ dy / def(z,y).
g(a) a

> g(b) then

(E7)

Appendix F: The integral Equation for the Perturbed
Electron Eigenfunction Coefficients in Domain 2 and for
Ye <0

Eq. (78) for electrons («
(Vey, = 2) reads

e) for 7. < 0 in domain 2

(w - = Z Heﬂ(?)(wvaa ’Ye) (F]')

B=e,i

o)X (W, 0,%)

where

bere(2) oo
Hee(2)(w7077e) :/ dm/\/( )

eve(2)

beve(2) o0
Hei(?)(wa(f?’ye) :/ dx/V( )
QGeve(2) —Vvilz
(F3)

In the integral extending over negative «., we omitted the
contribution of the vanishing quantity hee(2;1) (Eqs. (79) and
(D2)). in that extending over positive 7., we omitted the
sum over the electron domain label v, because, for v, > 0,
Neyr =1 (Eq. (40)). We also omitted the sum over the ion
domain label 14, because N;,» = 1 (Eq. (41)).

d’Yéhee(2;2) (1'7 W, 0, Ve, fYé
(F2)

In domain 2 we have (Fig. 1 and Egs. (2), (26) and (30))
-V <0, (F4)
bere(2) = 00, —Velbey.(2)) = —1Zel, (F5)
if —[Ze] <7 <O0then — Vi(dey,(2)) = Yes (F6)

(F7)

if —|Zo| <7, <0 then [—Ve]_l(%) = Gey/(2)>

d’}/i/hei(2;1) (Iv W, 0, Ye, 71/)7

Inverting the integration order in Eq. (F2) according to Eq.
(E7), which applies when —V, monotoniclly decreases (Eq.
(F4)), and to Egs. (F5)-(F7), we have

if v < 0 then Hee(2)(w,0,7) =
[,
|Ze| a
dmhee(2;2) (:L'v W, 0, Ve, ’Vé) +

[
e Qevye(2)

eve (2)
/ dr}’e/ dxh’ee 2; 1)(.’15 OJ 0 7677e)

erye(2)

eve(2) ’
dxhee(2;2) (1‘, W, 0, Ve ’Ye) +
e (2)

eve(2)
(F8)
Using the definitions of the integration endpoints in Eq.

(C4), we rewrite Eq. (F8) as
if v < 0 then Hee(2)(w,0,7) =

/OO
,lZe

In a similar way, taking into account that, in domain 2,

cevevs(2)
dy! / Awhee(2,2) (T, w, 0, %esYe). (FI)

Qeevel(2)

—V/ >0, (F10)
bere(2) = 00, —Vi(ber,(2)) =0, (F11)
if —]Ze] <7ve <0then —Vi(aey,(2)) =7 (F12)
if —Z; <7{ <0then [-Vi]7' (7)) = biyy1y,  (F13)

where 7 was defined in Eq. (D7), we invert the integration
order in Eq. (F3) according to Eq. (E4), which applies when
when —V; monotonically increases (Eq. (F10)), and to Egs.
(F11)-(F13):

if 7o < 0 then Hejo)(w,0,7) =

iv/ (1)
/ d’yl / d.’L'hCi(Q;l)(xywao-a ’yea,yil) +

Qerve (2)

e’Ye(2>
/ d’%/ elZl)(xw U’Yea’)/l)

erye(2)

(F14)

Due to Eq. (D13), the first a-integral of Eq. (F14) remains
unchanged if we replace its lower integration bound ~;" by
—Z; which, due to Eq. (D7), is certainly not larger than ~;.
Also, in the second integral of Eq. (F14), 4/ > 0 and thus
biyy(1) = o0 (Eq. (31)): since also be, 2y = oo (Eq. (30))
it may well be replaced by biv;(l). In turn, ae,,(2) may be
renamed to Geirey! (2) (Eq. (C8)) and bi%’(l) to bei"/evi’(Q) (Eq.
(C6)) so that Eq. (F14) may be rewritten as

if 7o < 0 then Hej(9)(w,0,7) =

eivev! (2)
/ d’)/1/ ‘Thel(Q 1) (I‘ W, 0, 78771) (F15)

EI’Ye’Y {(2)

Inserting Egs. (F9) and (F15) into Eq. (F1

if 90 < 0 then (w
, bccve’ve@) ,
d’Ye / dxhee(2;2) (.’IJ,OJ, g, A/ealye) +

/oo
—Z.| Qeevevl(2)

eive! (2)
/ d’yl/ dxhei(2) (2, w, 0, Ve, Vi)

Qeire v{(2)

), we have

—0)X ) (w,0,7) =

(F16)

Finally, reverting to the definitions of hee(2;2) and hej(2;1)
(Egs. (77) and (79)), Eq. (F16) appears as a particular case
of Eq. (97).
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Appendix G: The integral Equation for the Perturbed
Electron Eigenfunction Coefficients for 7. > 0

For electrons (o = e), Vey, = 1 is the only value available
when v, > 0 (Egs. (36) and (40)) in Eq. (80), which thus
reads

(w— a)Xj{"l)(w,a, Vo) = Z Hep1)(w,0,7e), (G1)

(G2)) to ey (1): both equal —oco for z < 0 (Eq. (28) and
(30)). Eq. (G10) may thus be rearranged as

if 76 > 0 then Hézf(tl)(w, Oy Ye) =

/0 , /bcvé(l)
dve
—|Ze| Qeryl (1)
0o 0
Lo
0 a

eve (1)

dxhcc(l;l) ({177 W, 0, Ve, 7«/3) +
dxhee(l;l)(xawao—7 'YearYé)' (GlO)

In the right part of the a-integration, we have (Fig. 1 and

B=e,i Egs. (2), (26) and (29)),
where —Vi <0, (G11)
b o beye(1) = 00, —Ve(bey. (1)) = —[Zel; (G12)
eve (1) oo e —V.(0) =0, G13
Hee(l)(w707 ’YC) - / dx/ df}/é Z hee(l;ué)(xawao'a 7(377{9) . ( ) ’ —1/_ ( )
Qoryg (1) —Ve(z) vli=1 if — |Ze‘ <Y < 0 then [*Ve] (Ve) = aeyé(?)v (G14)
(G2)  and we invert the integration order in Eq. (G2) according to
bernt) - Eq. (ET7), which applies when Eq. (G11) holds, and to Egs.
Hei(l)(wao—,ﬂyc) = / l dx/ ( )dlyi/hei(l;l)(wi70-a ’YC?P)/i/)v (GIQ)_(G14)
[ —Vi(x .
v (G3) if ¢ > 0 then H;g(?;(w, 0, Ye) =
and we omitted the sum over the ion domain label 2/ because 0 bere(2)
Ni’yi’ =1 (Eq (41)) /Z |d7é/ dxhee(l;Q) (1‘760,0', 787’%) +

The z-integration interval in Eq. (G2) will now be split
into two parts:

Hright

if 7o > 0 then Hee(ry = ce(1)

Hlelztl) +

ee (G4)
The left part ends at = 0 and the right part starts at
x = 0. In each part —V3(z) is a monotonic function and we
may invert the x and 'yg order of integration. Specifically, in
the left part of the x-integration, we have (Fig. 1 and Egs.
(2), (26) and (29)),

~Vi >0, (G5)
ae’ye(l) = —00, _V:e(ae'ye(l)) = _|Ze|U, (G6)
—Ve(0) =0, (G7)
if 7, < 0 then [—Ve] 71 (70) = beyy (1) (G8)

and we invert the integration order in Eq. (G2) according to
Eq. (E4), which applies when Eq. (G5) holds, and to Egs.
(G6)-(G8):

if v, > 0 then

0
[|ZQU
e} 0
Lo
0 a,

eve(1)

lef
Hee(tl)

, bC’YE/, (1)
dve
a

eve (1)

(wv g, 'Ye) =

dxhcc(l;l)(xa W, 0, Ve, ’y'la) +

dxhee(l;l)(wivoa 'yev’y::)' (GQ)

In the second integral of Eq. (G10), extending over positive
~%, we omitted the sum over the electron domain label v/
because, for v, > 0, Neyr = 1 (Egs. (36) and (40)). In the
first integral of Eq. (G10), extending over negative «., we
omitted the contribution of hee(1;2) which identically vanishes
for £ < 0 and 7, < 0 (Eq. (D2)); Due to Eq. (D22), in
the first v/-integral the lower integration bound —|Z.|U may
be replaced by —|Z.|U which, due to Eq. (27)), is smaller
than |Ze|U. In the first z-integral, we may also rename the
lower z-integration bound @, (1) (the same appearing in Eq.
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ev4(2)

o beve (1)

A deé/O dxhee(l;l)(xawaga ’YEafYé)' (G15)
In the second integral of Eq. (G16), extending over positive
~., we omitted the sum over the electron domain label v, (Eq.
(G2)) because, for v, > 0, Neyr = 1 (Egs. (36) and (40)).
In the first integral of Eq. (G16), extending over negative
~., we omitted the contribution of the vanishing quantity
hee(1;1) which identically vanishes for z < 0 and 7, < 0 (Eq.
(D2)). In the first z-integral of Eq. (G16) we may rename
the upper z-integration bound be, (1) (the same appearing
in Eq. (G3)) to bey(2): both equal oo for x > 0 (Eq. (28)
and (30)). Eq. (G15) may thus be rewritten as

if 4 > 0 then H;;g(}f;(w, 0, %Ye) =
0 bevé@)

/ d%g/ dxhcc(1;2)($7wva7 '76774/3) +
_‘Zel a,

74 (2)

o fhevem ,
/ d’}/e/ dxhee(l;l)(xawaaa’ye7’}/e)~
0 0

Inserting Egs. (G10) and (G16) into Eq. (G4), we get

(G16)

lf Ye > 0 then Hee(l)(w) g, ’Ye)

0 ber (1)
/ d’yé/ d
—|Ze| a

eyl (1)

0 , [len
dve
—|Ze| Aoyl (2)
oo
d /
Ve
0

In the first two v.-integrals of Eq. (G17), v, < e. Accord-
ing to Eq. (C4), the z-integration bounds @ey(1z), bey: (1)
(for v; = 1,2) may be renamed t0 Geeyoy: (11)s Decyer: () T€-
spectively. In the third 4/-integral of Eq. (G17), 74, > 0

Ihee(l;l) (1‘, W, 0, Ve fYé) +
dxhee(l;Q) (I‘, W, 0, Ve ’Y«/e) +

bere (1) ,
/ dxhee(l;l)(xawvo—alyeulye)'

Qee (1)

(G17)



and, by assumption, ve > 0; thus e, (1) = —00 = ey (1),
beye(1) = 00 = bey (1) (Eq. (28)) so that, again according
to Eq. (C4), dey,(1); beyo(1) may be renamed to @eery, (1),
beeverz (1) Tespectively. As a result, Eq. (G17) may be rewrit-
ten as

if Yo > 0 then Hee(1)(w,0,7) =

/OO
_|Ze‘

We now turn to Eq.
z-integration:

Neve 1p

dvéZ/

vl=1" Feevevl(vl)

cevevs (vh)

dxhee(l;ué) (l‘, W, 0, Ve, 7(/3) (G18)

(G3) which and again we split the

Hrlght

left
He; i(1) = H, l(i) ei(1) *

€

(G19)

Taking into account that, in the left part of the x-integration,

-Vi <0, (G20)
ey, (1) = —0O0, _Vvi(ae’ye(l)) = _Zl(l - U)? (G21)
~Vi(0) = 7, (G22)
if —Z <~{ < Z(1—"U) then [-Vi] =" (%) = aiy(1), (G23)

we invert the integration order in Eq. (G3) according to
Eq. (ET7), which applies when Eq. (G20) holds, and to Egs.

(G21)-(G23):
if 7. > 0 then HYS(}) (w, 0,7) =
~Z,(1-U) 0
/ d%’/ dxhei(1;1)($;wyov’7677{) +
—Z; iyl (1)

0
dfyl// dmhci(l;l)(xgwyo'u 7877{)' (G24)

Aerye (1)

oo
/—Zi(l—U)

In a similar way, taking into account that, on the right
part of the integration,

-V >0, (G25)
be'yc(2) = 00, _‘/i(be'yc(2)) =0, (G26)
-Vi(0) = - %, (G27)
if —Z; <~ <0 then [-Vi] 7' (7)) = biy1), (G28)

we invert the integration order in Eq. (G3) according to
Eq. (E4), which applies when Eq. (G25) holds, and to Egs.
(G26)- (G28):

> 0 then H“(glh)t (w,0,7) =

iv/ (1)
/ dfyl/ dxhel 1; 1)(3? w, o, 'Yea%) +

eve (1)
/ d’Yll/ dxhei(l;l)(u’c,MU,’Yea’Vi/)-
0 0

Inserting Eqs. (G24) and (G29) into Eq. (G3), we write

if e

(G29)

if 7, > 0 then H! 1(1)((,0 Oy Ye) =

—Z;(1-U) 0
/ d’%/ dxhei(l;l)(l‘7w70’7 rYeeri/) +
—Z iy (1)
0 0
/ d')/:/ dxhei(l;l)(£7w7a7 'Yeeri/) +
—Zi(1-U) Aerve (1)
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dl’hm(l 1)((E w,ao, ’767’\/1) +

c'vc(l)

/ /bw’(l)
0
0 biyy (1
—Z,(1-U)

eve (1)
/ dPYll/ dxhei(l;l)(z’wao—7 ’Ye,’}/i/)'
0 0

Lot

Zl(
dxhei(l;l) (i[, W, 0, Ve, ’YII) +

dxhei(l;l) (:L'v W, 0, Ve 71/) +

(G30)

i.e.

Hsh)(w,0,7e) =

. (o
dy
a.

iv/ (1)

biyy (1)
df
a

eve (1)

if 76 > 0 then
Zi(1-U)

L.
Lavo
I

In the second and third ~{-integrals of Eq. (G31), v/ >
—Z;i(1 = U) and, by assumption, v, > 0. Thus a,, (1) takes
the same value (—00) of aj,/(1) (Egs. (28) and (32)) and may
be replaced by it. Furthermore, in the third +{-integral of
Eq. (G31), % > 0 and thus b, (1) takes the same value (00)
of by (1) (Eq. (31) and may be replaced by it.

In this way, all three 4{-integrals in Eq. (G31) now have
the same z-integration bounds a;.(1) and bi(1). According
to Egs. (C5) and (?7?), we rename these bounds to aeiy, /(1)
and beir, /(1) respectively, so that Eq. (G32) reduces to

dwhei(l;l) (-T7 W, 0, Ye, 71/) +

dxh’ei(l;l) (IL’, W, 0, Ve, 71/) +

eve (1) ,
dxhei(l;l) ($7 W, 0, Ve ’71)

eve (1)

(G31)

if v > 0 then Hej1)(w,0,7.) =

eive/ (1)
/ d%/ dzhei(1;1) (2, w, o, Yo, vi). (G32)
Qeive (1)

Finally, inserting Eqgs. (G18) and (G32) into Eq. (G1),
and using the definitions of hee(1;7) and hei1;1) (Eqs. (77)
and (79)), we see that the result fits in the general formula
given in Eq. (97).

Appendix H: The Integral Equation for the Perturbed
Ion Eigenfunction Coefficients

For ions (o = 1), 14, = 1 is the only value available (Egs.

(36) and (41)) in Eq. (78), which thus reads
(w - O—)st(il) (w7 g, 71) = Z HiB(l)(wa g, 71) (Hl)
B=i,e
where

d’Yilhii(l;l) (1‘7 W, 0, %, 71/)7
(H2)

Hii(l)(w7 g, ’YI) = /
a

bivi (1) o0
dx
—Vi(=)

ivi (1)

bir; (1) o0
Hie(l)(wvaafyi) :/ dw/v( )

ivi (1)

N,

/
evg

y—
v/=1

(H3)

d’Yé Z hie(l;l/é) (117, W, 0, %Y, 7(/2)3



and we omitted the sum over the ion domain label 2/ because

Niyy =1 (Eq. (41)).
In Eq. (H2), z-integration will now be split into two parts:
Hu(l)

Hue(flt) + Hrlght

g (114)

The left part runs in domain 1, up to z = 0 and the right part
runs in domain 2, starting at « = 0. In each part —Vjs(z) is
a monotonic function and we may invert the z and 'yg order
of integration.

Specifically, in the left part, we have (Fig. 1 and Egs. (2),

(26) and (29)),

-V <0, (H5)
if —Zi <~ <—Z(1-U) then

—Vi(aiy, (1)) = %5 (H6)
if v > —Zi(1 — U) then

Gin; (1) = —00, —Vi(aiy; (1)) = —Zi(1 = U), (HT)
—Vi(0) = -z, (H8)
if —Z; <~/ <—Z(1-"U) then

[V~ () = @iy ) (H9)

Inverting the integration order in Eq. (H2) according to
Eq. (ET7), which applies when —V; monotonically decreases
(Eq. (H5)), and to Egs. (H6)-(H9), we have, for both v <

—Zl(l — U) and Yi > —Zi(l — [])7
Hilt (w,0,m) =
Via 0
/ d’yl / dxhu(l 1) ($7UJ,U, ’71771/) +
Gin! (1)
/ d’Yl/ dmhu(l ;1) l‘ W, a, ’Yh’yl) (HlO)
Qi (1)
where
—Vig = min(y;, —Z;[1 = U]) i.e. (H11)
if —Z; <~ <—-Z[1-U]then — Vi, =, (H12)
if Yi > —Zi[]. — U] then —Vj, = —Zi[]. — U] (H13)

In the right part of the integration, the ion parameters are

(Fig. 1 and Eqgs. (2), (26) and (29)),
W0, ()= 2, (H14)
if —Z; <~ <0then — Vi(biy,(1)) = Vs (H15)
if 7 > 0 then by, (1) = 0o and — Vi(biy,(1)) = 0, (H16)
Vi(0) = 2, (17)
if — Z; <7{ <0 then [Vi] 7' (%) = biy (1), (H18)

Inverting the integration order in Eq. (H2) according to Eq.
(E4), which applies when —V; monotonically increases (Eq.
(H14)), and to Egs. (H15)-(H18), we have, for both v < 0
and v > 0,

right
11(1)

l’Y /(1)
/ d’yl dxhii(l;l)($7w70—7 Vla’yl/) +
0

(W, 0,m) =

0 biy; (1)
/ dry! dahii) (2, w, 0%, 7)), (H19)
0
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where

—Vip = min(y;, 0) i.e. (H20)
if —Z;< 7 <0 then — Vj, = Vi, (HQl)
if 43 > 0 then — V3, = 0. (H22)

We now add both sides of Egs. (H10) and (H19), as in Eq.
(H4), and we first consider the case —Z; < 3 < —Z;(1 = U).
In this case, in Eq. (H10), =V, = v = —Vi (Egs. (H11)
and (H20)) and we have

if —Zi <9 <—=Zi(1-"U) then Hj()(w,0,%) =

—Viy 0
Lo

iv{ (1)

/ d’yl/ dxhnll (r,w,0,7%,7) +
Vip aw &)
[,
—Z; 0
o b .
/ dryl/ dxhii(l;l)(xawaaa 717’71)7
—Vip 0

if —Z; <% <—Zi(1-U)then Hyj)(w,0,7) =

—Vip bw’(l)
a

iv/ (1)

iy (1)
/ d’}ﬁ/ dl’hn 1;1) (SC w, o, 71771)

Qivi (1)

dxhu(l 1) (I’, W, 0, %Y, 71/) +

l’Y /(1)

dxhu(l,l (J}, W, 0, %, 71/) +

(H23)

d!L‘hu(l 1)(-'17 w,a, 71)71) +

(H24)

On the other hand, if vy > —Z;(1—U), then, in Eq. (H10),
—Vie = =Zi(1 = U) (Eq. (H11)) and we rewrite Eq. (H10)
as

if v > —Zi(1 — U) then Hllle(lt) (w,o,m) =

—~Z:(1-U) 0
/ d%’/ dxhii(l;l)(wiva-v ’71)’71/) =+
—Zi iy (1)
—Viy 0
/ de;/ dxhii(l;l)(wivga "Yia’}/i/) +
—Z;i(1-U) Qi (1)
00 0
/ d’yi'/ dahy(1)(z,w, 0,7, %) (H25)
—Vip Qi (1)
and Eq. (H19) as (note that, if v > —Z;(1 = U), —Vip >
—Z:(1-U))

then HIE (w, 0,7) =

if’}/i>—Zi(1—U) (1)

Zi(1-U) , b;—y’(l)
d’Yi/
0

/_Zi
, bi'yi’(l) !
d'Yi / dxhii(l;l)(%wﬂﬂ ’Yia’)’i) +

/—Vib

Z;(1-U

o0
/ drf
—Vip

Adding both sides of Egs.
(H4), we have

dxhii(l;l)(x7 W, 0, %, 7{) +

) 0
bin; (1)

/ dxhii(l;l)(m7wa07’yi77{)‘ (H26)
0

(H25) and (H26), as in Eq.

if vi > —Z;(1 = U) then Hyj)(w,0,m) =



dxhii(l;l) (1’7 W, 0, Vi, ’Yl/) +

-Zi(1-U) biyr(1y
, {
/ d; /
—Z iy (1)

—Vie L)
/ d;
—Zi(1-U) Qi (1)
o0 , biy; (1) ,
/ d’)’l / dmhii(l;l)(x7wvo—7 ’yiv’}/i)'
_‘/ib B

Qivi (1)

In the second integral of Eq. (H27), 7 exceeds —Z;(1-U)
and so does, by assumption, 7;. Then (Eq. (32)), Aiyr (1) =
in, (1) = —00: Giy;(1) may well be replaced by Qin! (1) and Eq.
(H27) by

dxhii(l;l)(xa W, 0, %, 71/) +

(H27)

if v > —Zi(1 — U) then Hy;qy(w, 0, n)

—Vib biyy (1)
, /
z

—4i v (1)
oo
/
/ dy
—Vip

bini (1)

/ dxhii(l;l)(xaw70-7 ’Yi,’Yi/)v
Aivi (1)

which coincides with Eq. (H24). Further using the defi-

nitions of the integration endpoints Gaaryer!, > Daaryar, (Eq.

(C4)), both Eq. (H24) and Eq. (H28) may be reduced to a

single formula:

dxhii(l;l)(x7 W, 0, %, 71/) +

(H28)

iy (1) ,
dxhii(l;l) (.’,E, W, 0,5, ’Yi)v

a

o0
Hii(l)(w707 71) :/ d’Y:
~Z 737! (1)
(H29)
We now revert to Eq. (H3) and again we split the z-
integration:

Hright

Hie(l) ie(1)

= Hh + (H30)
Taking into account that, in the left part of the integration,
the electron eigenfunctions and reflection points are those of

domain 1 and that

—V!>0, (H31)
if —Zi<yu< —Zi(l — U) then

—Ve(aiy 1)) =72 (H32)
if vy > —=Zi(1 — U) then

—Velaiy 1)) = —1Ze|U, (H33)
—V(0) =0, (H34)
if ’Yé < 0 then [_Vve]_l(’y{e) = bevé(l)v (H35)

where v was defined in Eq. (D21), we invert the integration
order in Eq. (H3) according to Eq. (E4), which applies when
—V, monotoniclly increases (Eq. (H31)), and to Eqs. (H32)-
(H9), we have, for both 3 < —=Z;(1-U) and v; > —Z;(1-U):

H}c?g) (wv o, ’Yi)

0 , [l .
/ drye/ dxhie(l;l) (J},OJ,O', ’Yia’ye) +
—Vea )

Aivi (1)

00 0
S ]
0 a;

iy (1)

dxhie(l;l)(xawaav ’Yia’)/é)a (H36)

where —V,, was given in Eq. (D18). In the first in-
tegral of Eq. (H36), we omitted the contribution of
hie(1;2)(z,w, 0,7, 7e) because, for 4 < 0, it is non zero only
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for > 0, i.e. outside the range of z-integration (Eq. (D4)).
In the second integral, we omitted the sum over the electron
domain label v because, for 7 > 0, Ney, =1 (Eq. (40)).

In a similar way, taking into account that, in the left part
of the integration, the electron eigenfunctions and reflection
points are those of domain 2 and

-V! <0,-V,(0) =0, (H37)
if —Zi <7 <0then — Vo(biy,1)) =2, (H38)
if i > 0 then bi, (1) = oo and — Vo (biy, (1)) = —|Ze|,(H39)
if —|Ze| <~ <0 then [=Ve] 71 (72) = dens(2) (H40)

and inverting the integration order in Eq. (H3) according to
Eq. (E7), which applies when —V, monotonically decreases

(Eq. (H37)), and to Egs (H38)-(H40), we have, for both
7 < 0 and v; > O:
righ
Hie%l)t(wﬂ g, '71) =

0 oo ,
/ d’)/e/ dxhie(1;2)(z7w707 FYiarYe) +
Ve Terl(2)

oo biri 1)
/ dﬁYé/ dxhie(l;l) (wi,av ’Yia’Yé)a
0 0

where —V;, was given in Eq. (D27)

In the first integral of Eq. (H41), we omitted the contri-
bution of hie(1;1)(z,w, 0,%,7.) because, for 4 < 0, it is non
zero only for x < 0, i.e. outside the range of z-integration
(Eq. (D3)). In the second integral, we omitted the sum over
the electron domain label v, because, for 7, > 0, Ney, = 1
(Eq. (40)).

In a similar way, adding both sides of Egs.
(H41), as in Eq. (H30), we have

(H41)

(H36) and

Hie(l) (w7 a, ’Yl)

0 , [len
dr,
—Vea Qi (1)
0 Biv; (1)
/ /
/ drYe / dxhi6(1;2) (I,W,U, ’7i77e) +
—Ves eyl (2)

oo biv; (1)
0 a

iy (1)

Due to Eq. (D22), the first z-integral of Eq. (H42) remains
unchanged if we replace its lower integration bound —V,, by
—|Z,| which, due to Egs. (27), (D18) and (D27), is certainly
not larger than —V;,. Eq. (D30)), justifies the replacement
of =V by —|Z| in the second z-integral of Eq. (D22). Last,
we rename the z-integration bounds in Eq. (H42), according
to Egs. (C5)-(??) and we have

dmhie(l;l)(xv W, T, %, PYé) +

dxhie(l;l) (I,W,U, ina’Y(/a)' (H42)

Hie(l)(wa g, 71)

0 , biewmé(l) ,
/ 2| d’ye/ dzhie(l;l)(xawaav 7i77e) +
—|Ze a

ievivg (1)

0 b
Lo,
—1Ze| a

ievivg (2)

o0 , bicyivs (1) ,
/ dye/ dxhie(l;l)(x>waa7 ’717er)
0 a;

ievive (1)

ievivg (2)

dxhie(l;Q) (557 W, 0, %, ’y(/a) +

(H43)

i.e.

Hie(l) (w7 g, 71)



N,

e'ye

ievive (vy)
dv! Z / dzhie(1,) (T, W, 0,m,7%), (H44)

ievi vl (vl)

/OO
=12l

where N, was given in Eqs. (38)-(40).

Inserting Eqs. (H29) and (H44) into Eq. (H1), and using
the definitions of hee(1;,) and heic1;1) (Egs. (77) and (79)),
we see that the result fits in the general formula given in Eq.
(97).

Appendix I: Reduction of the Superposition
Coefficients X

In this appendix, we give some useful expressions for Y,
and for A, found in Section IX which will be useful in the
following. Because of Eq. (136), only the quantities with the
+ superscript will be given.

Making the substitution

\/(2’76/Me) =v>0 (I]-)

into Eq. (131) (taking into account also Eq. (122)) and into
Eq. (135) gives

Zevgpé (kev?/2)

Yo (o, nev?/2) = ; : (12)
o
and
A+(U HeV 2/2) =1+
o [ i BRI
o' —o ’
for ¢ > 0. (14)
Making the substitution
o' = ou/v, for o >0, (I5)
Eq. (I4) reads
Ad (o, pev?/2) =
oo nll 2
Ly Ze P/ dun T/ (16)
oo u—v

which extends also to negative values of o.
Finally, since F, = puvdF/0v (Eq. (106)), Egs. (I2) and
(I6) reduce to

Ze02OF, (1ev 2/2)/81}

2
Yo (0, pev®/2) = 1007 (I7)
and
Af (0, pev?/2) =
Ze o° Fo(peu?/2
1+ UQP/ ay 2Eelie”/2) /0. (18)
HeO — 00 u—v

Inserting Egs. (I7) and (I8) into Eq. (128) we finally have

X (w,0,pev?/2) =
Zo? [ OF.(neu?/2)/0

L UQP/ du(uuHM](;(U_w)_
UeO oo uU—v

Z.v2 OF, 2/9 1

evza e(lJ/eU / )P ; (19)
LheT Ov 0—w
for w > 0.
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We also give the expressions of Y,© and AT using quantities
defined in the Fourier transformed velocity space. In the
present homogeneous case (Eq. (116)), Eq. (108) taken of
electrons (a = ¢) and for s, = +, reduces to

- 1 1 [~ )
Fl(pev?/2) = = [ dgqF.(q)e”" Il
et/ = gt [ daaRie . mo)
where Eq. (I1) was used, and Eq. (I12) reads
1 Zov?
Y. 02/2) = dgqFs(q)e 1. I11
(o, pev?/2) = 9 o0 /_ qqFe(q)e (I11)

Taking into account that F(q) is the Fourier transform of

a real function, so that F(—q) = F(q), Eq. (I11) further
reduces to
Vo) = 120 [T agre. )
o, e R o(q)e 7.
fev weo? S ), daaFela
Changing the order of the u and ¢ integration, Eq. (I6)
reduces to
Ad (o, Me /2)
dgqFeo(
217mC 02 / 1
[e’¢) 71qu
P/ du s (113)
e U=
Using the identity
p [T " i ~iqv 14
/_Oo U = —imsign(q)e (I14)

q) = F(q), Eq. (113)

and taking again into account that F(—
further reduces to

Ad (0, pev®/2) =

Ze’U2 > —iqu
;R / dgqFe(g)e™
HeO 0

Inserting Egs. (112) and (115

1-—

(115)

) into Eq. (128) we finally have

X, +(w a, ue
[ dqu lq”} 0(c —w)—
17, 1
- Uz / dggF.(q)e""P—, (116)
T [1e0 —w
for w > 0.
Setting
Ze’l)2 > —iqu
C =0 —Ww, Q(07 U) = D) dque(Q)e ’ (117)
HeT= Jo
Eq. (116) reads
N 1 1
X$ =80 - 1 [1(ORQo,0) + PE3Q(0)| . (119
T
According to Plemelj’s formulas
L in8(C) + P (119)
= lim = Fi =
CHi0  ebor Ctie 7 o



we may write
1 1
¢—i0  ¢+i0’

) e S
¢ (=10 " (+i0

and thus Eq. (I18) may be arranged as

2imd(¢) = (120)

(121)

1 1
[(g— 0 C—HO) RQ(o.v)+

|\

or, reintroducing the quantities defined in Eq. (I17), as

~ Q(a,0)
C—i0  (+1i0

(122)

1 Zw?
+ 2/9) = -
X (w, 0, pev™/2) = 6(0 —w) — A7 p1e0?
Jo~ dagFe(@)e™  Ji~ dagFe(g)e™” (123)
o—w—i0 o—w+i0 7

for w > 0.

Changing the sign of the integration variable in the numer-
ator of the second term in the square brackets and taking
into account that F(—q) = F(q), Eq. (123) reads

1 Zw?
+ 2 19y _ e
Xc (wvaauev /2) _5(0_0‘)) - ﬁuegg X
o] i 0 —iqu
Jo© dagFu(g)e™ |~ dggFe(g)e™ (124)
oc—w—1i0 o —w+i0 ’
for w > 0.

This form of the coeflicient clearly points out the pertur-
bation contribution, proportional to the electron charge Z,
to the eigenfunction of the Vlasov operator.

Again using Eq. (120), Eq. (I22) can be arranged as

X (w, 0, pev?/2) =
1 S’(o,v)_g(a,v)
C—i0  C+i0

} _ 1,8(0.0)

2im T r (-0

where

S(o,v)=1—-Q(o,v)=1-—

ZQUQ > —iqu
o0 /O dgqFe(g)e. (126)

Reintroducing the quantities defined in Eq.
(I25) becomes

(117), Eq.

XF (w0, p1e0?/2) =
2 .
L— 2 [¥ dggFe(q)e™™"
o—w—1i0

1
)
T

for w > 0.

(127)

Finally, using the identities

1. _ _i/oo dtei(ngio)t7
C+i 0

1 0
=i / dtel(c10)
-0 ) ’

Eq. (I25) may be further rearranged as

2) =

1 0 . .

o {S(a, v) [m dtelle—w=i0t 4

(o) [ atetoron] -
0

%R [S(a, v) L OOO

for w > 0.

(128)

o

(129)

Ty

2
‘Xe+ (w, 0, pev

dtei(o’wio)t:| , (130)
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FIGURE CAPTIONS
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1. A typical waveform of a nonmonotonic double layer

steady state potential. Shown are the reflection points
Qevyes | Bevy,| Of the electron and @iy, (1), bey, of the ion
eigenfunctions for several values of their respective de-
generacy parameters 7, and ~;. The eigenfunctions
are defined only in the z-domains where the horizon-
tal dash-dotted lines originating from a reflection point
are drawn.

. Panel (a): the real (solid bold line) and imaginary

(dashed bold line) parts of the eigenfunctions for free
electrons subject to the nonmonotonic double layer
steady state potential of Eq. (26) where a = 0.25,
k = 2. The other parameters in Egs. (22) and (23)
areq:47’7620-37se:+70-:47 Ze:_1> :ue:17
Zey, = 0. Panel (b): same as in (a), but for the reflected
electrons and for a = 0.64, 7. = —0.3, Tey, = beo for
2 < 0 and ey, = aeo for x > 0. Near the reflection
points Gey, and |Be,, |, the real part of the eigenfunc-
tion diverges, whereas its imaginary part remains finite
(Eq. (45)). Superimposed in panel (b) is the steady
state equilibrium electron potential energy profile (thin
solid line).

. Panel (a): the real (solid bold line) and imaginary

(dashed bold line) parts of the eigenfunctions for free
ions subject to the nonmonotonic double layer steady
state potential of Eq. (26) where a = 0.25, k = 2.
The other parameters in Eq. (22) and (23) are ¢ = 4,
Ye = 03,88 = +, 0 =4/ /i, Zi = 1, i = 1833,
Tiy,1) = 00. Panel (b): same as in (a), but for the
reflected ions and for a = 0.64, vi = —0.3, @i, (1) = bio-
Panel (¢): same as in (b), but for the trapped ions
and for 74 = —0.7, xj5,(1) = bio- Near the reflection
points aj, (1) and bi, (1), the real part of the eigenfunc-
tion diverges, whereas its imaginary part remains finite
(Eq. (45)). Superimposed in panels (b) and (¢) is the
steady state equilibrium ion potential energy profile
(thin solid line).
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