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Abstract Given an undirected weighted graph, in which each vertex is as-
signed to a color and one of them is identified as source, in the All-Colors
Shortest Path problem we look for a minimum cost shortest path that starts
from the source and spans all different colors. The problem is known to be
NP-Hard and hard to approximate. In this work we propose a variant of the
problem in which the source is unspecified and show the two problems to be
computationally equivalent. Furthermore, we propose a mathematical formula-
tion, a compact representation for feasible solutions and a VNS metaheuristic
that is based on it. Computational results show the effectiveness of the pro-
posed approach for the two problems.

Keywords Shortest Path · Colored Graph · Variable Neighboord Search

1 Introduction

The All-Colors Shortest Path (ACSP) is a combinatorial optimization prob-
lem, first introduced in [3]. The problem is defined on undirected graphs, in
which a numerical attribute (weight) is associated to each edge, while a logical
attribute (called color, or label) is given for each vertex. Therefore, the dif-
ferent colors appearing in the graph partition the set of vertices into disjoint
subsets. The aim of ACSP is to find the shortest, possibly non-simple path,
that starts from a predefined source vertex and spans each color of the graph;
that is, each path composing a feasible solution needs to visit at least a vertex
belonging to each color. In the All-Colors Shortest Path with Unconstrained
Endpoints (ACSP-UE) problem variant, the source vertex is not provided, and
therefore the path can start from any vertex of the graph.
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As mentioned, the optimal solution of these problems could correspond to
a non-simple path, meaning that a vertex may be visited more than once. As
an example, consider the graph illustrated in Figure 1. The value reported on
each edge represents its cost (for instance, the weight of {v1, v2} is 4), while the
ci label next to each vertex denotes its color. A (simple) path reaching every
color is, for instance, [v1, v4, v2, v3, v6, v5, v7], whose cost is 14. Despite visiting
twice vertices v4 and v5, and visiting once the additional vertex v8, the optimal
ACSP-UE solution is instead [v1, v4, v2, v4, v5, v3, v5, v6, v8, v7]. Indeed, in this
case, the cost of the path is 10.

Fig. 1 Example graph with 8 vertices, 12 edges and 7 colors

The problems can find application in different contexts. For instance, in a
road network for the distribution of goods, vertices associated with the same
color can represent different locations (warehouses or stores) in which specific
types of goods can be picked up or stocked. Applications related to mobile
sensor roaming and path planning are cited in [3].

Among similar problems presented in the literature, we recall the Shortest
Path Tour (SPTP), the Forward Shortest Path Tour (FSPTP), the Generalized
Traveling Salesman (GTSP) and the Generalized Minimum Spanning Tree
(GMST). The SPTP ([11]) is a polynomially solvable optimization problem
in which, given a source vertex s and a destination vertex d, the aim is to
find a shortest path from s to d that crosses in a given sequence at least a
vertex for each different color. Any node of the graph can be crossed while
going from a color of the sequence to the following one. As for ACSP, the
optimal solution can be non-simple. In the FSPTP variant ([5]), instead, the
nodes associated to a given color can be visited only if at least a node of each
preceding color has already been visited. Despite the similarities in the solution
structure, the lack of two predefined endpoints and of the predefined color
visiting order make ACSP and ACSP-UE significantly harder to tackle than
SPTP and FSPTP. In GTSP the aim is to find a minimum-cost hamiltonian
tour that includes exactly a vertex for each different color. Therefore, in this
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case each vertex can be visited at most once, and the solution needs to be a
cycle. GTSP is NP-Hard, and solution approaches have been mainly focused
on Integer Programming methods ([18], [12], [13]), heuristics ([23],[22],[4]) or
transformations to reduce the problem to the classical TSP ([7]). Finally, in
GMST, a tree spanning all different colors with minimum weight is sought.
Two different variants, in which the tree is required to contain either exactly
a vertex ([19],[9],[10],[14],[21],[20],[16]) or at least a vertex ([17],[8], [15]) for
each different color have been proposed, both being NP-Hard and hard to
approximate.

ACSP was studied in [3],[1],[2]. In [3], after introducing the problem, the
authors show it to be NP-Hard and inapproximable to a constant factor. They
then prove a property of optimal solutions and present an integer linear pro-
gramming flow-based formulation, as well as three heuristic and three meta-
heuristic algorithms. The heuristic algorithms are iterative rounding methods
based on LP relaxations of the mathematical formulation, while the meta-
heuristics include a simulated annealing (SA), an ant colony optimization
method (ACO) and a genetic algorithm (GA). In [1], a reduction from ACSP
is used to prove the NP-Hardness of the Mobile Assisted Trilateration Based
Energy Optimum Localization (MATBOL) problem, aimed at minimizing the
traveling distance of a mobile beacon used to aid trilateration in the context of
wireless sensor networks. In [2], the authors present an ACSP variant defined
on trees (ACSP-t). In this work, the authors prove that also this variant is
NP-Hard and cannot be approximated to a constant factor. They also propose
an ILP formulation, an iterative rounding heuristic and two metaheuristics,
namely a GA and a Tabu Search.

In this work we mainly focus on the ACSP-UE problem variant, that to
the best of our knowledge has not been introduced before. However, all the
approaches that we present are easily adaptable to solve ACSP. Indeed, we
present a comparison among our proposed methods and those proposed in
[3] for ACSP in Section 5. We also describe how to adapt these approaches to
solve a further variant that considers as set of candidate starting vertices those
assigned to a given color, that we call All-Colors Shortest Path with Starting
Color (ACSP-SC). Moreover, in Section 2 we show ACSP and ACSP-UE to
be computationally equivalent.

Our proposed approaches are a mathematical formulation and a meta-
heuristic algorithm. The metaheuristic is a Variable Neighborhood Search
(VNS), and is based on the concept of two-level solutions. That is, for each
problem solution we consider a high-level, abstract representation of it, cor-
responding to the order in which colors are encountered, in addition to the
low-level (actual) one. As will be shown, by jointly operating on the two levels
we obtained a fast and effective algorithm.

The rest of the paper is organized as follows. In Section 2 we define
the problems formally, present some properties and show reductions between
ACSP and ACSP-UE. In Section 3 we present the mathematical formulation,
while the VNS algorithm is discussed in Section 4. Section 5 presents our
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computational results, while conclusions and other remarks are presented in
Section 6.

2 Problems definition and properties

LetG = (V,E,C) be an undirected, connected and vertex labeled graph, where
V = {v1, . . . , vn} is the set of vertices, E = {e1, . . . , em} is the set of edges
and C = {c1, . . . , ck} is a set of labels (or colors), with |C| ≤ |V |. Moreover,
let ω : E → R+ be a function assigning a positive weight to each edge, and
γ : V → C be a function assigning a color to each vertex. We denote by Vc the
subset of vertices of V having the color c, that is Vc = {v ∈ V : γ(v) = c}. We
use the notation p = [vp1 ,vp2 ,. . . ,vph] to denote a path p of G; that is, for each
i ∈ {1, . . . h− 1}, vpi ∈ V , vpi+1 ∈ V and {vpi , v

p
i+1} ∈ E.

The aim of ACSP-UE is to find a path p = [vp1 ,vp2 ,. . . ,vph] such that i) all
colors are reached at least once, that is, ∀cj ∈ C ∃vpi : γ(vpi ) = cj ; ii) the

overall weight of the path ω(p) =
∑h−1
i=1 ω({vpi , v

p
i+1}) is minimized.

In ACSP, the starting vertex of any given feasible solution must be a prede-
fined source vertex vsrc ∈ V . In ACSP-SC, the starting vertex must be chosen
among those associated with a predefined color csrc ∈ C.

Clearly, the problems are correctly defined only if |C| ≥ 2; indeed, if |C| = 1
selecting any vertex brings to a trivial ACSP-UE optimal solution with value 0.
Similarly, vsrc or any vertex with color csrc would be trivially optimal solutions
for ACSP and ACSP-SC, respectively. It is also straightforward to observe that
no feasible solution exists if a given color ci ∈ C is not assigned to any vertex
in V .

We now discuss some ACSP-UE properties. In [3], the authors proved that
the following results hold for ACSP:

Theorem 1 ACSP is NP-Hard.

Theorem 2 ACSP is inapproximable to a constant factor.

Proposition 1 Let [vsrc, . . . , vh] be the optimal solution for an ACSP in-
stance. The path does not traverse any edge {vi, vj} more than once in the
same direction.

The proof provided in [3] for Proposition 1 is directly applicable to ACSP-UE
as well, while the ones for Theorems 1 and 2 are adaptable with trivial modi-
fications. Furthermore, in the following we show the existence of polynomial-
time reductions from each of the two problems to the other.

We start with the reduction from ACSP-UE to ACSP. Let G = (V,E,C)
be an input graph for ACSP-UE. Considering a new vertex v′ and a new
color c′, such that γ(v′) = c′, we build a new graph G′ = (V ′, E′, C ′), where
V ′ = V ∪ {v′}, E′ = E ∪ {{v′, vi} ∀vi ∈ V } and C ′ = C ∪ {c′}. Each edge
{vi, vj} ∈ E has the same weight in both G and G′, and each node vi ∈ V is
assigned the same color in the two graphs. Furthermore, the weight of each edge
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incident to v′ in G′ is equal to 2|E|ωmax+ 1, where ωmax is max({ω({vi, vj}) :
{vi, vj} ∈ E}).

We first need to show a preliminary result.

Lemma 1 Let p′ = [v′, vp1 . . . , v
p
h] be an optimal solution for ACSP in the

above described graph G′, with source vertex v′. The path p′ visits v′ exactly
once.

Proof By contradiction, let us suppose that p′ visits v′ more than once, i.e.
there is at least a k = 1, . . . , h such that vpk = v′. It follows by construction
that ω(p′) ≥ 4|E|ωmax + 2. Now, let q = [vq1 . . . , v

q
k] be an optimal ACSP-

UE solution in G. From Proposition 1, ω(q) ≤ 2|E|ωmax. But then q′ =
[v′, vq1 . . . , v

q
k] is a feasible ACSP solution with ω(q′) ≤ 4|E|ωmax + 1 < ω(p′),

contradicting the hypothesis. ut

We are now ready to prove the reduction.

Proposition 2 The path p = [vp1 . . . , v
p
h] is an optimal solution for ACSP-UE

in G if and only if p′ = [v′, vp1 . . . , v
p
h] is an optimal solution for ACSP in G′,

with source vertex v′.

Proof =⇒ Let us first assume that p is optimal for ACSP-UE in G and, by
contradiction, that p′ is not optimal for ACSP in G′ with source v′. However, p′

is surely a feasible solution for the latter problem; let q′ = [v′, vq1 . . . , v
q
k] be the

optimal one (ω(q′) < ω(p′)). By Lemma 1, we know that q = [vq1 . . . , v
q
k] does

not contain v′ and is therefore a feasible ACSP-UE solution in G. Moreover,
ω(q) < ω(p), which contradicts the hypothesis on the optimality of p.
⇐= Now, let us assume that p′ is optimal and that p is not. Again from

Lemma 1, we know that p is feasible for ACSP-UE in G. Let q = [vq1 . . . , v
q
k] be

an optimal ACSP-UE solution in G; therefore, ω(q) < ω(p). We obtain that
q′ = [v′, vq1 . . . , v

q
k] is feasible for ACSP in G′ with source v′, and ω(q′) < ω(p′),

which is again a contradiction. ut

Let us now illustrate the reduction from ACSP to ACSP-UE. Let G =
(V,E,C) be an input graph for ACSP, with source vertex vsrc ∈ V . Consid-
ering a new vertex v′ and a new color c′, such that γ(v′) = c′, we build a
new graph G′ = (V ′, E′, C ′), where V ′ = V ∪ {v′}, E′ = E ∪ {{v′, vsrc}} and
C ′ = C∪{c′}. Edges {vi, vj} ∈ E have the same weight in both G and G′, and
nodes vi ∈ V have the same color in the two graphs. Moreover, the weight of
{v′, vsrc} is equal to 2|E|ωmax+1 (again, ωmax is max({ω({vi, vj}) : {vi, vj} ∈
E})).

We first introduce a preliminary result (Lemma 2), and then prove the
reduction (Proposition 3). We omit the proof of the lemma, given that it
follows easily from the construction of G′ and by reasoning as for Lemma 1.

Lemma 2 Any optimal solution for ACSP-UE in the above described graph
G′ visits v′ exactly once, and v′ is one of the two endpoints of the path.
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Proposition 3 The path p = [vsrc . . . , v
p
h] is an optimal solution for ACSP in

G (with source vsrc) if and only if p′ = [v′, vsrc . . . , v
p
h] is an optimal solution

for ACSP-UE in G′.

Proof First of all we note that, given Lemma 2 and the fact that the problem
is defined on undirected graphs, whenever considering an optimal ACSP-UE
solution in G′ we can consider v′ to be its starting vertex. We also note that,
by construction, its adjacent vertex will always be vsrc.
=⇒ Let us first assume that p is optimal for ACSP in G with source vsrc, and

that p′ is not optimal for ACSP-UE in G′. Obviously, p′ is feasible for the latter
problem. Let q′ = [v′, vsrc . . . , v

q
k] be the optimal one (ω(q′) < ω(p′)), and q

be the subpath [vsrc . . . , v
q
k]. From Lemma 2, q does not contain v′, therefore

it is a feasible ACSP solution in G with source vsrc. Moreover, ω(q) < ω(p),
which contradicts the hypothesis on the optimality of p.
⇐= Let p′ = [v′, vsrc . . . , v

p
h] be optimal for ACSP-UE in G′; again from

Lemma 2, p = [vsrc . . . , v
p
h] is feasible for ACSP in G with source vsrc. If we

suppose that p is not optimal, then there must exist a feasible solution q =
[vsrc . . . , v

q
k] such that ω(q) < ω(p). However, in this case, q′ = [v′, vsrc . . . , v

q
k]

is feasible for ACSP-UE in G′ and its objective function is better than the one
of p′, which is again a contradiction. ut

We now report some additional properties that we found for ACSP-UE,
and that we used in both our mathematical model and VNS.

Proposition 4 Let p∗ = [vp
∗

1 , . . . , vp
∗

h ] be an optimal solution for the ACSP-

UE problem. Then i) γ(vp
∗

h ) must be different from γ(vp
∗

i ) ∀i = {1, .., h− 1},
and ii) γ(vp

∗

1 ) must be different from γ(vp
∗

i ) ∀i = {2, .., h}.

Proof Let us first prove i). It is easy to understand that if γ(vp
∗

i ) = γ(vp
∗

h )
for some i = {1, .., h − 1}, then all colors are visited by the subpath p′ =

[vp
∗

1 , . . . , vp
∗

h−1]. But then, p′ is a feasible solution and it is cheaper than p∗,

contradicting the hypothesis. Given that no assumption is made on vp
∗

1 , the
sub-property also holds for the ACSP and ACSP-SC problem variants. We can
prove ii) analogously. However, this sub-property does not necessarily hold for
ACSP and ACSP-SC, since the choice of the first endpoint is constrained. ut

Before introducing the next property, we present an alternative represen-
tation for any feasible solution. Let p = [vp1 , v

p
2 , . . . , v

p
h] be a feasible path

for ACSP, that we also define the low-level representation of the path itself.

The high-level representation of p is the path p′ =< vp
′

1 , v
p′

2 , . . . , v
p′

|C| > of

G′ = (V, {V × V }, C), containing the vertices corresponding to the first oc-

currence of each color in p. For each consecutive couple of vertices vp
′

i and

vp
′

i+1, the weight of the related edge is equal to ω({vp
′

i , v
p′

i+1}) if it also belongs
to p, or to the sum of the weight of the edges between the two vertices in
p otherwise. In the following, we will also use the term high-level (or low-
level) solution to refer to a solution in the corresponding representation. Note
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that we use square and angle brackets to distinguish low-level and high-level
solutions, respectively.

In Figure 2(a) we show the optimal solution for the example of Figure
1, while in Figure 2(b) its high-level representation is shown. In this figure,
we use dotted lines to highlight edges that substitute subpaths of p. That is,
in Figure 2(b) edge {v2, v5} replaces the subpath [v2, v4, v5], {v3, v6} replaces
[v3, v5, v6], and {v6, v7} replaces [v6, v8, v7].

(a) Low-level (actual) solution

(b) High-level solution

Fig. 2 Low-level and high-level optimal solution for the instance of Figure 1

Clearly, if p′ =< vp
′

1 , v
p′

2 , . . . , v
p′

|C| > is the high-level representation of a

path p, they have the same cost and share the same starting vertex. Further-

more, from Proposition 4, we know that if vp
′

|C| is not the final vertex of p, we

can drop all subsequent vertices from the path and obtain a better feasible
solution. In particular, the high-level and the low-level representation of an
optimal solution will always share the same endpoints.

We can now present the following result, connected to the concept of high-
level solution:

Proposition 5 Let p′ =< vp
′

1 , . . . , vi, vj , . . . , v
p′

|C| > be a high-level, optimal

ACSP-UE solution. Then, the subpath between any couple of consecutive ver-
tices vi and vj in the corresponding low-level solution is the shortest path
between vi and vj in the input graph G.

Proof Let vi and vj be any couple of consecutive vertices in p′, and let SP (i, j)
denote their shortest path in G. Let us suppose by contradiction that the low-
level representation p of p′ contains a subpath with a cost strictly greater than
SP (i, j). By replacing this subpath with SP (i, j), we obtain a feasible ACSP-
UE solution that is better than p′, contradicting the hypothesis. Given that no
assumption is made on the first endpoint, the property also holds for ACSP
and ACSP-SC. ut

3 Mathematical model

In this section we introduce a mathematical model for ACSP-UE, whose solu-
tions will be used to verify the effectiveness of our metaheuristic.
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Starting from the graphG, we build a new directed graphGd = (V d, Ed, Cd).
V d contains all vertices of V , as well as a dummy source s and a dummy sink
t. Ed contains both arcs (vi, vj) and (vj , vi) for each edge {vi, vj} ∈ E, and
both arcs have the same weight of the original edge. Additionally, Ed contains
arcs {(s, vi) : vi ∈ V } ∪ {(vi, t) : vi ∈ V }; these arcs have cost zero. We define
δ+(vi, G

d) = {vj ∈ V d : (vi, vj) ∈ Ed} and ∆+(vi, G
d) = {(vi, vj) ∈ Ed}.

We similarly define δ−(vi, G
d) = {vj ∈ V d : (vj , vi) ∈ Ed} and ∆−(vi, G

d) =
{(vj , vi) ∈ Ed}. Finally, Cd contains all colors in C, as well as two additional
ones, cs, ct; these colors are assigned to s and t, respectively, while all other
nodes have the same color assigned in the two graphs. In the solution, we will
look for a path from s to t crossing at least a vertex for each color in C.

The decision variables are the following:

– xi: binary variable equal to 1 if vertex vi ∈ V belongs to the solution, and
0 otherwise.

– yij : binary variable equal to 1 if arc (vi, vj) ∈ Ed belongs to the solution,
and 0 otherwise. These variables are binary since no arc of Ed will be
crossed more than once in the solution found by the model. By effect of
Proposition 1, this does not compromise its optimality.

The mathematical model is the following:

min
∑

(vi,vj)∈Ed

ω(vi, vj)yij (1)

∑
vi∈Vc

xi ≥ 1 c ∈ C (2)

∑
vk∈δ−(vi,Gd)

yki ≥ xi vi ∈ V (3)

∑
vk∈δ−(vi,Gd)

yki =
∑

vj∈δ+(vi,Gd)

yij vi ∈ V (4)

∑
vi∈δ+(s,Gd)

ysi = 1 (5)

∑
i∈δ−(t,Gd)

yit = 1 (6)

yij ≤ xi (vi, vj) ∈ Ed : vi ∈ V (7)∑
(vi,vj)∈∆−(vj ,Gd)|vi /∈S,vj∈S

yij ≥ xk S ⊆ V d \ {s}, vk ∈ S (8)

xi ∈ {0, 1} vi ∈ V (9)

yij ∈ {0, 1} (vi, vj) ∈ Ed (10)

The objective function (1) minimizes the cost of the individuated path.
Constraints (2) ensure that at least a vertex for each color is visited. Con-
straints (3) and (4) impose that there is at least an ingoing arc for each visited



A two-level metaheuristic for the All Colors Shortest Path Problem 9

vertex, and that the number of ingoing and outgoing arcs is the same for each
of them, respectively. Constraints (5) and (6) state that there must be ex-
actly one edge leaving s and one edge entering t, respectively. Constraints (7)
state than an arc (vi, vj) with i ∈ V can belong to the solution if vi belongs
to it as well. Constraints (8) ensure that all visited vertices are connected to
s, and hence that the solution is connected. They are a modified version of
the “directed connectivity constraints” and they state that, for each subset
S ⊆ V d \ {s}, if a visited vertex vk belongs to S then there must be at least
one arc entering in S. Finally, constraints (9)-(10) are variable definitions.

We now present some additional valid inequalities for our model, and briefly
discuss how to adapt it to the ACSP and ACSP-SC variants.

3.1 Valid inequalities

In order to speed up the resolution of the model, in the following we introduce
further constraints to break symmetry and take advantage of some of the
properties introduced in the previous section.

– Symmetry often heavily affects the computational time required by inte-
ger programming models to find the optimal solution. Unfortunately, in
the case of ACSP-UE there is symmetry that must be managed by us-
ing additional constraints. Indeed, since the input graph is undirected, if
[vp1 , . . . , v

p
h] is a feasible ACSP-UE solution, then [vph, ... . . . , v

p
1 ] is feasible as

well and has identical cost. These two paths would correspond to two dis-
tinct feasible solutions for our model ([s, vp1 , . . . , v

p
h, t] and [s, vph, . . . , v

p
1 , t],

respectively).
We break this symmetry by introducing a new constraint, ensuring that
the index of the first endpoint is always lower than the index of the last
one. Formally,

∑
vi∈V

iysi ≤
∑
vj∈V

jyjt (11)

This constraint, along with constraints (5)-(6), produces the desired effect.
– As a consequence of Proposition 4, we know that in the optimal solution

the two endpoints have different colors. Hence, we introduced the following
valid inequalities:

∑
vi∈Vc

ysi +
∑
vj∈Vc

yjt ≤ 1 c ∈ C (12)

Our computational tests showed that these constraints improve the LP
relaxation value and, in general, they reduce the time needed to find the
optimal solution.
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– Let vi be a vertex contained in the optimal path; let c be its color. Again
from Proposition 4, we know that no vertex vj ∈ Vc \ {vi} can be the final
endpoint. This is expressed by the following constraints:∑

vj∈Vc\{vi}

yjt ≤ 1− xi c ∈ C, vi ∈ Vc (13)

Analogous constraints are also valid with respect to the starting endpoint:

∑
vj∈Vc\{vi}

ysj ≤ 1− xi c ∈ C, vi ∈ Vc (14)

In the following we refer to the ACSP-UE formulation (1)-(14) as ILP2-UE.

3.2 Adapting the model to ACSP and ACSP-SC

In order to adapt our model for ACSP and ACSP-SC, it is sufficient to solve
the above presented mathematical formulation on differently defined directed
graphs. Let us define Gd

′
= (V d, Ed

′
, Cd) the directed graph for ACSP-SC,

and Gd
′′

= (V d, Ed
′′
, Cd) the one for ACSP. For each vi ∈ V d \ {s} and vj ∈

V d \ {s}, both Ed
′

and Ed
′′

contain (vi, vj) if and only if the arc is contained

in Ed, and the arc has the same weight that it has in Ed. Furthermore, Ed
′

contains arcs {(s, vi) : vi ∈ Vcsrc}, while Ed
′′

contains only the arc (s, vsrc),
and these arcs have cost zero.

It is easy to understand that Gd
′

and Gd
′′

model the requirements on the
first endpoint of the path related to the ACSP-SC and ACSP problems, re-
spectively. Furthermore, given the above mentioned requirements, Constraints
(11) and (14) are not valid for these variants of the problem.

In Section 5, we refer to the ACSP formulation (that is, (1)-(10),(12),(13)
on graph Gd

′′
) as ILP2.

4 Variable Neighborhood Search

In Section 2 we introduced the concept of high-level solutions, whose main ad-
vantage is that they represent feasible solutions as fixed-length, simple paths,
showing in which order (and with which vertex) each color is first reached. As
already discussed, supposing to be able to determine the color visiting sequence
of the optimal solution, as well as the correct vertex for each color, finding the
optimal solution would be an easy task, since we would just need to connect
such vertices by means of shortest paths. Our VNS algorithm is based on this
fundamental idea, trying to iteratively improve a current candidate solution
as follows:

1. Given a feasible, high-level solution, we look for new solutions by perturb-
ing the color visiting sequence using two classical neighborhood strategies
for TSP problems, that is, relocate and 2-opt;
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Algorithm 1: VNS pseudocode

1 sol← GreedyInit();
2 bestSol← sol;
3 for i = 1 to MaxShakes do
4 improvement← true;
5 while improvement = true do
6 while improvement = true do
7 sol′ ← Relocate(sol);
8 if objFunction(sol′) < objFunction(sol) then
9 sol← sol′;

10 else
11 improvement← false;

12 sol′ ← 2-opt(sol);
13 if objFunction(sol′) < objFunction(sol) then
14 sol← sol′;
15 improvement← true;

16 if objFunction(sol) < objFunction(bestSol) then
17 bestSol← sol;

18 sol← Shake(sol);

19 return bestSol;

2. Once a new color visiting sequence has been decided in the above step, we
determine locally optimal choices for the vertices of the colors involved in
the perturbation.

Hence, we determine first the color sequence, and then the actual vertices
of new high-level solutions. Once these vertices are chosen for a new high-level
solution, it is easy to reconstruct the corresponding low-level one, since these
vertices will always be connected by means of shortest paths. In this sense, we
say that our approach works on two levels.

We also developed a greedy heuristic based on this fundamental idea, that
operates in |C| − 1 steps and is used to produce the first feasible solution.

Algorithm 1 presents the pseudocode of our metaheuristic approach. After
individuating a starting feasible solution using the heuristic algorithm de-
scribed in Section 4.1, we look for improvements by means of a local search
that uses relocate neighborhoods. As soon as this local search step fails to
find an improvement, we apply a new local search using a 2-opt neighborhood
strategy. If we manage to improve the current solution, the algorithm goes
back to the relocate local search, otherwise we attempt to escape from the
current local optimum by means of a shake operator, and the algorithm iter-
ates. The two local search operators are presented in Section 4.2, while the
shake operator is discussed in Section 4.3. When the 2-opt local search fails
and a pre-defined number of shakes has been reached, the algorithm ends and
the best solution found is returned.
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4.1 Initialization algorithm

In a preliminary step, we evaluate the shortest paths among each couple of
vertices of G by using the Floyd-Warshall algorithm (see [6]). As well known,
the algorithm operates in O(|V |3) time.

The initialization algorithm then performs |C| steps to produce a feasi-
ble ACSP-UE solution. In the first step, a random vertex is chosen as first
endpoint. In the i-th step (i = 2, . . . , |C|) the algorithm chooses, among all
vertices whose colors differ from those of the vertices chosen in the previous
steps, the one whose shortest path from the vertex chosen in the (i − 1)-th
step has minimum weight.

It is clear that, after the |C|-th step, the sequence of chosen vertices is
a high-level feasible solution. Since the Floyd-Warshall algorithm allows to
reconstruct each shortest path by means of an auxiliary predecessor matrix,
we are also able to reconstruct the corresponding low-level solution.

The initialization algorithm is easy to adapt to ACSP and ACSP-SC. In-
deed, in the first case the starting vertex is always chosen to be vsrc, while in
the second case it will be a random one among those associated to csrc.

4.2 Relocate and 2-Opt Local Search

Let p =< vp1 , . . . , v
p
|C| > be the current high-level solution. Consider the asso-

ciated color sequence < cp1, . . . , c
p
|C| >, where cpi = γ(vpi ). Our two local search

operators work as follows.

– The relocate local search performs |C|2 − |C| iterations, each building a
new neighbor, operating in two steps:

1. For i ∈ {1, . . . , |C|}, the vertex in the i-th position is removed from p,
hence we obtain an incomplete high-level solution < vp1 , . . . , v

p
i−1, v

p
i+1,

vp|C| >. If i = 1 or |C|, the solution is simply truncated to remove the

corresponding endpoint. Otherwise, new locally optimal vertex choices
are made for colors cpi−1 and cpi+1, since vpi−1 and vpi+1 may no longer
be favorable choices now that they are directly connected in the high-
level solution. Consider for instance the case of Figure 3(b), in which
new vertices must be chosen for cp3 and cp5 after removing vp4 from the
solution show in Figure 3(a).

2. For each incomplete solution obtained from the previous step, |C| −
1 new complete high-level solutions are obtained by adding a newly
chosen vertex with color cpi in each position j ∈ {1, . . . , |C|}, j 6= i. For
instance, in Figure 4(a), color cpi = cp4 is relocated in the second position
(j = 2).

– In the 2-opt local search, each new neighbor is generated by removing
two edges from the current high-level solution and replacing them with

two different ones. Overall, |C
2|−|C|
2 neighbors are created, operating as

follows:
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– For each i = 1, . . . , |C|−1 and j = i+1, . . . , |C|, a neighbor p′ whose se-
quence of colors in its high-level representation is < cp1, . . . , c

p
i−1, c

p
j , . . . ,

cpi , c
p
j+1, . . . , c

p
|C| > is generated, where the color visiting sequence be-

tween j and i in p′ is the inverse of p. For instance, given the high-level
solution p with |C| = 6 in Figure 5(a), by applying a 2-opt operation
corresponding to i = 3 and j = 5 we obtain a neighbor whose color vis-
iting sequence is shown in Figure 5(b), that is, < cp1, c

p
2, c

p
5, c

p
4, c

p
3, c

p
6 >.

The choice for a given color cpk in p′ will be vpk if k /∈ {i− 1, i, j, j + 1},
while a new choice is required otherwise. That is, we determine new
choices for the endpoints of the edges involved in the swap. If i = 1, cpj
becomes the color of the new starting endpoint, and similarly, if j = |C|,
cpi is the new final color.

We now describe how new vertices are chosen when needed for the two
steps of each relocate iteration, as well as for each 2-opt iteration. In the
following, we define undecided the colors for which a new vertex has to be
chosen, according to the previously described steps.

The underlying idea is to generate for each of these three steps an auxiliary
directed graph Ga = (V a, Ea), containing all candidate vertices belonging to
each undecided color. In Ga, each vertex of an undecided color ci has an
ingoing arc that connects it to the vertex that would precede it in the high-
level solution that we are building, as well as an outgoing one to the vertex
that would follow it. If ci is preceded or followed in our solution by another
undecided color cj , its vertices are connected to all vertices of cj . The weight
of each arc in Ga is equal to the cost of the shortest path between its endpoints
in the original graph G. Dummy source or destination nodes are considered
to handle special cases in which preceding or following nodes do not exist. By
looking for shortest paths in Ga, we identify the new vertices for the undecided
colors. In more detail:

– Relocate, Step 1: Let us assume that vpi−2 and vpi+2 both exist. In
this case, V a is composed of {vpi−2, v

p
i+2} ∪ Vcpi−1

∪ Vcpi+1
. Ea contains

edges (vpi−2, v
′),∀v′ ∈ Vcpi−1

, arcs (v′, v′′),∀v′ ∈ Vcpi−1
, v′′ ∈ Vcpi+1

and arcs

(v′′, vpi+2),∀v′′ ∈ Vcpi+1
. We then use the Dijkstra algorithm to find a short-

est path in Ga from vpi−2 and vpi+2; by construction, this path will cross
exactly one vertex with color cpi−1 and one vertex with color cpi+1. Figure
3(c)-(d) shows graph Ga and the individuated shortest path (edge weights
are omitted).
If cpi−1 is the starting color, vpi−2 is substituted by a dummy source, which is
connected in Ga to the vertices with color cpi−1 though zero-weighted edges.
With an analogous reasoning, we replace vpi+2 with a dummy destination
if cpi+1 is the last color reached by the solution.

– Relocate, Step 2: Let us assume that cpi has to be relocated in the j-th
position, with 1 < j < |C|. Let vprv and vnxt be the vertices that will
precede and follow the new vertex. In the auxiliary graph, V a contains
{vprv, vnxt}∪Vcpi , while Ea contains arcs (vprv, v′) and (v′, vnxt) ∀v′ ∈ Vcpi .
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By looking for a shortest path between vprv and vnxt, we identify a vertex
with color cpi . Figure 4(b)-(d) show these steps and the final high-level
representation of the newly built neighbor.
If j = 1, vprv does not exist; the procedure reduces to selecting the vertex
in Vcpi whose shortest path distance from vnxt = vp1 is minimal. The same

holds with respect to vprv = vp|C| if j = |C|.
– 2-opt: In Ga, for each color cpk ∈ C, V a contains vpk if k /∈ {i−1, i, j, j+1},

or Vcpk otherwise. Given any couple of consecutive colors cpk and cpq in the

new solution, Ea will contain an arc from each vertex with color cpk to each
vertex with color cpq in V a.
If the first and last endpoint of the path do not belong to undecided colors
(i − 1 > 1 and j + 1 < |C|), we look for a shortest path between them.
Otherwise, if i−1 ≤ 1, the first endpoint belongs to either color cpi−1 = cp1 or
cpj ; in both cases, this endpoint is not known. Hence, we consider a dummy
source that is connected to each vertex with color cp1 (or cpj , respectively)
with zero-weighted arcs. Analogously, if j + 1 ≥ |C|, the last endpoint of
the path has color cpj+1 = cp|C| or cpi . In these cases, we add a dummy

destination.
Figure 5(c) shows the Ga auxiliary graph for the considered example; note
that since i−1 = 2 > 1 we do not need the dummy source (the first endpoint
vp1 is known), while the dummy destination is needed (j = 5 = |C| − 1).
Figures 5(d)-(e) show the shortest path found and the related high-level
neighbor solution, respectively.

Each relocate local search iteration stores the neighbor solution with minimum
cost encountered. Once all neighbors have been generated, if the best one is an
improvement with respect to the current solution, a new relocate local search
iteration starts. Otherwise, the current solution does not change and the 2-
opt local search step is invoked. Similarly to the relocate one, our 2-opt local
search explores the whole neighborhood, storing the best solution found. If an
improvement with respect to the current solution is found, we go back to the
relocate local search; otherwise we attempt to escape from the current local
minimum by performing a shake operation.

It is easy to adapt both operators to ACSP or ACSP-SC. For the relocate,
the color corresponding to the first endpoint is not removed from the solution
in step 1, and no color is relocated in the first position in step 2. Furthermore,
with respect to ACSP, when the color in the the second position is removed
from the path in step 1, we make sure that the first endpoint is not changed.
In order to adapt the 2-opt local search, we avoid the case i = 1, since, as
described, this case corresponds to a choice of a new color for the first endpoint.
Moreover, for ACSP, when i = 2 we impose the shortest path in Ga to start
from vp1 = vsrc.
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(e) Incomplete solution after the new choices for cp3 and cp5

Fig. 3 Neighbor construction through Relocate Local Search (step 1, i = 4)

4.3 Shake operator

The shake operator performs a number of random perturbations to the current
solution, in order to try to escape from the local optimum. In more detail,

every time that the shake operator is invoked, it performs |C|
shake1

relocate
operations. For each of these operations, the i and j values used in the two
steps of the relocate procedure are chosen randomly. Overall, a total of shake2
shake operations are performed, and every shake2

shake3
invocations of the operator,

the current solution is rebuilt from scratch by using the initialization algorithm
described in Section 4.1. The values chosen for parameters shake1, shake2 and
shake3 are reported in Section 5.
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(d) Complete high-level solution after the new choice for cp4

Fig. 4 Neighbor construction through Relocate Local Search (step 2, j = 2)

5 Computational results

This section presents the test scenarios and the results obtained during our
computational test phase. Our VNS algorithm was coded using the C++ pro-
gramming language, while the mathematical formulations were implemented
and solved using the IBM ILOG CPLEX 12.6.1 solver. All tests were per-
formed in single thread mode on a machine with an Intel Xeon E5-2650 v3
processor running at 2.3 GHz and 128 GB of RAM. With respect to the VNS
parameters, after a preliminary tuning phase we chose the values shake1 = 3,
shake2 = |V | and shake3 = 5. For CPLEX, we considered a time limit equal
to 3600 seconds. Whenever the solver reaches this threshold, the related solu-
tion value is marked with a “*” symbol to highlight that this value is an upper
bound of the optimal solution.

The following two subsections contain results for the ACSP and ACSP-UE
problems, respectively.
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(e) High-level solution after the new vertex choices

Fig. 5 Neighbor construction through 2-opt Local Search (i = 3, j = 5)

5.1 Comparisons on the ACSP problem

In this subsection, we compare the effectiveness and the performance of our
formulation and VNS metaheuristic with the formulation and heuristics pro-
posed in [3] for the ACSP problem.
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Instances ILP2 ILP GAP
n m k LP Obj Time LP Obj Time LP Obj

50 189 10 37.03 40 0.40 26.01 40 10.53 42.39% 0.00%
50 152 20 101.00 101 0.06 79.35 101 3.20 27.29% 0.00%
50 154 25 129.34 132 0.21 106.36 132 6.08 21.60% 0.00%

100 338 25 128.81 138 3.04 94.33 138 86.91 36.55% 0.00%
100 330 40 207.62 220 1.25 148.55 220 19.82 39.76% 0.00%
100 373 50 229.28 233 0.95 192.91 233 35.74 18.85% 0.00%
200 734 50 179.69 223 158.22 119.95 223* 3612.17 49.81% 0.00%
200 746 75 373.51 399 87.47 310.25 399 2013.22 20.39% 0.00%

Table 1 Comparison of the ILP2 and ILP formulations for ACSP on the instances proposed
in [3].

We start by comparing the performance of our ILP2 formulation with the
formulation proposed in [3], named ILP. Both formulations were implemented
by us, and compared on our testing environment.

A first comparison between ILP and ILP2 was carried out on the dataset of
instances proposed in [3], having a number of vertices between 50 and 200 and
a number of colors between 10 and 75. The instance files have been provided
by the authors.

The results of this comparison are reported in Table 1. Under the Instances
heading, we report the instances characteristics (number of vertices n, number
of edges m and number of colors k). The next six columns report the root linear
relaxation value (LP), the solution value (Obj ) and the computational time
(Time), in seconds, for ILP2 and ILP, respectively. Finally, under the GAP
heading, we report the gap percentage between the linear relaxation values
and between the solution values, respectively. These gaps are computed by

using the formulas 100 × LP (ILP2)−LP (ILP )
LP (ILP ) and 100 × Obj(ILP2)−Obj(ILP )

Obj(ILP ) ,

respectively.

The results under the GAP heading show that the linear relaxation of ILP2
is always better than the one of ILP, with gaps ranging from 18.85% to 49.81%.
With respect to solutions quality, we note that ILP2 always finds the optimal
one, while ILP reaches the time limit once (see the case with 200 nodes and
50 colors), hence it is not able to certify the optimality of the solution found
in this case. Regarding computational times, ILP2 is always faster than ILP,
solving 6 out of 8 instances in less than 4 seconds, and requiring about 158
seconds in the worst case. The computational times of ILP are significantly
higher, and worse in all cases. Indeed, as already mentioned, in the worst case
it reaches the time limit, on the last instance it requires about 2013 seconds,
and on the remaining 6 instances the computational time ranges from 3 to 87
seconds. The results of Table 1 clearly show that ILP2 outperforms ILP on
this dataset.

A second comparison among the two formulations was carried out on a
new, larger set of instances. Our instances were generated with respect to
3 parameters: the number of vertices n, the number of edges m and the
number of colors k. The vertices are randomly disposed in a square area
of size 50x50. The value of n is chosen in the set {25, 50, 75, 100, 150}. The
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number of edges m is chosen by using a density d that ranges in the set

{0.2, 0.3, 0.4, 0.5} (m = n(n−1)
2 × d). Finally, the number of colors k belongs

to the set {d0.1ne, d0.2ne, d0.3ne, d0.4ne}. We generated 5 instances for each
combination of parameters, discarding the case n = 25, k = d0.1ne = 3, which
resulted to be particularly trivial and in which it would not make sense to
define the 2-opt operator (these instances were also used to test our VNS, as
will be discussed in Section 5.2). Therefore, our dataset is composed in total
of 76 different scenarios and 380 individual instances. For these tests, the node
indexed with 0 was also assumed to be the ACSP source vertex. Our instances
are available online1.

Table 2 contains the results of the comparison between ILP2 and ILP on
this new set of instances. Table headings have the same meaning that they
have for Table 1, with the addition of column m which reports the value of the
additional instance parameter. However, in this case we report average values
for each scenario.

We can note that the linear relaxation values of ILP2 are again always
better than the ones of ILP, with a percentage gap that ranges from about
1.5% to over 100%. In 56 out of 76 scenarios, the percentage gap is greater
than 20%. As a consequence, we observe a remarkable difference between the
effectiveness of ILP2 and ILP. Indeed, ILP2 reaches the time limit without
finding the optimal solution only once (150 nodes, 4470 edges, 30 colors). On
the other hand, ILP reaches the time limit 24 times, and the first failures
occur on the instances with 75 nodes. The solution percentage gap is lower
than -5% in 14 out these 24 cases, and it decreases down to about -35%. We
note in particular that ILP never finds the optimal solution for the instances
with n = 150. With respect to performances, ILP2 is most of the times an
order of magnitude faster than ILP. We can note that the scenarios with up
to 100 nodes are optimally solved by ILP2 within about 3.5 minutes. On the
same scenarios, ILP reaches the time limit 8 times. In the 15 scenarios with
150 nodes solved to optimality by ILP2, the model requires up to about 18
minutes, while as mentioned the time limit is always reached by ILP.

A final comparison for the ACSP problem is carried out between our VNS
metaheuristic and those proposed in [3] for the problem. We recall that in this
work the authors present 3 metaheuristics, namely a simulated annealing (SA),
an ant colony optimization (ACO) and a genetic algorithm (GA). Moreover,
they describe 3 heuristics based on iterative rounding of a mathematical for-
mulation for the problem that they develop. The heuristics differ with respect
to the variables on which the rounding is performed, and are called LPx, LPf
and LPf/x respectively. These 6 algorithms were tested on the same dataset
of Table 1. The results for these algorithms are taken from [3].

Table 3 contains the results of this comparison, with the results of the 4
metaheuristics (that is, our VNS and the ones in [3]) reported in the (a) sub-
table, and the rounding heuristics in the (b) subtable. In [3], for each instance
and algorithm, the obtained result is reported in terms of proportion with

1 http://www.dipmat2.unisa.it/people/carrabs/www/DataSet/ACSP Instances.zip
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Instances ILP2 ILP GAP
n m k LP Obj Time LP Obj Time LP Obj

25 60 5 67.97 72.40 0.08 47.31 72.40 0.30 43.69% 0.00%
25 90 5 57.33 61.40 0.07 39.36 61.40 0.49 45.65% 0.00%
25 120 5 39.66 47.40 0.04 32.80 47.40 0.33 20.90% 0.00%
25 150 5 39.19 46.00 0.10 29.96 46.00 0.52 30.79% 0.00%
25 60 8 116.64 117.20 0.11 86.73 117.20 1.04 34.48% 0.00%
25 90 8 98.22 100.20 0.03 74.97 100.20 1.40 31.02% 0.00%
25 120 8 82.26 89.20 0.13 68.63 89.20 1.66 19.86% 0.00%
25 150 8 80.25 85.20 0.10 66.46 85.20 1.64 20.76% 0.00%
25 60 10 149.80 157.20 0.01 137.37 157.20 0.44 9.05% 0.00%
25 90 10 118.16 137.40 0.04 107.68 137.40 1.55 9.73% 0.00%
25 120 10 109.14 110.00 0.07 99.76 110.00 1.09 9.41% 0.00%
25 150 10 81.21 104.20 0.11 79.96 104.20 4.42 1.56% 0.00%
50 245 5 37.67 44.40 0.24 21.85 44.40 3.84 72.36% 0.00%
50 367 5 28.84 39.00 0.21 17.30 39.00 6.28 66.74% 0.00%
50 490 5 23.87 37.40 0.33 15.21 37.40 8.26 56.94% 0.00%
50 612 5 24.25 29.60 0.55 12.27 29.60 7.90 97.61% 0.00%
50 245 10 78.73 96.60 0.28 62.62 96.60 9.10 25.73% 0.00%
50 367 10 73.89 80.40 0.33 51.44 80.40 9.93 43.65% 0.00%
50 490 10 66.12 81.00 0.80 44.98 81.00 36.40 47.00% 0.00%
50 612 10 54.61 69.80 0.90 36.82 69.80 25.07 48.30% 0.00%
50 245 15 152.49 176.20 0.34 125.39 176.20 10.38 21.61% 0.00%
50 367 15 129.13 136.60 0.41 102.33 136.60 14.19 26.19% 0.00%
50 490 15 112.05 134.20 0.74 88.59 134.20 31.59 26.49% 0.00%
50 612 15 100.14 111.60 0.96 76.12 111.60 28.93 31.55% 0.00%
50 245 20 223.05 228.60 0.28 188.52 228.60 6.47 18.32% 0.00%
50 367 20 193.58 205.00 0.48 165.63 205.00 14.56 16.88% 0.00%
50 490 20 148.33 161.40 0.65 125.47 161.40 22.71 18.22% 0.00%
50 612 20 157.06 171.60 0.80 133.60 171.60 22.24 17.56% 0.00%
75 555 8 48.51 58.60 1.05 23.79 58.60 20.18 103.93% 0.00%
75 832 8 41.99 62.80 2.55 27.91 62.80 82.42 50.46% 0.00%
75 1110 8 30.16 46.40 4.06 18.48 46.40 80.05 63.20% 0.00%
75 1387 8 34.45 43.60 2.71 20.04 43.60 44.49 71.87% 0.00%
75 555 15 97.19 121.40 0.95 79.93 121.40 40.24 21.59% 0.00%
75 832 15 94.64 111.80 5.12 70.67 111.80 145.38 33.91% 0.00%
75 1110 15 75.00 96.40 4.49 55.10 96.40 407.45 36.10% 0.00%
75 1387 15 60.35 90.80 7.68 47.56 90.80 701.17 26.88% 0.00%
75 555 23 187.52 222.40 3.53 162.47 222.40 154.83 15.42% 0.00%
75 832 23 158.94 178.00 2.94 127.54 178.00 402.89 24.62% 0.00%
75 1110 23 138.30 161.20 7.90 107.63 162.00* 973.69 28.49% -0.49%
75 1387 23 131.89 147.00 3.70 105.30 147.00 254.37 25.25% 0.00%
75 555 30 291.01 307.20 1.70 237.69 307.20 109.54 22.43% 0.00%
75 832 30 204.28 234.00 1.45 181.19 234.00 68.79 12.74% 0.00%
75 1110 30 200.79 217.00 3.41 165.65 217.00 369.20 21.21% 0.00%
75 1387 30 186.20 208.40 8.96 153.63 209.00* 982.64 21.20% -0.29%

100 990 10 51.71 70.80 4.94 26.39 70.80 258.00 95.95% 0.00%
100 1485 10 40.64 58.20 6.77 23.84 58.20 155.52 70.48% 0.00%
100 1980 10 29.90 52.00 10.54 22.68 52.00 381.85 31.85% 0.00%
100 2475 10 32.17 49.20 25.50 19.71 49.60* 1341.44 63.22% -0.81%
100 990 20 128.05 149.60 5.48 91.30 149.60 343.70 40.26% 0.00%
100 1485 20 92.75 119.60 11.85 71.46 119.60 905.75 29.80% 0.00%
100 1980 20 76.00 121.40 22.04 64.89 122.40* 2300.55 17.12% -0.82%
100 2475 20 64.00 103.60 23.79 56.79 108.60* 1947.42 12.70% -4.60%
100 990 30 225.80 246.80 10.27 172.88 246.80 354.60 30.61% 0.00%
100 1485 30 184.57 211.80 8.67 149.75 211.80 440.12 23.25% 0.00%
100 1980 30 153.70 185.00 202.05 121.44 192.00* 2441.90 26.57% -3.65%
100 2475 30 134.31 173.20 195.68 104.38 183.00* 3258.62 28.67% -5.36%
100 990 40 315.86 341.00 3.77 270.11 341.00 232.40 16.94% 0.00%
100 1485 40 269.10 297.80 10.63 229.42 297.80 775.97 17.30% 0.00%
100 1980 40 215.75 237.60 7.72 179.59 237.60 325.57 20.14% 0.00%
100 2475 40 204.92 236.40 57.14 164.52 239.00* 3063.54 24.55% -1.09%
150 2235 15 58.97 89.20 58.22 36.10 97.20* 3612.09 63.33% -8.23%
150 3352 15 40.97 74.00 275.76 29.76 81.40* 3191.23 37.64% -9.09%
150 4470 15 42.87 69.40 243.49 30.57 80.00* 3612.18 40.26% -13.25%
150 5587 15 30.32 65.80 539.53 28.44 78.60* 3612.21 6.62% -16.28%
150 2235 30 159.26 186.40 144.21 110.01 196.00* 3377.19 44.77% -4.90%
150 3352 30 122.61 156.80 373.97 93.27 174.80* 3612.07 31.46% -10.30%
150 4470 30 91.96 144.40* 1209.91 75.75 181.80* 3612.11 21.40% -20.57%
150 5587 30 91.77 136.80 743.04 76.95 191.00* 3612.17 19.25% -28.38%
150 2235 45 276.83 318.00 107.23 222.08 343.00* 3612.15 24.65% -7.29%
150 3352 45 209.45 253.60 233.50 165.19 293.60* 3612.14 26.80% -13.62%
150 4470 45 192.62 230.00 396.87 147.59 256.20* 3612.12 30.51% -10.23%
150 5587 45 169.15 208.00 888.98 133.94 276.60* 3612.16 26.29% -24.80%
150 2235 60 405.33 433.40 56.06 339.73 434.40* 2646.15 19.31% -0.23%
150 3352 60 317.41 352.60 150.30 271.63 364.00* 2953.43 16.85% -3.13%
150 4470 60 266.24 312.20 608.61 232.13 331.00* 3513.10 14.69% -5.68%
150 5587 60 243.86 294.60 1066.29 198.13 454.25* 3612.22 23.08% -35.15%

Table 2 Comparison of the ILP2 and ILP formulations for ACSP on the new set of in-
stances.
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(a) Metaheuristics results

Instances VNS SA [3]

n m k
Avg
Obj

Best
Obj

Avg
Time

Avg
Obj

Best
Obj

Avg
Time*

50 189 10 1.00 1.00 0.03 1.00 1.00 27.62
50 152 20 1.01 1.00 0.13 1.14 1.11 38.85
50 154 25 1.01 1.01 0.21 1.17 1.12 45.99
100 338 25 1.01 1.00 1.09 1.23 1.18 168.00
100 330 40 1.03 1.00 4.13 1.33 1.22 215.50
100 373 50 1.02 1.00 8.95 1.39 1.32 276.76
200 734 50 1.05 1.03 32.30 1.51 1.46 870.14
200 746 75 1.05 1.04 154.88 1.62 1.55 1231.93

Instances ACO [3] GA [3]

n m k
Avg
Obj

Best
Obj

Avg
Time*

Avg
Obj

Best
Obj

Avg
Time*

50 189 10 1.06 1.00 1.92 1.07 1.05 0.35
50 152 20 1.19 1.17 6.74 1.23 1.12 0.45
50 154 25 1.18 1.12 11.46 1.33 1.22 0.59
100 338 25 1.26 1.17 11.63 1.22 1.15 0.79
100 330 40 1.33 1.28 31.41 1.54 1.40 1.08
100 373 50 1.40 1.29 57.74 1.56 1.45 1.90
200 734 50 1.44 1.39 52.43 1.58 1.45 2.48
200 746 75 1.50 1.46 139.81 1.72 1.58 4.71

(b) Rounding heuristics results

Instances LPx [3] LPf [3] LPf/x [3]
n m k Obj Time* Obj Time* Obj Time*

50 189 10 3.15 1.46 1.15 0.85 2.08 0.80
50 152 20 1.86 2.10 1.16 1.12 1.19 0.99
50 154 25 1.90 2.28 1.32 1.48 1.36 0.98
100 338 25 2.14 4.80 1.21 2.59 1.51 2.79
100 330 40 2.00 7.43 1.32 3.46 1.46 3.35
100 373 50 1.81 7.18 1.16 3.32 1.12 2.91
200 734 50 2.35 33.78 1.39 19.38 1.69 19.47
200 746 75 1.96 42.78 1.33 25.39 1.48 19.15

Table 3 Comparison of heuristics for ACSP.
*Computational times reported in [3] are divided by 1.21

respect to the optimal objective function value, found using CPLEX. Further-
more, since the 3 metaheuristics are non deterministic, the authors perform 10
independent runs for each of them and report the best and average solutions
found, respectively. In order to be comparable, we ran our tests and reported
our results accordingly; these values are contained in the Avg Obj and Best
Obj columns for each metaheuristic, while the average computational times in
seconds can be found in the Avg Time columns. The results for a single run
was instead reported for each instance and each of the 3 heuristics, and we re-
port these results in Table 3(b). In order to improve the computational times
comparability (in [3], an AMD Phenom II X4 810 machine running at 2.67
GHz with 2 GB of RAM was used), we referred to the CPU performance com-
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parative table provided by the UC Berkeley SETI@home experiment website2,
based on Whetstone benchmarks. By comparing the GFLOPS/core values, we
divided all computational times reported in [3] by 1.21.

We can see that our VNS appears to be remarkably more effective than
the previous approaches. The optimal solution is found in all 10 runs in one
case (n = 50, k = 10), and in the best case for 5 out 8 instances. In the com-
putational tests performed in [3], only SA (the most time-intensive approach)
was able to find the optimal solution for the same instance in all 10 runs. The
ACO algorithm was able to find the optimal solution for this instance in the
best case; no other instance was ever solved to optimality by any of their 6
proposed approaches.

On average, VNS found solutions diverging from the optimal one within
1% in 4 cases, 2% and 3% in one case each, and within 5% for the two largest
instances with 200 vertices. In the best case, this threshold is never larger than
4%. On the other hand, the gap grow up to 46%, 55% or 58% for the previous
3 metaheuristics in the best case, and up to 50%, 62% or 72% in the average
case. The overall best-performing rounding heuristic (LPf ) found a solution
with an objective function gap equal to 15% for the instance with n = 50,
k = 10, growing up to 39% for n = 200, k = 50.

With respect to the computational times, we note that GA algorithm ap-
pears to be the fastest one, running within 5 seconds on average. The ACO
algorithm, while being slower than VNS on the smaller instances, appears to
have roughly similar computational times on the largest ones; for n = 200,
k = 75 the average computational time is 154.88 seconds for VNS and 139.81
seconds for ACO. The SA heuristic appears to be the most time intensive,
being often at least one order of magnitude slower than VNS. The rounding
heuristics have low computational times, being generally slower than GA and
faster than ACO and VNS.

5.2 Comparisons on the ACSP-UE problem

In this section, we use our VNS algorithm to solve the ACSP-UE problem on
our new instances, presented in the previous section. We compare the solution
values found by VNS with the optimal values (or upper bounds) found by
ILP2-UE. In order to better verify the stability of the VNS and be consistent
with the previously presented tests, we performed 10 independent runs of our
metaheuristic on each instance. Table 4 presents the collected results. The
first 3 columns contain the instance characteristics; the following 4 columns
contain the results for our formulation (ILP2-UE heading) and metaheuristic
(VNS heading). Finally, the last column reports the gap value, in percentage,
between the solutions of ILP2-UE and of VNS; in more detail, this value is

computed as 100× Obj(V NS)−Obj(ILP2−UE)
Obj(ILP2−UE) .

2 https://setiathome.berkeley.edu/cpu list.php
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Instances ILP2-UE VNS GAP
n m k Obj Time Obj Time

25 60 5 51.40 0.05 51.40 0.00 0.00%
25 90 5 37.60 0.09 37.60 0.00 0.00%
25 120 5 38.40 0.13 38.40 0.00 0.00%
25 150 5 33.20 0.11 33.20 0.00 0.00%
25 60 8 81.00 0.05 81.00 0.00 0.00%
25 90 8 88.40 0.13 88.40 0.00 0.00%
25 120 8 80.00 0.16 80.00 0.00 0.00%
25 150 8 79.20 0.19 79.40 0.00 0.25%
25 60 10 141.80 0.05 141.80 0.00 0.00%
25 90 10 123.20 0.13 123.60 0.00 0.32%
25 120 10 103.20 0.09 103.20 0.01 0.00%
25 150 10 87.80 0.12 87.80 0.00 0.00%
50 245 5 30.60 0.35 30.80 0.00 0.65%
50 367 5 24.80 0.40 24.80 0.01 0.00%
50 490 5 25.80 0.61 25.80 0.00 0.00%
50 612 5 22.60 1.27 23.40 0.00 3.54%
50 245 10 85.20 0.42 85.20 0.03 0.00%
50 367 10 70.20 0.52 70.20 0.03 0.00%
50 490 10 69.20 1.30 69.26 0.03 0.09%
50 612 10 63.80 1.78 63.80 0.03 0.00%
50 245 15 153.00 0.51 153.60 0.08 0.39%
50 367 15 125.80 0.89 126.24 0.09 0.35%
50 490 15 125.40 1.31 125.40 0.08 0.00%
50 612 15 104.80 1.81 104.80 0.07 0.00%
50 245 20 211.80 0.42 212.72 0.14 0.43%
50 367 20 191.20 0.54 194.92 0.14 1.95%
50 490 20 154.20 0.76 155.32 0.14 0.73%
50 612 20 159.60 0.94 160.30 0.13 0.44%
75 555 8 51.40 1.93 51.40 0.05 0.00%
75 832 8 46.00 1.83 46.28 0.05 0.61%
75 1110 8 36.80 3.52 36.80 0.05 0.00%
75 1387 8 36.80 5.20 36.80 0.05 0.00%
75 555 15 111.40 1.95 111.52 0.18 0.11%
75 832 15 103.20 6.08 103.20 0.19 0.00%
75 1110 15 89.80 8.46 90.50 0.18 0.78%
75 1387 15 83.00 10.27 83.00 0.17 0.00%
75 555 23 203.00 2.46 206.18 0.51 1.57%
75 832 23 173.20 4.71 174.58 0.45 0.80%
75 1110 23 153.40 11.71 153.90 0.43 0.33%
75 1387 23 139.60 6.51 140.04 0.47 0.32%
75 555 30 289.80 1.81 292.90 1.12 1.07%
75 832 30 228.00 2.57 229.92 0.99 0.84%
75 1110 30 208.00 4.07 209.90 0.97 0.91%
75 1387 30 198.00 7.53 199.40 0.92 0.71%

100 990 10 59.40 5.28 59.46 0.16 0.10%
100 1485 10 46.80 9.80 46.92 0.16 0.26%
100 1980 10 42.40 16.84 42.52 0.16 0.28%
100 2475 10 42.40 34.81 42.40 0.15 0.00%
100 990 20 138.40 11.63 140.10 0.64 1.23%
100 1485 20 111.00 34.22 111.54 0.60 0.49%
100 1980 20 110.60 48.98 111.40 0.60 0.72%
100 2475 20 96.80 40.00 98.02 0.57 1.26%
100 990 30 236.80 7.79 240.70 1.96 1.65%
100 1485 30 202.80 11.95 205.08 1.78 1.12%
100 1980 30 174.40 48.78 176.28 1.71 1.08%
100 2475 30 163.80 109.93 165.00 1.59 0.73%
100 990 40 324.40 5.78 329.42 4.67 1.55%
100 1485 40 287.60 12.42 291.84 4.37 1.47%
100 1980 40 229.80 17.77 231.90 3.82 0.91%
100 2475 40 228.40 40.50 230.94 3.89 1.11%
150 2235 15 77.00 47.50 77.46 1.00 0.60%
150 3352 15 66.60 150.67 67.12 0.97 0.78%
150 4470 15 60.20 300.98 60.26 0.93 0.10%
150 5587 15 56.80 383.15 57.46 0.92 1.16%
150 2235 30 180.00 182.17 181.96 4.52 1.09%
150 3352 30 145.60 210.39 146.60 4.27 0.69%
150 4470 30 134.80* 1042.86 136.82 4.15 1.50%
150 5587 30 130.00 1322.56 131.56 3.92 1.20%
150 2235 45 307.20 91.18 317.04 15.83 3.20%
150 3352 45 248.40 413.83 253.56 14.24 2.08%
150 4470 45 222.00 501.15 224.58 12.50 1.16%
150 5587 45 200.80 750.11 203.32 13.15 1.25%
150 2235 60 424.60 78.92 436.40 43.06 2.78%
150 3352 60 344.40 191.68 352.32 38.00 2.30%
150 4470 60 303.40 771.11 309.20 37.39 1.91%
150 5587 60 289.60* 1742.00 294.46 34.80 1.68%

Table 4 Computational results of VNS and ILP2-UE for the ACSP-UE problem on the
new set of instances.

For each row, we present average values (in terms of objective function
value and computational times in second) of all the computational tests per-
formed for each scenario and for each of the two approaches.
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The results reported in the GAP column show the effectiveness of VNS,
that often finds either optimal solutions or very close ones. In particular, given
the 74 scenarios that are solved by optimality by ILP2-UE, we can see that
the same solution is also found by VNS 23 times. Moreover, the gap value is
lower than 1% for 53 out of 76 scenarios, and lower than 2% for 71 out of 76
scenarios. The gap value is higher than 3% only twice.

It is worth noting that on the smallest scenarios, with up to 75 nodes, the
gap value is lower than 1% on 44 out of 46 scenarios; a single scenario (n = 50,
m = 612, k = 5) among them has a peak corresponding to 3.54%, however we
can note that the related solution values are small and therefore, in absolute
terms, the solution values are not very far also in this case (22.60 for ILP2-UE,
23.40 for VNS). Overall, the instance characteristics do not appear to influence
the VNS performances in this case.

On the largest scenarios, gap value peaks occur instead on sparse scenarios
with a number of colors equal to d0.3ne or d0.4ne. In particular, the highest
gaps can be noted for the following scenarios: n = 100, m = 990, k = 30
(1.65%); n = 100, m = 990, k = 40 (1.55%); n = 150, m = 2235, k = 45
(3.20%); n = 150, m = 2235, k = 60 (2.78%). The easiest scenarios for VNS
are generally the ones containing less colors, where the gap values are almost
always lower than 1%.

Regarding the performances, we can see that VNS runs in less than 5
seconds for the scenarios with up to 100 nodes, while for the largest ones it
runs within 44 seconds. The parameter that mainly affects the performance is
the number of colors. This was expected, since a higher number of colors leads
to longer high-level solutions and therefore to a higher number of relocate and
2-opt operations. We can see that, for instance, all scenarios with k = d0.1ne
are solved within 1 second, regardless of the number of nodes. The instances
with a number of colors equal to d0.2ne, d0.3ne and d0.4ne are instead solved
within 5, 16 and 44 seconds, respectively.

6 Conclusions

In this work we presented a mathematical formulation and a VNS metaheuris-
tic to solve the ACSP problem. The VNS algorithm takes advantage of the
concept of high-level solution, a fixed-length representation of any feasible so-
lution. Our approaches are also used to solve a variant of the problem with un-
constrained endpoints (ACSP-UE). The computational results show that the
VNS outperforms some previously introduced heuristics for ACSP, and that
it is able to find accurate solutions in fast computational times for ACSP-UE.
With respect to future developments, we intend to further study the problem
and develop efficient exact approaches, possibly based on the branch & cut
strategy. The development of new, more effective metaheuristics could also
represent an interesting research direction.
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