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Wave Scattering by an Asymmetric Nonmonotonic Double Layer

L. Nocera∗

CNR-IPCF, Theoretical Plasma Physics, Via Moruzzi 1, I-56124 Pisa, Italy†

In this report, we give a detailed derivation of the eigenvalues and of the corresponding eigen-
functions of the collisionless Boltzamann equation governing the vibrations of a multispecies ionized
gas.

These eigenfunctions are worked out as a superposition of the singular, triply discretely degener-
ate and doubly continuously degenerate eigenfunctions of the free-streaming Vlasov operator (the
Liouville operator) [1]. The superposition is carried out in the Fourier transformed velocity space,
where the Liouville eigenfunctions are smooth.

We prove that, by a judicious superposition of these Liouville eigenfunctions, a peculiar, non
degenerate eigenfunction of the Vlasov operator can be worked out, such that its limit value, as
the conjugate velocity coordinate tends to infinity, equals the permittivity of the ionized gas. Re-
quiring that this limit vanish, as demanded by Lebesgue’s lemma, yields the dispersion relation of
electrostatic oscillations.
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I. INTRODUCTION

!!!!!!Write about water bags (the gamma dependent x in-
tervals are nested)

The linear stability analysis of the zero-th order equilib-
rium distribution functions pertaining to nonlinear, collision-
less Vlasov equilibria needs solve a linear eigenvalue problem
for the operator governing their small-amplitude perturba-
tions.

Besinceived as an initial value differential problem and
solved by the Green function technique.

If the Green function has “virtual” poles in its non physical
Riemann sheet, the corresponding oscillations (the virtual
modes, not proper eigenfunctions) can be represented as a
superposition of the eigenfunctions belonging the continuous
spectrum [2, 3]. These are the Landau damped oscillations
and appear in kinetic as well inhomogeneous fluid systems
[2, 3]. They can be used to enhance resonance absorption
of electromagnetic waves [4, 5] and to explain wave atten-
uation in non dissipative homogeneous stochasitic media as
yet another form of Landau damping [6].

Another method [7] to treat linear oscillations about an
equilibrium state consists in transforming the differential op-
erator acting on the perturbations of the equilibrium into an
integral operator. A regularization technique of the singu-
lar Cauchy kernel of this operator separates the subset of the
eigenfunctions belonging to the continuous spectrum and the
subset of virtual modes, these latter as again being due to
the zeroes of a certain dispersion function in its non physical
Riemann sheet. This method was applied to both electro-
static oscillations of a cold inhomogeneous plasma [8] and to
fully elecromagnetic oscillations in a kinetic plasma [9].

In this report we use this approach, and in order to cater
also for the recently discovered singularities [10] of the equi-
librium distribution functions, we develop our treatment in
the space of the Fourier transformed velocity[11–13], where
they are well behaved.

This allows us to find a useful technique to reconstruct
the permittivity of the medium directly from the functional
shape of the eigenfunction in the transformed space.

II. NOTATIONS, ASSUMPTIONS AND
BOUNDARY CONDITIONS

Let Φ̂ and φ̂, denote the steady state and perturbation
electric potential in the plasma,

Φ = (Φ̂−min Φ̂)/Φ0, φ̃ = φ̂/Φ0 (1)

the corresponding quantities, normalized to Φ0 = max Φ̂ −
min Φ̂, e the elementary charge, α = e, i a label for the elec-
tron and ion quantities, Zαe the particle charges,

−Ve = ZeΦ, −Vi = Zi(Φ− 1) = Zi(Ve/|Ze| − 1), (2)

the normalized electron and ion potential energies in the
steady state potential Φ, me the electron’s mass, n0 a density
scale,

n0
√
[me/(eΦ0)](F̃α + f̃α)/|Zα| (3)

the one-particle velocity distributions and F̃α and f̃α their
normalized steady state and perturbation parts.

We assume that Φ depends on space coordinate x, φ̃ on x
and time t, F̃ on x and velocity coordinate v and f̃ on x, v, t,
respectively normalized to

λ =
√
[eΦ0/(4πn0e

2)], v0 =
√
(eΦ0/me), ω

−1
p = L/v0, (4)

and we denote by

φω(x) =

∫ ∞

−∞
dte−iωtφ̃(x, t), (5)

fαω(x, q) =

∫ ∞

−∞
dt

∫ ∞

−∞
dvei(qv−ωt)f̃α(x, v, t), (6)

Fα(x, q) =

∫ ∞

−∞
dveiqvF̃α(x, v) (7)

the Fourier transforms of the electric potential perturbation
and of the particle distributions.

We introduce the vector

|fω〉 = [feω(x, q), fiω(x, q)]
T, (8)

the particle mass raito µα = mα/me, the free streaming and
interaction operators

S =
∂2

∂x∂q
− qΦ′

[
Ze/µe 0

0 Zi/µi

]
, (9)

K = HD−1
x P0, (10)

where a “′” denotes differentiation with respect to x,

H = −q

[
ZeFe/µe −ZeFe/µe

ZiFi/µi −ZiFi/µi

]
, (11)

and, given a generic function g(x, q),

D−1
x g =

∫
dx′g(x′, q), (12)

P0g = g(x, 0). (13)

Using the above definitions, the linerized electron and ion
Vlasov-Poisson equations are

ω|fω〉 − S|fω〉 = K|fω〉, (14)

φ′′
ω = P0(feω − fiω). (15)

In the following, the solution of Eqs. (14) and (15) will be
given in terms of the eigenfunctions (labelled by a superscript
0)

|χ(0)se
eσ 〉 = [χ(0)se

eσ (x, q), 0]T, (16)

|χ(0)si
iσ 〉 = [0, χ(0)si

iσ (x, q)]T, (17)

|ψ(0)sα
ασ 〉 = D−1

x P0|χ(0)sα
ασ 〉 (18)

of the free streaming equation (or also ballistic or Liouville
equation (Eq. (14)), unperturbed by the interaction operator
K),

∂2χ(0)sα
ασ

∂x∂q
− Zα

µα
qΦ′χ(0)sα

ασ = σχ(0)sα
ασ (19)

and of Poisson equation (Eq. (15)), which have σ as eigen-
value and satisfy the boundary conditions

if |x| → ∞, Φ → const. then

χ(0)sα
ασ → ρsαασe

isαkασx, ψ(0)sα
ασ → εsαασe

isαkασx, (20)

sα = ±, (21)
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where ρsαασ and εsαασ are complex quantities, and kασ is a real

constant. In Eq. (18), ψ(0)sα
ασ is proportional to the pertur-

bation electric field generated by the particles of species α

distributed according to the eigenfunction χ(0)sα
ασ .

The conditions in Eqs. (20)-(21) are justified by observ-
ing that, when x takes large values, the steady state po-
tential Φ of a double layer approaches a constant value and
the plasma becomes homogeneous: Eqs. (20)-(21) prescribe
that, in these conditions, the solution of Eqs. (15) and (19)
approach a sinusoidal, right-moving (sα = +) or left-moving
(sα = −) wave and that its spatial mean approaches zero.

A vanishing value of the boundary amplitudes ρsαασ and εsαασ
applies if, e.g. only outgoing or ingoing waves exist at the

boundary or if χ(0)sα
ασ describes reflected or trapped particles

which are unable to reach one or both boundaries. These
conditions are appropriate for the scattering or also emission
of radiation by the non monotonic double layer.

III. THE UNPERTURBED EIGENVALUE
PROBLEM FOR THE NONMONOTONIC DOUBLE

LAYER

The solution of Eq. (19) is

χ(0)sα
ασγα

= Cαγαe
−isασξαγα+isαq|Bαγα |/|Bαγα |, (22)

where Cαγα is a normalization constant, sα = ± was defined
in Eq. (21),

Bαγα(x) = sα
√{2[γα + Vα(x)]/µα}, (23)

ξαγα(x) =

∫ x

xαγα

dx′

|Bαγα(x
′)| , (24)

γα and xαγα are real quantities, and a new label γα was
introduced accordingly.

For χ(0)sα
ασγα in Eq. (22) not to be exponentially unbounded,

γα+Vα must be non negative. This implies thatt, if γα < 0,
then, in (Eq. (24)), x and xαγα take values only in γα-
dependent intervals

aαγα < x < bαγα aαγα < xαγα < bαγα (25)

bounded, at least on one side, by points at which particles
of species α are reflected. If γα > 0, then γα + Vα is always
positive and particles of species α move over the whole x-
interval: in this case, we set aαγα = −∞, bαγα = ∞.

Specifically, for the steady state potential profile of the
nonmonotonic double layer ([14], Fig. 1)

Φ(x) = {2√U/[(1 +
√
U)coth(κx/2)− (1−√

U)]}2 (26)
0 < U < 1 (27)

and for γe < 0, electrons move over two disjoint, semi-infinite
intervals labelled in the following by the subscript 1 or 2:
thus the endpoint beγe(1) (Eqs. (29) and (B7)) corresponds
to the right electron reflection point and the left endpoint
aeγe(1) (Eq. (29)) extends to the left boundary of the double
layer; the left endpoint aeγe(2) (Eqs. (30) and (B8)) corre-
sponds to the left electron reflection point and the endpoint
beγe(2) (Eq. (30)) extends to the right boundary of the dou-
ble layer. For γe > 0, electrons move over an infinite interval:

the endpoints aeγe(1) and beγe(1) (Eqs. (28)) extend respec-
tively to the left and right boundary of the double layer.
The electron eigenfunctions are thus defined in the following
intervals

if γe > 0 then

−∞ = aeγe(1) < x < beγe(1) = ∞, xeγe(1) = 0, (28)

if x < 0 and − |Ze|U ≤ γe < 0 then

−∞ = aeγe(1) < x < beγe(1) = xeγe(1) < 0, (29)

if x > 0 and − |Ze| ≤ γe < 0 then

0 < xeγe(2) = aeγe(2) < x < beγe(2) = ∞. (30)

The lower γe bounds in Eqs. (29) and (30) are given by
the requirement that, in each x-interval, γe + Ve > 0, i.e.
γe ≥ min(−Ve) (Eqs. (1) and (2) and Fig. 1). The choice of
the integration bound xeγe , positioned at one of the electron
reflection points, is so made that, as γe → 0−, xeγe(1) =
beγe(1) (Eq. (29)) and xeγe(2) = aeγe(2) (Eq. (30)) coalesce at
the position of the maximum steady state electron potential
energy (x = 0, Fig. 1 and Appendix B for details) at which
xeγe is based for all positive γe’s (Eq. (28)).
For γi < −Zi(1 − U), ions move over a finite interval:

thus the endpoints aiγi(1) (Eqs. (33) and (B13)) and biγi(1)

(Eqs. (33) and (B12)) correspond respectively to the left and
right ion reflection points. For −Zi(1 − U) < γi < 0, ions
overcome the steady state potential barrier−Vi = −Zi(1−U)
(Eqs. (26) and (2) and Fig. 1): they thus move over a semi-
infinite interval and the endpoint aiγi(1) extends to the left
boundary of the double layer (Eq. (32)). For γi > 0, ions
move over an infinite interval and biγi(1) extends to the right
boundary of the double layer (Eq. (31)). In all acases, the
ion eigenfunctions are defined in one single interval:

if γi > 0 then

−∞ = aiγi(1) < x < biγi(1) = ∞, xiγi(1) = ∞, (31)

if − Zi(1− U) ≤ γi < 0 then

−∞ = aiγi(1) < x < biγi(1) = xiγi(1) < ∞, (32)

if − Zi ≤ γi < −Zi(1− U) then

−∞ < aiγi(1) < x < biγi(1) = xiγi(1) < ∞. (33)

The lower γi bound in Eq. (33) is given by the requirement
that γi + Vi > 0, i.e. (Eqs. (1), (2) and Fig. 1) γi ≥
min(−Vi) = −Zi. The choice of the integration bound xiγi ,
positioned at the ion reflection point, is so made that, as
γi → 0−, xiγi(1) = biγi(1) (Eq. (32)) approaches ∞, the
position of the maximum steady state ion potential energy
at which xiγi(1) is based for all positive γi’s (Eq. (31)).

The above analysis of the reflection points induces a dis-
tinction of the electron eigenfunctions, which we make by
a further label νeγe , indicating the x-interval in which the
eigenfunctions is defined:

if x < 0 then νeγe = 1, (34)

if x > 0 then νeγe = 2. (35)

To maintain uniqueness of notation, a label νiγi will be
also introduced for the ion eigenfunctions, although, for the
steady state potential profile of Eq. (26), it will take one
only value. We set

given α, γα, ναγα = 1 . . . Nαγα , ν
′
αγα

= 1 . . . Nαγα , (36)

if ναγα (= ν′αγα
then χ(0)sα

ασγα(ναγα ) (= χ(0)sα
ασγα(ν′

αγα
), (37)
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where

ifx < 0 and − |Ze|U < γe < 0 then Neγe = 2, (38)

ifx > 0 and − |Ze| < γe < 0 then Neγe = 2, (39)

if γe > 0 then Neγe = 1, (40)

if γi > −Zi then Niγi = 1. (41)

In the following, the unperturbed eigenfunctions will be
set to zero outside the intervals where they are defined. This
leads to the two equivalent conditions:

given γα > −|Zα| and x /∈ (aαγα(ναγα ), bαγα(ναγα )) then

χ(0)sα
ασγα(ναγα ) = 0, (42)

given x ∈ (aαγα(ναγα ), bαγα(ναγα )) x and γα < −Vα(x) then

χ(0)sα
ασγα(ναγα ) = 0. (43)

For steady states endowed with asymmetric potential pro-
files, such as in Eq. (26), the above introduced distinction
of the electron eigenfunctions is morphologically motivated:
there isn’t any way to relate the two eigenfunctions by sym-
metry considerations as, e.g., for bell-shaped solitary wave
seady state potential profiles (in which the eigenfunctions
are related by reflection-symmetry), or periodic steady state
potential profiles (in which the eigenfunctions are related by
translation-symmetry and collated in Bloch form).
That difference is also physically well grounded, and in

fact useful to analyze situations in which perturbations of
the electron distribution function are confined to one partic-
ular interval. These arise, e.g., when a low energy electron
perturbing population is injected at only one plasma end it
cannot overcome the potential barrier set by the potential of
Eq. (26) at x = 0.
With the limitations analyzed in Eqs. (28)-(33), the phase

of the eigenfunctions χ(0)sα
ασγα (Eq. (22)) is real and, being the

normalization constants also real (Eqs. (68)-(70) and (73)
below), the following properties are verified by inspection:

χ̄(0)sα
ασγα

(x, q) = χ(0)−sα
ασγα

(x, q) = χ(0)sα
α(−σ)γα

(x,−q), (44)

One last property of the eigenfunctions arises, for γα < 0,
near a reflection point aαγα (Eqs. (30) and (33)) because, for
x * aαγα , Bαγα(x) * 2sα

√(x− aαγα)/β (β being a suitable
constant, Eq. (23)) and thus, developing ξαγα in Eq. (24),
Eq. (22) gives

if x * aαγα then χ(0)sα
ασγα

* Cαγα

sα − i sin(σβ√[x− aαγα ])

2√(x− aαγα)/β
.

(45)
A similar expression holds when x approaches a reflection
point bαγα (Eqs. (29), (32) and (33)).

Beside the particle distribution eigenfunctions χ(0)sα
ασγα , in

the following treatment we shall also need the electric field
eigenfunctions (Eq. (18))

ψ(0)sα
ασγα

(x) = D−1
x P0χ

(0)sα
ασγα

=

Cαγα

∫
dx′ e

−isασξαγα (x′)

|Bαγα(x
′)| =

Cαγαe
−isασξαγα (x)

−isασ
, (46)

where we used the change of integration variable

t = ξαγα(x) =

∫ x

xαγα

dx′

|Bαγα(x
′)| . (47)

In the following treatment, ψ(0)sα
ασγα will not be needed outside

the x-intervals specified in Eqs. (28)-(33) and it can be set
to zero there:

given γα > −|Zα| and x /∈ (aαγα(ναγα ), bαγα(ναγα )) then

ψ(0)sα
ασγα(ναγα ) = 0, (48)

given x ∈ (aαγα(ναγα ), bαγα(ναγα )) x and γα < −Vα(x) then

ψ(0)sα
ασγα(ναγα ) = 0. (49)

Properties analogous to Eqs. (37), (44) and (45) also hold

for the electric field eigenfunctions ψ(0)sα
ασγα (Eq. (46)):

if ναγα (= ν′αγα
then ψ(0)sα

ασγα(ναγα ) (= χ(0)sα
ασγα(ν′

αγα
). (50)

ψ̄(0)sα
ασγα

(x, q) = ψ(0)−sα
ασγα

(x, q) = ψ(0)sα
α(−σ)γα

(x,−q), (51)

and

if x * aαγα then ψ(0)sα
ασγα

* Cαγα

isα + sin(σβ√[x− aαγα ])

σ
.

(52)

In conclusion, the pair χ(0)sα
ασγα , ψ

(0)sα
ασγα (Eqs. (22)-(24) and

(46)), defined in the x-intervals specified in Eqs. (28)-(33),
and vanishing otherwise (Eqs. (42), (43) and (48)), is the
sought solution of the unperturbed Vlasov-Poisson problem
(Eqs. (15) and (19)). Also, when x takes large values, the
steady state potential Φ (Eq. (26)) approaches a constant
value, the plasma becomes homogeneous, ξαγα (Eq. (24)) is

approximately proportional to (const. + x) and thus χ(0)sα
ασγα

(Eq. (22)) and ψ(0)sα
ασγα (Eq. (46)) meet the boundary condi-

tions of Eq. (20).
According to the above considerations, the real number

γα is a continuous degeneracy parameter; the species label α
(Eqs. (16) and (17)), the phase sign sα (Eq. (21)) and, for
α = e, γe < 0, the electron domain label νeγe (Eq. (36)) are
discrete degeneracy parameters; two eigenfunctions having
a different value of any of these parameters are solutions of
Eqs. (15) and (19) corresponding to the same eigenvalue σ.

IV. ORTHOGONALITY OF THE UNPERTURBED
EIGENFUBCTIONS

To analyze the orthogonality of two vectors
|fαγα〉 = [fαγα1(x, q), fαγα2(x, q)]T and |fβγ′

β
〉 =

[fβγ′
β1
(x, q), fβγ′

β2
(x, q)]T such that

if x /∈ (aαγα , bαγα) then fαγα = 0, (53)

if x /∈ (aβγ′
β
, bβγ′

β
) then fβγ′

β
= 0, (54)

we introduce their scalar product

〈fαγα |fβγ′
β
〉 =

∫ bαβγαγ′
β

aαβγαγ′
β

dx

∫ ∞

−∞
dq(fαγα , fβγ′

β
), (55)

(fαγα , fβγ′
β
) = ,(fαγα1f̄βγ′

β1
+ fαγα2f̄βγ′

β2
), (56)

where , and the overbar give the real part and complex
conjugation and the x-integration bounds

aαβγαγ′
β
= max(aαγα , aβγ′

β
), (57)

bαβγαγ′
β
= min(bαγα , bβγ′

β
). (58)
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delimit x-integration to the interval where the integrand does
not identically vanish. The actual values of these bounds will
be given in Appendix C

Because of the definition of the vectors |χ(0)sα
ασγα〉 (Eqs. (16)

and (17)), the quantity 〈χ(0)sα
ασγα |χ

s′β
βσ′γ′

β
〉 vanishes if β (= α.

Also, substituting Eq. (22) into Eq. (55), the part involving
q-integration

∫ ∞

−∞
dqeiq[sα|Bαγα (x)|−s′α|Bαγ′

α
(x)|] =

2πδ(sα|Bαγα(x)| − s′α|Bαγ′
α
(x)|) (59)

vanishes if sα|Bαγα(x)| (= s′α|Bαγ′
α
(x)|, which certainly oc-

curs when the phase signs sα and s′α (Eq. (21)) are different.
Furthermore, since any of the electron eigenfunctions

χ(0)se
eσγe(1)

, defined in domain 1, vanishes in domain 2 (Eqs.

(29), (42) and (37)), it is orthogonal to any of the eigenfunc-

tions χ(0)se
eσ′γ′

e(2)
defined in domain 2, which in turn vanishes

in domain 1 (Eqs. (30), (42) and (37)).
On the other hand, when β = α and s′α = sα, Eqs. (55)

and (59) give

〈χ(0)sα
ασγα

|χ(0)sα
ασ′γ′

α
〉 =

2πµα|Cαγα |2,
∫ ζαγα

ηαγα

dte−isα(σ−σ′)tδ(γα − γ′
α), (60)

where we used the change of integration variable given in Eq.
(47) and, according to Eqs. (28)-(42), (57) and (58), the t-
integration limits ηαγα = ξαγα(aαγα) and ζαγα = ξαγα(bαγα)
are, for the electron eigenfunctions,

if γe > 0 then ηeγe = −∞, ζeγe = ∞, (61)

if − |Ze| ≤ γe < 0 and x < beγe(1) then

ηeγe = −∞, ζeγe = 0, (62)

if − |Ze| ≤ γe < 0 and x > aeγe(2) then

ηeγe = 0, ζeγe = ∞ (63)

and, for the ion eigenfunctions,

if γi > 0 then ηiγi(1) = −∞, ζiγi(1) = 0, (64)

if − Zi(1− U) ≤ γi < 0 then

ηiγi(1) = −∞, ζiγi(1) = 0, (65)

if − Zi ≤ γi < −Zi(1− U) then

ηiγi(1) = −Tiγi , ζiγi(1) = 0, (66)

where

Tiγi =

∫ biγi(1)

aiγi(1)

dx/|biγi(1)(x)| < ∞. (67)

We thus see that, when the t-integration interval in Eq.
(60) is infinite (Eqs. (61)), the eigenfunctions may be made
orthonormal for any real value of σ and σ′ (continuous spec-
trum) by setting

if γα > 0 then Cαγα = 1/(2π
√
µα). (68)

A continuous spectrum also arises when the t-integration in-
terval is semi-infinite (Eqs. (62)-(65)). In this case orthonor-
mality is ensured, provided

if − |Ze| ≤ γe < 0 then Ceγe = 1/(
√
2π

√
µe), (69)

if − Zi(1− U) ≤ γi < 0 then Ciγi = 1/(
√
2π

√
µi). (70)

Last, when the t-integration interval is finite (Eq. (66)) a
discrete ion spectrum

if − Zi ≤ γi < −Zi(1− U) then (71)

σ = σiγim = 2πm/Tiγi , σ
′ = σiγim′ = 2πm′/Tiγi (72)

appears, where the mode numbers m,m′ are integers. Or-
thonormality in Eq. (60) is thus attained by setting

if −Zi ≤ γi < −Zi(1−U) then Ciγi = 1/
√
(2πµiTiγi). (73)

In conclusion, the constants given in Eqs. (68)-(73) ensure
that the orthonormality relation

〈χ(0)sα
ασγα

|χ(0)s′β
βσ′γ′

β
〉 = δαβδσσ′δγαγ′

β
δsαs′β

(74)

holds, where δaa′ is Kronecker’s symbol if a, a′ belong to a
discrete set, and Dirac’s δ(a− a′) function if they belong to
a continuous set.

Figs. 2 and 3 depict the eigenfunctions respectively cor-
responding to free and reflected electrons (Eqs. (28) and
(29),(30)) and to free, reflected and trapped ions (Eqs. (31),
(32) and (33)). They are plotted by inserting the model po-
tential (Eq. (26)) into Eq. (2), and eventually into Eq. (22)
and (60), through quadrature of Eq. (24), and by adopt-
ing the values of the normalization constants given in Eqs.
(68)-(73).

V. THE PERTURBED EIGENVALUE PROBLEM
FOR THE MULTIDOMAIN DOUBLE LAYER

We seek the eigenfunctions of the perturbed eigenvalue
problem of Eq. (14) by an expansion in terms of the unper-

turbed eigenfunctions χ(0)
ασγα (Eqs. (22)-(24) and (68)-(73))

extended over their spectrum and over all of their possible
degeneracy parameters. Taking into account Eq. (43), we
write

|χαω〉 =
∑

β=e,i

∫ ∞

−Vβ

dγ′
β

Nβγ′
β∑

ν′
β=1

∑

sβ=±

∑

σ′

X
sβ
β(ν′

β)
(ω, σ′, γ′

β)|χ
(0)sβ
βσ′γ′

β(ν
′
β)
〉, (75)

where X
sβ
β(ν′

β)
(ω, σ′, γ′

β) is a suitable coefficient, ν′β is the co-

ordinate domain label, and Nβγ′
β
was defined in Eqs. (38)-

(41).
In Eq. (75), the integration over γ′

β includes the values
of γ′

β specified in Eqs. (61)-(65) pertaining to the contin-
uous spectrum: in this case, the sum over σ′ continuously
extends over the whole real axis. Furthermore, if x is such
that −Vi(x) < −Zi(1−U) (i.e. Φ(x) < U , Eq. (2)), then the
integration over γ′

i extending from −Vi to −Zi(1 − U) per-
tains to the discrete ion spectrum (Eq. (66)): in this case
the sum over σ′ extends over that spectrum (Eq. (72)).
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Next, we substitute Eq. (75) into Eq. (14) and we take

the scalar product by 〈χ(0)sα
ασγα(ναγα )| according to Eqs. (55)

and (56). Since the |χ(0)sα
ασγα(ναγα )〉’s are orthonormal, we have

(ω − σ)Xsα
α(ναγα )(ω, σ, γα) =

〈χ(0)sα
ασγα(ναγα )|

∑

β=e,i

∫ ∞

−Vβ

dγ′
β

Nβγ′
β∑

ν′
β=1

|Ψ(0)
βγ′

β(ν
′
β)
〉, (76)

where (Eqs. (10), (11) and (46))

|Ψ(0)
βγ′

β(ν
′
β)
〉 =

∑

sβ=±

∑

σ′

X
sβ
β(ν′

β)
(ω, σ′, γ′

β)H|ψ(0)sβ
βσ′γ′

β(ν
′
β)
〉. (77)

Now, χ(0)sα
ασγα(ναγα ) vanishes outside the interval

(aαγα(ναγα ), bαγα(ναγα )) (Eq. (42)) and thus Eq. (76)
reads

(ω − σ)Xsα
α(ναγα )(ω, σ, γα) =

∑

β=e,i

∫ aαγα(ναγα )

aαγα(ναγα )

dx

∫ ∞

−Vβ(x)
dγ′

β

Nβγ′
β∑

ν′
β=1

hαβ(ναγα ;ν′
β)
(x, σ, γα, γ

′
β), (78)

where, according to Eqs. (55) and (56), we set

hαβ(ναγα ;ν′
β)
(x, ω, σ, γα, γ

′
β) =

∫ ∞

−∞
dq(χ(0)sα

ασγα(ναγα )(x, q),Ψ
(0)
βγ′

β(ν
′
β)
(ω, x, q)). (79)

Eq. (78) will now be developed in detail for electrons
(α = e) in domain 1 (νeγe = 1) and for γe < 0:

(ω − σ)Xse
e(1)(ω, σ, γe) =

∑

β=e,i

Heβ(1)(ω, σ, γe), (80)

where

Hee(1)(ω, σ, γe) =

∫ beγe(1)

aeγe(1)

dx

∫ ∞

−Ve(x)
dγ′

ehee(1;1)(x, ω, σ, γe, γ
′
e),

(81)

Hei(1)(ω, σ, γe) =

∫ beγe(1)

aeγe(1)

dx

∫ ∞

−Vi(x)
dγ′

ihei(1;1)(x, ω, σ, γe, γ
′
i).

(82)
In the integral extending over negative γ′

e, we omitted the
contribution of the vanishing quantity hee(1;2) (Eqs. (79) and
(D2)). in that extending over positive γ′

e, we omitted the
sum over the electron domain label ν′e because, for γ′

e > 0,
Neγ′

e
= 1 (Eq. (40)). We also omitted the sum over the ion

domain label νiγ′
i
because Niγ′

i
= 1 (Eq. (41)).

Taking into account that, in domain 1 (Eq. (29) and Fig.
1),

−V ′
e > 0, (83)

aeγe(1) = −∞, −Ve(aeγe(1)) = −|Ze|U, (84)

if − |Ze|U < γe < 0 then − Ve(beγe(1)) = γe, (85)

if − |Ze|U < γ′
e < 0 then [−Ve]

−1(γ′
e) = beγ′

e(1)
, (86)

and inverting the integration order in Eq. (81) according to
Eq. (E4), which applies when −Ve monotonically increases
(Eq. (83)), and to Eqs. (84)-(86), we have

if γe < 0 then Hee(1)(ω, σ, γe) =
∫ γe

−|Ze|U
dγ′

e

∫ beγ′
e(1)

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ 0

γe

dγ′
e

∫ beγe(1)

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ beγe(1)

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e). (87)

In the integral extending over positive γ′
e, we omitted the

sum over the electron domain label 1; because, for γ′
e > 0,

Neγ′
e
= 1 (Eq. (40)). Furthermore, in the first γ′

e-integral,
we also extend integration from γ′

e = −|Ze|U down to γ′
e =

−|Ze| < −|Ze|U (note that U < 1, Eq. (27)): this does not
change the value of that integral because hee(1;1) identically
vanishes for x < 0 and γ′

e < |Ze|U (Eqs. (79) and (D22)).
Last, using the definitions of the x-integration bounds (Eqs.
(57), (58) and (C4)), we rewrite Eq. (87) as

if γe < 0 then Hee(1)(ω, σ, γe) =
∫ 0

−|Ze|
dγ′

e

∫ beeγeγ′
e(1)

aeeγeγ′
e(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e). (88)

In a similar way, taking into account that, in domain 1,

−V ′
i < 0, (89)

aeγe(1) = −∞,−Vi(aeγe(1)) = −Zi(1− U), (90)

if − |Ze| < γe < 0 then − Vi(beγe(1)) = γ∗
i , (91)

if − Zi < γ′
i < Zi(1− U) then

[−Vi]
−1(γ′

i) = aiγ′
i (1)

, (92)

where

γ∗
i = −Zi(1 + γe/|Ze|), (93)

we invert the integration order in Eq. (82) according to Eq.
(E7), which applies when −Vi monotonically decreases (Eq.
(89)), and to Eqs. (90)-(92):

if γe < 0 then Hei(1)(ω, σ, γe) =
∫ −Zi(1−U)

γ∗
i

dγ′
i

∫ beγe(1)

aiγ′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ ∞

−Zi(1−U)
dγ′

i

∫ beγe(1)

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i). (94)

Due to Eqs. (79) and (D9), the first γ′
i -integral of Eq. (94)

remains unchanged if we replace its lower integration bound
γ∗
i by −Zi which, due to Eq. (D7), is certainly not larger

than γ∗
i . In the second γ′

i -integral of Eq. (94), aeγe(1) = ∞
(Eq. (29)) and so does aiγ′

i (1)
because γ′

i > −Zi(1 − U)
(Eq. (31)). Thus aeγe(1) may well be replaced by aiγ′

i (1)
in

that integral. In turn beγe(1) and aiγ′
i (1)

may be renamed
according to the definitions of the x-integration endpoints
(Eq. (C5)), and Eq. (94) may be rewritten as

if γe < 0 then Hei(1)(ω, σ, γe) =
∫ ∞

−|Zi|
dγ′

i

∫ beiγeγ′
i (1)

aeiγeγ
′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i). (95)
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Inserting Eqs. (88) and (95) into Eq. (80) we obtain

if γe < 0 then (ω − σ)Xse
e(1)(ω, σ, γe) =

∫ ∞

−|Ze|
dγ′

e

∫ beeγeγ′
e(1)

aeeγeγ′
e(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ ∞

−Zi

dγ′
i

∫ beiγeγ′
i (1)

aeiγeγ
′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i), (96)

Finally, reverting to the definitions of hee(1;1) and hei(1;1)

(Eqs. (77) and (79)), we realize that Eq. (96) is a particular
case (in which α = e, νeγe = 1) of the general form involving

only the basic quantites, i.e. the eigenfunctions χ(0)sα
ασγα and

ψ(0)sα
ασγα :

(ω − σ)Xsα
α(ναγα )(ω, σ, γα) =

∑

β=e,i

∫ ∞

−|Zβ |
dγ′

β

∑

sβ=±

∑

σ′

Nβγ′
β∑

ν′
β=1

G
sαsβ
αβ(ναγα ;ν′

β)
(σ, σ′, γα, γ

′
β)X

sβ
β(ν′

β)
(ω, σ′, γ′

β) (97)

where

G
sαsβ
αβ(ναγα ;ν′

β)
(σ, σ′, γα, γ

′
β) = 〈χ(0)sα

ασγα(ναγα )|H|ψ(0)sβ
βσ′γ′

β(ν
′
β)
〉,
(98)

and 〈. . . | . . .〉 precisely denotes the scalar product defined in
Eqs. (55) and (56).

A similar procedure applies, in Eqs. (80)-(82), to the elec-
tron egenfunctions for negative γe in domain 2 (Appendix
F), to the electron egenfunctions for positive γe (Appendix
G) and to the ion eigenfunctions (Appendix H) an it also
leads to Eqs. (97) and (98).

VI. THE INTEGRAL KERNELS

Taking into account the symmetry relations in Eq. (44)
and that K in Eq. (10) is real, the following relations hold
for the integral kernels (Eq. (98))

G−−
αβ (σ, σ′, γα, γ

′
β) = G++

αβ (σ, σ′, γα, γ
′
β), (99)

G+−
αβ (σ, σ′, γα, γ

′
β) = G−+

αβ (σ, σ′, γα, γ
′
β) =

G++
αβ (σ,−σ′, γα, γ

′
β). (100)

We now proceed to the calculation of the matrix elements
defined in Eq. (98), starting with G++

ee (σ, σ′, γe, γ′
e). Since

we can write (Eqs. (22) and (46))

χ(0)sα
ασγα

= eisαq|Bαγα |(−isασ)ψ
(0)sα
ασγα

/|Bαγα |, (101)

and (Eqs. (10), (22) and (18))

K|χ(0)se
eσ′γ′

e
〉 = −q

[
ZeFeψ

(0)se
eσ′γ′

e
/µe

ZiFiψ
(0)si
eσ′γ′

e
/µi

]
, (102)

K|χ(0)si
iσ′γ′

i
〉 = q

[
ZeFeψ

(0)se
iσ′γ′

i
/µe

ZiFiψ
(0)si
iσ′γ′

i
/µi

]
, (103)

Eq. (98) gives

G++
ee (σ, σ′, γe, γ

′
e) = −(Ze/µe)×

,
∫ beeγeγ′

e

aeeγeγ′
e

dx

∫ ∞

−∞
dqχ̄(0)+

eσγe
qFe(q)ψ

(0)+
eσ′γ′

e
=

−(Ze/µe),
{∫ beeγeγ′

e

aeeγeγ′
e

dx[(iσ)ψ̄(0)+
eσγe

ψ(0)+
eσ′γ′

e
/|Beγe |]×

∫ ∞

−∞
dqe−iq|Beγe |qFe(q)

}
. (104)

Taking into account that (Eq. (7)) Fα is the Fourier trans-
form of the steady state distribution function F̃α (in turn a
function of the particle energy w = µαv2/2− Vα), we have

∫ ∞

−∞
dqe−isαq|Bαγα |qFe(q) = 2πi[∂F̃α/∂v]|v=sα|Bαγα | =

2πi[µαv∂F̃α/∂w]|v=sα|Bαγα | =

2πisα|Bαγα |[µα∂F̃α/∂w]|v=sα|Bαγα |. (105)

Now, we set

F̃ ′
α(w) = ∂F̃α(w)/∂w =

[∂F̃α(µαv
2/2 + Vα)/∂v]/(µαv), (106)

so that

[∂F̃α/∂w]|v=sα|Bαγα | =

[F̃ ′
α(µαv

2/2− Vα)]|v=sα|Bαγα | =

F̃ ′
α(µα[2(γα + Vα)/µα]/2− Vα) = F̃ ′

α(γα) (107)

and Eq. (105) reduces to

∫ ∞

−∞
dqe−isαq|Bαγα |qFα = 2πiµαsα|Bαγα |F̃ ′

α(γα). (108)

Since F̃ ′
α(γα) is a real function independent of x, Eq. (104)

reads

G++
ee (σ, σ′, γe, γ

′
e) = 2πσ(Ze/µe)×

µeF̃
′
e(γe),

∫ beeγeγ′
e

aeeγeγ′
e

dxψ̄(0)+
eσγe

ψ(0)+
eσ′γ′

e
, (109)

or also, taking into account Eq. (46),

G++
ee (σ, σ′, γe, γ

′
e) = 2πσCeγeCeγ′

e
ZeF̃

′
e(γe)×

,
∫ beeγeγ′

e

aeeγeγ′
e

dx
1

iσ
eiσξeγe (x)

1

−iσ′ e
−iσ′ξeγ′

e
(x). (110)

Here, due to Eqs. (C4) and (C4), the electron-electron
kernel (Eq. (110)) reduces to

G++
ee (σ, σ′, γe, γ

′
e) = 2πCeγeCeγ′

e

1

σ′ZeF̃
′
e(γe)×

,
∫ bemin(γe,γ′

e)

aemin(γe,γ′
e)

dxeiσξeγe (x)−iσ′ξeγ′
e
(x). (111)

In a similar way, from Eqs. (98) and (103), we find the
ion-ion kernel:

G++
ii (σ, σ′, γi, γ

′
i) = −2πCiγiCiγ′

i

1

σ′ZiF̃
′
i (γi)×

,
∫ bi min(γi,γ

′
i )

ai min(γi,γ
′
i )

dxe
iσξiγi (x)−iσ′ξiγ′

i
(x)

. (112)
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Yaking the integration bounds from Eqs. (C5)-(??), the
cross-species kernels are

G++
ei (σ, σ′, γe, γ

′
i) = −2πCeγeCiγ′

i

1

σ′ZeF̃
′
e(γe)×

,
∫ beiγeγ′

i

aeiγeγ
′
i

dxe
iσξeγe (x)−iσ′ξiγ′

i
(x)

. (113)

and

G++
ie (σ, σ′, γi, γ

′
e) = 2πCiγiCeγ′

e

1

σ′ZiF̃
′
i (γi)×

,
∫ bieγiγ′

e

aieγiγ
′
e

dxeiσξiγi (x)−iσ′ξeγ′
e
(x) (114)

For combinations of the signs sα and s′β different from ++,

the matrix elementsG
sαs′β
αβ in Eq. (98) can be calculated from

Eqs. (111)-(112), using the symmetry relations in Eqs. (99)
and (100).
We end this section by pointing out that, because of the

particle masses µe,i appearing in the denominators of the
matrix elements in Eqs. (111)-(112), the largest of them is
Gee, followed by Ge,i, Gie and, last, Gii.

VII. THE HOMOGENEOUS ELECTRON
INTEGRAL KERNELS

To better understand the nature of the kernels Gαβ (Eqs.
(111)-(112)), and the way they contribute to the coefficients
Xα (Eq. (??)) and to the eigenfunctions χαω (Eq. (75)), we
consider first a simplified situation in which the ion mass is
infinite and the potential φ is a constant which, without loss
of generality, we set to zero.
Eq. (97) and (98) also arise, by a trivial exchange of the

x and γ′
β order of integration in Eq. (76), when the steady

state potential Φ (and thus Vα) is a constant. In this case,
there are no reflection points and, in Eqs. (55), (56) and
(97), we must set

if Φ = const. then

aαβγαγ′
β
= −∞, bαβγαγ′

β
= ∞, γαβ0(ναγα ) = 0. (115)

In this case, from Eqs. (23) and (2), we have

|Beγe | =
√
(2γe/µe) (116)

and the integral in Eq. (111) reduces to

∫ ∞

−∞
dxeiσ

∫
dx/|Beγe |−iσ′ ∫ dx/Beγ′

e =

∫ ∞

−∞
dxe±i{σ/√(2γe/µe)−σ′/√(2γ′

e/µe)}× =

2πδ(σ/
√
(2γe/µe)− σ′/

√
(2γ′

e/µe)). (117)

Using the identity

δ(f(x)) = [|df/dx|x=−∞]−1δ(x−−∞), (118)

where −∞ is the root of f(x) = 0, we transform Eq. (117)
into

∫ ∞

−∞
dxeiσ

∫
dx/|Beγe |−iσ′ ∫ dx/Beγ′

e =

2π
1

|∂[−σ′/√(2γ′
e/µe)]∂γ′

e|
δ(γ′

e − [σ′/σ]2γe) =

2π
1

| − σ′√(µe/2)∂[1/
√(γ′

e)]∂γ
′
e|
δ(γ′

e − [σ′/σ]2γe) =

2π
1

| − σ′√(µe/2)[−(γ′
e)

−3/2/2]|
δ(γ′

e − [σ′/σ]2γe) =

2π
µe|γ′

e|3/2

| − σ′(µe/2)3/2|
δ(γ′

e − [σ′/σ]2γe) =

2π
µe|2γ′

e/µe|3/2

| − σ′| δ(γ′
e − [σ′/σ]2γe) =

2π
µe[σ′]2|2γe/µe|3/2

|σ|3 δ(γ′
e − [σ′/σ]2γe). (119)

Therefore, Eq. (111) gives

G++
ee (σ, σ′, γe, γ

′
e) =

1

σ′
ZeF̃ ′

e(γe)√µe
√µe

×

,µe[σ′]2|2γe/µe|3/2

|σ|3 δ(γ′
e − [σ′/σ]2γe) (120)

or

G++
ee (σ, σ′, γe, γ

′
e) =

σ′gee(σ, γe)δ(γ
′
e − [σ′/σ]2γe), (121)

where

gee(σ, γe) = Ze|2γe/µe|3/2F̃ ′
e(γe)/|σ|3. (122)

Likewise, using Eqs. (99) and (100), we have

G−−
ee (σ, σ′, γe, γ

′
e) = G++

ee (σ, σ′, γe, γ
′
e) (123)

G+−
ee (σ, σ′, γe, γ

′
e) = G−+

ee (σ, σ′, γe, γ
′
e) =

−σ′gee(σ, γe)δ(γ
′
e − [σ′/σ]2γe). (124)

VIII. THE ELECTRON HOMOGENEOUS
EIGENVALUE PROBLEM

If, as assumed in Section VII, the ion mass is infinite, in
Eq. (??) taken for electrons (α = e) only the term involving

G
ses

′
e

ee survives and we have

(σ − ω)Xse
e (ω, σ, γe) =

∑

s′e=±

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

e

G
ses

′
e

ee (σ, σ′, γe, γ
′
e)X

s′e
e (ω, σ′, γ′

e). (125)

If, in Eq. (125), we change the signs of ω and σ and then the
sign of the integration variable σ′, and we take into account
that the matrix elements Gee, as defined in Eqs. (121)-(124),
are even functions of σ and odd functions of σ′, we easily
prove thatX±

e (−ω,−σ, γe) andX±
e (ω, σ, γe) satisfy the same

linear equation, and thus

X±
e (−ω, σ, γe) = X±

e (ω,−σ, γe). (126)
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Substituting the matrix elements G
ses

′
e

ee from Eqs. (121)-
(124) into Eq. (125) and, performing the γ′

e integration, we
find

(ω − σ)X±
e (ω, σ, γe) = gee(σ, γe)

∫ ∞

−∞
dσ′σ′ ×

[X±
e (ω, σ′, [σ′/σ]2γe)−X∓

e (ω, σ′, [σ′/σ]2γe)]. (127)

Eqs. (127) is the eigenvalue problem for the electron eigen-
functions in a homogeneous medium.

IX. THE SUPERPOSITION COEFFICIENTS X±
e

Because of the symmetry relation given in Eq. (126), the
eigenvalue problem in Eq. (127) needs be solved only for
ω > 0. We seek solutions to this equation in the form

X±
e (ω, σ, γe) = Λ±

e (σ, γe)δ(σ − ω)−

P
Y ±
e (σ, γe)

σ − ω
, (128)

for ω > 0.

Substituting Eq. (128) into Eqs. (127), we have

Y ±
e (σ, γe) = gee(σ, γe)

∫ ∞

−∞
dσ′σ′ ×

[
Λ±
e (σ, [σ

′/σ]2γe)δ(σ
′ − ω)− P

Y ±
e (σ′, [σ′/σ]2γe)

σ′ − ω
−

Λ∓
e (σ, [σ

′/σ]2γe)δ(σ
′ − ω) + P

Y ∓
e (σ′, [σ′/σ]2γe)

σ′ − ω

]
, (129)

for ω > 0

and, carrying out the σ′ integration,

Y ±
e (σ, γe) = gee(σ, γe)×{
ωΛ±

e (σ, [ω/σ]
2γe)− P

∫ ∞

−∞
dσ′σ′Y

±
e (σ′, [σ′/σ]2γe)

σ′ − ω
−

ωΛ∓
e (σ, [ω/σ]

2γe)+

P

∫ ∞

−∞
dσ′σ′Y

∓
e (σ′, [σ′/σ]2γe)

σ′ − ω

}
, (130)

for ω > 0.

This integral equation is solved by setting

Y ±
e (σ, γe) = σgee(σ, γe) (131)

and
σ

ω
= Λ±

e (σ, [ω/σ]
2γe)−

P

∫ ∞

−∞
dσ′σ′σ

′

ω

gee(σ′, [σ′/σ]2γe)

σ′ − ω
, (132)

for ω > 0.

We now use the identity

σ′

ω

1

σ′ − ω
=

1

σ′ − ω
+

1

ω
(133)

and, in substituting

gee(σ
′, [σ′/σ]2γe) =

Ze|2γe/µe|3/2F̃ ′
e([σ

′/ω]2γe)

|σ′|3 (134)

from Eq. (122) into Eq. (132), we take into account that
σ′gee(σ′, [σ′/σ]2γe) is an odd function of σ′, and integrates
to 0. Thus,

Λ±
e (σ, γe) = 1 +

Ze|2γe/µe|3/2

σ3
P

∫ ∞

−∞
dσ′σ′ F̃

′
e([σ

′/ω]2γe)

σ′ − σ
, (135)

for σ > 0,

where, since Λ±
e multiplies δ(σ−ω), we replaced ω by σ and

ω > 0 by σ > 0 ⇒ |σ| = σ.
From Eqs. (131) and (135) it is thus seen that

X+
e (ω, σ, γe) = X−

e (ω, σ, γe), (136)

for ω > 0.

X. THE SPACE FOURIER TRANSFORM OF THE
PERTURBED ELECTRON EIGENFUNCTION

Neglecting the O(µ−1/2
i ) ionic contributions (see discus-

sion at the end of Section VI), Eq. (75) reads

χeω(x, q) =

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

e ×

[X+
e (ω, σ′, γ′

e)χ
(0)+
eσ′γ′

e
(x, q) +

X−
e (ω, σ′, γ′

e)χ
(0)−
eσ′γ′

e
(x, q)]. (137)

Because of the symmetry relations given in Eq. (44), we
have

χe(−ω)(x, q) =

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

e ×

[X+
e (ω,−σ′, γ′

e)χ
(0)+
eσ′γ′

e
(x, q) +

X−
e (ω,−σ′, γ′

e)χ
(0)−
eσ′γ′

e
(x, q)], (138)

or, changing the sign of the integration variable σ′

χe(−ω)(x, q) =

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

e ×

[X+
e (ω, σ′, γ′

e)χ
(0)+
e(−σ′)γ′

e
(x, q) +

X−
e (ω, σ′, γ′

e)χ
(0)−
e(−σ′)γ′

e
(x, q)], (139)

and using the symmetry relations given in Eq. (44),

χe(−ω)(x, q) =

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

e ×

[X+
e (ω, σ′, γ′

e)χ̄
(0)+
eσ′γ′

e
(x,−q) +

X−
e (ω, σ′, γ′

e)χ̄
(0)−
eσ′γ′

e
(x,−q)]. (140)

Finally, taking into account that the coefficientsX±
e are real,

we have that

χe(−ω)(x, q) = χ̄eω(x,−q). (141)

Because of this symmetry relation, we may restrict the anal-
ysis of Eq. (137) for ω > 0 only.
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When ω > 0, further using Eq. (136), we reduce Eq. (137)
to

χeω(x, q) =

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

eX
+
e (ω, σ′, γ′

e)×

[χ(0)+
eσ′γ′

e
(x, q) + χ(0)−

eσ′γ′
e
(x, q)]. (142)

Substituting the zero order eigenfunctions from Eqs. (??)-
(??) taken for electrons (α = e), Eq. (142) becomes

χeω(x, q) =
1

(2π√µe)

∫ ∞

−∞
dσ′

∫ ∞

0
dγ′

eX
+
e (ω, σ′, γ′

e)×

1

Beγ′
e

[
ei(−σ′x/Beγ′

e
+qBeγ′

e
) + e−i(−σ′x/Beγ′

e
+qBeγ′

e
)
]
. (143)

In the integral involving ei(−σ′x/Beγ′
e
+qBeγ′

e
), we make the

substitution (we remind that in the homogeneous case being
considered, |Beγe | =

√(2γe/µe))

|Beγe | =
√
(2γe/µe) = v > 0, γe = µev

2/2, (144)

σ = kv, (145)

Since v > 0, the limits for the new variables are

γe = 0 ⇒ v = 0, γe = ∞ ⇒ v = ∞, (146)

σ = −∞ ⇒ k = −∞, σ = ∞ ⇒ k = ∞ (147)

Likewise, in the integral involving e−i(−σx/Beγ′
e
+qBeγ′

e
) in Eq.

(143), we set

|Beγe | =
√
(2γe/µe) = −v > 0, γe = µev

2/2 (148)

σ = −kv. (149)

Since v < 0, the limits for the new variables now are

γe = 0 ⇒ v = 0, γe = ∞ ⇒ v = −∞, (150)

σ = −∞ ⇒ k = ∞, σ = ∞ ⇒ k = −∞. (151)

The Jacobian of these transformations is
∣∣∣∣
∂σ/∂k ∂σ/∂v
∂γe/∂k ∂γe/∂v

∣∣∣∣ =
∣∣∣∣
±v ±k
0 µev

∣∣∣∣ = ±µev
2, (152)

where the upper sign is for the transformation given in Eqs.
(144) and (145) and the lower sign is for that given in Eqs.
(148) and (149). In this way, Eq. (143) becomes

χeω(x, q) =
µe

(2π√µe)
×

{∫ ∞

−∞
dk′

∫ ∞

0
dv′v′X+

e (ω, k′v′, µe[v
′]2/2)×

ei(−k′x+qv′)−∫ −∞

∞
dk′

∫ −∞

0
dv′v′X+

e (ω, k′v′, µe[v
′]2/2)

ei(−k′x+qv′)
}
=

√µe

2π

∫ ∞

−∞
dk′e−ik′x ×

∫ ∞

−∞
dv′|v′|X+

e (ω, k′v′, µe[v
′]2/2)eiqv

′
. (153)

This shows that

χekω(q) =
√
µe

∫ ∞

−∞
dv′|v′|X+

e (ω, kv′, µe[v
′]2/2)eiqv

′
(154)

is the space Fourier transform of χeω(x, q) according to the
definitions

χekω(q) =

∫ ∞

−∞
dxeikxχeω(x, q), (155)

χeω(x, q) =
1

2π

∫ ∞

−∞
dke−ikxχekω(q). (156)

Changing the sign of k and of the integration variable v′

in Eq. (154) and taking into account that X+ is real, we
prove that

χe(−k)ω(q) = χ̄ekω(q) = χekω(−q). (157)

Using this result and the symmetry relations established in
Eq. (141), we also prove that

χek(−ω)(q) = χ̄e(−k)ω(−q) = χekω(−q) = χ̄ekω(q), (158)

so that we may restrict the analysis of Eq. (154) for k > 0
and ω > 0 only.

Substituting X+ from Eq. (I24)

X+
e (ω, kv, µev

2/2) =
1

k
δ(v − ω/k)− Ze

µek2
1

2iπ
×

[∫∞
0 dq′q′Fe(q′)e−iq′v

k[v − (ω + i0)/k]
+

∫ 0
−∞ dq′q′Fe(q′)e−iq′v

k[v − (ω − i0)/k]

]
, (159)

for ω > 0 and k > 0

into Eq. (154), we distinguish two cases. If q − q′ > 0, we
close the v′-integration path in Eq. (154) in the upper half
complex v′ plane by an anti-clock-wise half-circle whose ra-
dius we let become infinite. The integral certainly converges
because ei(q−q′)v′

is bounded over the whole upper half v′

plane: in particular the contribution from the integration
along the half circle vanishes when its radius tends to infin-
ity because, on that half circle, the integrand

v′X+ ≈ 1

k

Ze

µek2
1

2iπ
eiqv

′
∫ ∞

−∞
dq′q′Fe(q

′)e−iq′v′
(160)

either phase-mixes to 0 for ,v′ (= 0, |v′| → ∞ or vanishes
exponentially for ,v′ = 0, |v′| →∞ . Furthermore, since
only the pole at v′ = ω/k + i0 lies within the integration
path, only the first term in the square brackets in Eq. (159)
gives a non zero contribution to the integral in Eq. (154).
In that term, q′ > 0 and thus the assumption q − q′ > 0 we
made for the present sub-case, implies that q > 0. By the
residue theorem we thus find

χekω(q) =
1

k

ω

k
eiq[(ω+i0)/k] ×

[
1− Ze

µek2

∫ q

0
dq′q′Fe(q

′)e−iq′[ω+i0)/k]

]
, (161)

for ω > 0, k > 0 and q > 0.

Likewise, if q − q′ < 0, we close the v′-integration path
in Eq. (154) by a clock-wise half-circle of infinite radius in
the lower half complex v′ plane. In this case, only the pole
at v′ = ω/k − i0 lies within the integration path and only
the second term in the second line of Eq. (159) gives a non
zero contribution to the integral in Eq. (154). In that term,
q′ < 0 and thus the assumption q − q′ < 0 we made for
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the present sub-case, implies that if q < 0. By the residue
theorem we thus find

χekω(q) =
1

k

ω

k
eiq[(ω−i0)/k] ×

[
1 +

Ze

µek2

∫ 0

q
dq′q′Fe(q

′)e−iq′[(ω−i0)/k]

]
, (162)

for ω > 0, k > 0 and q < 0.

Clearly, once the limit to the real axis in the exponential
factors is taken, Eqs. (161) and (162) give the same result.

In conclusion we may state that

χekω(q) =

√µeω

k2
×

eiqω/k

[
1− Ze

µek2

∫ q

0
dq′q′Fe(q

′)e−iq′ω/k

]
(163)

for ω > 0, k > 0

is the eigenfunction of the perturbed Vlasov operator for
k > 0, ω > 0 and for all values of q. For the other signs of k
and ω the eigenfunction is to be calculated according to the
symmetry relations given in Eqs. (157) and (158).

A further symmetry relation may be established as follows:

χekω(−q) =

√µeω

k2
×

e−iqω/k

[
1− Ze

µek2

∫ −q

0
dq′q′Fe(q

′)e−iq′ω/k

]
(164)

for ω > 0, k > 0.

As a way of check, we change the sign of the integration
variable q′ and taking into account that Fe(−q) = F̄e(q),
Eq. (164) reads

χekω(−q) =

√µeω

k2
×

e−iqω/k

[
1− Ze

µek2

∫ q

0
dq′q′F̄e(q

′)eiq
′ω/k

]
=

χ̄ekω(q), (165)

for ω > 0, k > 0.

which complies with the symmetry relation established in
Eq. (157).

We may now state the main result of our work. Since
χekω(q), the Fourier transform of a smooth function of ve-
locity, must vanish as q → ∞ by Lebesgue’s lemma, from
Eq. (163) we have that

1− Ze

µek2

∫ ∞

0
dq′q′Fe(q

′)e−iq′ω/k = 0. (166)

XI. THE PERTURBED ELECTRON
EIGENFUNCTION

From the analysis in Section X, we see that the perturbed
electron eigenfunction corresponding to the eigenvalue ω,
which may obviously range ove the entire real axis, has none
of the degeneracies affecting the unperturbed eigenfunctions
given in Eqs. (??)-(??). We may thus state that the spec-
trum of the Vlasov operator is continuous and simple.

Using the symmetry relations established in Eqs. (157),
we rewrite Eq. (156) as

χeω(x, q) =
1

π
,
∫ ∞

0
dke−ikxχekω(q). (167)

Further using the other symmetry established in Eq. (157)
we see that

χeω(−x, q) = χeω(x,−q), (168)

so that we may restrict our analysis to the case x > 0.
In substituting for χekω(q), we first consider the case q > 0.

Using Eq. (161)

χeω(x, q) =
√
µe

1

π
,
∫ ∞

0
dk

ω

k2
e−ikx ×

[
eiq(ω+i0)/k − Ze

µek2
×

∫ q

0
dq′q′Fe(q

′)ei(q−q′)(ω+i0)/k

]
(169)

for ω > 0, q > 0 and x > 0.

Exchanging the order of the k and q′ integration Eq. (169)
reads

χeω(x, q) =
√
µe

1

π
,
[∫ ∞

0
dk

ω

k2
e−i(kx−q(ω+i0)/k)−

Ze

µe

∫ q

0
dq′q′Fe(q

′)×
∫ ∞

0
dk

ω

k4
e−i[kx−(q−q′)(ω+i0)/k]

]
(170)

for ω > 0, q > 0 and x > 0.

We now use the identity
∫ ∞

0
dte−pttν−1e−a/(4t) =

2[a/(4p)]ν/2Kν([ap]
1/2) (171)

for ,a > 0.

The first k-integral in Eq. (170) reduces to the general form
given in Eq. (171) for

a = 4i[(ω + i0)q], p = ix, ν = −1 (172)

and, taking the limit to the real ω-axis, we have

,
∫ ∞

0
dk

ω

k2
e−i(kx−q(ω+i0)/k) =

2ω,([(ω + i0)q/x]−1/2K−1(2[−(ω + i0)xq]1/2)) =

−πω[ωq/x]−1/2,H(2)
−1 (2[ωxq]

1/2) =

πω[ωq/x]−1/2J−1(2[ωxq]
1/2) =

πω[ωq/x]−1/2J1(2[ωxq]
1/2) (173)

for ω > 0, q > 0 and x > 0,

where J , K and H(2) denote the Bessel, the modified Bessel
and the Hankel functions respectively. Notice that the inte-
gral defined in Eq. (173) is well behaved as q → 0.

Likewise, the second k-integral in Eq. (170) reduces to the
general form given in Eq. (171) for ν = −3 and we can write

,
∫ ∞

0
dk

ω

k4
e−i[kx−(q−q′)(ω+i0)/k] =

−πω[ω(q − q′)/x]−3/2J3(2[ωx(q − q′)]1/2) (174)

for ω > 0, q > q′ > 0 and x > 0.
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Notice that the integral given in Eq. (174) is well behaved
as q → q′.

When q < 0, we use Eq. (162) to write

χeω(x, q) =
√
µe

1

π
,
[∫ ∞

0
dk

ω

k2
e−i(kx−q(ω−i0)/k)+

Ze

µe

∫ 0

q
dq′q′Fe(q

′)×
∫ ∞

0
dk

ω

k4
e−i[kx−(q−q′)(ω−i0)/k]

]
(175)

for ω > 0, q < 0 and x > 0.

The first k-integral in Eq. (175) reduces to the general form
given in Eq. (171) for

a = 4i[(ω − i0)q], p = ix, ν = −1 (176)

and, taking the limit to the real ω-axis, we have

,
∫ ∞

0
dk

ω

k2
e−i(kx−q(ω−i0)/k) =

2ω,([(ω − i0)q/x]−1/2K−1(2[−(ω − i0)xq]1/2)) =

2ω,(i[ω|q|/x]−1/2K−1(2[ωx|q|]1/2)) = 0 (177)

for ω > 0, q < 0 and x > 0.

Likewise, the second k-integral in Eq. (175) reduces to the
general form given in Eq. (171) for ν = −3 and we can write

,
∫ ∞

0
dk

ω

k4
e−i[kx−(q−q′)(ω+i0)/k] = 0. (178)

for ω > 0, q < q′ < 0 and x > 0.

XII. CONCLUSIONS

In this way, the electron eigenfunction pertaining to the
particles reflected at x = aeγe(1) (Eq. (29)) is different from
(and indeed orthogonal to, as we shall see) the one pertaining
to the particles reflected at x = aeγe(2) (Eq. (30)), even for
the same values of σ, γe and se. No such difference needs be
introduced for the ion eigenfunctions and if γe > 0, because
no reflection points exist and the electron eigenfunction is
defined for −∞ < x < ∞.

In this work we described a technique to find the permit-
tivity of an electron gas to electrostatic perturbations. This
technique is worked out in the space of the Fourier trans-
formed velocity coordinate, the q-space and it is based upon
a judicious construction of the eigenfunctions of the Vlasov
operator as a superposition of those of its free-streaming part
(the Liouville operator)[1].

The choice of the superposition coefficients provides the
eigenfunctions in a form akin to that found in Ref. [11] by
an entirely different method.

The peculiarity of these eigenfunctions is that their limit
value, as the coordinate q tends to infinity, is proportional
to the permittivity of the electron gas to electrostatic per-
turbations, as found, e.g., in Ref. [15]. Since this limit must
vanish, by Lebesgue’s lemma, our technique directly provides
the dispersion equation for the electrostatic perturbations.

As a way of example, we applied this technique to an ho-
mogeneous ionized electron gas over a neutralizing, infinite
mass, ion background, but its general formulation may well
be used in the case of an inhomogeneous, electron and finite
mass ion gas.

Appendix A: Reduction of Ampére’s Equation

In physicsl units, Ampére’s law for the electric field Ê and
currnet ĵ is

∂Ê

∂t̂
= −4πĴ = −4πĵ = −4π

∑

α

ĵα

ĵα = Qα

∫ ∞

−∞
dv̂v̂f̂α, (A1)

where the sum is extended over all the particle species α of
charge Qα. Using the notation of Section II, and setting

Ê = −Φ0φ
′, (A2)

we have

Φ0

λ
ωp

∂φ̃′

∂t
= 4πn0ev0

∑

α

Zα

|Zα|
j̃α,

where

j̃α =

∫ ∞

−∞
dvvf̃α, (A3)

are the normalised particle fluxes. Eq. (A3) reduces to

Φ0

v0
ω2
p
∂φ̃′

∂t
= 4πn0ev0

∑

α

Zα

|Zα|
j̃α, (A4)

or

∂φ̃′

∂t
=

4πn0e2

meω2
p

mev20
eΦ0

∑

α

Zα

|Zα|
j̃α =

∑

α

Zα

|Zα|
j̃α. (A5)

Now, from Eq. (5), we see that ∂φ̃/∂t is the inverse ω-
Fourier transform of iωφω. Also, taking the q-derivative of
both sides of Eq. (6)

∂fαω
∂q

=

∫ ∞

−∞
dω

∫ ∞

−∞
dvivei(qv−ωt)f̃α, (A6)

we see that vf̃α is the inverse q- and ω-Fourier transform of
−i∂fαω/∂q. Thus, taking the direct t-Fourier transform of
Eq. (A5), we have

iωφ′
ω =

∑

α

Zα

|Zα|
jαω, (A7)

where

jαω =
−i

2π

∫ ∞

−∞
dv

∫ ∞

−∞
dqe−iqv ∂fαω

∂q
. (A8)

If the q-integral converges, we may invert the order of v and
q integration and, using the identity

∫∞
−∞ dve−iqv = 2πδ(q),

we find

φ′
ω = −i(jeω − jiω)/ω, jα = −i∂fαω/∂q|q=0. (A9)
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Appendix B: Reflection Points and Eigenfunction
Phases in the Nonmonotonic Double Layer

To reduce the integral in Eq. (24), we first make the sub-
stitution

2
√
U/[(1 +

√
U)coth(κx/2)− (1−√

U)] = u, (B1)

whence

(1 +
√
U) coth(κx/2)u = 2

√
U + (1−√

U)u,

coth(κx/2) = (1−√
U + 2

√
U/u)/(1 +

√
U), (B2)

and

κ
dx

du
=

2

1− [(1−√U + 2√U/u)/(1 +√U)]2
−2√U/u2

1 +√U

=
2(1 +√U)2

(2√U − 2√U/u)(2 + 2√U/u)

−2√U/u2

1 +√U
=

1 +√U

(1− u)(u+√U)
=

1

1− u
+

1

u+√U
= G(u). (B3)

Then we insert the potential Φ (Eq. (26)) into the electron
potential energy −Ve = −|Ze|Φ (Eq. (2)) and then in the
electron eigenfunction phase (Eqs. (23) and (24)) to get

ξeγe =

√µe
√2κ

∫ u

ueγe

dt
G(t)

√(γe + |Ze|t2)
, (B4)

where G(t) was defined in Eq. (B3) and ueγe is a constant
to be determined so that ξeγe in Eq. (B4) be real, as follows:

if − |Ze| ≤ γe < 0 then

either u < ueγe(1) = −√|γe/Ze|, (B5)

or u > ueγe(2) =
√|γe/Ze|. (B6)

To the quantities ueγe(1) and ueγe(2) respectively correspond,
through Eq. (B2), the values of the reflection points beγe(1)

and aeγe(2) reported in Eqs. (29) and (30) of the main text:

if − |Ze| ≤ γe < 0 then

beγe(1) =
2

κ
coth−1

(
1−√U − 2√U/√|γe/Ze|

1 +√U

)
, (B7)

aeγe(2) =
2

κ
coth−1

(
1−√U + 2√U/√|γe/Ze|

1 +√U

)
. (B8)

As γe → 0− in Eq. (B5) and (B6), ueγe(1) and ueγe(2) coalesce
to zero. This is why, for γe > 0, we set

if γe > 0 then ueγe = 0. (B9)

To this value of ueγe corresponds, through Eq. (B2), the
value of xeγe = 0 reported in Eq. (28) of the main text.

Similar considerations apply to the ion eigenfunction
phase (Eq. (24)). Inserting the potential Φ (Eq. (26)) into
the ion potential energy −Vi = −Zi(1 − Φ) (Eq. (2)) and
then in Eqs. (23) and (24), we have

ξiγi =

√µi
√2κ

∫ u

uiγi

dt
G(t)

√(γi + Zi − Zit2)
, (B10)

where G(t) was defined in Eq. (B3). If γi < 0, then, for ξiγi

in Eq. (B10) to be real, the following conditions must be
met

if − Zi ≤ γi < 0 then

−uiγi < u < uiγi =
√
(1 + γi/Zi). (B11)

To the quantities uiγi and −uiγi respectively correspond,
through Eq. (B2), the values of the reflection points xiγi(1) =
biγi(1) and xiγi(1) = aiγi(1) reported in Eqs. (32) and (33) of
the main text:

if − Zi ≤ γi < 0 then biγi(1) =

2

κ
coth−1

(
1−√U + 2√[U/(1 + γi/Zi)]

1 +√U

)
, (B12)

if − Zi ≤ γi < −Zi(1− U) then aiγi(1) =

2

κ
coth−1

(
1−√U − 2√[U/(1 + γi/Zi)]

1 +√U

)
. (B13)

Here, the reflection point aiγi(1) exists as a real quantity only

if −Zi ≤ γi < −Zi(1 − U), because the argument of coth−1

must be smaller than −1.
As γi → 0− in Eq. (B12), uiγi → 1. This is why, for

γi > 0, we set

if γi > 0 then uiγi = 1. (B14)

To this value of uiγi corresponds, through Eq. (B2), the
value of xiγi(1) = ∞ reported in Eq. (31) of the main text.

We now arrange Eqs. (B4) and (B10) in a single formula

ξα =

√µα
√2κ

∫ u

uαγα

dt
G(t)

√(Yα − Zαt2)
=

√µα
√2κ

[I1(t) + I2(t)]
t=u
t=uαγα

, (B15)

where

Ye = γe, Yi = Zi + γi, (B16)

I1(u) =

∫
du

√(Yα − Zαu2)

1

1− u
=

−
∫

ds

s√(Yα − Zα + 2Zαs− Zαs2)
, (B17)

with s = 1− u, (B18)

I2(u) =

∫
du

√(Yα − Zαu2)

1

u+√U
=

∫
dr

r√(Yα − Zαa− 2Zαr
√U − Zαr2)

, (B19)

with r = u+
√
U. (B20)

These two integrals may in turn be written in a single
formula

I1(u) = −I(−1, 1− u), I2(u) = I(
√
U, u+

√
U), (B21)

where

I(b, w) =

∫
dw

wR
, R =

√
(Wα − 2Zαbw − Zαw

2), (B22)

Wα = Yα − Zαb
2. (B23)
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Following Ref. [16, formula 2.266 p. 84], we have

if Wα > 0 then I(b, w) =
1

√Wα
ln

w

Wα − Zαbw +√WαR
, (B24)

if Wα < 0 then I(b, w) =
1

√|Wα|
tan−1Wα + Zαbw

√|Wα|R
. (B25)

Appendix C: Relative Positions of the Reflection Points
and Nonvanishing Domains for hαβ

To calculate the x-integration bounds in Eqs. (55)-(58)

aαβγαγ′
β
= max(aαγα , aβγ′

β
), (C1)

bαβγαγ′
β
= min(bαγα , bβγ′

β
) (C2)

we need determine the endpoints aαγα , bαγα , aβγ′
β
, bβγ′

β

of the intervals in which the eigenfunctions do not identi-
cally vanish (Eqs. (42) and (48)) and their relative position.
These endpoints are either reflection points or boundaries of
the double layer and they were defined in Eqs. (28)-(30) for
electrons and in Eqs (31)-(33) for ions.

Specifically, when γe < 0 and γ′
e < 0 and when γi <

−Zi(1− U) and γi < −Z ′
i (1− U) in domain 1 or γi < 0 and

γ′
i < 0 in domain 2, inspection of Fig. 1 shows that

if γα ≤ γ′
α then aαγ′

α
≤ aαγα , bαγ′

α
≥ bαγα , (C3)

When γe and/or γ′
e exceed 0, then aeγe and/or aeγ′

e
approach

−∞ and beγe or beγ′
e
approach ∞ (Eq. (28)). Also, when γi

and/or γ′
i exceed −Zi(1 − U), but remain negative, then

aiγi(1) and/or aiγ′
i (1)

= approach −∞ (Eq. (31)). When γi
and/or γ′

i exceed 0, then biγi(1) and/or biγ′
i (1)

approach ∞
(Eqs. (31)-(32)). In all cases, the relations in Eq. (C3)
holds, possibly with the equal sign holding. This proves Eq.
(C4) below.

When α (= β, the labels (1) or (2) need be applied to
aαβγαγ′

β
and bαβγαγ′

β
when the endpoints aeγe(1), beγe(1),

aeγ′
e(1)

, beγ′
e(1)

(Eq. (29)) or aeγe(2), beγe(2), aeγ′
e(2)

, beγ′
e(2)

(Eq. (30)) are used in Eqs. (C1) and (C2).
Specifically, in domain 1, for all values of γe, aeγe(1) = −∞

(Eqs. (28) and (29)). If γ′
i < −Zi(1−U), then aiγ′

i (1)
> −∞

and, if γ′
i > −Zi(1 − U), then aiγ′

i (1)
= −∞ (Eq. (32)): in

both cases, aeγe(1) never exceeds aiγ′
i (1)

. This proves the first
of Eq. (C5) below.
In domain 2, for all values of γe, beγe(2) = ∞ (Eqs. (28)

and (30)). If γ′
i < 0, then biγ′

i (1)
< ∞ and, if γ′

i > 0, then
biγ′

i (1)
= ∞ (Eq. (28)): in both cases, biγ′

i (1)
never exceeds

beγe(2). This proves the first of Eq. (C6) below.
In domian 1, for γe < 0 and for all values of γ′

i , biγ′
i (1)

>
0 > beγe(1) (Eqs. (29) and (32)). This proves the first of Eq.
(C7) below.
In domain 2, for γe < 0 and for all values of γ′

i , aiγ′
i (1)

<
0 < aeγe(2) (Eqs. (30) and (33)). This proves the first of Eq.
(C8) below.
If γe > 0, then beγe(1) = ∞ (Eq. (28)); If γ′

i < 0, then
biγ′

i
< ∞ and, if γ′

i > 0, then biγ′
i
= ∞. In both cases biγ′

i

never exceeds beγe(1): this proves the first of Eq. (C9);

Last, if γe > 0, then aeγe(2) = −∞ (Eq. (28)); If γ′
i <

−Zi(1 − U), then aiγ′
i
> −∞ and, if γ′

i > −Zi(1 − U), then
aiγ′

i
= −∞. In both cases aeγe(2) never exceeds aiγ′

i
: this

proves the first of Eq. (C10).
The ordering relations between the endpoints thus give the

following x-integration bounds.

aααγαγ′
α
= aαmin(γα,γ′

α), bααγαγ′
α
= bαmin(γα,γ′

α). (C4)

aeiγeγ′
i (1)

= aiγ′
i (1)

, aieγiγ′
e(1)

= aiγi(1), (C5)

beiγeγ′
i (2)

= biγ′
i (1)

, bieγiγ′
e(2)

= biγi(1). (C6)

if γe < 0 or γ′
e < 0 then

beiγeγ′
i (1)

= beγe(1), bieγiγ′
e(1)

= beγ′
e(1)

, (C7)

aeiγeγ′
i (2)

= aeγe(2), aieγiγ′
e(2)

= aeγ′
e(2)

, (C8)

if γe > 0 or γ′
e > 0 then

beiγeγ′
i (1)

= biγ′
i (1)

, bieγiγ′
e(1)

= biγi(1). (C9)

beiγeγ′
i (2)

= biγ′
i (1)

, aieγiγ′
e(2)

= aiγi(1). (C10)

The other relations appearing in the second columns of
Eqs. (C5)-(C10) are reported for ease of reference and they
follow from the obvious symmetry of Eqs. (C1) and (C2):

aαβγαγ′
β
= aβαγβγ′

α
, bαβγαγ′

β
= bβαγβγ′

α
. (C11)

Appendix D: Nonvanishing x-intervals for hαβ

The contribution of the unperturbed oscillations of par-
ticles of species β to the perturbed oscillations of particles
of species α depends on the x-intervals where the functions
hαβ(ναγα ;ν′

β)
(x, σ, γα, γ′

β) (Eqs. (77))-(79) do not identically
vanish. In turn, the extent of these intervals depends on
the degeneracy parameters γα and γ′

β , as we shall presently
determine.

Specifically, in Eq. (77), Ψ(0)
βγ′

β(ν
′
β)

is based on the un-

perturbed electric potential eigenfunctions ψ
(0)sβ
βσ′γ′

β(ν
′
β)
, all of

which involve the same value of γ′
β so that, due to Eq. (48),

given γ′
β and x /∈ (aβγ′

β
, bβγ′

β
) then Ψ(0)

βγ′
β
= 0. (D1)

It immediately follows from Eqs. (29), (30), (42) and (D1)
that

if γe < 0, γe < 0 and νeγe (= νeγe then

hee(νeγe ;νeγe )
(x, σ, γe, γe) = 0, (D2)

and

if x > 0 and γe < 0 then hαe(ναγα ;1)(x, σ, γα, γe) = 0, (D3)

if x < 0 and γe < 0 then hαe(ναγα ;2)(x, σ, γα, γe) = 0. (D4)

We further observe that, since, in domain 1, −Vi is a de-
creasing function of x (Eq. (2) and Fig. 1), given two points
a and b, −Vi(a) < −Vi(b) ⇒ a > b. Then, from the relations

if x < 0 and − |Ze| < γe < 0 then − Vi(beγe(1)) = γ∗
i , (D5)

if x < 0 and − Zi < γi < Zi(1− U) then

−Vi(aiγi(1)) = γi, (D6)
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where

γ∗
i = −Zi(1 + γe/|Ze|), (D7)

we have

if x < 0, γe < 0 and γi < γ∗
i then aiγi(1) > beγe(1). (D8)

In this circumstance, the interval (aeγe(1), beγe(1)) where

χ(0)sα
ασγα (= 0 (Eq. (42)) and (aiγi(1), biγi(1)) where Ψ(0)

iγi
(= 0

(Eq. (D1)) are disjoint, so that, according to Eqs. (D1) and
(79),

if x < 0, γe < 0 and γi < γ∗
i then hei(1;1)(x, σ, γe, γi) = 0.

(D9)
A similar argument applies in domain 2 where −Vi mono-

tonically increases, so that −Vi(b) < −Vi(a) ⇒ a > b. Then,
from the relations

if x > 0 and − |Ze| < γe < 0 then − Vi(aeγe(2)) = γ∗
i , (D10)

if x > 0 and − Zi < γi < 0 then − Vi(biγi(1)) = γi, (D11)

we have

if x > 0, γe < 0 and γi < γ∗
i then aeγe(2) > biγi(1). (D12)

In this circumstance, the interval (aeγe(2), beγe(2)) where

χ(0)se
eσγe (= 0 (Eq. (42)) and (aiγi(1), biγi(1)) where Ψ(0)

iγi
(= 0

(Eq. (D1)) are disjoint, so that, according to Eqs. (D1) and
(79),

if x > 0, γe < 0 and γi < γ∗
i then hei(2;1)(x, σ, γe, γi) = 0.

(D13)
We further observe that, since, in domain 1, −Ve is an

increasing function of x (Eq. (2) and Fig. 1), given two
points a and b, −Ve(a) > −Ve(b) ⇒ a > b. Then, from the
relations

if − Zi < γi < −Zi(1− U) then − Ve(aiγi(1)) = γ∗
e , (D14)

if γi > −Zi(1− U) then − Ve(aiγi(1)) = −|Ze|U, (D15)

if γe < 0 then − Ve(beγe(1)) = γe, (D16)

we have

if x < 0 and γe < −Vea then aiγi(1) > beγe(1), (D17)

where

−Vea = max(γ∗
e ,−|Ze|U) i.e. (D18)

if − Zi < γi < −Zi(1− U) then − Vea = γ∗
e , (D19)

if γi > −Zi(1− U) then − Vea = −|Ze|U (D20)

and

γ∗
e = −|Ze|(1 + γi/Zi), (D21)

In this circumstance, the interval (aiγi(1), biγi(1)) where

χ(0)si
iσγi

(= 0 (Eq. (42)) and (aeγe(1), beγe(1)) where Ψ(0)
eγe(1)

(= 0

(Eq. (D1)) are disjoint, so that, according to Eqs. (D1) and
(79),

if x < 0 and γe < −Vea then hie(1;1)(x, σ, γi, γe) = 0,(D22)

Last, since, in domain 2, −Ve is an decreasing function of
x (Eq. (2) and Fig. 1), given two points a and b, −Ve(b) >
−Ve(a) ⇒ a > b. Then, from the relations

if − Zi < γi < 0 then − Ve(biγi(1)) = γ∗
e , (D23)

if γi > 0 then biγi(1) = ∞ and − Ve(biγi(1)) = −|Ze|, (D24)

if − |Ze| < γe < 0 then Ve(aeγe(2)) = γe, (D25)

we have

if x > 0 and γe < −Veb then aeγe(2) > biγi(1). (D26)

where

−Veb = max(γ∗
e ,−|Ze|) i.e. (D27)

if − Zi < γi < 0 then − Veb = γ∗
e , (D28)

if γi > 0 then − Veb = −|Ze|. (D29)

In this circumstance, the interval (aiγi(1), biγi(1)) where

χ(0)si
iσγi

(= 0 (Eq. (42)) and (aeγe(2), beγe(2)) where Ψ(0)
eγe(2)

(= 0

(Eq. (D1)) are disjoint, so that, according to Eqs. (D1) and
(79),

if x > 0 and γe < −Veb then hie(1;2)(x, σ, γi, γe) = 0,(D30)

Appendix E: Inversion of the Integration Order

Given real numbers a < b and c and the generic functions
f(x, y) and g(x) < c, when g is not a constant, we write

I =

∫ b

a
dx

∫ c

g(x)
dyf(x, y) =

∫ g(b)

g(a)
dth′(t)

∫ c

t
dyf(h(t), y), (E1)

where t = g(x), h(t) = g−1(t) and h′(t) = [g′(x)|x=h(t))]
−1.

If g is an increasing function of x, then g(b) > t > g(a) and
we further write

I =

∫ g(b)

g(a)
dth′(t)

∫ g(b)

t
dyf(h(t), y) +

∫ g(b)

g(a)
dth′(t)

∫ c

g(b)
dyf(h(t), y). (E2)

Then we interchange the order of integration according to
Fubini’s rule:

I =

∫ g(b)

g(a)
dy

∫ y

g(a)
dth′(t)f(h(t), y) +

∫ c

g(b)
dy

∫ g(b)

g(a)
dth′(t)f(h(t), y) (E3)

and, reverting to the x variable, we finally get

if b > a, g′(x) (= 0 in (a, b) and g(b) > g(a) then
∫ b

a
dx

∫ c

g(x)
dyf(x, y) =

∫ g(b)

g(a)
dy

∫ g−1(y)

a
dxf(x, y) +

∫ c

g(b)
dy

∫ b

a
dxf(x, y). (E4)
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On the other hand, if g is a decreasing function of x, then
g(a) > t > g(b) and, in place of Eq. (E2), we write

I = −
∫ g(a)

g(b)
dth′(t)

∫ g(a)

t
dyf(h(t), y)−

∫ g(a)

g(b)
dth′(t)

∫ c

g(a)
dyf(h(t), y). (E5)

We again interchange the order of integration, so that

I = −
∫ g(a)

g(b)
dy

∫ y

g(b)
dth′(t)f(h(t), y)−

∫ c

g(a)
dy

∫ g(a)

g(b)
dth′(t)f(h(t), y) (E6)

and we finally revert to the x variable to get

if b > a, g′(x) (= 0 in (a, b) and g(a) > g(b) then
∫ b

a
dx

∫ c

g(x)
dyf(x, y) =

∫ g(a)

g(b)
dy

∫ b

g−1(y)
dxf(x, y) +

∫ c

g(a)
dy

∫ b

a
dxf(x, y). (E7)

Appendix F: The integral Equation for the Perturbed
Electron Eigenfunction Coefficients in Domain 2 and for

γe < 0

Eq. (78) for electrons (α = e) for γe < 0 in domain 2
(νeγe = 2) reads

(ω − σ)Xse
e(2)(ω, σ, γe) =

∑

β=e,i

Heβ(2)(ω, σ, γe) (F1)

where

Hee(2)(ω, σ, γe) =

∫ beγe(2)

aeγe(2)

dx

∫ ∞

−Ve(x)
dγ′

ehee(2;2)(x, ω, σ, γe, γ
′
e),

(F2)

Hei(2)(ω, σ, γe) =

∫ beγe(2)

aeγe(2)

dx

∫ ∞

−Vi(x)
dγ′

ihei(2;1)(x, ω, σ, γe, γ
′
i),

(F3)
In the integral extending over negative γ′

e, we omitted the
contribution of the vanishing quantity hee(2;1) (Eqs. (79) and
(D2)). in that extending over positive γ′

e, we omitted the
sum over the electron domain label ν′e because, for γ′

e > 0,
Neγ′

e
= 1 (Eq. (40)). We also omitted the sum over the ion

domain label νiγ′
i
because Niγ′

i
= 1 (Eq. (41)).

In domain 2 we have (Fig. 1 and Eqs. (2), (26) and (30))

−V ′
e < 0, (F4)

beγe(2) = ∞, −Ve(beγe(2)) = −|Ze|, (F5)

if − |Ze| < γe < 0 then − Ve(aeγe(2)) = γe, (F6)

if − |Ze| < γ′
e < 0 then [−Ve]

−1(γ′
e) = aeγ′

e(2)
, (F7)

Inverting the integration order in Eq. (F2) according to Eq.
(E7), which applies when −Ve monotoniclly decreases (Eq.
(F4)), and to Eqs. (F5)-(F7), we have

if γe < 0 then Hee(2)(ω, σ, γe) =
∫ γe

−|Ze|
dγ′

e

∫ beγe(2)

aeγ′
e(2)

dxhee(2;2)(x, ω, σ, γe, γ
′
e) +

∫ 0

γe

dγ′
e

∫ beγe(2)

aeγe(2)

dxhee(2;2)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ beγe(2)

aeγe(2)

dxhee(2;1)(x, ω, σ, γe, γ
′
e). (F8)

Using the definitions of the integration endpoints in Eq.
(C4), we rewrite Eq. (F8) as

if γe < 0 then Hee(2)(ω, σ, γe) =
∫ ∞

−|Ze|
dγ′

e

∫ beeγeγ′
e(2)

aeeγeγ′
e(2)

dxhee(2;2)(x, ω, σ, γe, γ
′
e). (F9)

In a similar way, taking into account that, in domain 2,

−V ′
i > 0, (F10)

beγe(2) = ∞, −Vi(beγe(2)) = 0, (F11)

if − |Ze| < γe < 0 then − Vi(aeγe(2)) = γ∗
i , (F12)

if − Zi < γ′
i < 0 then [−Vi]

−1(γ′
i) = biγ′

i (1)
, (F13)

where γ∗
i was defined in Eq. (D7), we invert the integration

order in Eq. (F3) according to Eq. (E4), which applies when
when −Vi monotonically increases (Eq. (F10)), and to Eqs.
(F11)-(F13):

if γe < 0 then Hei(2)(ω, σ, γe) =
∫ 0

γ∗
i

dγ′
i

∫ biγ′
i (1)

aeγe(2)

dxhei(2;1)(x, ω, σ, γe, γ
′
i) +

∫ ∞

0
dγ′

i

∫ beγe(2)

aeγe(2)

dxhei(2;1)(x, ω, σ, γe, γ
′
i). (F14)

Due to Eq. (D13), the first x-integral of Eq. (F14) remains
unchanged if we replace its lower integration bound γ∗

i by
−Zi which, due to Eq. (D7), is certainly not larger than γ∗

i .
Also, in the second integral of Eq. (F14), γ′

i > 0 and thus
biγ′

i (1)
= ∞ (Eq. (31)): since also beγe(2) = ∞ (Eq. (30))

it may well be replaced by biγ′
i (1)

. In turn, aeγe(2) may be
renamed to aeiγeγ′

i (2)
(Eq. (C8)) and biγ′

i (1)
to beiγeγ′

i (2)
(Eq.

(C6)) so that Eq. (F14) may be rewritten as

if γe < 0 then Hei(2)(ω, σ, γe) =
∫ ∞

−Zi

dγ′
i

∫ beiγeγ′
i (2)

aeiγeγ
′
i (2)

dxhei(2;1)(x, ω, σ, γe, γ
′
i). (F15)

Inserting Eqs. (F9) and (F15) into Eq. (F1), we have

if γe < 0 then (ω − σ)Xse
e(2)(ω, σ, γe) =

∫ ∞

−|Ze|
dγ′

e

∫ beeγeγ′
e(2)

aeeγeγ′
e(2)

dxhee(2;2)(x, ω, σ, γe, γ
′
e) +

∫ ∞

−Zi

dγ′
i

∫ beiγeγ′
i (2)

aeiγeγ
′
i (2)

dxhei(2;1)(x, ω, σ, γe, γ
′
i). (F16)

Finally, reverting to the definitions of hee(2;2) and hei(2;1)

(Eqs. (77) and (79)), Eq. (F16) appears as a particular case
of Eq. (97).
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Appendix G: The integral Equation for the Perturbed
Electron Eigenfunction Coefficients for γe > 0

For electrons (α = e), νeγe = 1 is the only value available
when γe > 0 (Eqs. (36) and (40)) in Eq. (80), which thus
reads

(ω − σ)Xse
e(1)(ω, σ, γe) =

∑

β=e,i

Heβ(1)(ω, σ, γe), (G1)

where

Hee(1)(ω, σ, γe) =

∫ beγe(1)

aeγe(1)

dx

∫ ∞

−Ve(x)
dγ′

e

Neγ′
e∑

ν′
e=1

hee(1;ν′
e)
(x, ω, σ, γe, γ

′
e)

(G2)

Hei(1)(ω, σ, γe) =

∫ beγe(1)

aeγe(1)

dx

∫ ∞

−Vi(x)
dγ′

ihei(1;1)(x, ω, σ, γe, γ
′
i),

(G3)
and we omitted the sum over the ion domain label ν′i because
Niγ′

i
= 1 (Eq. (41)).

The x-integration interval in Eq. (G2) will now be split
into two parts:

if γe > 0 then Hee(1) = H left
ee(1) +Hright

ee(1). (G4)

The left part ends at x = 0 and the right part starts at
x = 0. In each part −Vβ(x) is a monotonic function and we
may invert the x and γ′

β order of integration. Specifically, in
the left part of the x-integration, we have (Fig. 1 and Eqs.
(2), (26) and (29)),

−V ′
e > 0, (G5)

aeγe(1) = −∞, −Ve(aeγe(1)) = −|Ze|U, (G6)

−Ve(0) = 0, (G7)

if γ′
e < 0 then [−Ve]

−1(γ′
e) = beγ′

e(1)
, (G8)

and we invert the integration order in Eq. (G2) according to
Eq. (E4), which applies when Eq. (G5) holds, and to Eqs.
(G6)-(G8):

if γe > 0 then H left
ee(1)(ω, σ, γe) =

∫ 0

−|Ze|U
dγ′

e

∫ beγ′
e(1)

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ 0

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e). (G9)

In the second integral of Eq. (G10), extending over positive
γ′
e, we omitted the sum over the electron domain label ν′e

because, for γ′
e > 0, Neγ′

e
= 1 (Eqs. (36) and (40)). In the

first integral of Eq. (G10), extending over negative γ′
e, we

omitted the contribution of hee(1;2) which identically vanishes
for x < 0 and γ′

e < 0 (Eq. (D2)); Due to Eq. (D22), in
the first γ′

e-integral the lower integration bound −|Ze|U may
be replaced by −|Ze|U which, due to Eq. (27)), is smaller
than |Ze|U . In the first x-integral, we may also rename the
lower x-integration bound aeγe(1) (the same appearing in Eq.

(G2)) to aeγ′
e(1)

: both equal −∞ for x < 0 (Eq. (28) and
(30)). Eq. (G10) may thus be rearranged as

if γe > 0 then H left
ee(1)(ω, σ, γe) =

∫ 0

−|Ze|
dγ′

e

∫ beγ′
e(1)

aeγ′
e(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ 0

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e). (G10)

In the right part of the x-integration, we have (Fig. 1 and
Eqs. (2), (26) and (29)),

−V ′
e < 0, (G11)

beγe(1) = ∞, −Ve(beγe(1)) = −|Ze|, (G12)

−Ve(0) = 0, (G13)

if − |Ze| < γ′
e < 0 then [−Ve]

−1(γ′
e) = aeγ′

e(2)
, (G14)

and we invert the integration order in Eq. (G2) according to
Eq. (E7), which applies when Eq. (G11) holds, and to Eqs.
(G12)-(G14):

if γe > 0 then Hright
ee(1)(ω, σ, γe) =

∫ 0

−|Ze|
dγ′

e

∫ beγe(2)

aeγ′
e(2)

dxhee(1;2)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ beγe(1)

0
dxhee(1;1)(x, ω, σ, γe, γ

′
e). (G15)

In the second integral of Eq. (G16), extending over positive
γ′
e, we omitted the sum over the electron domain label ν′e (Eq.

(G2)) because, for γ′
e > 0, Neγ′

e
= 1 (Eqs. (36) and (40)).

In the first integral of Eq. (G16), extending over negative
γ′
e, we omitted the contribution of the vanishing quantity

hee(1;1) which identically vanishes for x < 0 and γ′
e < 0 (Eq.

(D2)). In the first x-integral of Eq. (G16) we may rename
the upper x-integration bound beγe(1) (the same appearing
in Eq. (G3)) to beγ′

e(2)
: both equal ∞ for x > 0 (Eq. (28)

and (30)). Eq. (G15) may thus be rewritten as

if γe > 0 then Hright
ee(1)(ω, σ, γe) =

∫ 0

−|Ze|
dγ′

e

∫ beγ′
e(2)

aeγ′
e(2)

dxhee(1;2)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ beγe(1)

0
dxhee(1;1)(x, ω, σ, γe, γ

′
e). (G16)

Inserting Eqs. (G10) and (G16) into Eq. (G4), we get

if γe > 0 then Hee(1)(ω, σ, γe) =
∫ 0

−|Ze|
dγ′

e

∫ beγ′
e(1)

aeγ′
e(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e) +

∫ 0

−|Ze|
dγ′

e

∫ beγ′
e(2)

aeγ′
e(2)

dxhee(1;2)(x, ω, σ, γe, γ
′
e) +

∫ ∞

0
dγ′

e

∫ beγe(1)

aeγe(1)

dxhee(1;1)(x, ω, σ, γe, γ
′
e). (G17)

In the first two γ′
e-integrals of Eq. (G17), γ′

e < γe. Accord-
ing to Eq. (C4), the x-integration bounds aeγ′

e(ν
′
e)
, beγ′

e(ν
′
e)

(for ν′e = 1, 2) may be renamed to aeeγeγ′
e(ν

′
e)
, beeγeγ′

e(ν
′
e)

re-
spectively. In the third γ′

e-integral of Eq. (G17), γ′
e > 0
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and, by assumption, γe > 0; thus aeγe(1) = −∞ = aeγ′
e(1)

,
beγe(1) = ∞ = beγ′

e(1)
(Eq. (28)) so that, again according

to Eq. (C4), aeγe(1), beγe(1) may be renamed to aeeγeγ′
e(1)

,
beeγeγ′

e(1)
respectively. As a result, Eq. (G17) may be rewrit-

ten as

if γe > 0 then Hee(1)(ω, σ, γe) =

∫ ∞

−|Ze|
dγ′

e

Neγ′
e∑

ν′
e=1

∫ beeγeγ′
e(ν

′
e)

aeeγeγ′
e(ν

′
e)

dxhee(1;ν′
e)
(x, ω, σ, γe, γ

′
e). (G18)

We now turn to Eq. (G3) which and again we split the
x-integration:

Hei(1) = H left
ei(1) +Hright

ei(1) . (G19)

Taking into account that, in the left part of the x-integration,

−V ′
i < 0, (G20)

aeγe(1) = −∞,−Vi(aeγe(1)) = −Zi(1− U), (G21)

−Vi(0) = −Zi, (G22)

if − Zi < γ′
i < Zi(1− U) then [−Vi]

−1(γ′
i) = aiγ′

i (1)
, (G23)

we invert the integration order in Eq. (G3) according to
Eq. (E7), which applies when Eq. (G20) holds, and to Eqs.
(G21)-(G23):

if γe > 0 then H left
ei(1)(ω, σ, γe) =

∫ −Zi(1−U)

−Zi

dγ′
i

∫ 0

aiγ′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ ∞

−Zi(1−U)
dγ′

i

∫ 0

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i). (G24)

In a similar way, taking into account that, on the right
part of the integration,

−V ′
i > 0, (G25)

beγe(2) = ∞, −Vi(beγe(2)) = 0, (G26)

−Vi(0) = −Zi, (G27)

if − Zi < γ′
i < 0 then [−Vi]

−1(γ′
i) = biγ′

i (1)
, (G28)

we invert the integration order in Eq. (G3) according to
Eq. (E4), which applies when Eq. (G25) holds, and to Eqs.
(G26)- (G28):

if γe > 0 then Hright
ei(1) (ω, σ, γe) =

∫ 0

−Zi

dγ′
i

∫ biγ′
i (1)

0
dxhei(1;1)(x, ω, σ, γe, γ

′
i) +

∫ ∞

0
dγ′

i

∫ beγe(1)

0
dxhei(1;1)(x, ω, σ, γe, γ

′
i). (G29)

Inserting Eqs. (G24) and (G29) into Eq. (G3), we write

if γe > 0 then H left
ei(1)(ω, σ, γe) =

∫ −Zi(1−U)

−Zi

dγ′
i

∫ 0

aiγ′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ 0

−Zi(1−U)
dγ′

i

∫ 0

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ ∞

0
dγ′

i

∫ 0

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ −Zi(1−U)

−Zi

dγ′
i

∫ biγ′
i (1)

0
dxhei(1;1)(x, ω, σ, γe, γ

′
i) +

∫ 0

−Zi(1−U)
dγ′

i

∫ biγ′
i (1)

0
dxhei(1;1)(x, ω, σ, γe, γ

′
i) +

∫ ∞

0
dγ′

i

∫ beγe(1)

0
dxhei(1;1)(x, ω, σ, γe, γ

′
i). (G30)

i.e.

if γe > 0 then H left
ei(1)(ω, σ, γe) =

∫ −Zi(1−U)

−Zi

dγ′
i

∫ biγ′
i (1)

aiγ′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ 0

−Zi(1−U)
dγ′

i

∫ biγ′
i (1)

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) +

∫ ∞

0
dγ′

i

∫ beγe(1)

aeγe(1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i) (G31)

In the second and third γ′
i -integrals of Eq. (G31), γ′

i >
−Zi(1 − U) and, by assumption, γe > 0. Thus aeγe(1) takes
the same value (−∞) of aiγ′

i (1)
(Eqs. (28) and (32)) and may

be replaced by it. Furthermore, in the third γ′
i -integral of

Eq. (G31), γ′
i > 0 and thus beγe(1) takes the same value (∞)

of biγ′
i (1)

(Eq. (31) and may be replaced by it.
In this way, all three γ′

i -integrals in Eq. (G31) now have
the same x-integration bounds aiγ′

i (1)
and biγ′

i (1)
. According

to Eqs. (C5) and (??), we rename these bounds to aeiγeγ′
i (1)

and beiγeγ′
i (1)

respectively, so that Eq. (G32) reduces to

if γe > 0 then Hei(1)(ω, σ, γe) =
∫ ∞

−Zi

dγ′
i

∫ beiγeγ′
i (1)

aeiγeγ
′
i (1)

dxhei(1;1)(x, ω, σ, γe, γ
′
i). (G32)

Finally, inserting Eqs. (G18) and (G32) into Eq. (G1),
and using the definitions of hee(1;ν′

e)
and hei(1;1) (Eqs. (77)

and (79)), we see that the result fits in the general formula
given in Eq. (97).

Appendix H: The Integral Equation for the Perturbed
Ion Eigenfunction Coefficients

For ions (α = i), νiγi = 1 is the only value available (Eqs.
(36) and (41)) in Eq. (78), which thus reads

(ω − σ)Xsi
i(1)(ω, σ, γi) =

∑

β=i,e

Hiβ(1)(ω, σ, γi) (H1)

where

Hii(1)(ω, σ, γi) =

∫ biγi(1)

aiγi(1)

dx

∫ ∞

−Vi(x)
dγ′

ihii(1;1)(x, ω, σ, γi, γ
′
i),

(H2)

Hie(1)(ω, σ, γi) =

∫ biγi(1)

aiγi(1)

dx

∫ ∞

−Ve(x)
dγ′

e

Neγ′
e∑

ν′
e=1

hie(1;ν′
e)
(x, ω, σ, γi, γ

′
e),

(H3)

18



and we omitted the sum over the ion domain label ν′i because
Niγ′

i
= 1 (Eq. (41)).

In Eq. (H2), x-integration will now be split into two parts:

Hii(1) = H left
ii(1) +Hright

ii(1) , (H4)

The left part runs in domain 1, up to x = 0 and the right part
runs in domain 2, starting at x = 0. In each part −Vβ(x) is
a monotonic function and we may invert the x and γ′

β order
of integration.

Specifically, in the left part, we have (Fig. 1 and Eqs. (2),
(26) and (29)),

−V ′
i < 0, (H5)

if − Zi < γi < −Zi(1− U) then

−Vi(aiγi(1)) = γi, (H6)

if γi > −Zi(1− U) then

aiγi(1) = −∞, −Vi(aiγi(1)) = −Zi(1− U), (H7)

−Vi(0) = −Zi, (H8)

if − Zi < γ′
i < −Zi(1− U) then

[−Vi]
−1(γ′

i) = aiγ′
i (1)

. (H9)

Inverting the integration order in Eq. (H2) according to
Eq. (E7), which applies when −Vi monotonically decreases
(Eq. (H5)), and to Eqs. (H6)-(H9), we have, for both γi <
−Zi(1− U) and γi > −Zi(1− U),

H left
ii(1)(ω, σ, γi) =

∫ −Via

−Zi

dγ′
i

∫ 0

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Via

dγ′
i

∫ 0

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i), (H10)

where

−Via = min(γi,−Zi[1− U ]) i.e. (H11)

if − Zi < γi < −Zi[1− U ] then − Via = γi, (H12)

if γi > −Zi[1− U ] then − Via = −Zi[1− U ]. (H13)

In the right part of the integration, the ion parameters are
(Fig. 1 and Eqs. (2), (26) and (29)),

−V ′
i > 0, −Vi(0) = −Zi, (H14)

if − Zi < γi < 0 then − Vi(biγi(1)) = γi, (H15)

if γi > 0 then biγi(1) = ∞ and − Vi(biγi(1)) = 0, (H16)

−Vi(0) = −Zi, (H17)

if − Zi < γ′
i < 0 then [−Vi]

−1(γ′
i) = biγ′

i (1)
, (H18)

Inverting the integration order in Eq. (H2) according to Eq.
(E4), which applies when −Vi monotonically increases (Eq.
(H14)), and to Eqs. (H15)-(H18), we have, for both γi < 0
and γi > 0,

Hright
ii(1) (ω, σ, γi) =

∫ −Vib

−Zi

dγ′
i

∫ biγ′
i (1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i), (H19)

where

−Vib = min(γi, 0) i.e. (H20)

if − Zi < γi < 0 then − Vib = γi, (H21)

if γi > 0 then − Vib = 0. (H22)

We now add both sides of Eqs. (H10) and (H19), as in Eq.
(H4), and we first consider the case −Zi < γi < −Zi(1−U).
In this case, in Eq. (H10), −Via = γi = −Vib (Eqs. (H11)
and (H20)) and we have

if − Zi < γi < −Zi(1− U) then Hii(1)(ω, σ, γi) =
∫ −Vib

−Zi

dγ′
i

∫ 0

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Vib

dγ′
i

∫ 0

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ −Vib

−Zi

dγ′
i

∫ biγ′
i (1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i), (H23)

i.e.

if − Zi < γi < −Zi(1− U) then Hii(1)(ω, σ, γi) =
∫ −Vib

−Zi

dγ′
i

∫ biγ′
i (1)

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i). (H24)

On the other hand, if γi > −Zi(1−U), then, in Eq. (H10),
−Via = −Zi(1 − U) (Eq. (H11)) and we rewrite Eq. (H10)
as

if γi > −Zi(1− U) then H left
ii(1)(ω, σ, γi) =

∫ −Zi(1−U)

−Zi

dγ′
i

∫ 0

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ −Vib

−Zi(1−U)
dγ′

i

∫ 0

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Vib

dγ′
i

∫ 0

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) (H25)

and Eq. (H19) as (note that, if γi > −Zi(1 − U), −Vib >
−Zi(1− U))

if γi > −Zi(1− U) then Hright
ii(1) (ω, σ, γi) =

∫ −Zi(1−U)

−Zi

dγ′
i

∫ biγ′
i (1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i) +

∫ −Vib

−Zi(1−U)
dγ′

i

∫ biγ′
i (1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

0
dxhii(1;1)(x, ω, σ, γi, γ

′
i). (H26)

Adding both sides of Eqs. (H25) and (H26), as in Eq.
(H4), we have

if γi > −Zi(1− U) then Hii(1)(ω, σ, γi) =
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∫ −Zi(1−U)

−Zi

dγ′
i

∫ biγ′
i (1)

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ −Vib

−Zi(1−U)
dγ′

i

∫ biγ′
i (1)

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i). (H27)

In the second integral of Eq. (H27), γ′
i exceeds −Zi(1−U)

and so does, by assumption, γi. Then (Eq. (32)), aiγ′
i (1)

=
aiγi(1) = −∞: aiγi(1) may well be replaced by aiγ′

i (1)
and Eq.

(H27) by

if γi > −Zi(1− U) then Hii(1)(ω, σ, γi) =
∫ −Vib

−Zi

dγ′
i

∫ biγ′
i (1)

aiγ′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i) +

∫ ∞

−Vib

dγ′
i

∫ biγi(1)

aiγi(1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i), (H28)

which coincides with Eq. (H24). Further using the defi-
nitions of the integration endpoints aααγαγ′

α
, bααγαγ′

α
(Eq.

(C4)), both Eq. (H24) and Eq. (H28) may be reduced to a
single formula:

Hii(1)(ω, σ, γi) =

∫ ∞

−Zi

dγ′
i

∫ aiiγiγ
′
i (1)

aiiγiγ
′
i (1)

dxhii(1;1)(x, ω, σ, γi, γ
′
i),

(H29)
We now revert to Eq. (H3) and again we split the x-

integration:

Hie(1) = H left
ie(1) +Hright

ie(1) . (H30)

Taking into account that, in the left part of the integration,
the electron eigenfunctions and reflection points are those of
domain 1 and that

−V ′
e > 0, (H31)

if − Zi < γi < −Zi(1− U) then

−Ve(aiγi(1)) = γ∗
e , (H32)

if γi > −Zi(1− U) then

−Ve(aiγi(1)) = −|Ze|U, (H33)

−Ve(0) = 0, (H34)

if γ′
e < 0 then [−Ve]

−1(γ′
e) = beγ′

e(1)
, (H35)

where γ∗
e was defined in Eq. (D21), we invert the integration

order in Eq. (H3) according to Eq. (E4), which applies when
−Ve monotoniclly increases (Eq. (H31)), and to Eqs. (H32)-
(H9), we have, for both γi < −Zi(1−U) and γi > −Zi(1−U):

H left
ie(1)(ω, σ, γi) =

∫ 0

−Vea

dγ′
e

∫ beγ′
e(1)

aiγi(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e) +

∫ ∞

0
dγ′

e

∫ 0

aiγi(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e), (H36)

where −Vea was given in Eq. (D18). In the first in-
tegral of Eq. (H36), we omitted the contribution of
hie(1;2)(x, ω, σ, γi, γ

′
e) because, for γ

′
e < 0, it is non zero only

for x > 0, i.e. outside the range of x-integration (Eq. (D4)).
In the second integral, we omitted the sum over the electron
domain label ν′e because, for γ′

e > 0, Neγ′
e
= 1 (Eq. (40)).

In a similar way, taking into account that, in the left part
of the integration, the electron eigenfunctions and reflection
points are those of domain 2 and

−V ′
e < 0,−Ve(0) = 0, (H37)

if − Zi < γi < 0 then − Ve(biγi(1)) = γ∗
e , (H38)

if γi > 0 then biγi(1) = ∞ and − Ve(biγi(1)) = −|Ze|,(H39)
if − |Ze| < γ′

e < 0 then [−Ve]
−1(γ′

e) = aeγ′
e(2)

, (H40)

and inverting the integration order in Eq. (H3) according to
Eq. (E7), which applies when −Ve monotonically decreases
(Eq. (H37)), and to Eqs (H38)-(H40), we have, for both
γi < 0 and γi > 0:

Hright
ie(1) (ω, σ, γi) =

∫ 0

−Veb

dγ′
e

∫ biγi(1)

aeγ′
e(2)

dxhie(1;2)(x, ω, σ, γi, γ
′
e) +

∫ ∞

0
dγ′

e

∫ biγi(1)

0
dxhie(1;1)(x, ω, σ, γi, γ

′
e), (H41)

where −Veb was given in Eq. (D27)
In the first integral of Eq. (H41), we omitted the contri-

bution of hie(1;1)(x, ω, σ, γi, γ
′
e) because, for γ

′
e < 0, it is non

zero only for x < 0, i.e. outside the range of x-integration
(Eq. (D3)). In the second integral, we omitted the sum over
the electron domain label ν′e, because, for γ′

e > 0, Neγ′
e
= 1

(Eq. (40)).
In a similar way, adding both sides of Eqs. (H36) and

(H41), as in Eq. (H30), we have

Hie(1)(ω, σ, γi) =
∫ 0

−Vea

dγ′
e

∫ beγ′
e(1)

aiγi(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e) +

∫ 0

−Veb

dγ′
e

∫ biγi(1)

aeγ′
e(2)

dxhie(1;2)(x, ω, σ, γi, γ
′
e) +

∫ ∞

0
dγ′

e

∫ biγi(1)

aiγi(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e). (H42)

Due to Eq. (D22), the first x-integral of Eq. (H42) remains
unchanged if we replace its lower integration bound −Vea by
−|Ze| which, due to Eqs. (27), (D18) and (D27), is certainly
not larger than −Vea. Eq. (D30)), justifies the replacement
of −Veb by −|Ze| in the second x-integral of Eq. (D22). Last,
we rename the x-integration bounds in Eq. (H42), according
to Eqs. (C5)-(??) and we have

Hie(1)(ω, σ, γi) =
∫ 0

−|Ze|
dγ′

e

∫ bieγiγ′
e(1)

aieγiγ
′
e(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e) +

∫ 0

−|Ze|
dγ′

e

∫ bieγiγ′
e(2)

aieγiγ
′
e(2)

dxhie(1;2)(x, ω, σ, γi, γ
′
e) +

∫ ∞

0
dγ′

e

∫ bieγiγ′
e(1)

aieγiγ
′
e(1)

dxhie(1;1)(x, ω, σ, γi, γ
′
e) (H43)

i.e.

Hie(1)(ω, σ, γi) =
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∫ ∞

−|Ze|
dγ′

e

Neγ′
e∑

ν′
e=1

∫ bieγiγ′
e(ν

′
e)

aieγiγ
′
e(ν

′
e)

dxhie(1;ν′
e)
(x, ω, σ, γi, γ

′
e), (H44)

where Neγ′
e
was given in Eqs. (38)-(40).

Inserting Eqs. (H29) and (H44) into Eq. (H1), and using
the definitions of hee(1;ν′

e)
and hei(1;1) (Eqs. (77) and (79)),

we see that the result fits in the general formula given in Eq.
(97).

Appendix I: Reduction of the Superposition
Coefficients X+

e

In this appendix, we give some useful expressions for Ye

and for Λe found in Section IX which will be useful in the
following. Because of Eq. (136), only the quantities with the
+ superscript will be given.
Making the substitution

√
(2γe/µe) = v > 0 (I1)

into Eq. (131) (taking into account also Eq. (122)) and into
Eq. (135) gives

Y +
e (σ, µev

2/2) =
Zev3F̃ ′

e(µev2/2)

σ2
, (I2)

and

Λ+
e (σ, µev

2/2) = 1 +

Zev3

σ3
P

∫ ∞

−∞
dσ′σ′ F̃

′
e([σ

′/ω]2µev2/2)

σ′ − σ
, (I3)

for σ > 0. (I4)

Making the substitution

σ′ = σu/v, for σ > 0, (I5)

Eq. (I4) reads

Λ+
e (σ, µev

2/2) =

1 +
Zev2

σ2
P

∫ ∞

−∞
duu

F̃ ′
e(µeu2/2)

u− v
, (I6)

which extends also to negative values of σ.
Finally, since F ′

e = µev∂F̃ /∂v (Eq. (106)), Eqs. (I2) and
(I6) reduce to

Y +
e (σ, µev

2/2) =
Zev2∂F̃e(µev2/2)/∂v

µeσ2
, (I7)

and

Λ+
e (σ, µev

2/2) =

1 +
Zev2

µeσ2
P

∫ ∞

−∞
du

∂F̃e(µeu2/2)/∂u

u− v
. (I8)

Inserting Eqs. (I7) and (I8) into Eq. (128) we finally have

X+
e (ω, σ, µev

2/2) =
[
1 +

Zev2

µeσ2
P

∫ ∞

−∞
du

∂F̃e(µeu2/2)/∂u

u− v

]
δ(σ − ω)−

Zev2

µeσ2

∂F̃e(µev2/2)

∂v
P

1

σ − ω
, (I9)

for ω > 0.

We also give the expressions of Y +
e and Λ+

e using quantities
defined in the Fourier transformed velocity space. In the
present homogeneous case (Eq. (116)), Eq. (108) taken of
electrons (α = e) and for se = +, reduces to

F̃ ′
e(µev

2/2) =
1

2iπµe

1

v

∫ ∞

−∞
dqqFe(q)e

−iqv, (I10)

where Eq. (I1) was used, and Eq. (I2) reads

Y +
e (σ, µev

2/2) =
1

2iπ

Zev2

µeσ2

∫ ∞

−∞
dqqFe(q)e

−iqv. (I11)

Taking into account that F (q) is the Fourier transform of
a real function, so that F (−q) = F̄ (q), Eq. (I11) further
reduces to

Y +
e (σ, µev

2/2) =
1

π

Zev2

µeσ2
0
∫ ∞

0
dqqFe(q)e

−iqv. (I12)

Changing the order of the u and q integration, Eq. (I6)
reduces to

Λ+
e (σ, µev

2/2) =

1 +
1

2iπµe

Zev2

σ2

∫ ∞

−∞
dqqFe(q)×

P

∫ ∞

−∞
du

e−iqu

u− v
. (I13)

Using the identity

P

∫ ∞

−∞
du

e−iqu

u− v
= −iπsign(q)e−iqv, (I14)

and taking again into account that F (−q) = F̄ (q), Eq. (I13)
further reduces to

Λ+
e (σ, µev

2/2) =

1− Zev2

µeσ2
,
∫ ∞

0
dqqFe(q)e

−iqv. (I15)

Inserting Eqs. (I12) and (I15) into Eq. (128) we finally have

X+
e (ω, σ, µev

2/2) =
[
1− Zev2

µeσ2
,
∫ ∞

0
dqqFe(q)e

−iqv

]
δ(σ − ω)−

1

π

Zev2

µeσ2
0
∫ ∞

0
dqqFe(q)e

−iqvP
1

σ − ω
, (I16)

for ω > 0.

Setting

ζ = σ − ω, Q(σ, v) =
Zev2

µeσ2

∫ ∞

0
dqqFe(q)e

−iqv, (I17)

Eq. (I16) reads

X+
e = δ(ζ)− 1

π

[
πδ(ζ),Q(σ, v) + P

1

ζ
0Q(σ, v)

]
. (I18)

According to Plemelj’s formulas

1

ζ ± i0
= lim

ε→0+

1

ζ ± iε
= ∓iπδ(ζ) + P

1

ζ
, (I19)
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we may write

2iπδ(ζ) =
1

ζ − i0
− 1

ζ + i0
, (I20)

2P
1

ζ
=

1

ζ − i0
+

1

ζ + i0
, (I21)

and thus Eq. (I18) may be arranged as

X+
e = δ(ζ)− 1

2iπ
×

[(
1

ζ − i0
− 1

ζ + i0

)
,Q(σ, v)+

(
i

ζ − i0
+

i

ζ + i0

)
0Q(σ, v)

]
=

δ(ζ)− 1

2iπ
×

[
1

ζ − i0
(,Q(σ, v) + i0Q(σ, v))−

1

ζ + i0
(,Q(σ, v)− i0Q(σ, v))

]
=

δ(ζ)− 1

2iπ

[
Q(σ, v)

ζ − i0
− Q̄(σ, v)

ζ + i0

]
, (I22)

or, reintroducing the quantities defined in Eq. (I17), as

X+
e (ω, σ, µev

2/2) = δ(σ − ω)− 1

2iπ

Zev2

µeσ2
×

[∫∞
0 dqqFe(q)e−iqv

σ − ω − i0
−

∫∞
0 dqqF̄e(q)eiqv

σ − ω + i0

]
, (I23)

for ω > 0.

Changing the sign of the integration variable in the numer-
ator of the second term in the square brackets and taking
into account that F̄ (−q) = F (q), Eq. (I23) reads

X+
e (ω, σ, µev

2/2) = δ(σ − ω)− 1

2iπ

Zev2

µeσ2
×

[∫∞
0 dqqFe(q)e−iqv

σ − ω − i0
−

∫ 0
−∞ dqqFe(q)e−iqv

σ − ω + i0

]
, (I24)

for ω > 0.

This form of the coefficient clearly points out the pertur-
bation contribution, proportional to the electron charge Ze,
to the eigenfunction of the Vlasov operator.

Again using Eq. (I20), Eq. (I22) can be arranged as

X+
e (ω, σ, µev

2/2) =

1

2iπ

[
S(σ, v)

ζ − i0
− S̄(σ, v)

ζ + i0

]
=

1

π
0S(σ, v)

ζ − i0
, (I25)

where

S(σ, v) = 1−Q(σ, v) = 1− Zev2

µeσ2

∫ ∞

0
dqqFe(q)e

−iqv. (I26)

Reintroducing the quantities defined in Eq. (I17), Eq.
(I25) becomes

X+
e (ω, σ, µev

2/2) =

1

π
0
1− Zev

2

µeσ2

∫∞
0 dqqFe(q)e−iqv

σ − ω − i0
(I27)

for ω > 0.

Finally, using the identities

1

ζ + i0
= −i

∫ ∞

0
dtei(ζ+i0)t, (I28)

1

ζ − i0
= i

∫ 0

−∞
dtei(ζ−i0)t, (I29)

Eq. (I25) may be further rearranged as

X+
e (ω, σ, µev

2/2) =

1

2π

[
S(σ, v)

∫ 0

−∞
dtei(σ−ω−i0)t+

S̄(σ, v)

∫ ∞

0
dtei(σ−ω+i0)t

]
=

1

π
,
[
S(σ, v)

∫ 0

−∞
dtei(σ−ω−i0)t

]
, (I30)

for ω > 0.
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Figure Captions

1. A typical waveform of a nonmonotonic double layer
steady state potential. Shown are the reflection points
aeγe , |Beγe | of the electron and aiγi(1), beγi of the ion
eigenfunctions for several values of their respective de-
generacy parameters γe and γi. The eigenfunctions
are defined only in the x-domains where the horizon-
tal dash-dotted lines originating from a reflection point
are drawn.

2. Panel (a): the real (solid bold line) and imaginary
(dashed bold line) parts of the eigenfunctions for free
electrons subject to the nonmonotonic double layer
steady state potential of Eq. (26) where a = 0.25,
κ = 2. The other parameters in Eqs. (22) and (23)
are q = 4, γe = 0.3, se = +, σ = 4, Ze = −1, µe = 1,
xeγe = 0. Panel (b): same as in (a), but for the reflected
electrons and for a = 0.64, γe = −0.3, xeγe = be0 for
x < 0 and xeγe = ae0 for x > 0. Near the reflection
points aeγe and |Beγe |, the real part of the eigenfunc-
tion diverges, whereas its imaginary part remains finite
(Eq. (45)). Superimposed in panel (b) is the steady
state equilibrium electron potential energy profile (thin
solid line).

3. Panel (a): the real (solid bold line) and imaginary
(dashed bold line) parts of the eigenfunctions for free
ions subject to the nonmonotonic double layer steady
state potential of Eq. (26) where a = 0.25, κ = 2.
The other parameters in Eq. (22) and (23) are q = 4,
γe = 0.3, si = +, σ = 4/√µi, Zi = 1, µi = 1833,
xiγi(1) = ∞. Panel (b): same as in (a), but for the
reflected ions and for a = 0.64, γi = −0.3, xiγi(1) = bi0.
Panel (c): same as in (b), but for the trapped ions
and for γi = −0.7, xiγi(1) = bi0. Near the reflection
points aiγi(1) and biγi(1), the real part of the eigenfunc-
tion diverges, whereas its imaginary part remains finite
(Eq. (45)). Superimposed in panels (b) and (c) is the
steady state equilibrium ion potential energy profile
(thin solid line).
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