

ACCORDION receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 871793

Adaptive edge/cloud compute and network continuum over a heterogeneous
sparse edge infrastructure to support nextgen applications

Deliverable D3.1

Edge infrastructure pool framework report (I)

Ref. Ares(2021)1538404 - 28/02/2021

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 2 of 51

DOCUMENT INFORMATION
PROJECT

PROJECT ACRONYM ACCORDION

PROJECT FULL NAME

Adaptive edge/cloud compute and network continuum over a

heterogeneous sparse edge infrastructure to support nextgen

applications

STARTING DATE 01/01/2020 (36 months)

ENDING DATE 31/12/2022

PROJECT WEBSITE http://www.accordion-project.eu/

TOPIC ICT-15-2019-2020 Cloud Computing

GRANT AGREEMENT N. 871793

COORDINATOR CNR

DELIVERABLE INFORMATION

WORKPACKAGE N. | TITLE WP 3 | Edge infrastructure pool framework

WORKPACKAGE LEADER HPE

DELIVERABLE N. | TITLE D. 3.1 | Edge infrastructure pool framework report (I)

EDITOR E. Psomakelis (ICCS)

CONTRIBUTOR(S)
E. Psomakelis (ICCS), Blasi (HPE), A. Vailati (HPE), H. Kavalionak (CNR),

I. Korontanis (HUA), F. Huici (NEC), P. Dazzi (CNR)

REVIEWER Saman Zadtootaghaj (TUB)

CONTRACTUAL DELIVERY DATE 02/2021

ACTUAL DELIVERY DATE 28/02/2021

VERSION 1.0

TYPE Report

DISSEMINATION LEVEL Public

TOTAL N. PAGES 51

KEYWORDS Resource management, Resource Monitoring, Resource indexing;

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 3 of 51

EXECUTIVE SUMMARY
This deliverable provides the first report summarizing the scientific advancements achieved during the
project, by the WP3 tasks. The achievements, risks and challenges are presented both at a high level,
presenting the outcome of the WP3 tasks (called ACCORDION Minicloud VIM) as a unified component, and
at a lower level, presenting the components that comprise the ACCORDION Minicloud VIM. For each
component we can clearly identify the progress through the first year of the project, the challenges and
problems encountered and the plans for the second year of the project.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 4 of 51

DISCLAIMER
ACCORDION (871793) is a H2020 ICT project funded by the European Commission.

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures
(public clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of
latency, that can support NextGen application requirements. To mitigate the expectation that these pools
will be “sparse”, providing low availability guarantees, ACCORDION will intelligently orchestrate the compute
& network continuum formed between edge and public clouds, using the latter as a capacitor. Deployment
decisions will be taken also based on privacy, security, cost, time and resource type criteria.

This document contains information on ACCORDION core activities. Any reference to content in this
document should clearly indicate the authors, source, organisation and publication date.

The document has been produced with the funding of the European Commission. The content of this
publication is the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be
considered to reflect the views of the European Commission. The authors of this document have taken any
available measure in order for its content to be accurate, consistent and lawful. However, neither the project
consortium as a whole nor the individual partners that implicitly or explicitly participated the creation and
publication of this document hold any sort of responsibility that might occur as a result of using its content.

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht).
There are currently 27 members states of the European Union. It is based on the European Communities and
the member states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home
Affairs. The five main institutions of the European Union are the European Parliament, the Council of
Ministers, the European Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright
holders.

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but
modifying this document is not allowed. You are permitted to copy this document in whole or in part into other
documents if you attach the following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.”

The information contained in this document represents the views of the ACCORDION Consortium as of the date they
are published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or
up to date. THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY
PUBLISHING THIS DOCUMENT.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 5 of 51

REVISION HISTORY LOG
VERSION No. DATE AUTHOR(S) SUMMARY OF CHANGES

0.1 1/10/2020 E. Psomakelis (ICCS) T.O.C.

0.2 10/11/2020 E. Psomakelis (ICCS) Revised T.O.C.

0.3 27/11/2020

E. Psomakelis (ICCS)

L. Blasi (HPE)

H. Kavalionak (CNR)

I. Korontanis (HUA)

F. Huici (NEC)

Integrated architecture

contributions

0.4 30/12/2020

E. Psomakelis (ICCS)

A. Vailati (HPE)

H. Kavalionak (CNR)

I. Korontanis (HUA)

F. Huici (NEC)

Integrated component

description contributions

0.5 10/01/2021 E. Psomakelis (ICCS)
Completed Introduction and

Conclusion sections

0.6 14/01/2021 E. Psomakelis (ICCS)
Corrected numbering in

figures, tables and references

0.7 24/02/2021

E. Psomakelis (ICCS)

A. Vailati (HPE)

H. Kavalionak (CNR)

I. Korontanis (HUA)

F. Huici (NEC)

Applied suggestions after

internal review

1.0 28/02/2021 P. Dazzi (CNR) Final version

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 6 of 51

GLOSSARY
AMD Advanced Micro Devices, Inc.

API Application Programming Interface

ARM Advanced RISC Machines

AWS Amazon Web Services

AWS S3/Amazon S3 Amazon Simple Storage Service

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CPU Central Processing Unit

CRD (Kubernetes) Custom Resource Definition

CRI Container Runtime Interface

CSI Container Storage Interface

DoA Description of Action

EC European Commission

ETSI European Telecommunications Standards Institute

EU European Union

GUI Graphical User Interface

H2020 Horizon 2020 EU Framework Programme for Research and Innovation

IoT Internet of Things

K3S Lightweight Kubernetes

KVM Kernel-based Virtual Machine

LF Linux Foundation

Minicloud The ACCORDION edge resources cloud of IoT and/or other edge devices.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 7 of 51

N.A. Not Available (or No Answer)

NFV Network Functions Virtualization

OCCI Open Cloud Computing Interface

OS Operating System

PromQL Prometheus Query Language

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RBAC Role Based Access Control

REST Representational state transfer

RISC Reduced instruction set computer

TBD To Be Defined

UI User Interface

UML Unified Modelling Language

VIM Virtual Infrastructure Manager

VM Virtual Machine

VMI Virtual Machine Instance

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 8 of 51

TABLE OF CONTENTS
1 Introduction ... 10

1.1 Scope and objectives of this deliverable ... 10
1.2 Document Structure .. 10

2 Architecture ... 11
2.1 General Architecture ... 11
2.2 Resource Monitoring & Characterization .. 13
2.3 Resource Indexing & Discovery ... 15
2.4 Edge Storage ... 16
2.5 Lightweight Virtualization ... 18
2.6 Edge Minicloud VIM .. 19

3 Resource monitoring & characterization ... 22
3.1 Description & Objectives ... 22
3.2 Requirements .. 22
3.3 Research Challenges & Advancements Achieved .. 23
3.4 Provided Features and APIs ... 23
3.5 Technical Challenges and Mitigation ... 27
3.6 Future Work .. 28

4 Resource indexing & discovery .. 29
4.1 Description & Objectives ... 29
4.2 Requirements .. 29
4.3 Research Challenges & Advancements Achieved .. 29
4.4 Provided Features and APIs ... 31
4.5 Technical Challenges and Mitigation ... 31
4.6 Future Work .. 31

5 Edge storage .. 32
5.1 Description & Objectives ... 32
5.2 Requirements .. 32

5.2.1 General Requirements .. 32
5.2.2 Algorithmic Access Requirements ... 32
5.2.3 Data Administrator Requirements .. 33

5.3 Research Challenges & Advancements Achieved .. 33
5.4 Provided Features and APIs ... 33
5.5 Technical Challenges and Mitigation ... 33
5.6 Future Work .. 34

6 Lightweight virtualization .. 35
6.1 Description & Objectives ... 35
6.2 Requirements .. 36

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 9 of 51

6.3 Research Challenges & Advancements Achieved .. 37
6.4 Provided Features and APIs ... 38
6.5 Technical Challenges and Mitigation ... 39
6.6 Future Work .. 40

7 Edge minicloud VIM ... 41
7.1 Description & Objectives ... 41
7.2 Requirements .. 41
7.3 Research Challenges & Advancements Achieved .. 42
7.4 Provided Features and APIs ... 47
7.5 Future Work .. 48

8 Conclusions .. 49

References .. 50

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 10 of 51

1 Introduction

1.1 Scope and objectives of this deliverable

This deliverable aims at delivering the full scope of the research and development tasks conducted in work
package 3 of the ACCORDION project during the first year of the project (months 1-12), which is also
mentioned as the first “cycle”. The document contains both the architecture of the complete Minicloud as
well as the architecture of its components. It also contains the objectives, the scientific and technical
challenges and the advancements made towards overcoming these challenges. Finally, it presents the plans
for the near future as well as the next cycle of the work package tasks. This information is provided in order
to present a coherent and complete status of the work package tasks.

1.2 Document Structure

The document presents an architecture overview of the Minicloud platform as well as its components in
section 2. In sections 3-7 we can see the details of each component of the Minicloud. In detail, each one of
these sections consists of a general description, a requirements, a research challenges, a features and APIs,
a technical challenges and a future work sub-sections, painting the complete picture for each component.
Finally, there is the conclusions and references sections that conclude this document.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 11 of 51

2 Architecture

2.1 General Architecture

The main product of WP3, as indicated by its title, is the "Edge infrastructure pool framework", also named
"Edge Minicloud" or simply Minicloud.

From the DoA, an Edge Minicloud is "an orchestration system for pooling and abstracting resources, exposing
elasticity properties through a standard-based API", "tailored towards integrating edge and fog nodes
(private clouds and infrastructures, telco resources and end-devices) in a single minicloud orchestration
system".

The main logical components of the ACCORDION Minicloud are indicated in the UML diagram depicted in
Figure 1 and described below. A more detailed description for each component is provided in the following
subsections.

Figure 1: ACCORDION Minicloud components' diagram.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 12 of 51

ACCORDION Minicloud

This package represents the ACCORDION Minicloud, which is a fundamental component of the ACCORDION
system. A Minicloud manages a single resource pool. The managed resources are typically Edge resources,
but could also be Cloud resources. The basic criterion that groups resources in a single pool is their locality,
which can be realized either in geographical terms or in terms of latency. Geographical locality means that
the resources handled by a single Minicloud pool are expected to share the same location or to be
geographically close. Network locality is a more difficult concept to define (e.g. [1] defined the locality of two
nodes as something proportional to the length of the common prefix of their IP address: the longer the prefix,
the shorter the distance between the nodes) and will not be explored here.

In this first version the adopted model is “one minicloud for each provider”. This means that each Minicloud
pool includes resources offered by a single provider, and each provider to join the ACCORDION federation
has to implement its own Minicloud. In this model the role Infrastructure Owner is the same as Minicloud
Owner. In the future we will research the possibility to implement a higher granularity model by defining
resource pools in terms of latency and allow a new provider/node to join the federation by joining the closest
Minicloud. With this model even providers with few resources will be able to join the federation.

Monitoring Manager

This component, resulting from the work of Task 3.1, collects and provides two types of information, both
fundamental for handling resources: monitoring data and resources' characterization. In particular, it
monitors the availability of all resources included in the resource pool. More information on this component
can be found in section 3.

Resource Information Repository

The purpose of this component, resulting from the work of Task 3.2, is to store and retrieve information
about the resources of the Minicloud pool. The source of this information is the monitoring component, for
both monitoring data (e.g., availability) and resources' characterization.

Storage Manager

This component, resulting from the work of Task 3.3, provides a unified interface to the storage available in
the Minicloud pool.

Virtual Infrastructure Manager (VIM)

The Virtual Infrastructure Manager, resulting from the work of Task 3.5, handles the resource pool and offers
the Minicloud API to provision and manage edge deployment units (Containers and VMs) running on top of
the resource pool.

Federation entrypoint

This component has not been implemented in the first version of the Minicloud. When available it will expose
an API to offer federation-related functionalities such as those involved in the onboarding process.
ACCORDION Task 7.5 will greatly help in defining this component’s functionalities.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 13 of 51

2.2 Resource Monitoring & Characterization

In ACCORDION, we concluded that for the purpose of monitoring we will use Prometheus1. Prometheus is a
popular open-source system that can be used for minoring purpose. Prometheus uses a time series database
to store metrics in a key-value pair format. It has its own query language named PromQL2. Prometheus has
a pull model which basically pulls metrics from exporters. Exporters can fetch statistics from non-Prometheus
systems and convert them into Prometheus metrics. We can find the metrics of an exporter at /metrics URL.
To pull metrics from the exporters Prometheus must know the targets through service discovery or static
configuration. In order to create graphs, Grafana performs PromQL queries to Prometheus to get the
appropriate results. Also, the Alert manager produces alerts by using PromQL with upper or lower limits.

Figure 2: High-level architecture of the monitoring component.

For the deployment of Prometheus on K3s, a github Project was used Cluster Monitoring stack for ARM /
X86-64 3 . This project uses Prometheus Operator to manage and configure Prometheus instances on

1 https://prometheus.io/

2 https://prometheus.io/docs/prometheus/latest/querying/basics/

3 https://github.com/carlosedp/cluster-monitoring

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 14 of 51

Kubernetes / K3s. Prometheus Operator4 can automatically generate monitoring targets configuration, so
each node of the cluster will have exporters to expose their metrics to Prometheus which will be installed to
the master node of Kubernetes. For bare metal or VM monitoring the node exporter pods have to be
configured on every node of the cluster. The rest of the pods were configured to run only on the K3s nodes
with the label monitoring master.

This project uses several other tools:

• Node exporter5 for hardware and OS metrics.
• Blackbox exporter6 allows blackbox probing of endpoints over HTTP, HTTPS, DNS, TCP and ICMP.
• Kube-state-metrics7 expose critical metrics about the condition of a Kubernetes cluster, it generates

them from the Kubernetes API server. (health of nodes, pods, deployments, etc.).
• Prometheus adapter 8 which is an implementation of the Kubernetes resource metrics, custom

metrics, and external metrics APIs. It can also replace the metrics server on clusters that run
Prometheus.

• CoreDNS as a DNS server.
• Grafana9 to visualize the metrics with graphs.
• SMTP10 docker container for sending emails when an alert of the Alert Manager is triggered.
• addon-resizer11 is a container image that watches over another container in a deployment, and

vertically scales the dependent container up and down. Currently the only option is to scale it linearly
based on the number of nodes, and it only works for a singleton.

• kube-rbac-proxy12 is a small HTTP proxy for a single upstream, that can perform RBAC authorization
against the Kubernetes API.

4 https://github.com/carlosedp/prometheus-operator

5 https://hub.docker.com/r/carlosedp/node_exporter/

6 https://hub.docker.com/r/carlosedp/blackbox_exporter/

7 https://github.com/kubernetes/kube-state-metrics

8 https://github.com/kubernetes-sigs/prometheus-adapter

9 https://grafana.com/

10 https://hub.docker.com/r/carlosedp/snmp_exporter/

11 https://hub.docker.com/r/carlosedp/addon-resizer

12 https://hub.docker.com/r/carlosedp/kube-rbac-proxy

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 15 of 51

2.3 Resource Indexing & Discovery

The aim of the component Resource Indexing & Discovery (RID) is to keep an up-to-date status of
computational resources among the various miniclouds and provide a service that allows to run queries on
these resources. The main source of data would be the monitoring system of the miniclouds (Task 3.1).
Queries can in principle come from any ACCORDION component that aims at finding resources with specific
computational features.

Figure 3 describes the generic federation-wide architecture of the RID system. In the figure we show only
two miniclouds, while the actual system can be composed by more entities (dots on the figure). As you can
see on the figure, we envision the RID as a distributed component. This means that there is an instance of
the RID running in every minicloud. For the current design of the components, RID instances communicate
with each other using the Internet. The specifics of this communication are strongly tied to the approach
that will be used to implement the distributed components.

Figure 3: Overview of the overall system architecture.

Figure 4 shows the internal architecture of a given RID instance. The RID contains a REST client that will pull
monitoring data from the local (i.e., in the same minicloud) monitoring instance, which will be in turn stored
in the local storage component. Note that the local storage does not necessarily keep only local data, or that
a minicloud information is not necessarily stored in the local storage. In fact, advanced distributed indexing
techniques are employed to distribute data among all their instances, in order to have a fast yet effective
information discovery and retrieval.

The RID instance exposes a REST server query interface that allows other ACCORDION components to submit
queries. In case, there is the need to transform the query into software artifacts (e.g., network messages,
look up command), this task is performed by the query mapping component. The processed query is then

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 16 of 51

forwarded to the topology manager component. The topology manager component is responsible for the
query execution inside the distributed topology of the system. The topology manager structure depends on
the type of queries that the system is optimized to process and is subject to changes during the project
progress.

Figure 4: Architecture of the Distributed resource indexing component.

2.4 Edge Storage

The Edge storage component has the goal of providing an edge storage framework that can support the QoE
needs of the users, optimizing resource usage in the edge devices and networks. We have two possible base
technologies for this; the MinIO [2] and OpenStack [3] platforms that enable us to create highly distributed,
lightweight and scalable storage clusters, using Kubernetes as an orchestrator. The final choice of the tool
will be made after running a number of experiments, testing their effectiveness and optimizing their
configuration for scenarios close to the real use cases that the ACCORDION will be called to handle.

After the choice of the appropriate technology and configuration, a middleware layer will be added between
the VIM and storage components in order to expose specific, role-based APIs that ensure security of the data,
integrity of the system, optimized QoE for the users, fault proofing, fault tolerance, intelligent caching and
other relevant functionalities.

The component will use the Kubernetes ecosystem by using the Kubernetes master as the storage controller,
storage UI access point and Prometheus master for the specific cluster. Each node that is connected to the
Kubernetes cluster has the potential of becoming a storage worker for this cluster or/and for the ACCORDION
ecosystem. This is enabled by defining a custom label for the node, enrolling it as a storage worker. As a node,
we define a Kubernetes node, which can be a PC, laptop, IoT device or any other compatible device. In order
to be eligible for the role of storage worker, a node must have sufficient hard disk space available. The

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 17 of 51

amount of space is highly dependent on the use case, so it is not pre-configured. In the next figure (Figure 5),
we can see a high-level architecture of the module with the interconnections between the sub-modules.

Figure 5: Edge Storage component architecture.

We have isolated four actors that are using the services of the Storage module; the VIM, the Prometheus
Aggregator, the Mini-cloud Administrator and the ACCORDION Administrator. VIM will be using the APIs
exposed by the component in order to perform automated or semi-automated processes or even expose the
functionalities in other interfaces or components. A draft of the APIs that will be exposed by the component
is included in Table 1 at the end of this chapter. The Prometheus Aggregator will access the endpoint provided
by the cluster Prometheus master in order to scrape the data and collect them in an aggregated database
that collects information from all the ACCORDION mini-cloud clusters. The Mini-cloud Administrator will be
using the storage UI in order to manage the storage cluster and the data in it for administrative purposes.
The ACCORDION Administrator will also be using the storage UI in order to manage and monitor the data and
the cluster in accordance with the general ACCORDION needs. In the following UML (Figure 6), we can see a
visual representation of these relations.

Figure 6: Edge storage use cases and actors.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 18 of 51

2.5 Lightweight Virtualization

Traditionally, embedded devices have been centered around specialized, embedded processors and the
embedded operating systems running on them (e.g., FreeRTOS and Zephyr). This model has been, and still is,
extremely effective in ensuring efficient resource consumption, especially power, but forces developers to
port applications to such OSes, since, for the most part, they are not POSIX-compliant.

Increasingly, many embedded devices are being designed around general-purpose processors, especially
ARM-based ones. This is a radical shift in the way we think about embedded devices: many so-called
“embedded” devices (e.g., in the IoT, edge, gateways and automotive domains) use Linux as default because
it is easy to install, is POSIX-compliant and comes with a great array of applications and programming
languages, not to mention a friendly, well-known development environment. The great downside is that this
monolithic kernel is resource hungry: it is not unusual for a significant amount of a device’s resources to be
consumed by Linux itself, leaving less for the actual application. Further, Linux is to a large extent a monolithic
kernel, making it often hard or time consuming to customize (e.g., completely removing the scheduler if it is
not needed, adding a new memory allocator, or trying to trim it down to reduce boot times). Finally, Linux’s
significant code base (in the order of millions of lines of code) results in a large attack surface and exploits,
and makes it expensive to certify in domains where safety is critical.

In order to break the dichotomy between (1) difficult-to-use but resource efficient embedded OSes and (2)
power- hungry but user and application friendly general-purpose OSes such as Linux, we introduce a novel
lightweight virtualization architecture and micro-library operating system called Unikraft which allows for
automatically building highly specialized images for embedded devices. Unlike other approaches, Unikraft
bridges the gap between resource efficiency and ease of porting with a micro-library approach, allowing for
bottom-up specialization and code elimination while retaining POSIX compatibility. In addition, the extremely
lean images it produces are ideal candidates for cheaper certification.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 19 of 51

Figure 7: Unikraft’s architecture. All components are micro- libraries. Users select an architecture, a platform, the target application and Unikraft
creates the image.

Unikraft is fully librarized (see Figure 7): OS primitives such as the scheduler, memory allocator and even boot
code are libraries. These can be removed or replaced with equivalents via a Kconfig menu as long as they
comply with a set of well-defined APIs. To enable quick boot times, Unikraft can, for example, allow for the
use of a simple but quick memory allocator during boot and initialization, whilst still using a different allocator
for the application. Alternatively, a user could entirely remove the scheduler if not needed, and run tasks to
completion in an event-driven architecture. This and many other scenarios are easy to implement in Unikraft
because of its modular design.

Unikraft enables users to easily build extremely specialized, custom OSes without having to develop any
actual code as it provides a POSIX-like interface which allows for running standard, off-the-shelf applications
such as databases (e.g. SQLite), web servers (e.g. NGINX), key-value stores (e.g. Redis), machine learning
frameworks (e.g. PyTorch and TensorFlow), and runtime language environments (e.g. Web Assembly,
Python/Micropython, Lua and Ruby). In addition, Unikraft supports a number of compile-time languages
including C/C++, Go, Java and Rust, with the potential for allowing different libraries to be written in different
languages and combined together into a single, specialized image [4].

2.6 Edge Minicloud VIM

The Edge Minicloud Virtual Infrastructure Manager (VIM) is the core of a Minicloud and one of the main
components of the ACCORDION architecture. The Virtual Infrastructure Manager is also one of the major

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 20 of 51

functional blocks of the ETSI MANO Network Functions Virtualization (NFV) architecture and, like in that
architecture, it’s responsible for controlling, managing, and monitoring the Infrastructure compute, storage,
and network resources.

The tool selection process followed in this first year to find an open source reusable baseline for the VIM,
which will be reported in more detail in section 7, resulted in identifying a lightweight Kubernetes (K8s)
version named K3s13 as a starting point.

K3s, like K8s, is good at handling containers, but to use also Virtual Machines (VM) as edge deployment units
on top of the resource pool, K3s had to be extended. The tool selection process identified KubeVirt14 as the
best candidate for this extension. KubeVirt uses K8s Custom Resource Definitions (CRD) to offer an API that
allows managing VMs in a K8s cluster through the same patterns used to manage containers.

The Edge Minicloud VIM architecture is therefore based on both K3s and KubeVirt, which will take control of
the machines in the resource pool by running on them. At least one machine in the resource pool will be the
K3s Master Node, and the others will be Worker Nodes. The K3s and KubeVirt components of both a Master
and Worker Node are shown in Figure 8.

Figure 8: ACCORDION Minicloud VIM logical architecture, based on the K3 cluster architecture

The K3s architecture is quite simple, as it merged all K8s Master components (e.g., API Server, Scheduler,
Controller Manager, etc.) into a single executable, the K3s Server, and all K8s Worker components in the K3s
Agent. KubeVirt doesn’t merge its components in the same way, so there will be separate components virt-
api and virt-controller on the Master Node. KubeVirt runs virtual machines in special pods (objects of a new
type called VMI) as container workloads, therefore in the Worker Node there will be multiple pods controlled

13 https://k3s.io/

14 https://kubevirt.io/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 21 of 51

by the K3s Agent. One pod to run the virt-handler component that launches the VMI and configures it until
it matches the required state; one VMI pod for each VM including the components virt-launcher, libvirtd and
Qemu; and one or more pods to host containers.

Figure 8 is a logical diagram showing a single instance for each type of component, but a real deployment
may have a more complex configuration. For example, multiple Master Nodes (usually three) are needed to
implement High Availability (HA) configurations. Multiple Worker Nodes are also the norm in a K8s/K3s
cluster, as they are those configured to run the real application workload. Some Workers may run only
containers, some others only VMs and others may run both VMs and containers. Container Pods will be
present only in Workers running containers, and DaemonSet plus VMIs pods will be present only in Workers
running VMs.

In Figure 8 there is no ACCORDION-specific component, as the initial idea is to implement all the needed
logic, such as deciding which node to use to run a given container or VM, through K8s-native configuration.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 22 of 51

3 Resource monitoring & characterization

3.1 Description & Objectives

The resource monitoring & characterization component has to monitor and characterize the resources as
other components will query for information to perform actions based on metrics. Monitoring and
characterization won’t have a central component, instead it will be done on the Edge. Monitoring is going to
be dynamic on contrary characterization is static, as it will have information for the hardware of the Edge
devices.

The goal is to have a component that can monitor both physical (devices) and virtual layer (VMs, containers,
pods). In addition, this component is cloud agnostic as it does not need a specific provider to perform
monitoring or characterization. Between Edge networks, we may have heterogenous devices with different
computational power, as Prometheus server is actually a pod and char-agents are containers that they can
run on any device that has K3s and Docker.

3.2 Requirements

Monitoring component runs in a K3s cluster, each node of the cluster must have Docker installed. For the
monitoring part Cluster Monitoring stack for ARM / X86-64 was used as it produces the configuration for
Prometheus, exporters and Grafana on K3s. To automate the deployment of the whole monitoring
component some Python and shell scripts were developed. A device to run those scripts needs to have
Python 3.615 installed. A characterization agent is a custom Docker container that is developed in Python. To
retrieve the GPU information container uses mesa-utils16 and to be more specific from the glxinfo. As Mesa
is a 3D computer graphics library it has to get the model of the GPU from the host, some configurations must
be done before running the container:

1. non-network local connections have to be added to access control list by running xhost local:root
command

2. set display with export DISPLAY=':0.0'
3. the final step is to run the container with the Display parameter and network set to host to get the

IP of its host docker run --rm -it --privileged -e DISPLAY=$DISPLAY --network=host char-agent

In the experiments, two Raspberry Pi 4B and on PC were used as K3s supports ARM and AMD architectures.
In the case of Raspberry Pi 4B, there was an extra configuration that needed to be made for the case of char-
agent. If a screen was not connected to the Raspberry Pi 4B it did not initiate the GUI, so the container failed

15 https://www.python.org/downloads/release/python-360/

16 https://wiki.debian.org/Mesa.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 23 of 51

to get the GPU details to avoid this error a static screen resolution must be configured so when device boots
GUI also boots.

3.3 Research Challenges & Advancements Achieved

As it was mentioned in D2.2, a challenge for monitoring is to be able to connect the information that is
provided from the physical and virtual layer, so it would be able to describe in a comprehensive way how a
problem in the physical layer can impact the virtual layer. In Prometheus, node-exporter, Prometheus
Adapter and kube-state-metrics are configured which expose metrics for physical and virtual monitoring so
we could develop PromQL queries that give us the CPU usage of the device but also the CPU usage that a
specific K3s pod has.

By using Prometheus for monitoring purposes, we can also monitor Cloud VMs without using cloud providers’
monitoring tools. The monitoring stack was deployed also on a K3s cluster with a Okeanos Cloud VM and 2
other RaspberryPi for Edge storage experiments and Prometheus could successfully monitor the VM without
changing the configuration or using a Cloud provider monitoring tool. Heterogeneity was another challenge,
as we said between edge networks, we may have a variety of devices. With experimentations on the K3s
clusters we concluded that we can perform monitoring and characterization VMs, PCs and Raspberry Pis
without having a huge impact on them.

For the characterization we tried to find an open standard or a model to describe bare metal devices. TOSCA
was chosen as with it we could write YAML files that are commonly used. TOSCA was extended to represent
the clusters and its devices.

3.4 Provided Features and APIs

The monitoring API will provide other ACCORDION components monitoring and characterization information.
As it is a REST API, the format of the results is JSON. For monitoring information, the path for the calls is
/monitoring and the name of the supported HTTP parameter is metric. An ACCORDION component that
needs to consume monitoring information about the physical layer will have to declare in the metrics
parameter the value physical_metrics as the example below and the result is shown in Figure 9.

http://0.0.0.0:3000/monitoring?metric=physical_metrics

An endpoint that provides the monitoring metrics for bare metal and VMs of the cluster (CPU usage, RAM
usage, disk write and read latencies, filesystem usage, disk size, disk free space disk IO).

{"Results": [{"timestamp": 1613918256.884719, "Cpu Usage Results": [{"node":
"giannis", "cpu_usage(percentage)": " 11.39"}, {"node": "raspberrypi",
"cpu_usage(percentage)": " 6.08"}, {"node": "raspberrypi1",
"cpu_usage(percentage)": " 6.80"}]}, {"timestamp": 1613918256.948491, "Memory
Usage Results": [{"node": "giannis", "mem_usage(percentage)": " 43.58"},
{"node": "raspberrypi", "mem_usage(percentage)": " 87.23"}, {"node":

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 24 of 51

"raspberrypi1", "mem_usage(percentage)": " 75.87"}]}, {"timestamp":
1613918257.013779, "Disk Write Latency Results": [{"node": "giannis", "device":
"sdc", "disk_write_latency(percentage)": " 0.80"}, {"node": "giannis",
"device": "sdd", "disk_write_latency(percentage)": " 1.22"}, {"node":
"raspberrypi", "device": "mmcblk0", "disk_write_latency(percentage)": " 1.20"},
{"node": "raspberrypi", "device": "mmcblk0p2",
"disk_write_latency(percentage)": " 1.20"}, {"node": "raspberrypi1", "device":
"mmcblk0", "disk_write_latency(percentage)": " 18.77"}, {"node":
"raspberrypi1", "device": "mmcblk0p2", "disk_write_latency(percentage)": "
18.77"}]}, {"timestamp": 1613918257.075608, "Disk Read Latency Results":
[{"node": "giannis", "device": "sdc", "disk_read_latency(percentage)": "
0.02"}]}, {"timestamp": 1613918257.137085, "Filesystem Usage Results":
[{"node": "giannis", "mountpoint": null, "fstype": null,
"filesystem_usage(percentage)": " 19.49"}, {"node": "raspberrypi",
"mountpoint": null, "fstype": null, "filesystem_usage(percentage)": " 74.97"},
{"node": "raspberrypi1", "mountpoint": null, "fstype": null,
"filesystem_usage(percentage)": " 74.55"}]}, {"timestamp": 1613918257.198618,
"Disk Size Results": [{"node": "giannis", "disk_total_size(bytes)":
"2204823101440"}, {"node": "raspberrypi", "disk_total_size(bytes)":
"17658145792"}, {"node": "raspberrypi1", "disk_total_size(bytes)":
"17658145792"}]}, {"timestamp": 1613918257.258936, "Disk Free Space Results":
[{"node": "giannis", "disk_free_space(bytes)": "2170876522496"}, {"node":
"raspberrypi", "disk_free_space(bytes)": "6878654464"}, {"node":
"raspberrypi1", "disk_free_space(bytes)": "6956704256"}]}, {"timestamp":
1613918257.318943, "Disk IO Usage Results": [{"node": "giannis",
"disk_io_time_spent(seconds)": "0.007369490285714287"}, {"node":
"raspberrypi", "disk_io_time_spent(seconds)": "0.00036869494949545245"},
{"node": "raspberrypi1", "disk_io_time_spent(seconds)":
"0.08465387434343274"}]}]}

Figure 9. Node Monitoring

In the case of virtual layer monitoring the parameters that are currently supported are pods CPU usage, pods
memory usage, pods status phase and pods info. To get the results of the pod (virtual layer) metrics of a
specific application one has to declare the HTTP parameter metric and the HTTP parameter namespace. The
values of the HTTP parameter namespace are the available namespaces of the K3s cluster. The result is
shown in Figure 10.

http://0.0.0.0:3000/monitoring?metric=virtual_metrics&namespace=application

{"Results": [{"timestamp": 1613918536.169836, "Pod Info Results": [{"pod":
"mysql-bfc5c9f44-477rv", "pod_ip": "192.168.1.2", "namespace": "application",
"created_by_kind": "ReplicaSet", "replica": "1", "node": "giannis", "node_ip":
"192.168.1.2"}, {"pod": "wordpress-86885f548-44m8z", "pod_ip": "10.42.0.46",
"namespace": "application", "created_by_kind": "ReplicaSet", "replica": "1",
"node": "giannis", "node_ip": "192.168.1.2"}]}, {"timestamp":
1613918536.238763, "Kube Pod Status Phase Results": [{"kube_pod_status_phase":
"Running", "pod": "mysql-bfc5c9f44-477rv", "instance": "10.42.0.42:8443",

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 25 of 51

"namespace": "application"}, {"kube_pod_status_phase": "Running", "pod":
"wordpress-86885f548-44m8z", "instance": "10.42.0.42:8443", "namespace":
"application"}]}, {"timestamp": 1613918536.300128, "Pod CPU Usage Results":
[{"node": "giannis", "pod": "mysql-bfc5c9f44-477rv", "pod_cpu_usage(seconds)":
"0.018315272811091667"}, {"node": "giannis", "pod": "wordpress-86885f548-
44m8z", "pod_cpu_usage(seconds)": "0.004569118139741808"}]}, {"timestamp":
1613918536.368414, "Pod Memory Usage Results": [{"node": "giannis", "pod":
"mysql-bfc5c9f44-477rv", "pod_memory_usage(bytes)": "20627632.01304764"},
{"node": "giannis", "pod": "wordpress-86885f548-44m8z",
"pod_memory_usage(bytes)": "2882807.349989445"}]}]}

Figure 10. Pod Monitoring

Monitoring can also provide the K3s namespaces of the cluster and their cpu and memory usage. In this case
the HTTP namespace parameter has to be declared as all, the result is shown in the Figure 11.

 http://0.0.0.0:3000/monitoring?namespace=all

{"Results": [{"timestamp": 1613918683.353328, "Namespace CPU Results":
[{"namespace": "monitoring", "cpu_usage(seconds)": "0.1492824091256434"},
{"namespace": "kube-system", "cpu_usage(seconds)": "0.01201474498433889"},
{"namespace": "application", "cpu_usage(seconds)": "0.0007409287284330483"}]},
{"timestamp": 1613918683.416821, "Namespace Memory Results": [{"namespace":
"kube-system", "memory_usage(bytes)": "232685568"}, {"namespace":
"monitoring", "memory_usage(bytes)": "1953517568"}, {"namespace":
"application", "memory_usage(bytes)": "1104633856"}]}]}

Figure 11. Namespace Monitoring

The path for the characterization results in API is /characterization and the supported HTTP parameter is the
format. The result can be returned in JSON with REST calls or as a TOSCA YAML downloadable file.

http://0.0.0.0:3000/characterization?format=json/tosca

[{"device": {"_id": {"$oid": "60326f8f528bf960d6b36ce3"}, "device_name":
"raspberrypi", "ip": "192.168.1.205", "UUID": "e7cd9caa-7451-11eb-85aa-
dca632298c4f", "RAM(bytes)": 4095737856, "Battery": "None", "CPU": {"Arch":
"armv7l", "bits": "32", "cores": 4}, "GPU": {"GPU_name": "llvmpipe (LLVM 7.0,
128 bits) (0xffffffff)", "GPU_type": "Intergated graphics processing",
"GPU_video_memory(bytes)": 4095737856, "unified_memory": "no"}, "OS":
{"OS_name": "Linux", "OS_version": "4.19.118-v7l+"}, "DISK": [{"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-log"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"}], "K3s":
{"node_role": ""}, "Region": {"continent": "Europe", "country": "Greece",
"city": "Athens"}}}, {"device": {"_id": {"$oid": "60326fa4528bf960d6b36ce4"},
"device_name": "raspberrypi1", "ip": "192.168.1.203", "UUID": "e7344550-7451-
11eb-9473-dca632299078", "RAM(bytes)": 4095737856, "Battery": "None", "CPU":
{"Arch": "armv7l", "bits": "32", "cores": 4}, "GPU": {"GPU_name": "llvmpipe

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 26 of 51

(LLVM 7.0, 128 bits) (0xffffffff)", "GPU_type": "Intergated graphics
processing", "GPU_video_memory(bytes)": 4095737856, "unified_memory": "no"},
"OS": {"OS_name": "Linux", "OS_version": "4.19.118-v7l+"}, "DISK": [{"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-log"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-
log"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint":
"/etc/resolv.conf"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint":
"/etc/hostname"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint":
"/etc/hosts"}], "K3s": {"node_role": ""}, "Region": {"continent": "Europe",
"country": "Greece", "city": "Athens"}}}, {"device": {"_id": {"$oid":
"60326fa4528bf960d6b36ce5"}, "device_name": "giannis", "ip": "192.168.1.2",
"UUID": "ea831f38-7451-11eb-8bc7-fcaa149d94de", "RAM(bytes)": 8396820480,
"Battery": "None", "CPU": {"Arch": "x86_64", "bits": "64", "cores": 6}, "GPU":
{"GPU_name": "AMD BONAIRE (DRM 2.50.0, 4.15.0-135-generic, LLVM 7.0.1)
(0x665f)", "GPU_type": "Dedicated graphics processing",
"GPU_video_memory(bytes)": 2147483648, "GPU_total_available_memory(bytes)":
4289724416, "unified_memory": "no"}, "OS": {"OS_name": "Linux", "OS_version":
"4.15.0-135-generic"}, "DISK": [{"device": "/dev/root", "fstype": "ext4",
"mountpoint": "/dev/termination-log"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/root", "fstype": "ext4",
"mountpoint": "/dev/termination-log"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/sdc1", "fstype": "ext4",
"mountpoint": "/dev/termination-log"}, {"device": "/dev/sdc1", "fstype":
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/sdc1", "fstype":
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/sdc1", "fstype":
"ext4", "mountpoint": "/etc/hosts"}], "K3s": {"node_role": "control-
plane,master"}, "Region": {"continent": "Europe", "country": "Greece", "city":
"Athens"}}}]

Figure 12. Characterization Results

Beside the monitoring, this Task has to characterize resources based on their hardware. To be able to
characterize resources every node of a cluster has to host a char-agent container which identifies the
characteristics of the device and exposes them via an API in JSON format. The master node of a K3s cluster is
the one who collects the information from the characterization-agents and stores them in a MongoDB
database.

The components of the Tasks that are shown in Table 1 will get monitoring and characterization information
from the monitoring API. Monitoring API will support HTTP parameters and based on the path it will return
the related information. Examples of usage are shown in the above Figures.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 27 of 51

Table 1: Monitoring data needed per ACCORDION Task.

Tasks Required Information from Monitoring

Task 3.2

Resource indexing & discovery

Per-node information:

• Static Hardware: amount of CPU,ram,disk,
etc.

• Static Software: installed software (from a
list of selected) and relative versions

• Dynamic hardware: load, ram
consumptions, etc.. (average on 5-10-15
minutes?)

Task 3.3

Edge Storage

For evaluation:

• System statistics such as disk usage, ram
usage and network usage

• Node health statistics about failing or
disconnecting nodes and drives.

During runtime:

• Node health statistics about failing or
disconnecting nodes and drives.

Task 5.5.

NextGen application development toolkit

All (or as many as possible) APIs will be used to
display information to the user, maybe a Grafana or
similar program will be hosted in an I-frame in order
to display graphical information directly from the
Prometheus distributions.

3.5 Technical Challenges and Mitigation

A technical challenge that we encountered was that after the deployment of the Prometheus server pod, we
found that if someone knows the IP of the K3s master or/and the ingress IP developed by the deployment
files (prometheus.master-ip.nip.io) he/she can bypass the monitoring API and perform PromQL queries on
the GUI or API of Prometheus.

To avoid this problem, we had to add an authentication layer to Prometheus. Prometheus on its own does
not have an authentication mechanism, a reverse proxy needs to be used to have a security layer. The reverse
proxy that we use is Traefik17 as it is downloaded with K3s by default. To secure the endpoints of Prometheus,

17 https://doc.traefik.io/traefik/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 28 of 51

we performed a random password generation for the monitoring the user, both credentials stored in a
htpasswd18 file which was used later on a shell script to create a secret in the monitoring namespace. By
adding in the Prometheus ingress configuration file, the reverse proxy, the authentication type and the secret
in the annotations segment the authentication was added successfully to all Prometheus endpoints. The
credentials were also stored in an encrypted YAML file and in another file the key to decrypting the credential
file was stored. This is achieved with the usage of Python’s library cryptoyaml19, which uses the Fernet
symmetric encryption. The only component that needs to know the decryption key and have access to
credentials YAML file is the monitoring API, every other component won’t have access to Prometheus
endpoints.

3.6 Future Work

For future work, we have to rename some JSON objects and arrays in the JSON response of the monitoring
API. In addition, the names of the HTTP parameters have to change into simpler ones, also we have to interact
with the other WPs to see if there is a need for new endpoints in the monitoring API that provide different
metrics.

We have already developed some installation scripts for monitoring to automate the deployment and
installation of Prometheus and Grafana to the K3s master. The next would be to find a way to deploy
characterization agents as a set of pods and containerize the monitoring API to finalize the automation of
deployment the monitoring component. Another part of installation scripts would be the installation of the
required libraries to perform the actions that are described in the Technical Challenges and Mitigation
Section.

18 https://httpd.apache.org/docs/2.4/programs/htpasswd.html

19 https://pypi.org/project/cryptoyaml3/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 29 of 51

4 Resource indexing & discovery

4.1 Description & Objectives

The aim of the Resource indexing & discovery (RID) component is to support and assist the other system
components. The computational resources available to the ACCORDION nodes inside the Minicloud are
subject to continuous change due to application activities or the migration of applications
between Miniclouds. As a matter of fact, in order to effectively orchestrate the available resources, it is highly
important to rely on the current load state of the components.

In this context, the role of the RID component is twofold: on one side to keep updated the state of
computational resources distributed between various Miniclouds in the system and on the other side the RID
component should provide the functionality for the effective retrieval of information about available
resources. The main sources of the data for the RID is the Resource monitoring & characterization
component, described in Section 3. Nevertheless, the queries can in principle come from any ACCORDION
component that needs to find resources with specific computational features, in particular the intelligent
Orchestrator (See deliverables D4.1 and D4.2).

4.2 Requirements

The role of the RID component inside the system is twofold. On the one side, the RID component has to keep
an updated state of the available computational resources in the system. On the other side, the RID
component should provide an effective functionality for the system state information retrieval. Hence in
order to provide the high-quality service the RID should address the following requirements:

• Provide functionality for storing and retrieving information about the dynamically changing
resources in the system. The functionality should be done in a scalable manner not only in terms of
amount of data but also in terms of the variety of the information to retrieve.

• RID component should be able to address the user provided requirements for the resource discovery.
For example, the requirements in performance and precision of resource discovery.

• The component should be integrated with resource and queries ontologies presented in the
Resource monitoring & characterization component description (see Section 3.4).

4.3 Research Challenges & Advancements Achieved

Recent years witness the development and use of the technologies for large-scale Heterogeneous
infrastructures such as Grids [5], Clusters [6], Clouds [5]. These large-scale distributed computing
environments (LDCE) technologies allow us to rely not only on a single available resource but on the use of
different heterogeneous physically spread resources in the network. Indeed, one of the most challenging
issues for these technologies is an effective way to perform resource discovery. Resource discovery is an
essential part of effective resource utilization in LDCE. It includes locating, retrieving and advertising of the

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 30 of 51

available resources in the system. However, considering the distributed and large-scale nature of LDCE,
resource discovery technologies in such environments have to address well-known challenges for distributed
systems, like efficiency, scalability and reliability [7].

The efficiency of a resource discovery solution can be mostly described as a combination of the conceptual
metrics latency and load balancing [7]. The latency of resource discovery is built up by different delay sources:
network transfer time, query processing algorithm, the complexity and type of the query, network size and
the level of the computing parallelism in the system. The other metric that characterises the
efficiency of resource discovery is the load balancing for the discovery procedure. In other words, how the
query load is distributed among resource information providers.

Among the various proposals, MatchTree [8] is a P2P-based approach that reduces query response times
with redundant query topologies, dynamic timeout policies and sub-region queries. It also
balances processing overheads between resources. OntoSum [9] relies on a semantic-aware topology
construction method for resource discovery in Grids. The method significantly improves the discovery
efficiency by propagating the discovery requests only between semantically related nodes. SWORD [10] is a
P2P DHT-based approach that relies on multiple overlays. The load-balancing mechanism of SWORD is less
efficient in the case of non-uniform distribution of the nodes in the environment. Node-Wiz [11] is a hybrid
approach. It is load-balanced and supports clustering and self-organization for overlays. It relies on a single
distributed indexing mechanism.

Scalability of resource discovery characterises the ability of the system to react and address the variations in
the system in terms of the amount of resource involved. Scalability is one of the key factors for evaluation of
the distributed systems. The highest impact on the scalability of the system is made by the size of the
network. The increase in the system size increases the communications delays and overheard and leads
to an increase in the response time for the discovery queries. On one side in order to create an effective
scalable system the one should avoid relying on centralized architecture with the risks of resource bottleneck
and single point of failure. On the other side the fully distributed architecture has its own drawbacks in terms
of bootstrapping and the increasing response time for the querying. Zarrin et al. [7] demonstrate that Grid
and P2P based approaches like OntoSum and MatchTree provide better scalability than the hybrid ones
like NodeWiz. These conclusions also come from the fact that both OntoSum and MatchTree approaches are
decentralized and hence have more potential to provide scalable solutions. However, the distributed
solutions require a higher level of communication that can impact on efficiency.

In order to achieve the desired level of scalability we plan to apply hybrid distribution strategies for resource
discovery. We particularly concentrate on the investigation of the approaches that best mix structured and
unstructured data structures techniques in order to fulfil the issue of scalability in the most effective way.

Reliability of resource discovery can be described by the following metrics: its accuracy, validity, dynamicity
and faults tolerance. The accuracy addresses the correctness of the resource description and querying in the
system. For the high accuracy of resource discovery, the applied resources description and query models
should correspond to the available resources in the system. At the same time the description model as well
as the resource querying should satisfy more than just a single match or single resource querying. For
example, MatchTree algorithm can guarantee query completeness [8]. One more factor of reliability is

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 31 of 51

dynamicity and fault tolerance of the system. The desired reliability should tackle the leaving and joining
nodes in the system. Resource discovery should provide solutions for dealing with possible failures of the
resource holders. For example, SWORD and Node-Wiz protocols support dynamic topologies and
attributes. MatchTree supports fault tolerance in terms of churn rate of nodes and internal node failure. It
also addresses dynamicity in terms of adding a new attribute. OntoSum also supports dynamicity in terms of
probability to issue a query, probability to leave the system and the probability of new nodes/resources to
join the system [7]. The validity of the resource discovery system is of particular interest to ACCORDION. In
order to build an effective distributed architecture, it is highly important that the resource
discovered information is valid and updated.

4.4 Provided Features and APIs

Each RID component proposes a http interface. This interface allows other components of the ACCORDION
system to request information about computational resources via queries. The current implemented version
of the interface supports the queries in JSON format. The queries are sent via 'POST' requests. The results of
the queries are returned in JSON format.

The current version of the RID component accepts the following types of hte queries:

1. Multi attribute range queries on numerical values, e.g., available RAM.
2. Exact queries for string values, e.g., specific GPU chipset names.
3. Boolean query for specific feature availability, e.g., availability of a GPU.

The supported types of queries are subject to changes with the development of the ACCORDION project.
New types of queries can be added or the existing ones can be changed based on the future requirements of
the ACCORDION system components.

4.5 Technical Challenges and Mitigation

Due to the limited progress of the project in the current state, it is not possible to test the distributed
solutions for RID components. Most of the planned components of the ACCORDION system are in the
development phase and, for now, cannot be involved in the emulation and evaluation of the possible
distributed solutions for the RID. Due to these temporal limitations and in order to proceed with the project
plans for the RID component we plan to start the evaluation of the available solutions for the RID based on
the simulation techniques.

4.6 Future Work

In the short-term future plans, we are considering simulating the distributed solutions studies for RID
components. At the same time, with the progress of the development of other system components we plan
to continue the integration between the RID and other system entities.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 32 of 51

5 Edge storage

5.1 Description & Objectives

The Edge storage component aims to provide an edge storage framework, supporting the QoE needs of the
users, be it stakeholders, developers, applications or any other interesting person or software. This is
achieved by optimizing resource usage, allocation and data management plans on edge devices per
Minicloud. A clearer description of objectives can be derived from the use case requirements.

In detail, this component needs to provide a reliable, fast, stable and secure shared storage engine, accessible
by all devices and users of a Minicloud using a role-based security schema. This engine needs to be extremely
lightweight since it is created for edge devices with extremely limited resources, like Raspberry Pies or other
micro-computer devices. It also needs multiple access points depending on the role and category of the client
that needs to access or modify the data. For example, a human administrator would like to have a web-based
GUI in order to manage the stored data or the storage engine itself. A software client on the other hand
would like to have either an API or a mounted file path in order to manage the data. The edge storage
component needs to be provided both in a uniform and easy-to-understand manner.

5.2 Requirements

The requirements for the Edge Storage component can be separated into three categories; the general
requirements, which include general purpose requirements that all data storage systems have, the
algorithmic requirements, which concern the usage of the storage system by the ACCORDION and its hosted
applications, and the data administrator requirements, which concern the usage, management and
configuration of the system by an administrator. All these requirements are analysed in detail in the following
sub-sections.

5.2.1 General Requirements

• Small enough data retrieval latency to cover the needs of all ACCORDION use cases.
• High availability by employing fault tolerance and mitigation methods.
• Hight integrity by employing integrity validation methods.
• Role based security allowing access to all authorized users.

5.2.2 Algorithmic Access Requirements

• Singular purpose endpoints with clearly defined APIs.
• Emulated filesystem support for applications that require it.
• Automated authorization methods enabling role-based access to authorized systems.
• Fault proofing for large batch processes.
• Atomicity to some degree according to the needs of the application.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 33 of 51

5.2.3 Data Administrator Requirements

• Easy to learn and use web-based GUI.
• Strict authorization and security mechanisms.
• Easy to understand and explore monitoring data about the data storage platform and the hosted

data.

5.3 Research Challenges & Advancements Achieved

The open research issues in the area of edge storage platforms revolves around three main pillars; the
minimization of overhead when transferring large quantities of small data packets, the intelligent admission
mechanisms that allow an optimized pre-fetching of useful data and intelligent caching that minimizes the
network traffic while optimizing the bound resources of edge devices. More details on these research issues
can be found in the more extended description present in D2.2.

The first year of the project was aimed at creating a reliable platform, supporting the requirements of the
ACCORDION use cases and enabling us to run experiments and gather data about the functionality of the
platform, the bottlenecks and the points that need optimization, which has been achieved using the K3S
distribution of kubernetes and customized deployments based on the Prometheus monitoring system as well
as the MinIO and OpenStack datastores. This platform will serve as a basis for advancing the scientific goals
set by the challenges mentioned.

5.4 Provided Features and APIs

The current version of the edge storage component is based on MinIO which provides both a web-based GUI
and an AWS S3 compatible API library. Also, Prometheus comes bundled with Graphana which provides an
excellent web-based GUI for displaying the highly customized datasets that Prometheus gathers when
monitoring the edge storage component and the machines involved in it. A number of wrapping and higher-
level customized endpoints are planned for the next version of the component, covering more specific needs
of the ACCORDION use cases.

5.5 Technical Challenges and Mitigation

Technical challenges concern machine faults, common to edge devices, such as overheating or unstable
network access. These challenges are one of the motivations of creating a customized edge storage
component instead of using a generic solution so their mitigation is covered under the fault tolerance and
mitigation requirement of the component.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 34 of 51

5.6 Future Work

For the second year of the ACCORDION project, we aim at tackling at least one of the open research issues,
creating an innovative prototype, customized and optimized for the ACCORDION use case needs. There will
also be more endpoints that serve more specialized needs of the use cases, wrapping and grouping some of
the existing endpoints or creating entirely new ones.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 35 of 51

6 Lightweight virtualization

6.1 Description & Objectives

Specialization is arguably the most effective way to achieve outstanding performance, whether it is for
achieving high throughput in network-bound applications, making language runtime environments more
efficient, or providing efficient container environments, to give some examples. Even in the hardware
domain, and especially with the demise of Moore’s law, manufacturers are increasingly leaning towards
hardware specialization to achieve better performance; the machine learning field is a primary exponent of
this.

In the virtualization domain, unikernels are the golden standard for specialization, showing impressive results
in terms of throughput, memory consumption, and boot times, among others. Some of those benefits come
from having a single memory address space, and thus eliminating costly syscall overheads, but many of those
are the result of being able to hook the application at the right level of abstraction to extract best
performance: for example, a web server aiming to service millions of requests per second can access a low-
level, batch-based network API rather than going with the standard but slow socket API. Such an approach
has been taken in several unikernel projects but often in an ad hoc, build-and-discard manner, and despite
their clear benefits, unikernels suffer from two major drawbacks:

• They require significant expert work to build and to extract high performance; such work has to for
the most part be redone for each target application.

• They are often non-POSIX compliant, requiring porting of applications and language environments.

We argue that these drawbacks are not fundamental, and propose a unikernel architecture built specifically
to address them. Existing unikernel projects, even those based on library architectures, tend to consist of
small but mono- lithic kernels that have complex, intertwined and sometimes opaque APIs for their
components. This means that developers not only have to often port applications to such systems, but that
optimizing their performance requires digging into the code and the specifics of the (uni)kernel in order to
understand how to best obtain performance gains.

Furthermore, such systems typically rely on size-based specializations: removing all unnecessary components
to achieve minimal images. While this strategy already offers significant benefits, we argue that unikernels
based on library architectures should ease access to true specialization, allowing users to choose the best
system component for a given application, environmental constraints, and key performance indicators

We propose Unikraft, a novel micro-library operating system targeted at painlessly and seamlessly generating
specialized, high performance unikernels. To do so, Unikraft relies on two key principles:

• The kernel should be fully modular in order to allow for the unikernel to be fully and easily
customizable. In Unikraft, OS primitives such as memory allocators, schedulers, network stacks and
early boot code are stand-alone micro-libraries.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 36 of 51

• The kernel should provide a number of performance- minded, well-defined APIs that can be easily
selected and composed in order to meet an application’s performance needs. In Unikraft, such APIs
are micro-libraries themselves, meaning that they can be easily added or removed to a unikernel
build, and that their functionality can be extended by providing additional such micro-libraries.

In brief, the key conceptual innovation of Unikraft is defining a small set of APIs for core OS components that
makes it easy to replace-out a component when it is not needed, and to pick-and-choose from multiple
implementations of the same component when performance dictates. The APIs have been built to enable
performance (e.g., by supporting batching by design) and minimality in mind (no unneeded features).

To support a wide range of applications, we port the musl libc library, and provide a syscall shim layer micro-
library. As a result, running an application on Unikraft can be as simple as building it with its native build
system, and linking the resulting object files back into Unikraft.

6.2 Requirements

Before deriving what the key design principles for Unikraft are, it is worth analyzing the features and
(heavyweight) mechanisms of traditional OSes that are unnecessary or ill- suited to single application use
cases:

• Protection-domain switches between the application and the kernel might be redundant in a
virtualization context because isolation is ensured by the hypervisor, and result in measurable
performance degradation.

• Multiple address spaces may be useless in a single application domain, but removing such support in
standard OSes requires a massive reimplementation effort.

• For RPC-style server applications, threading is not needed, with a single, run-to-completion event
loop sufficing for high performance. This would remove the need for a scheduler within the VM and
its associated overheads, as well as the mismatch between guest and hypervisor schedulers.

• For performance-oriented UDP-based apps, much of the OS networking stack is useless: the app
could simply use the driver API, much like DPDK-style applications already do. There is currently no
way to easily remove the network stack from standard OSes.

• Direct access to NVMe storage removes the need for a VFS layer and any actual filesystem, but
removing filesystem support from existing OSes is very difficult.

• Memory allocators have a large impact on application performance, and general purpose allocators
have been shown to be suboptimal for many apps. It would therefore be ideal if each app could
choose its own allocator; this is however very difficult to do in today’s operating systems because
the allocators that kernels use are baked in.

This admittedly non-exhaustive list of application-specific optimizations implies that for each core
functionality that a standard OS provides, there exists at least one or a few applications that do not need it.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 37 of 51

Removing such functionality would reduce code size and resource usage but would often require an
important re-engineering effort.

The problem we want to solve is to enable developers to create a specialized OS for every single application
to ensure the best performance possible, while at the same time bounding OS-related development effort
and enabling easy porting of existing applications. This analysis points to a number of key requirements:

• Single address space: The focus is on single application scenarios, with possibly different applications
communicating with each other through networked communications.

• Fully modular system: All components, including operating system primitives, drivers, platform code
and libraries should be easy to add and remove as needed; even APIs should be modular.

• Single processor mode: No user-/kernel-space separation to avoid costly processor mode switches.
This does not preclude compartmentalization (e.g., of micro- libraries), which can be achieved at
reasonable cost.

• Static linking: enables compiler features such as Dead Code Elimination (DCE) and Link-Time
Optimization (LTO) to automatically get rid of unneeded code.

• POSIX support: In order to support existing or legacy applications and programming languages while
still allowing for specialization under that ABI.

• Platform abstraction: Seamless generation of images for a range of different hypervisors/VMMs.

6.3 Research Challenges & Advancements Achieved

Given the requirements above, the question is how to implement such a system: by minimizing existing
general-purpose operating systems, by starting from existing unikernel projects, or from scratch.

Existing work has taken three directions in tackling this problem. The first direction takes existing OSes and
adds or removes functionality. Key examples add support for a single address space and remove protection
domain crossings: OSv [12] and Rump [13] adopt parts of the BSD kernel and re-engineer it to work in a
unikernel context; Lupine Linux [14] relies on a minimal, specialized configuration of the Linux kernel with
Kernel Mode Linux patches. These approaches make application porting easy because they provide binary
compatibility or POSIX compatibility, but the resulting kernel is monolithic.

Existing monolithic OSes do have APIs for each component, but most APIs are quite rich as they have evolved
organically, and component separation is often blurred to achieve performance (e.g., sendfile short circuits
the networking and storage stacks).

In summary, starting from an existing project is suboptimal since none of the options were designed to
support the key principles we have outlined. We opted for a clean-slate API design approach, though we did
reuse components from existing works where it is relevant.

As achievements, Unikraft supports a number of already-ported applications (e.g., SQLite, Nginx, Redis),
programming languages and runtime environments such as C/C++, Go, Python, Ruby, Web Assembly and Lua,
and a number of different hypervisors (KVM, Xen, Amazon Firecracker and Solo5 as of this writing).

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 38 of 51

Our performance evaluation (e.g., requests per second a nginx web server, or insertions per second for a
SQLite database) using such applications on Unikraft results in a 30%-50% performance improvement
compared to Linux guests. In addition, Unikraft images for these apps are around 1MB, require less than
10MB of RAM to run, and boot in around 1ms on top of the VMM time (total boot time 2ms-70ms).

6.4 Provided Features and APIs

Unikraft can improve the performance of applications in two ways:

1. Unmodified applications, by eliminating syscall overheads, reducing image size and memory
consumption, and by choosing efficient memory allocators.

2. Specialization, by adapting applications to take advantage of lower-level APIs wherever performance
is critical (e.g., a database application seeking high disk I/O throughput).

Figure 9: Unikraft architecture (APIs in black boxes) enables specialization by allowing apps to plug into APIs at different levels and to choose
from multiple API implementations.

Figure 9 shows Unikraft's architecture. All components are micro-libraries that have their own Makefile and
Kconfig configuration files, and so can be added to the unikernel build independently of each other. APIs are
also micro-libraries that can be easily enabled or disabled via a Kconfig menu; unikernels can thus compose
which APIs to choose to best cater to an application’s needs (e.g., an RCP-style application might turn off the
uksched API in order to implement a high performance, run-to-completion event loop). The ability to easily
swap components in and out, and to plug applications in at different levels presents application developers
with a wide range of optimizations possibilities. To begin with, unmodified applications can plug in to musl
(➀ in Figure 9), transparently getting low boot times, lower memory consumption and improved throughput
because of the lack of syscall overheads (note Unikraft provides a syscall shim layer to support musl, but the

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 39 of 51

syscalls result in simple function calls rather than context switches). Likewise, the application developer can
easily select an appropriate memory allocator (➅) to obtain maximum performance, or to use multiple
different ones within the same unikernel (e.g., a simple, fast memory allocator for the boot code, and a
standard one for the application itself).

Developers interested in fast boot times could further optimize the unikernel by providing their own boot
code (➄) to comply with the ukboot API. For network-bound applications, the developers can use standard
socket interface (➁) or the lower level, higher performance API (➆) in order to significantly improve through-
put. Similarly, disk-bound applications such as databases can follow a standard path through the vfscore
micro-library (➂), or optimize throughput by coding against the ukblock API (➇). Schedulers are also
pluggable (➃), and each CPU core can run a different scheduler.

6.5 Technical Challenges and Mitigation

Perhaps the main challenges is supporting a wide range of existing applications and those needed by
ACCORDION use cases. Arguably, an OS is only as good as the applications it can actually run; this has been a
thorn on unikernels’ side since their inception, since they often require manual porting of applications. More
recent work has looked into using binary compatibility (e.g., HermiTux [15]), where unmodified binaries are
taken and syscalls translated, at run-time, into a unikernel’s underlying functionality. This approach has the
advantage of requiring no porting work, but the translation comes with important performance penalties.

In order to avoid these penalties costs but still minimize porting effort, we take a different approach: we rely
on the target application’s native build system, and use the statically-compiled object files to link them into
Unikraft’s final linking step. For this to work, we ported the musl C standard library, since it is largely glibc-
compatible but more resource efficient, and newlib, since it is commonly used to build unikernels

To quantify the challenge of supporting additional applications (especially to support ACCORDION use case)
we conduct a short analysis using the Debian popularity contest data to select a set of 30 popular server
applications not yet supported by Unikraft (e.g., apache, mongodb, postgres, avahi, bind9). To derive an
accurate set of syscalls these applications require to actually run, and to extend the static analysis work to
include dynamic analysis, we created a small framework consisting of various configurations (e.g., different
port numbers for web servers, background mode, etc.) and unit tests (e.g., SQL queries for database servers,
DNS queries for DNS servers, etc.). These configurations and unit tests are then given as input to the analyzer
which monitors the application’s behavior by relying on the strace utility. Once the dynamic analysis is done,
the results are compared and added to the ones from the static analysis.

We plot the results against the syscalls currently supported by our system in the heatmap on Figure 10. Each
square represents an individual syscall, numbered from 0 (read) to 313 (finit_module). Lightly colored
squares are required by none of the applications (0 on the scale) or few of them (20% of them); black squares
(e.g., square 1, write) are required by all. A number on a square means that syscall is supported by Unikraft,
and an empty square is a syscall not supported yet.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 40 of 51

Figure 10: Syscalls required by a set of 30 popular server applications versus syscalls currently supported by Unikraft.

As can be seen from the map, more than half the syscalls are not even needed in order to support popular
applications, and most of the needed syscalls we already support. Of those that are not supported (in the
order of about 40):

• several can be quickly stubbed in a unikernel context (e.g., kill, since we do not have processes);

• many are relatively trivial to implement since the necessary functionality is already supported by
Unikraft (e.g., semget/semopt/semctl).

• the remaining syscalls are work in progress (e.g., epoll, eventfd).

In all, we estimate that a moderate level of additional engineering work to support these missing syscalls
would result in even wider support for applications. Finally, for cases where the source code is not available,
Unikraft also supports binary compatibility and binary rewriting.

6.6 Future Work

As future work, we are continuing the effort to provide better syscall compatibility in order to transparently
support even more mainstream applications. We also aim to leverage Unikraft’s modularity for security
purposes, coding micro-libraries in memory-safe or even statically-verifiable languages and using
compartmentalization techniques to maintain safety properties as the image is linked together.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 41 of 51

7 Edge minicloud VIM

7.1 Description & Objectives

An adequate management process is needed to put together and handle hardware and software resources
so that they can be placed strategically near the data source or maybe near the end user, in order to lower
latency and improve the user experience. The component dedicated to manage resource allocation and
workload execution in a virtualized environment is known as Virtual Infrastructure Manager (VIM).
Interaction with a VIM is usually done manually via Command Line Interface (CLI) or programmatically with
an Application Programming Interface (API). Several different VIM implementations with different focuses
are already available: there are for example OpenStack and VMware vCloud Director to manage Cloud
Infrastructure, but also OpenShift (actually Kubernetes) to manage containers. There is also OpenVIM, which
is a component of the OpenMANO platform for Network Functions Virtualization (NFV). Beside traditional
cloud frameworks, to manage resources hosted in datacenters, there are also solutions with their own VIM
developed for different environments, where resources can be scarce or not accountable like in IoT. In our
research we started reviewing the state of the art, as reported in deliverable D2.2 (sect. 2.4.3.2), and we
found several projects working on VIMs that could address the identified issues. Therefore, in this first year
we screened in more detail some of the most promising solutions identified in D2.2, to choose the one that
better matches our requisites. The evaluated solutions are Eclipse Fog05, LF Eve, Rancher K3S and MicroK8S.
Eclipse Fog05 [16] is a project sponsored by the Eclipse Foundation, with a very simple architecture and based
on a communication bus (Zenoh) based on pub/sub, focused on keeping a low-overhead profile even using
unreliable networks. LF Eve [17] is hosted by the Linux Foundation and focuses on managing IoT resources,
developing a secure-by-design system to run containers that can be managed remotely. MicroK8S20 is a
Kubernetes distribution for IoT hosted and developed by Canonical. Rancher K3S 21 is a Kubernetes
distribution for IoT. Our objective is to choose one of the solutions listed above as a baseline for our VIM
component. This VIM should be easy to be extended, able to work well both on cheap hardware such as
Raspberry PI and on datacenter servers, ensure enough security, and be able to support different kind of
workloads, i.e. both containers and Virtual Machines.

7.2 Requirements

The baseline VIM for ACCORDION must satisfy a set of requirements in different aspects, to have a good
open-source basis to enable further development. It should be easy to extend with provided interfaces and
should have an active community working on its evolution. It should be able to manage the kind of limited

20 https://microk8s.io/

21 https://k3s.io/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 42 of 51

hardware usually available on the edge as well as standard data centre resources. As a way to guide our
comparison we identified the following list of detailed requirements:

- VIM should be able to manage non-homogeneous resources, either large or scarce in terms of CPU
and RAM.

- It must be able to run on small devices such as Raspberry PI, so it should support both ARM as well
as x86 CPU-architecture.

- VIM should use the least possible number of resources for cluster maintenance, keeping more
available for workloads.

- A security layer should be available to enforce confidentiality in components’ communication, and
to support authentication and access control.

- It must support, either natively or through extensions, the execution of three different kinds of
workload: it should be able to run Docker containers, which are the mainstream technology for
containerization, and also Unikernels for high start-up performance and maximum efficiency in
resources’ utilization. It should also be able to run virtual machines, giving developers the possibility
to have an environment that manages both containers and virtual machines can simplify the
migration from legacy to cloud-native applications.

- To simplify adoption and diffusion of ACCORDION, it’s important that our VIM is accessible using
standard or industry recognized interfaces.

The use of open-source components is also important, as it enables developers to modify and extend
functionality independently, without the need to request permission from software owners or pay license
fees.

7.3 Research Challenges & Advancements Achieved

Due to the number of candidates derived from the first screening, to tackle the selection we adopted an ad-
hoc methodology. The first step was to define a set of criteria, listed below, to be evaluated for each
candidate. Then the analysis of each solution followed a sequence of three phases, each phase incrementally
increasing our understanding. First, each project’s website was visited to collect all information available,
then we reviewed project and software documentation looking at the characteristics of the solution, seeking
information on the current activity of the project, its developers’ community as well as its diffusion to have
an idea of the long-term viability and support available for the solution. After the documentation analysis,
where possible, we experimented by installing the software in our lab, to better understand capabilities,
compatibility, strengths and weaknesses of each candidate solution.

In each project’s webpages, we looked for a summary to understand if the available features were matching
our requirements. Then we extracted the knowledge of each solution by studying its documentation, even if
sometimes it wasn’t enough and a direct dialogue with the related developer community was needed. Some
projects are still work in progress and it was necessary to understand their real state of work by filtering all
the incomplete or misleading information found in websites, source code and presentations. In most cases,
it wasn’t easy neither to understand if some important feature was present or missing, nor to obtain a
roadmap of upcoming features. In some cases, we were able to install the solution locally and verify its

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 43 of 51

functionality by directly testing its features. In all these analysis phases, we collected information following
a set of criteria based on the requirements defined in the previous section. The criteria were:

- Documentation: document availability and completeness, from both a developer and administrator
stand point, is important to simplify the solution adoption in ACCORDION and let all partners get
acquainted with it.

- Installability: the complexity of installation on supported systems is a hint about the product’s
production readiness; moreover, a simple installation is a plus in itself for its smaller operations costs.

- Licensing: type of open-source license, used to understand if is appropriate and matches the
requisite of free reuse and modification of source code, like Apache 2.0

- Community: understanding if there is an active community working on the product and supporting
it, gives assurances about the software’s future evolution and its present support level.

- Portability: is VIM usable on different platforms? In ACCORDION, it’s important that the selected
VIM supports both ARM as well as AMD/x86 architectures.

- Supportability: linked with Community, indicates if support for the software is promptly available.
- Architecture: the simpler the solution architecture, the simpler it will be to maintain it. We looked In

particular at the deployment architecture.
- Security Features: this criterion is linked to the need of securing the ACCORDION solution from any

unauthorized and malicious access.
- Virtualization Supported: what kind of hypervisors are supported.
- Compatibility: criterion that evaluates how easy it is to integrate this solution with mainstream

technology.
- Maintenance: complexity of the day by day operation.
- Extensibility: if and how the solution supports extensions.
- Hardware Requirements: how many resources should be dedicated to run VIM processes and are

thus stolen from users’ workloads
- Project Maturity: criterion indicating the current state of the project’s development work, answer

questions such as: has it reached its first stable version? Is it production ready?

The criteria listed above guided any phase of our analysis, and any phase gave different contributions for
each of the solutions under analysis. During the process also the relevance of the criteria become clearer: as
for community criteria, especially during the laboratory tests, the presence of an active community to
support when tackling issues, was crucial. Security features must be a native part in the VIM solution, at least
for low level operations, like node management and configuration management. The laboratory test was
crucial to better understand potential problems in a candidate or even to better understand features poorly
described in the documentation. For some projects, it has been difficult to find all the information needed
and even to distinguish some promised features from actually implemented ones.

As a result of this selection work there is a much clearer picture of the current solutions for virtualization and
clusterization in environments with few resources. What we learnt drove us to select K3S as VIM baseline.
K3S shows good evaluations in all criteria, especially for lightweight resource consumption and for
documentation completeness for both developers and administrators. From Kubernetes, K3S inherits also its
REST API: an industry recognized interface, a de facto standard. This facilitates the interaction for any third

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 44 of 51

party application and especially enables ACCORDION to leverage on the whole Kubernetes ecosystems: a rich
and continuously growing set of extensions and integrations for the most disparate tasks. Moreover, it is
interesting the K3s project governance evolution: recently it joined CNCF (Cloud Native Computing
Foundation) as a Sandbox project, which increases its chances to be kept available as an open source
community version. Another interesting feature is its Software conformance22 obtained by Rancher, meaning
that K3S will keep API compatibility and can be a Kubernetes drop-in. Finally, also other ACCORDION tasks
are using K3S for their labs, so this choice simplifies their work and the whole ACCORDION integration. Table
2 summarizes the comparison analysis: each candidate has a column and is evaluated on all criteria
represented as rows.

Table 2: Comparison of VIM baseline candidates.

Criteria Criteria Explanation Fog05 EVE LF-EDGE K3S MicroK8s

Documentation Comprehensive,
appropriate, well-
structured user
documentation?

Minimum instruction
install and general
architecture

Wiki and
documentation
available is high-
level. Not available
interfaces and
implementations
specs.

Available for both
users and
developers.
Interface is
inherited from K8S

For user, not for
developer to
contribute.
Interface in
inherited from K8S

Installability Straightforward to
install on a supported
system?

Pkg distribution only
for Ubuntu.
Compilation needed
for windows

Only on bare metal
with package made
via make. It uses
type1 hypervisor
Xen or KVM, open
to others type

Straightforward,
with an installation
script a basic
cluster can be
setup

Straightforward,
snap script.

Licensing Adoption of
appropriate license?

Apache License,
Version 2.0
 Eclipse Public
License 2.0

Apache License 2.0 Apache License 2.0 Apache License 2.0

Community Evidence of
current/future
community?

Sponsored by
Eclipse
Foundation. Not big
community of
developer at the
moment (not
documented but
seem less than 4
persons)

Part of LF Edge
program, open to
external to project
contributors.
Approx. less than
20 contributors in
the last year

Joined CNCF
(Cloud native
computing
foundation), SUSE
announced that it is
acquiring Rancher
Labs

Canonical (Ubuntu)

Portability Usable on multiple
platforms?

Ubuntu Linux and
Windows

tested on some IOT
devices
https://wiki.lfedge.o
rg/display/EVE/EV
E+in+the+Market

Linux.
X86 64bit, ARM64
and ARMv7
support

Linux, Windows,
macOS.
 x86,
Raspberry/ARM

Supportability Evidence of
current/future
developer support?

Is available a Slack
channel open to
anybody to
communicate bugs
or receive help. A
roadmap is not

Mailing list and chat
available. A 2021
roadmap is under
development

2020 Roadmap
available, missing
2021. Project
present on GitHub
for eventual defect.

Roadmap not
available. Project
Active with
community forum

22 https://www.cncf.io/certification/software-conformance/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 45 of 51

available at the
moment

Architecture How complex is it? Really simple,
made of agents and
distributed
infrastructure
manager.

Simple: controller-
agent

Simplified wrt k8s,
one or more single
process masters
nodes and single
process workers
nodes

Simplified respect
to K8S

Security Feature Access Control, TLS. non present secure by design:
access control and
authentication
available

Available from k8s Available from k8s

Project Maturity Is the project
consolidated? How
many project use
such vim? Is product
completed or under
development?

Under
development, few
project using it in
non-production
env.

no evidence of use
of community
version in
production, is also
a company product
no public data
about deployments

Already used in
production by a
Kubernetes cloud
provider

Stable version
1.19, available

Virtualization
Supported

Like Docker
container, Lxd...

Containerd
 Lxd
 ROS2
 Kvm
 Native application

Virtual Machines,
Unikernels or
Docker/OCI

As K8S distro:
Docker,
Containerd, CRI-O,
and any
implementation of
the Kubernetes CRI
(Container Runtime
Interface)

As K8S distro:
Docker,
Containerd, CRI-O,
and any
implementation of
the Kubernetes CRI
(Container Runtime
Interface)

Compatibility with OpenStack and
OCCI

Compatible with
ETSI OSM
Orchestrator, but
only for few
features

No compatibility
with main stream
technology

As K8S distro there
are several de facto
standard REST API
interfaces

As K8S distro there
are several de facto
standard REST API
interfaces

Maintenance how is complex day
by day maintenance

TBD Enable remote
maintenance of
bare metal OS, with
rollback feature

available a system-
upgrade-controller
that automate
system update

Automatic security
update.
 single command to
Kubernetes update

Extensibility Is possible to add
features? Is it
complex?

High: software
architecture plugin
based, for OS, FDU
(fog deployment
unit, kind of
workload), network

Community support
encouraged, but no
evidence of
standard interface
or external
contribution like for
K8S CSI

Extension can be
done on K3S. Also
K8S enable
extension with
different interfaces
widely known like:
CSI, CRD, and
CRI…

Extension done on
MicroK8s, to
include new feature
but also on K8S
that enable
extension with
different interfaces
widely known like:
CSI, CRD, CRI…

Hardware Req. Seams light: 57mb,
no details for CPU
and memory, no
benchmark
available

CPU: Arm or
Intel/AMD support
for hypervisor. 1G
RAM or better
 1G storage
 1 network interface
 1 serial port for
development

OS: Linux
 RAM: 512MB
Minimum (
recommend at least
1GB)
 CPU: 1 Minimum
 Storage: 100Mb

OS:Lin,Win,mac
 Ram:4GB
 Storage: 20GB

Tested in our lab Tested looking for:
- high availability of
message bus
zenoh
 - try running simple
Container

It doesn't work with
nested
virtualization, found
problem executing,
nobody ever tried
on top of VMware
or VirtualBox

Test demonstrates
simple installation
and good
integration with
VirtualBox for VM
execution

N.A.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 46 of 51

K3S natively can run only Containers, not virtual machines or Unikernels, so it was necessary to find an
extension to support such other types of workloads. A further selection was needed to find the right plugin
to extend K3s for supporting at least Virtual Machines. We found several candidates: Kata Containers23,
RancherVM24, KubeVirt25, KubeEdge26 and Virtlet27. This time the selection was simple, as most candidates
have some critical issue: Kata Containers implements VMs as a way to insulate containers, so the main
workload in this framework is still a Container and not a Virtual Machine. RancherVM is a project from the
same company providing K3S but it is probably in its early stages or abandoned as the documentation is
completely missing and there are no signs of a community working on it. Virtlet is quite complete from the
point of view of functionality and documentation, but it seems to be an abandoned project. KubeEdge
architecture is not edge-only but needs a cloud component to run. KubeVirt instead matches all the requisites
of virtual machine management, has a big community around it, it is also hosted by CFCN and is being used
as the base for the Red Hat OpenShift Virtualization product, therefore KubeVirt is our selection as the K3S
extension to support Virtual Machines. Table 3 contains candidates’ evaluation for each criterion:

Table 3: Comparison analysis for candidate baseline extensions to support Virtual Machines.

Criteria Kata Containers Rancher VM KubeVirt KubeEdge

Documentation Available for users and
developers

Really Poor / Not
present

For User and developer For User and developer

Installability VM with nested
virtualization: Kata is
packaged for major
Linux Distro.
Bare metal

N.A. Few cmd line instruction
to install

Simple installation of
agent and controller

Licensing Apache License 2.0 N.A. Apache License 2.0 Apache License 2.0

Community Supported by the Open
Infrastructure
Foundation

Rancher CNCF compliant and
GitHub community with
more than 30 significant
contributor in the last
year

CNCF compliant and
GitHub community with
more than 30 significant
contributor in the last
year

Portability Linux or system with:
Intel VT-x technology.
 ARM Hyp mode
(virtualization
extension).
 IBM Power Systems.
 IBM Z mainframes

N.A. Linux Linux

23 https://katacontainers.io/

24 https://github.com/rancher/vm

25 https://kubevirt.io/

26 https://kubeedge.io/

27 https://github.com/Mirantis/virtlet

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 47 of 51

Supportability Project is active in
development and
roadmap is under
development.

N.A. Roadmap under
development.

High level roadmap
available

Architecture Duplicate some k8s
components

N.A. Duplicate some k8s
components

Quite complex, as it
needs k8s cluster, cloud
component controller
and agent, so 2
separate system to
maintain

Security Feature Focused on issue of
isolation of processes.
Using Hw Virtualization

N.A. Like k8s. Like k8s

Project Maturity Stable version has
been released

N.A. Near to 1.0, most
feature are available,
guarantee to keep same
API. Already used as
base for commercial
product

Virtualization Supported Docker/OCI inside VM Support for: qcow2, raw,
and ISO images

KVM via libvirt -Docker
 -Containerd
 -Cri-o
 -Virtlet: dead project

Compatibility OpenStack Zun
compatibility

N.A. K8S and derivate.
Tested and packaged
for Katacoda
 MiniKube
 Kind
 Cloud k8s provider

N.A.

Maintenance N.A. N.A. Zero downtime rolling
updates available

automatic update

Note Not to run generic VM

7.4 Provided Features and APIs

As stated in the previous section, K3S is a lightweight distribution of Kubernetes (K8S). Its main value is its
small resource footprint: this flavour of K8S reduced memory usage by consolidating all K8S services in two
processes: one running on the master node and one running on agent nodes, both packaged as a single binary
of less than 50MB. The K3S implementation includes support for SQLite3 as default storage mechanism and
has cut out all unnecessary K8S API code, either alpha or deprecated. Another important feature is its
optimization for ARMv7 and ARM64 processors that enable working on several small devices like Raspberry
Pi, but binaries are available for AMD64 processor architecture too.

Being a K8S distribution with software conformance certified by CFCN, K3S is fully compliant with K8S
inheriting most of its features. Features such as the extensibility with Custom Resource Definition (CRD),
which enable users to define their own custom resources and manage them with a custom API. The CRD
mechanism has been used by KubeVirt to add two new K8S resource types: Virtual Machine (VM) and Virtual
Machine Instance (VMI). There are other ways to extend Kubernetes, and thus K3S, like the Container

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 48 of 51

Runtime Interface (CRI). CRI enables us to plugin different kinds of container runtimes, without the need to
recompile. The current container runtime implementation for K3S is Containerd28 , which enables more
efficient execution of Docker containers. For user interaction, K3S exposes two kind of interfaces:

- HTTP REST API
- Command Line Interface (CLI)

With these interfaces, users are able to configure any aspect of a K3S cluster.

Documentation for the K8S API and CLI is available online at https://kubernetes.io/docs/reference/

The latest up-to-date documentation about K3S implementation and customization is available online at
https://rancher.com/docs/k3s/latest/en/

KubeVirt is a Kubernetes add-on: its main features are Virtual Machine management enablement. In doing
so it has several features like: framework update silently with no downtime, migration of VMIs to a different
node, and role based access control (RBAC) for authorization. All these features are available to the users via
a CLI named virtctl, or via a dedicated HTTP REST API. More details about virtctl are available online at
https://kubevirt.io/user-guide/#/installation/virtctl. Details on KubeVirt API are also available online, at
https://kubevirt.io/api-reference/.

7.5 Future Work

In the second year we will integrate other ACCORDION edge components: edge storage, resource indexing,
and resources monitoring, with the aim of obtaining a unique package for the Minicloud. We will start
integration testing using a sample application, but then the plan is to run experiments using the ACCORDION
WP6 use cases, to verify if their requirements are satisfied.

28 https://containerd.io/

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 49 of 51

8 Conclusions

In conclusion, we can see that the Minicloud platform has achieved most of its goals and objectives for the
first year of the project. The basic objectives of the Minicloud were to provide a platform which is able to
improve the QoE for users of ACCORDION supported applications near the edge of the network. This is
accomplished by having the first version of the Minicloud VIM that is highly scalable, distributed and
lightweight. A prototype platform has been created, supporting basic functionality while most of the research
goals have been clearly defined and they are ready to be explored and overcome. In the near future, the
Minicloud VIM component will integrate its subcomponents and will be able to deploy a sample application
on edge devices.

In detail, a monitoring component has been created, tackling the challenge of gathering all the real time
monitoring metrics and the static characteristics of the virtual and physical machines that are part of the
ACCORDION framework or even lend resources to the framework. In addition, this monitoring component is
creating a connection between the physical and virtual layers, unifying them under a common context. The
RID component is providing the framework with an efficient, reliable and scalable means of discovering and
identifying resources dynamically as they change, move, enter or exit the resource pool. The Edge Storage
component is providing the capability of utilizing the edge resources in order to store, retrieve and migrate
data in a fast, secure and durable way, ensuring the QoS and QoE requirements of the applications using the
ACCORDION framework. The lightweight virtualization and Unikernels component allow us to deploy images
on edge nodes using minimal resources, allowing us to use mini-clouds of cheaper devices while keeping the
performance at the necessary level to preserve the QoE requirements. All these components are tied under
the VIM component, which integrates them together in a mini-cloud architecture.

Finally, the targets for the second year of the project have been clearly defined, both on component level
and on platform level, based on the challenges identified during the first year. This includes additional
functionality for the Minicloud VIM as well as optimizations to already provided functionality by expanding
the current status of the art in the domain targeted by each of the WP3 task outcomes.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 50 of 51

References

[1] C. Cramer, K. Kutzner, and T. Fuhrmann, “Bootstrapping locality-aware P2P networks,” in Proceedings.
2004 12th IEEE International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955), Nov. 2004,
vol. 1, pp. 357–361 vol.1, doi: 10.1109/ICON.2004.1409169.

[2] MinIO Inc, “MinIO | Enterprise Grade, High Performance Object Storage,” MinIO, 2020. https://min.io
(accessed Apr. 26, 2020).

[3] OpenStack, “Build the future of Open Infrastructure.,” OpenStack. https://www.openstack.org/
(accessed Apr. 26, 2020).

[4] S. Santhanam et al., “Towards Highly Specialized, POSIX -compliant Software Stacks with Unikraft:
Work-in-Progress,” in 2020 International Conference on Embedded Software (EMSOFT), Shanghai,
China, Sep. 2020, pp. 31–33, doi: 10.1109/EMSOFT51651.2020.9244044.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-Degree Compared,” in
2008 Grid Computing Environments Workshop, Nov. 2008, pp. 1–10, doi: 10.1109/GCE.2008.4738445.

[6] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid Computing—Where HPC meets grid and Cloud
Computing,” Future Gener. Comput. Syst., vol. 27, no. 5, pp. 440–453, May 2011, doi:
10.1016/j.future.2010.11.003.

[7] J. Zarrin, R. L. Aguiar, and J. P. Barraca, “Resource discovery for distributed computing systems: A
comprehensive survey,” J. Parallel Distrib. Comput., vol. 113, pp. 127–166, Mar. 2018, doi:
10.1016/j.jpdc.2017.11.010.

[8] K. Lee, T. Choi, P. O. Boykin, and R. J. Figueiredo, “MatchTree: Flexible, scalable, and fault-tolerant wide-
area resource discovery with distributed matchmaking and aggregation,” Future Gener. Comput. Syst.,
vol. 29, no. 6, pp. 1596–1610, Aug. 2013, doi: 10.1016/j.future.2012.08.009.

[9] J. Li, “Grid resource discovery based on semantically linked virtual organizations,” Future Gener.
Comput. Syst., vol. 26, no. 3, pp. 361–373, Mar. 2010, doi: 10.1016/j.future.2009.07.011.

[10] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson, “Design and Implementation Trade-Offs
for Wide-Area Resource Discovery,” ACM Trans Internet Technol, vol. 8, no. 4, Oct. 2008, doi:
10.1145/1391949.1391952.

[11] Sujoy Basu, Sujata Banerjee, Puneet Sharma, and Sung-Ju Lee, “NodeWiz: peer-to-peer resource
discovery for grids,” in CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid,
2005., May 2005, vol. 1, pp. 213-220 Vol. 1, doi: 10.1109/CCGRID.2005.1558557.

[12] A. Kivity et al., “OSv: Optimizing the Operating System for Virtual Machines,” in Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference, USA, 2014, pp. 61–72.

[13] A. Kantee and others, “Flexible operating system internals: the design and implementation of the
anykernel and rump kernels,” 2012.

[14] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in unikernel clothing,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp. 1–15.

 ACCORDION – G.A. 871793

D3.1 Edge infrastructure pool framework report (I) Page 51 of 51

[15] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A binary-compatible unikernel,” in Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, 2019,
pp. 59–73.

[16] A. Corsaro, “Eclipse fog05,” projects.eclipse.org, Apr. 08, 2018.
https://projects.eclipse.org/proposals/eclipse-fog05 (accessed Jan. 14, 2021).

[17] “EVE - LF Edge.” https://www.lfedge.org/projects/eve/ (accessed Jan. 14, 2021).

