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Abstract: The surge of the Internet of Things has sparked a multitude of deep learning-based computer vision appli-
cations that extract relevant information from the deluge of data coming from Edge devices, such as smart
cameras. Nevertheless, this promising approach introduces new obstacles, including the constraints posed by
the limited computational resources on these devices and the challenges associated with the generalization
capabilities of the AI-based models against novel scenarios never seen during the supervised training, a situ-
ation frequently encountered in this context. This work proposes an efficient approach for detecting vehicles
in parking lot scenarios monitored by multiple smart cameras that train their underlying AI-based models
by exploiting knowledge distillation. Specifically, we consider an architectural scheme comprising a power-
ful and large detector used as a teacher and several shallow models acting as students, more appropriate for
computational-bounded devices and designed to run onboard the smart cameras. The teacher is pre-trained
over general-context data and behaves like an oracle, transferring its knowledge to the smaller nodes; on the
other hand, the students learn to localize cars in new specific scenarios without using further labeled data, re-
lying solely on the distilled loss coming from the oracle. Preliminary results show that student models trained
only with distillation loss increase their performances, sometimes even outperforming the results achieved by
the same models supervised with the ground truth.

1 Introduction

The emergence of AI-driven computer vision algo-
rithms provides the opportunity to employ low-cost
video cameras for visual sensing in Internet of Things
(IoT) applications across various domains, ranging
from face recognition (George et al., 2023) and crowd
counting (Di Benedetto et al., 2022) to pedestrian
detection (Cafarelli et al., 2022) and people/vehicle
tracking (Foszner et al., 2023). Unlike cloud com-
puting, which boasts nearly unlimited resources, edge
computing in conjunction with IoT devices is char-
acterized by the existence of compute nodes with
limited computational capabilities and power alloca-
tion (Heckmann and Ravindran, 2023), promoting the

a https://orcid.org/0000-0002-2096-1701
b https://orcid.org/0000-0003-3643-5404
c https://orcid.org/0000-0002-6985-0439
d https://orcid.org/0000-0002-3715-149X
e https://orcid.org/0000-0001-7182-7038

decentralization of data processing to the edge, where
the data itself originates. However, despite offering
advantages, such as latency reduction, lower costs,
and reduced data traffic, this paradigm brings new
challenges.

Specifically, AI vision models are mainly based
on Deep Learning (DL) algorithms, sometimes re-
quiring significant computational resources, espe-
cially for running in real-time requirements. Further-
more, state-of-the-art DL techniques rely on super-
vised learning, and they struggle when employed in
new scenarios never seen during the training phase,
a situation frequently encountered in the context of
Edge AI. Naive solutions based on collecting new
data are not only costly but sometimes even un-
feasible. Data collection and curation necessitates
manual labeling, often performed by human annota-
tors with extensive domain expertise, exploiting time-
consuming, expensive, and error-prone procedures.
As a result, models are often trained by leveraging al-
ready existing big collections of labeled data and con-
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sequently suffer from shifts in data distributions when
applied in new application scenarios. These emerging
challenges create space for alternative solutions to ef-
ficiently train deep neural models for specific tasks
when human-annotated data is limited (Ciampi et al.,
2023) and with limited computational resources avail-
able (Ciampi et al., 2022).

In this work, we propose an efficient DL approach
based on Knowledge Distillation (KD) (Hinton et al.,
2015) for localizing vehicles in parking areas moni-
tored by multiple smart cameras. KD has been intro-
duced to obtain compressed models suitable for small
devices, utilizing knowledge garnered from complex
and large models. Specifically, in our scenario, we
present a scheme comprising a powerful detector used
as a teacher and several shallow models acting as
students, tailored explicitly for devices with limited
computational resources and intended to operate di-
rectly on smart cameras. The teacher is pre-trained
on diverse generic datasets and behaves like an oracle,
transferring its knowledge to the smaller nodes; on the
other hand, the students rely only on the distilled loss
coming from the oracle, and they learn to detect ve-
hicles in new scenarios they are monitoring, without
the need of additional labeled data. The preliminary
results obtained in an experimental evaluation under
different settings show that the student models trained
only with the distillation loss coming from the teacher
increase their performances, sometimes even outper-
forming the outcomes achieved by the same models
supervised with the ground truth.

To summarize, the core contributions of this work
are the following:

• We propose an approach based on knowledge dis-
tillation for detecting vehicles from smart cameras
monitoring parking lots; our scheme includes a
large detector acting as a teacher/oracle and sev-
eral students, i.e., smaller models running on the
edge devices. The latter learn to localize vehicles
in their monitored areas by exploiting the distilla-
tion loss coming from the teacher without requir-
ing additional labeled data.

• We perform an experimental evaluation consid-
ering, as the teacher, a large object detector pre-
trained with data containing vehicles in general
contexts and, as the students, a smaller version of
the teacher. Results achieved by monitoring new
scenarios demonstrate that the students increase
their performances using the knowledge from the
oracle, sometimes even outperforming the results
obtained by the same models trained with the an-
notations.
The rest of the paper is organized as follows. Sec-

tion 2 presents the related works. Section 3 illustrates

the proposed approach. Section 4 discusses the setup
of the experiments, including the models and datasets
used, and discusses the results obtained. Section 5
draws the conclusions of this work.

2 Related works

Knowledge Distillation-based Computer Vision
Applications. Several computer vision applications
have recently exploited the Knowledge Distillation
(KD) paradigm. For instance, in (Wang et al., 2019;
Chen et al., 2021), knowledge distillation loss is de-
scribed as a feature matching distance, necessitating
both the teacher and the student models to share iden-
tical architectures. On the other hand, (Banitalebi-
Dehkordi, 2021) proposed a technique to improve
distillation effectiveness by utilizing unlabeled data,
thus diminishing the need for labeled data. (Gan
et al., 2019) presented a cross-modal auditory local-
ization approach, leveraging a student-teacher train-
ing method to enable the transfer of object detection
knowledge between vision and sound modalities. In
the same angle, (Liu et al., 2021) introduced a frame-
work that simultaneously utilizes domain adaptation
and knowledge distillation to enhance efficiency in
object detection, introducing a focal multi-domain
discriminator to improve the performance of both
teacher and student networks.

Finally, (Goh et al., 2023) investigated a self-
supervised distillation framework to train efficient
computer vision models focusing on self-supervised
pre-training of teachers using a substantial dataset of
unlabeled images.

Edge AI for Distributed Computer Vision Applica-
tions. In the last years, numerous works have been
conducted in computer vision focusing on applica-
tions for distributed edge devices. For instance, a
notable work is (Kang et al., 2020), which proposed
a framework incorporating neural architecture search
to address teacher-student capacity issues, optimizing
structures for varying model sizes. The authors also
introduced an oracle knowledge distillation loss, en-
abling the student to achieve high accuracy using ora-
cle predictions. Another interesting study is (Bharad-
hwaj et al., 2022), which introduced a framework
named Detect-Track-Count (DTC) designed to effi-
ciently count vehicles on edge devices. The primary
objective of this approach was to enhance the efficacy
of compact vehicle detection models through the ap-
plication of the ensemble knowledge distillation tech-
nique. Moreover, (Kruthiventi et al., 2017) employed
knowledge distillation from a multi-modal pedestrian
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detector. The network was designed to extract RGB
and thermal-like features from RGB images, miti-
gating the necessity for expensive automotive-grade
thermal cameras. On the other hand, (Alqaisi et al.,
2023) focused on leveraging Docker containers to
facilitate the deployment and management of com-
puter vision applications on edge devices with limited
resources, aiming at enabling the secure execution
of multiple applications concurrently while ensuring
flexibility and efficiency in deployment. The authors
in (Seitbattalov et al., 2022) introduced a novel edge
computing application utilizing Raspberry Pi and an
OmniVision OV 5647 camera for efficient data pre-
processing. The approach significantly reduces net-
work traffic and computational burden on centralized
servers, offering a cost-effective alternative to tradi-
tional solutions like FPGAs and personal computers.

In all of these works, the authors assumed that
computer vision tasks were conducted using labeled
data, and the models were trained after collecting data
from various nodes, consolidating them at a central
node to create a comprehensive representation of the
entire data distribution. In contrast to previous works,
our approach eliminates the need for extensive im-
age annotation for edge nodes and their centralization,
reducing the time and resources required for dataset
preparation.

3 KD-driven Vehicle Detection on
Edge Devices

This section describes our proposed KD-based ap-
proach for vehicle detection on edge devices moni-
toring parking lots. Usually, in a distributed camera
network scenario, each camera collects data indepen-
dently, resulting in diverse data distributions due to
varying perspectives, illuminations, angles of view,
backgrounds, and, in general, different contexts. This
diversity poses a challenge or the deployment of pre-
trained deep learning models on edge devices, lead-
ing to a significant drop in performance in scenarios
not encountered during the learning phase. Directly
fine-tuning these models on such varied data may be
unfeasible as it requires manual image annotations,
which is time-consuming, costly, and error-prone.

To mitigate these challenges, in this work, we pro-
pose a scheme that uses a centralized node serving as
a teacher model (oracle) that supervises the training
of the edge device models. The teacher is a power-
ful detector pre-trained over several general datasets
for vehicle detection that may operate on a robust
computing infrastructure, such as a central server or
cloud computing platform; on the other hand, the stu-

Figure 1: Overview of our proposed KD-based approach for
vehicle detection in parking areas through smart cameras.
The oracle is a powerful object detector trained with several
general datasets for vehicle detection, acting as a teacher.
Edge devices, i.e., smart cameras, rely on shallower models
for analyzing images from their specific monitored areas.
They are supervised only by the distilled knowledge from
the oracle, without requiring extra labels.

dents are shallow models, more suitable for running
on edge devices, and they learn to perform their job
over their monitored region of interest by exploiting
the distilled knowledge coming from the oracle, with-
out requiring additional annotated data. The proposed
scheme can be exploited in applications with a vari-
able number of devices, as illustrated in Figure 1,
showcasing its adaptability and scalability to differ-
ent deployment scales. In this paper, we provide a
practical case study of our paradigm by employing a
network of nine smart cameras placed across various
parking lots to monitor and detect vehicles in parking
areas.

Our training approach is based on a KD paradigm.
During the training of student models, the main loss
function L comprises two components: the super-
vised student loss (Lstu) and the distillation loss
(Ldistil) (Hinton et al., 2015). Each loss is weighted by
a scaling factor α (Zhou and Mosadegh, 2023) such
that:

L = α ·Lstu(S0,G0)+(1−α) ·Ldistil(S0,T0), (1)

where S0, T0, and G0 represent the predictions of the
student model, the predictions of the teacher model,
and the targets used as ground truth by the student
model, respectively. The hyper-parameter α balances
the two components of the total loss.

In this work, we leverage a powerful pre-trained
vehicle detector used as an oracle to train a special-
ized student model for each node using only the distil-
lation loss, i.e., we set α to 0 in Equation (1) (see also
Figure 2). This means that we are not using ground-
truth labels during the training of the student model,
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Figure 2: Knowledge distillation-based car detection approach, illustrating the training process of the student model super-
vised by a larger and more complex teacher model, typically known as the teacher-student paradigm. This figure visually
represents how knowledge distillation transfers knowledge from the teacher to the student, resulting in a more compact yet
efficient model for car detection tasks.

relying solely on the supervision coming from the dis-
tilled loss of the teacher. At inference time, the oracle
is not needed anymore, and the student model oper-
ates independently.

4 Experimental Evaluation

This section details our experimental evaluation, cov-
ering the employed datasets and the experimental set-
tings and presenting results with subsequent discus-
sion.

4.1 The Datasets

For training and testing our proposed approach, we
exploited several datasets. Standard data augmen-
tation techniques (e.g., rotation, shear, brightness,
noise, etc.) are always employed during the training.

To train the teacher model in some of our exper-
iments, we combined images from several datasets
for vehicle detection in general contexts already ex-
isting in the literature; specifically, we collected
a total of 4,056 images from (i) the Vehicles Im-
age dataset (Roboflow 100, 2023), (ii) the PkLot
dataset (de Almeida et al., 2015), and (iii) the Find
a Car Park dataset (Carr, 2019). We divided these
data into training, validation, and test subsets, follow-
ing common standards of 70%, 20%, and 10% of the
total number of samples.

Additionally, we employed the CNRPark-EXT
dataset (Amato et al., 2017), an extension of CNR-
Park (Amato et al., 2016). This dataset serves a dual

purpose in the implementation of our approach. Ini-
tially, it is utilized for training and testing both the
teacher and subsequent students, as detailed in the
preliminary results in Section 4.3. Subsequently, in
the second phase of our experimental setting, it is
exclusively used for training and testing the students
when the oracle is trained with the combined dataset
described before. The CNRPark-EXT dataset encom-
passes parking lot images sourced from nine cameras
capturing diverse weather conditions and offering var-
ious perspectives and angles of view. It is worth not-
ing that this dataset was initially intended for parking
lot classification. Therefore, the original bounding
boxes do not cover the entire car but rather a portion
of it since the authors wanted to prevent misclassifi-
cations caused by cars overlapping in adjacent spaces.
This presented a challenge when evaluating our stu-
dent models trained under the supervision of the ora-
cle and tested on the CNRPark-EXT dataset. Indeed,
given that the oracle was trained on datasets where the
entire car was covered, in contrast to the CNRPark-
EXT dataset, assessing the Intersection over Union
(IoU) for student models on the latter led to poor per-
formance and unsatisfactory results. To address this
issue, we manually re-annotated the validation and
testing sets within the CNRPark-EXT subsets1, en-
suring that the bounding boxes were adjusted to cover
the entire car and, consequently, aligning the dataset
with the oracle’s training data configuration.

Finally, we utilized an additional dataset, named

1We make these new annotations pub-
licly available at https://github.com/joaquimbasa/
Teacher-Student-CarPark-Paper.git.
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NDISPark (Ciampi et al., 2021), to evaluate our pro-
posed approach. This database comprises 141 images
collected from several distributed cameras in various
parking lots, showcasing common challenges encoun-
tered in real-life scenarios. It is worth noting that we
considered solely the training and validation sets, as
bounding box annotations are unavailable for the test
set since this dataset was initially created as a bench-
mark for the counting task.

4.2 Implementation details

Our implementation choice concerning the detector
fell on the popular YOLOv5 architecture (Ultralytics,
2021) since it relies on the one-stage paradigm, thus
ensuring a good trade-off between performance and
efficiency. However, our proposed pipeline is model-
agnostic, i.e., a different detector can be used without
affecting the overall functioning. Specifically, we ex-
ploited the YOLOv5x object detector as the teacher
model, where "x" denotes a deeper version of the stan-
dard YOLOv5 model; on the other hand, for the stu-
dent models, we use a smaller and shallower version
of the latter, denoted as YOLOv5n, more suitable for
edge devices having limited computational require-
ment.

More in details, the YOLOv5x model we ex-
ploited as the teacher consists of a CNN with 322 lay-
ers, 86,173,414 parameters, and a computational load
of 203.8 GFLOPs. We considered the COCO pre-
trained version of this model, keeping its backbone
frozen during the training stage and back-propagating
the gradient only in the head layers. On the other
hand, the YOLOv5n architecture that acts as the foun-
dation for the student models is the most compact ver-
sion of YOLOv5, consisting of 157 layers, 1,760,518
parameters, and 4.1 GFLOPs. Even in this case, dur-
ing the training, its backbone is frozen, and only the
head layers were fine-tuned by exploiting the distilla-
tion component of the KD loss.

YOLOv5 employs three distinct losses that consti-
tute its final loss: a Classification loss (Lcls), address-
ing classification errors, a Confidence loss (Lob j),
dealing with objectness errors, and a Localization loss
(Lbbox), focusing on localization errors (Terven and
Cordova-Esparza, 2023). For both the classification
and objectness losses, we used the Binary Cross En-
tropy with Logits Loss, while the Intersection Over
Union loss is employed as the Localization loss.

4.3 Results and Discussion

We conducted two distinct sets of experiments. In
the first set, we operated under the assumption of a

Figure 3: Comparison between the performance of
YOLOv5n with knowledge distillation-based training and
with supervised training on CNRPark-EXT. The student
model was trained on the whole CNRPark-EXT training set
and then tested on each camera.

teacher having some knowledge about the data distri-
bution used at inference time by the student model.
In other words, in this scenario, the teacher and the
student were trained on the same distribution, specif-
ically, the CNRPark-EXT dataset. In the second part
of the experiment, our approach introduced the uti-
lization of an oracle trained on a data distribution en-
tirely different from the one used for training the stu-
dents.

Preliminary results with the CNRPark-EXT
dataset. In this initial set of experiments, as pre-
viously mentioned, our teacher model is assumed to
be an almost perfect teacher over the considered sce-
nario, showcasing outstanding performance with F1-
Score, mAP50, and mAP50-95 scores of 0.99, 0.99,
and 0.90, respectively. It is important to note that the
performance evaluation in the whole of this study, in-
cluding the one just given, is based on the MS COCO
mean Average Precision (mAP), where the mAP50 is
the Average Precision at a specific IoU threshold of
0.50, and mAP50-95 is the AP averaged over a range
of IoU thresholds (0.50 to 0.95 with increments of
0.05) (Lin et al., 2014).

In the student training process, two cases are con-
sidered. On the one hand, we focused on training
the student model utilizing exclusively the distilla-
tion loss (Ldistil), which constitutes one component of
the loss function outlined in Equation (1). This aids
in training the student model effectively, even when
working with unlabeled data. On the other hand, we
trained the student model by exploiting the supervised
loss function (Lstu), which makes use of the ground
truth (i.e., α set to 1 in Equation (1)). This latter case
can be regarded as an upper bound on the achievable
performance for each dataset.

Figure 3 provides a comparative analysis of the
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Table 1: Comparison between the mAP50 and mAP50-95
performance of specialized student models trained with dis-
tillation loss (Dist.) and supervised (Super.) approach on a
single CNRPark-EXT camera.

Training Set Testing Set mAP50 mAP50-
95

Mode

CNR-EXT C1 CNR-EXT C1 0.95 0.50 Super.
0.91 0.45 Dist.

CNR-EXT C2 CNR-EXT C2 0.99 0.77 Super.
0.99 0.73 Dist.

CNR-EXT C3 CNR-EXT C3 0.99 0.66 Super.
0.99 0.60 Dist.

CNR-EXT C4 CNR-EXT C4 0.99 0.66 Super.
0.99 0.61 Dist.

CNR-EXT C5 CNR-EXT C5 0.99 0.60 Super.
0.98 0.55 Dist.

CNR-EXT C6 CNR-EXT C6 0.99 0.64 Super.
0.99 0.64 Dist.

CNR-EXT C7 CNR-EXT C7 0.99 0.60 Super.
0.98 0.53 Dist.

CNR-EXT C8 CNR-EXT C8 0.98 0.63 Super.
0.97 0.57 Dist.

CNR-EXT C9 CNR-EXT C9 0.99 0.66 Super.
0.99 0.60 Dist.

results obtained against the testing sets of CNRPark-
EXT in the two settings mentioned above. Specifi-
cally, we show the performance considering the whole
CRNPark-EXT training set, as well as using the test-
ing sets of individual subsets belonging to specific
cameras.

The results indicate that the student model trained
solely with the distillation loss exhibits a comparable
level of performance to that of the same model super-
vised with labeled data. Moreover, it is worth noting
that results for Camera 1 are lower due to a severe
change in perspective compared to the other cameras.

Furthermore, we provide an experimental eval-
uation where the teacher supervises the training of
the student model using only a specific subset of the
data associated with a specific camera. Specifically,
Table 1 presents a comprehensive view of the per-
formance in terms of mAP exhibited by the student
models. These models are trained using data from
each camera subset and evaluated using the respec-
tive testing set data. Furthermore, their performance
is assessed on the testing set encompassing the entire
CNRPark-EXT dataset as shown in Table 2.

In the first scenario, the results in Table 1 show
that a specialized student model tested on its specific
data exhibits a slightly lower performance when us-
ing solely the distillation loss, in comparison to su-
pervising it with the ground truth. However, in the
second scenario, as illustrated in Table 2, the results
show that testing the specialized model on diverse dis-

Table 2: Comparison of mAP50 and mAP50-95 for stu-
dent models trained on a single CNRPark-EXT camera us-
ing distillation loss (Dist.) or supervised approach (Super.),
then tested on the complete CNRPark-EXT test set.

Training Set Test Set mAP50 mAP50-
95

Mode

CNR-EXT C1 CNR-EXT 0.70 0.23 Super.
0.88 0.37 Dist.

CNR-EXT C2 CNR-EXT 0.60 0.20 Super.
0.77 0.31 Dist.

CNR-EXT C3 CNR-EXT 0.79 0.32 Super.
0.90 0.43 Dist.

CNR-EXT C4 CNR-EXT 0.78 0.35 Super.
0.92 0.46 Dist.

CNR-EXT C5 CNR-EXT 0.79 0.36 Super.
0.97 0.47 Dist.

CNR-EXT C6 CNR-EXT 0.78 0.36 Super.
0.91 0.47 Dist.

CNR-EXT C7 CNR-EXT 0.80 0.37 Super.
0.91 0.46 Dist.

CNR-EXT C8 CNR-EXT 0.83 0.40 Super.
0.87 0.45 Dist.

CNR-EXT C9 CNR-EXT 0.82 0.36 Super.
0.91 0.45 Dist.

tributions encompassing various cameras showcases
improved performance when employing only the dis-
tillation loss. This insight indicates that a highly accu-
rate and knowledgeable teacher, with extensive expe-
rience from a wide-ranging data distribution, enables
specialized models to maintain accurate predictions
even when the configuration of the distribution of data
changes. Thus, the teacher’s comprehensive under-
standing of the data and ability to distill the knowl-
edge to the specialized models enable effective train-
ing with unlabeled data, resulting in enhanced predic-
tive capabilities.

Results using the oracle-teacher trained on a
dataset agnostic to the test dataset. Further exper-
iments were conducted using the combined dataset
described in subsection 4.1 to pre-train the oracle
and test the students against the NDISPark and the
CNRPark-EXT datasets; thus, we assume to have a
teacher agnostic to the data distribution used for the
tests. We report the results in Table 3, considering
only the training of the students with the distillation
loss and comparing the performance against the ones
obtained with the teacher. Concerning the NDISPark
dataset, we combined all subsets due to its small size;
on the other hand, for CNRParkEXT, as in the pre-
vious set of experiments, we considered the differ-
ent subsets associated with specific cameras. As can
be seen, we obtained moderate performance on the
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Table 3: Results obtained through teacher-student dis-
tillation using the combined dataset and specific camera
datasets, respectively.

Role Test
Dataset

Pr
ec

is
io

n

R
ec

al
l

m
A

P5
0

m
A

P5
0-

95

Teach. Combined
Dataset

0.92 0.90 0.95 0.73

Teach.
NDISPark

0.95 0.86 0.94 0.63
Stud. 0.84 0.77 0.84 0.46
Teach. CNR-EXT

(all cameras)
0.82 0.79 0.76 0.23

Stud. 0.86 0.76 0.83 0.26
Teach.

CNR-EXT C1
0.75 0.61 0.60 0.31

Stud. 0.76 0.75 0.88 0.37
Teach.

CNR-EXT C2
0.78 0.64 0.71 0.42

Stud. 0.84 0.79 0.88 0.59
Teach.

CNR-EXT C3
0.76 0.76 0.80 0.25

Stud. 0.87 0.85 0.91 0.39
Teach.

CNR-EXT C4
0.82 0.76 0.81 0.24

Stud. 0.87 0.79 0.86 0.36
Teach.

CNR-EXT C5
0.83 0.72 0.77 0.20

Stud. 0.89 0.82 0.84 0.29
Teach.

CNR-EXT C6
0.82 0.77 0.79 0.23

Stud. 0.85 0.82 0.86 0.31
Teach.

CNR-EXT C7
0.79 0.70 0.73 0.21

Stud. 0.86 0.76 0.82 0.27
Teach.

CNR-EXT C8
0.84 0.72 0.75 0.22

Stud. 0.92 0.82 0.87 0.28
Teach.

CNR-EXT C9
0.82 0.74 0.82 0.28

Stud. 0.85 0.84 0.74 0.42

NDISPark dataset, but, on the other hand, concerning
the CNRPark-EXT dataset, the student model some-
times even outperformed the oracle, demonstrating
that the student can achieve reliable performance just
exploiting the distillation loss from an oracle agnos-
tic to the inference data distribution, without requir-
ing any further annotations specific for the monitored
scenario.

5 Conclusion

This work introduced a Knowledge Distillation-based
approach tailored for computer vision applications
at the edge. We focus on a scenario where several
smart cameras, with limited computational capabil-
ities, monitor parking areas by detecting the vehi-
cles in their field of view. We proposed a teacher-

student scheme where the teacher is a powerful and
large detector acting as an oracle for the students,
which in turn are shallow models more appropriate for
computational-bounded devices. The teacher has ex-
tensive knowledge that transfers to the smaller nodes,
which, on the other hand, learn to localize cars in
new specific scenarios without using further labeled
data, relying solely on the distilled loss from the or-
acle. This addresses challenges in Edge AI, where
models on edge devices need to generalize knowl-
edge to new scenarios and meet hardware constraints.
We performed an experimental evaluation under dif-
ferent settings, considering a teacher pre-trained over
different general-context datasets suitable for vehicle
detection and, as the students, a smaller version of
the teacher. The results demonstrate that students in-
crease their performance only with knowledge from
the oracle, sometimes even surpassing the results ob-
tained by models trained with annotations.

In future work, we aim to extend our approach to
various application scenarios and also explore com-
parisons or integrations with other distributed learn-
ing techniques, such as federated learning.
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