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EXECUTIVE SUMMARY 
This deliverable provides the first report summarizing the scientific advancements achieved during the 
project, by the WP3 tasks. The achievements, risks and challenges are presented both at a high level, 
presenting the outcome of the WP3 tasks (called ACCORDION Minicloud VIM) as a unified component, and 
at a lower level, presenting the components that comprise the ACCORDION Minicloud VIM. For each 
component we can clearly identify the progress through the first year of the project, the challenges and 
problems encountered and the plans for the second year of the project. 

  



 

 ACCORDION – G.A. 871793 

 

D3.1 Edge infrastructure pool framework report (I)                                                                        Page 4 of 51 

DISCLAIMER 
ACCORDION (871793) is a H2020 ICT project funded by the European Commission. 

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures 
(public clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of 
latency, that can support NextGen application requirements. To mitigate the expectation that these pools 
will be “sparse”, providing low availability guarantees, ACCORDION will intelligently orchestrate the compute 
& network continuum formed between edge and public clouds, using the latter as a capacitor. Deployment 
decisions will be taken also based on privacy, security, cost, time and resource type criteria. 

This document contains information on ACCORDION core activities. Any reference to content in this 
document should clearly indicate the authors, source, organisation and publication date. 

The document has been produced with the funding of the European Commission. The content of this 
publication is the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be 
considered to reflect the views of the European Commission. The authors of this document have taken any 
available measure in order for its content to be accurate, consistent and lawful. However, neither the project 
consortium as a whole nor the individual partners that implicitly or explicitly participated the creation and 
publication of this document hold any sort of responsibility that might occur as a result of using its content. 

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht). 
There are currently 27 members states of the European Union. It is based on the European Communities and 
the member states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home 
Affairs. The five main institutions of the European Union are the European Parliament, the Council of 
Ministers, the European Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/). 

 

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright 
holders. 

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but 
modifying this document is not allowed. You are permitted to copy this document in whole or in part into other 
documents if you attach the following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.” 

The information contained in this document represents the views of the ACCORDION Consortium as of the date they 
are published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or 
up to date. THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY 
PUBLISHING THIS DOCUMENT. 
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1 Introduction 

1.1 Scope and objectives of this deliverable 

This deliverable aims at delivering the full scope of the research and development tasks conducted in work 
package 3 of the ACCORDION project during the first year of the project (months 1-12), which is also 
mentioned as the first “cycle”. The document contains both the architecture of the complete Minicloud as 
well as the architecture of its components. It also contains the objectives, the scientific and technical 
challenges and the advancements made towards overcoming these challenges. Finally, it presents the plans 
for the near future as well as the next cycle of the work package tasks. This information is provided in order 
to present a coherent and complete status of the work package tasks. 

1.2 Document Structure 

The document presents an architecture overview of the Minicloud platform as well as its components in 
section 2. In sections 3-7 we can see the details of each component of the Minicloud. In detail, each one of 
these sections consists of a general description, a requirements, a research challenges, a features and APIs, 
a technical challenges and a future work sub-sections, painting the complete picture for each component. 
Finally, there is the conclusions and references sections that conclude this document. 
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2 Architecture 

2.1 General Architecture  

The main product of WP3, as indicated by its title, is the "Edge infrastructure pool framework", also named 
"Edge Minicloud" or simply Minicloud. 

From the DoA, an Edge Minicloud is "an orchestration system for pooling and abstracting resources, exposing 
elasticity properties through a standard-based API", "tailored towards integrating edge and fog nodes 
(private clouds and infrastructures, telco resources and end-devices) in a single minicloud orchestration 
system". 

The main logical components of the ACCORDION Minicloud are indicated in the UML diagram depicted in  
Figure 1 and described below. A more detailed description for each component is provided in the following 
subsections. 

 

Figure 1: ACCORDION Minicloud components' diagram. 

 

 



 

 ACCORDION – G.A. 871793 

 

D3.1 Edge infrastructure pool framework report (I)                                                                        Page 12 of 51 

ACCORDION Minicloud 

This package represents the ACCORDION Minicloud, which is a fundamental component of the ACCORDION 
system. A Minicloud manages a single resource pool. The managed resources are typically Edge resources, 
but could also be Cloud resources. The basic criterion that groups resources in a single pool is their locality, 
which can be realized either in geographical terms or in terms of latency. Geographical locality means that 
the resources handled by a single Minicloud pool are expected to share the same location or to be 
geographically close. Network locality is a more difficult concept to define (e.g. [1] defined the locality of two 
nodes as something proportional to the length of the common prefix of their IP address: the longer the prefix, 
the shorter the distance between the nodes) and will not be explored here. 

In this first version the adopted model is “one minicloud for each provider”. This means that each Minicloud 
pool includes resources offered by a single provider, and each provider to join the ACCORDION federation 
has to implement its own Minicloud. In this model the role Infrastructure Owner is the same as Minicloud 
Owner. In the future we will research the possibility to implement a higher granularity model by defining 
resource pools in terms of latency and allow a new provider/node to join the federation by joining the closest 
Minicloud. With this model even providers with few resources will be able to join the federation. 

Monitoring Manager 

This component, resulting from the work of Task 3.1, collects and provides two types of information, both 
fundamental for handling resources: monitoring data and resources' characterization. In particular, it 
monitors the availability of all resources included in the resource pool. More information on this component 
can be found in section 3. 

Resource Information Repository 

The purpose of this component, resulting from the work of Task 3.2, is to store and retrieve information 
about the resources of the Minicloud pool. The source of this information is the monitoring component, for 
both monitoring data (e.g., availability) and resources' characterization. 

Storage Manager 

This component, resulting from the work of Task 3.3, provides a unified interface to the storage available in 
the Minicloud pool. 

Virtual Infrastructure Manager (VIM) 

The Virtual Infrastructure Manager, resulting from the work of Task 3.5, handles the resource pool and offers 
the Minicloud API to provision and manage edge deployment units (Containers and VMs) running on top of 
the resource pool. 

Federation entrypoint 

This component has not been implemented in the first version of the Minicloud. When available it will expose 
an API to offer federation-related functionalities such as those involved in the onboarding process. 
ACCORDION Task 7.5 will greatly help in defining this component’s functionalities. 
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2.2 Resource Monitoring & Characterization  

In ACCORDION, we concluded that for the purpose of monitoring we will use Prometheus1. Prometheus is a 
popular open-source system that can be used for minoring purpose. Prometheus uses a time series database 
to store metrics in a key-value pair format. It has its own query language named PromQL2. Prometheus has 
a pull model which basically pulls metrics from exporters. Exporters can fetch statistics from non-Prometheus 
systems and convert them into Prometheus metrics. We can find the metrics of an exporter at /metrics URL. 
To pull metrics from the exporters Prometheus must know the targets through service discovery or static 
configuration. In order to create graphs, Grafana performs PromQL queries to Prometheus to get the 
appropriate results. Also, the Alert manager produces alerts by using PromQL with upper or lower limits. 

 

Figure 2: High-level architecture of the monitoring component. 

  

For the deployment of Prometheus on K3s, a github Project was used Cluster Monitoring stack for ARM / 
X86-64 3 . This project uses Prometheus Operator to manage and configure Prometheus instances on 

 

1 https://prometheus.io/ 

2 https://prometheus.io/docs/prometheus/latest/querying/basics/ 

3 https://github.com/carlosedp/cluster-monitoring 
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Kubernetes / K3s. Prometheus Operator4 can automatically generate monitoring targets configuration, so 
each node of the cluster will have exporters to expose their metrics to Prometheus which will be installed to 
the master node of Kubernetes. For bare metal or VM monitoring the node exporter pods have to be 
configured on every node of the cluster. The rest of the pods were configured to run only on the K3s nodes 
with the label monitoring master. 

This project uses several other tools: 

• Node exporter5 for hardware and OS metrics. 
• Blackbox exporter6 allows blackbox probing of endpoints over HTTP, HTTPS, DNS, TCP and ICMP. 
• Kube-state-metrics7 expose critical metrics about the condition of a Kubernetes cluster, it generates 

them from the Kubernetes API server. (health of nodes, pods, deployments, etc.). 
• Prometheus adapter 8  which is an implementation of the Kubernetes resource metrics, custom 

metrics, and external metrics APIs. It can also replace the metrics server on clusters that run 
Prometheus. 

• CoreDNS as a DNS server. 
• Grafana9 to visualize the metrics with graphs. 
• SMTP10 docker container for sending emails when an alert of the Alert Manager is triggered. 
• addon-resizer11 is a container image that watches over another container in a deployment, and 

vertically scales the dependent container up and down. Currently the only option is to scale it linearly 
based on the number of nodes, and it only works for a singleton. 

• kube-rbac-proxy12 is a small HTTP proxy for a single upstream, that can perform RBAC authorization 
against the Kubernetes API. 

 

 

4 https://github.com/carlosedp/prometheus-operator 

5 https://hub.docker.com/r/carlosedp/node_exporter/ 

6 https://hub.docker.com/r/carlosedp/blackbox_exporter/ 

7 https://github.com/kubernetes/kube-state-metrics 

8 https://github.com/kubernetes-sigs/prometheus-adapter 

9 https://grafana.com/ 

10 https://hub.docker.com/r/carlosedp/snmp_exporter/ 

11 https://hub.docker.com/r/carlosedp/addon-resizer 

12 https://hub.docker.com/r/carlosedp/kube-rbac-proxy 
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2.3 Resource Indexing & Discovery  

The aim of the component Resource Indexing & Discovery (RID) is to keep an up-to-date status of 
computational resources among the various miniclouds and provide a service that allows to run queries on 
these resources. The main source of data would be the monitoring system of the miniclouds (Task 3.1). 
Queries can in principle come from any ACCORDION component that aims at finding resources with specific 
computational features.  

 
Figure 3 describes the generic federation-wide architecture of the RID system. In the figure we show only 
two miniclouds, while the actual system can be composed by more entities (dots on the figure). As you can 
see on the figure, we envision the RID as a distributed component. This means that there is an instance of 
the RID running in every minicloud. For the current design of the components, RID instances communicate 
with each other using the Internet. The specifics of this communication are strongly tied to the approach 
that will be used to implement the distributed components.  

 

 

Figure 3: Overview of the overall system architecture. 

Figure 4 shows the internal architecture of a given RID instance. The RID contains a REST client that will pull 
monitoring data from the local (i.e., in the same minicloud) monitoring instance, which will be in turn stored 
in the local storage component. Note that the local storage does not necessarily keep only local data, or that 
a minicloud information is not necessarily stored in the local storage. In fact, advanced distributed indexing 
techniques are employed to distribute data among all their instances, in order to have a fast yet effective 
information discovery and retrieval.  

The RID instance exposes a REST server query interface that allows other ACCORDION components to submit 
queries. In case, there is the need to transform the query into software artifacts (e.g., network messages, 
look up command), this task is performed by the query mapping component. The processed query is then 
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forwarded to the topology manager component. The topology manager component is responsible for the 
query execution inside the distributed topology of the system. The topology manager structure depends on 
the type of queries that the system is optimized to process and is subject to changes during the project 
progress.  

 

Figure 4: Architecture of the Distributed resource indexing component. 

2.4 Edge Storage  

The Edge storage component has the goal of providing an edge storage framework that can support the QoE 
needs of the users, optimizing resource usage in the edge devices and networks. We have two possible base 
technologies for this; the MinIO [2] and OpenStack [3] platforms that enable us to create highly distributed, 
lightweight and scalable storage clusters, using Kubernetes as an orchestrator. The final choice of the tool 
will be made after running a number of experiments, testing their effectiveness and optimizing their 
configuration for scenarios close to the real use cases that the ACCORDION will be called to handle. 

After the choice of the appropriate technology and configuration, a middleware layer will be added between 
the VIM and storage components in order to expose specific, role-based APIs that ensure security of the data, 
integrity of the system, optimized QoE for the users, fault proofing, fault tolerance, intelligent caching and 
other relevant functionalities.  

The component will use the Kubernetes ecosystem by using the Kubernetes master as the storage controller, 
storage UI access point and Prometheus master for the specific cluster. Each node that is connected to the 
Kubernetes cluster has the potential of becoming a storage worker for this cluster or/and for the ACCORDION 
ecosystem. This is enabled by defining a custom label for the node, enrolling it as a storage worker. As a node, 
we define a Kubernetes node, which can be a PC, laptop, IoT device or any other compatible device. In order 
to be eligible for the role of storage worker, a node must have sufficient hard disk space available. The 
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amount of space is highly dependent on the use case, so it is not pre-configured. In the next figure (Figure 5), 
we can see a high-level architecture of the module with the interconnections between the sub-modules. 

 

Figure 5: Edge Storage component architecture. 

We have isolated four actors that are using the services of the Storage module; the VIM, the Prometheus 
Aggregator, the Mini-cloud Administrator and the ACCORDION Administrator. VIM will be using the APIs 
exposed by the component in order to perform automated or semi-automated processes or even expose the 
functionalities in other interfaces or components. A draft of the APIs that will be exposed by the component 
is included in Table 1 at the end of this chapter. The Prometheus Aggregator will access the endpoint provided 
by the cluster Prometheus master in order to scrape the data and collect them in an aggregated database 
that collects information from all the ACCORDION mini-cloud clusters. The Mini-cloud Administrator will be 
using the storage UI in order to manage the storage cluster and the data in it for administrative purposes. 
The ACCORDION Administrator will also be using the storage UI in order to manage and monitor the data and 
the cluster in accordance with the general ACCORDION needs. In the following UML (Figure 6), we can see a 
visual representation of these relations.  

 

Figure 6: Edge storage use cases and actors. 
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2.5 Lightweight Virtualization  

Traditionally, embedded devices have been centered around specialized, embedded processors and the 
embedded operating systems running on them (e.g., FreeRTOS and Zephyr). This model has been, and still is, 
extremely effective in ensuring efficient resource consumption, especially power, but forces developers to 
port applications to such OSes, since, for the most part, they are not POSIX-compliant.  

Increasingly, many embedded devices are being designed around general-purpose processors, especially 
ARM-based ones. This is a radical shift in the way we think about embedded devices: many so-called 
“embedded” devices (e.g., in the IoT, edge, gateways and automotive domains) use Linux as default because 
it is easy to install, is POSIX-compliant and comes with a great array of applications and programming 
languages, not to mention a friendly, well-known development environment. The great downside is that this 
monolithic kernel is resource hungry: it is not unusual for a significant amount of a device’s resources to be 
consumed by Linux itself, leaving less for the actual application. Further, Linux is to a large extent a monolithic 
kernel, making it often hard or time consuming to customize (e.g., completely removing the scheduler if it is 
not needed, adding a new memory allocator, or trying to trim it down to reduce boot times). Finally, Linux’s 
significant code base (in the order of millions of lines of code) results in a large attack surface and exploits, 
and makes it expensive to certify in domains where safety is critical.  

In order to break the dichotomy between (1) difficult-to-use but resource efficient embedded OSes and (2) 
power- hungry but user and application friendly general-purpose OSes such as Linux, we introduce a novel 
lightweight virtualization architecture and micro-library operating system called Unikraft which allows for 
automatically building highly specialized images for embedded devices. Unlike other approaches, Unikraft 
bridges the gap between resource efficiency and ease of porting with a micro-library approach, allowing for 
bottom-up specialization and code elimination while retaining POSIX compatibility. In addition, the extremely 
lean images it produces are ideal candidates for cheaper certification. 
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Figure 7: Unikraft’s architecture. All components are micro- libraries. Users select an architecture, a platform, the target application and Unikraft 
creates the image. 

Unikraft is fully librarized (see Figure 7): OS primitives such as the scheduler, memory allocator and even boot 
code are libraries. These can be removed or replaced with equivalents via a Kconfig menu as long as they 
comply with a set of well-defined APIs. To enable quick boot times, Unikraft can, for example, allow for the 
use of a simple but quick memory allocator during boot and initialization, whilst still using a different allocator 
for the application. Alternatively, a user could entirely remove the scheduler if not needed, and run tasks to 
completion in an event-driven architecture. This and many other scenarios are easy to implement in Unikraft 
because of its modular design.  

Unikraft enables users to easily build extremely specialized, custom OSes without having to develop any 
actual code as it provides a POSIX-like interface which allows for running standard, off-the-shelf applications 
such as databases (e.g. SQLite), web servers (e.g. NGINX), key-value stores (e.g. Redis), machine learning 
frameworks (e.g. PyTorch and TensorFlow), and runtime language environments (e.g. Web Assembly, 
Python/Micropython, Lua and Ruby). In addition, Unikraft supports a number of compile-time languages 
including C/C++, Go, Java and Rust, with the potential for allowing different libraries to be written in different 
languages and combined together into a single, specialized image [4].  

2.6 Edge Minicloud VIM  

The Edge Minicloud Virtual Infrastructure Manager (VIM) is the core of a Minicloud and one of the main 
components of the ACCORDION architecture. The Virtual Infrastructure Manager is also one of the major 
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functional blocks of the ETSI MANO Network Functions Virtualization (NFV) architecture and, like in that 
architecture, it’s responsible for controlling, managing, and monitoring the Infrastructure compute, storage, 
and network resources. 

The tool selection process followed in this first year to find an open source reusable baseline for the VIM, 
which will be reported in more detail in section 7, resulted in identifying a lightweight Kubernetes (K8s) 
version named K3s13 as a starting point. 

K3s, like K8s, is good at handling containers, but to use also Virtual Machines (VM) as edge deployment units 
on top of the resource pool, K3s had to be extended. The tool selection process identified KubeVirt14 as the 
best candidate for this extension. KubeVirt uses K8s Custom Resource Definitions (CRD) to offer an API that 
allows managing VMs in a K8s cluster through the same patterns used to manage containers. 

The Edge Minicloud VIM architecture is therefore based on both K3s and KubeVirt, which will take control of 
the machines in the resource pool by running on them. At least one machine in the resource pool will be the 
K3s Master Node, and the others will be Worker Nodes. The K3s and KubeVirt components of both a Master 
and Worker Node are shown in Figure 8. 

 

Figure 8: ACCORDION Minicloud VIM logical architecture, based on the K3 cluster architecture 

The K3s architecture is quite simple, as it merged all K8s Master components (e.g., API Server, Scheduler, 
Controller Manager, etc.) into a single executable, the K3s Server, and all K8s Worker components in the K3s 
Agent. KubeVirt doesn’t merge its components in the same way, so there will be separate components virt-
api and virt-controller on the Master Node. KubeVirt runs virtual machines in special pods (objects of a new 
type called VMI) as container workloads, therefore in the Worker Node there will be multiple pods controlled 

 

13 https://k3s.io/ 

14 https://kubevirt.io/ 



 

 ACCORDION – G.A. 871793 

 

D3.1 Edge infrastructure pool framework report (I)                                                                        Page 21 of 51 

by the K3s Agent. One pod to run the virt-handler component that launches the VMI and configures it until 
it matches the required state; one VMI pod for each VM including the components virt-launcher, libvirtd and 
Qemu; and one or more pods to host containers.  

Figure 8 is a logical diagram showing a single instance for each type of component, but a real deployment 
may have a more complex configuration. For example, multiple Master Nodes (usually three) are needed to 
implement High Availability (HA) configurations. Multiple Worker Nodes are also the norm in a K8s/K3s 
cluster, as they are those configured to run the real application workload. Some Workers may run only 
containers, some others only VMs and others may run both VMs and containers. Container Pods will be 
present only in Workers running containers, and DaemonSet plus VMIs pods will be present only in Workers 
running VMs. 

In Figure 8 there is no ACCORDION-specific component, as the initial idea is to implement all the needed 
logic, such as deciding which node to use to run a given container or VM, through K8s-native configuration. 
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3 Resource monitoring & characterization  

3.1 Description & Objectives 

The resource monitoring & characterization component has to monitor and characterize the resources as 
other components will query for information to perform actions based on metrics. Monitoring and 
characterization won’t have a central component, instead it will be done on the Edge. Monitoring is going to 
be dynamic on contrary characterization is static, as it will have information for the hardware of the Edge 
devices. 

The goal is to have a component that can monitor both physical (devices) and virtual layer (VMs, containers, 
pods). In addition, this component is cloud agnostic as it does not need a specific provider to perform 
monitoring or characterization. Between Edge networks, we may have heterogenous devices with different 
computational power, as Prometheus server is actually a pod and char-agents are containers that they can 
run on any device that has K3s and Docker. 

3.2 Requirements 

Monitoring component runs in a K3s cluster, each node of the cluster must have Docker installed. For the 
monitoring part Cluster Monitoring stack for ARM / X86-64 was used as it produces the configuration for 
Prometheus, exporters and Grafana on K3s. To automate the deployment of the whole monitoring 
component some Python and shell scripts were developed. A device to run those scripts needs to have 
Python 3.615 installed. A characterization agent is a custom Docker container that is developed in Python. To 
retrieve the GPU information container uses mesa-utils16 and to be more specific from the glxinfo. As Mesa 
is a 3D computer graphics library it has to get the model of the GPU from the host, some configurations must 
be done before running the container: 

1. non-network local connections have to be added to access control list by running xhost local:root 
command  

2. set display with export DISPLAY=':0.0'  
3. the final step is to run the container with the Display parameter and network set to host to get the 

IP of its host docker run --rm -it --privileged -e DISPLAY=$DISPLAY --network=host char-agent 

In the experiments, two Raspberry Pi 4B and on PC were used as K3s supports ARM and AMD architectures. 
In the case of Raspberry Pi 4B, there was an extra configuration that needed to be made for the case of char-
agent. If a screen was not connected to the Raspberry Pi 4B it did not initiate the GUI, so the container failed 

 

15 https://www.python.org/downloads/release/python-360/ 

16 https://wiki.debian.org/Mesa. 
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to get the GPU details to avoid this error a static screen resolution must be configured so when device boots 
GUI also boots. 

3.3 Research Challenges & Advancements Achieved 

As it was mentioned in D2.2, a challenge for monitoring is to be able to connect the information that is 
provided from the physical and virtual layer, so it would be able to describe in a comprehensive way how a 
problem in the physical layer can impact the virtual layer. In Prometheus, node-exporter, Prometheus 
Adapter and kube-state-metrics are configured which expose metrics for physical and virtual monitoring so 
we could develop PromQL queries that give us the CPU usage of the device but also the CPU usage that a 
specific K3s pod has. 

By using Prometheus for monitoring purposes, we can also monitor Cloud VMs without using cloud providers’ 
monitoring tools. The monitoring stack was deployed also on a K3s cluster with a Okeanos Cloud VM and 2 
other RaspberryPi for Edge storage experiments and Prometheus could successfully monitor the VM without 
changing the configuration or using a Cloud provider monitoring tool. Heterogeneity was another challenge, 
as we said between edge networks, we may have a variety of devices. With experimentations on the K3s 
clusters we concluded that we can perform monitoring and characterization VMs, PCs and Raspberry Pis 
without having a huge impact on them. 

For the characterization we tried to find an open standard or a model to describe bare metal devices. TOSCA 
was chosen as with it we could write YAML files that are commonly used. TOSCA was extended to represent 
the clusters and its devices. 

3.4 Provided Features and APIs 

The monitoring API will provide other ACCORDION components monitoring and characterization information. 
As it is a REST API, the format of the results is JSON. For monitoring information, the path for the calls is 
/monitoring and the name of the supported HTTP parameter is metric. An ACCORDION component that 
needs to consume monitoring information about the physical layer will have to declare in the metrics 
parameter the value physical_metrics as the example below and the result is shown in Figure 9. 

http://0.0.0.0:3000/monitoring?metric=physical_metrics 

An endpoint that provides the monitoring metrics for bare metal and VMs of the cluster (CPU usage, RAM 
usage, disk write and read latencies, filesystem usage, disk size, disk free space disk IO).  

{"Results": [{"timestamp": 1613918256.884719, "Cpu Usage Results": [{"node": 
"giannis", "cpu_usage(percentage)": " 11.39"}, {"node": "raspberrypi", 
"cpu_usage(percentage)": " 6.08"}, {"node": "raspberrypi1", 
"cpu_usage(percentage)": " 6.80"}]}, {"timestamp": 1613918256.948491, "Memory 
Usage Results": [{"node": "giannis", "mem_usage(percentage)": " 43.58"}, 
{"node": "raspberrypi", "mem_usage(percentage)": " 87.23"}, {"node": 
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"raspberrypi1", "mem_usage(percentage)": " 75.87"}]}, {"timestamp": 
1613918257.013779, "Disk Write Latency Results": [{"node": "giannis", "device": 
"sdc", "disk_write_latency(percentage)": " 0.80"}, {"node": "giannis", 
"device": "sdd", "disk_write_latency(percentage)": " 1.22"}, {"node": 
"raspberrypi", "device": "mmcblk0", "disk_write_latency(percentage)": " 1.20"}, 
{"node": "raspberrypi", "device": "mmcblk0p2", 
"disk_write_latency(percentage)": " 1.20"}, {"node": "raspberrypi1", "device": 
"mmcblk0", "disk_write_latency(percentage)": " 18.77"}, {"node": 
"raspberrypi1", "device": "mmcblk0p2", "disk_write_latency(percentage)": " 
18.77"}]}, {"timestamp": 1613918257.075608, "Disk Read Latency Results": 
[{"node": "giannis", "device": "sdc", "disk_read_latency(percentage)": " 
0.02"}]}, {"timestamp": 1613918257.137085, "Filesystem Usage Results": 
[{"node": "giannis", "mountpoint": null, "fstype": null, 
"filesystem_usage(percentage)": " 19.49"}, {"node": "raspberrypi", 
"mountpoint": null, "fstype": null, "filesystem_usage(percentage)": " 74.97"}, 
{"node": "raspberrypi1", "mountpoint": null, "fstype": null, 
"filesystem_usage(percentage)": " 74.55"}]}, {"timestamp": 1613918257.198618, 
"Disk Size Results": [{"node": "giannis", "disk_total_size(bytes)": 
"2204823101440"}, {"node": "raspberrypi", "disk_total_size(bytes)": 
"17658145792"}, {"node": "raspberrypi1", "disk_total_size(bytes)": 
"17658145792"}]}, {"timestamp": 1613918257.258936, "Disk Free Space Results": 
[{"node": "giannis", "disk_free_space(bytes)": "2170876522496"}, {"node": 
"raspberrypi", "disk_free_space(bytes)": "6878654464"}, {"node": 
"raspberrypi1", "disk_free_space(bytes)": "6956704256"}]}, {"timestamp": 
1613918257.318943, "Disk IO Usage Results": [{"node": "giannis", 
"disk_io_time_spent(seconds)": "0.007369490285714287"}, {"node": 
"raspberrypi", "disk_io_time_spent(seconds)": "0.00036869494949545245"}, 
{"node": "raspberrypi1", "disk_io_time_spent(seconds)": 
"0.08465387434343274"}]}]} 

Figure 9. Node Monitoring 
 

In the case of virtual layer monitoring the parameters that are currently supported are pods CPU usage, pods 
memory usage, pods status phase and pods info. To get the results of the pod (virtual layer) metrics of a 
specific application one has to declare the HTTP parameter metric and the HTTP parameter namespace. The 
values of the HTTP parameter namespace are the available namespaces of the K3s cluster.  The result is 
shown in Figure 10. 

http://0.0.0.0:3000/monitoring?metric=virtual_metrics&namespace=application 

{"Results": [{"timestamp": 1613918536.169836, "Pod Info Results": [{"pod": 
"mysql-bfc5c9f44-477rv", "pod_ip": "192.168.1.2", "namespace": "application", 
"created_by_kind": "ReplicaSet", "replica": "1", "node": "giannis", "node_ip": 
"192.168.1.2"}, {"pod": "wordpress-86885f548-44m8z", "pod_ip": "10.42.0.46", 
"namespace": "application", "created_by_kind": "ReplicaSet", "replica": "1", 
"node": "giannis", "node_ip": "192.168.1.2"}]}, {"timestamp": 
1613918536.238763, "Kube Pod Status Phase Results": [{"kube_pod_status_phase": 
"Running", "pod": "mysql-bfc5c9f44-477rv", "instance": "10.42.0.42:8443", 
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"namespace": "application"}, {"kube_pod_status_phase": "Running", "pod": 
"wordpress-86885f548-44m8z", "instance": "10.42.0.42:8443", "namespace": 
"application"}]}, {"timestamp": 1613918536.300128, "Pod CPU Usage Results": 
[{"node": "giannis", "pod": "mysql-bfc5c9f44-477rv", "pod_cpu_usage(seconds)": 
"0.018315272811091667"}, {"node": "giannis", "pod": "wordpress-86885f548-
44m8z", "pod_cpu_usage(seconds)": "0.004569118139741808"}]}, {"timestamp": 
1613918536.368414, "Pod Memory Usage Results": [{"node": "giannis", "pod": 
"mysql-bfc5c9f44-477rv", "pod_memory_usage(bytes)": "20627632.01304764"}, 
{"node": "giannis", "pod": "wordpress-86885f548-44m8z", 
"pod_memory_usage(bytes)": "2882807.349989445"}]}]} 

Figure 10. Pod Monitoring 

Monitoring can also provide the K3s namespaces of the cluster and their cpu and memory usage. In this case 
the HTTP namespace parameter has to be declared as all, the result is shown in the Figure 11. 

 http://0.0.0.0:3000/monitoring?namespace=all   

{"Results": [{"timestamp": 1613918683.353328, "Namespace CPU Results": 
[{"namespace": "monitoring", "cpu_usage(seconds)": "0.1492824091256434"}, 
{"namespace": "kube-system", "cpu_usage(seconds)": "0.01201474498433889"}, 
{"namespace": "application", "cpu_usage(seconds)": "0.0007409287284330483"}]}, 
{"timestamp": 1613918683.416821, "Namespace Memory Results": [{"namespace": 
"kube-system", "memory_usage(bytes)": "232685568"}, {"namespace": 
"monitoring", "memory_usage(bytes)": "1953517568"}, {"namespace": 
"application", "memory_usage(bytes)": "1104633856"}]}]} 

Figure 11. Namespace Monitoring 

The path for the characterization results in API is /characterization and the supported HTTP parameter is the 
format. The result can be returned in JSON with REST calls or as a TOSCA YAML downloadable file. 

http://0.0.0.0:3000/characterization?format=json/tosca 

[{"device": {"_id": {"$oid": "60326f8f528bf960d6b36ce3"}, "device_name": 
"raspberrypi", "ip": "192.168.1.205", "UUID": "e7cd9caa-7451-11eb-85aa-
dca632298c4f", "RAM(bytes)": 4095737856, "Battery": "None", "CPU": {"Arch": 
"armv7l", "bits": "32", "cores": 4}, "GPU": {"GPU_name": "llvmpipe (LLVM 7.0, 
128 bits) (0xffffffff)", "GPU_type": "Intergated graphics processing", 
"GPU_video_memory(bytes)": 4095737856, "unified_memory": "no"}, "OS": 
{"OS_name": "Linux", "OS_version": "4.19.118-v7l+"}, "DISK": [{"device": 
"/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-log"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"}], "K3s": 
{"node_role": ""}, "Region": {"continent": "Europe", "country": "Greece", 
"city": "Athens"}}}, {"device": {"_id": {"$oid": "60326fa4528bf960d6b36ce4"}, 
"device_name": "raspberrypi1", "ip": "192.168.1.203", "UUID": "e7344550-7451-
11eb-9473-dca632299078", "RAM(bytes)": 4095737856, "Battery": "None", "CPU": 
{"Arch": "armv7l", "bits": "32", "cores": 4}, "GPU": {"GPU_name": "llvmpipe 
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(LLVM 7.0, 128 bits) (0xffffffff)", "GPU_type": "Intergated graphics 
processing", "GPU_video_memory(bytes)": 4095737856, "unified_memory": "no"}, 
"OS": {"OS_name": "Linux", "OS_version": "4.19.118-v7l+"}, "DISK": [{"device": 
"/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-log"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"}, 
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-
log"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint": 
"/etc/resolv.conf"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint": 
"/etc/hostname"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint": 
"/etc/hosts"}], "K3s": {"node_role": ""}, "Region": {"continent": "Europe", 
"country": "Greece", "city": "Athens"}}}, {"device": {"_id": {"$oid": 
"60326fa4528bf960d6b36ce5"}, "device_name": "giannis", "ip": "192.168.1.2", 
"UUID": "ea831f38-7451-11eb-8bc7-fcaa149d94de", "RAM(bytes)": 8396820480, 
"Battery": "None", "CPU": {"Arch": "x86_64", "bits": "64", "cores": 6}, "GPU": 
{"GPU_name": "AMD BONAIRE (DRM 2.50.0, 4.15.0-135-generic, LLVM 7.0.1) 
(0x665f)", "GPU_type": "Dedicated graphics processing", 
"GPU_video_memory(bytes)": 2147483648, "GPU_total_available_memory(bytes)": 
4289724416, "unified_memory": "no"}, "OS": {"OS_name": "Linux", "OS_version": 
"4.15.0-135-generic"}, "DISK": [{"device": "/dev/root", "fstype": "ext4", 
"mountpoint": "/dev/termination-log"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/root", "fstype": "ext4", 
"mountpoint": "/dev/termination-log"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype": 
"ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/sdc1", "fstype": "ext4", 
"mountpoint": "/dev/termination-log"}, {"device": "/dev/sdc1", "fstype": 
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/sdc1", "fstype": 
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/sdc1", "fstype": 
"ext4", "mountpoint": "/etc/hosts"}], "K3s": {"node_role": "control-
plane,master"}, "Region": {"continent": "Europe", "country": "Greece", "city": 
"Athens"}}}] 

Figure 12. Characterization Results 

Beside the monitoring, this Task has to characterize resources based on their hardware. To be able to 
characterize resources every node of a cluster has to host a char-agent container which identifies the 
characteristics of the device and exposes them via an API in JSON format. The master node of a K3s cluster is 
the one who collects the information from the characterization-agents and stores them in a MongoDB 
database. 

The components of the Tasks that are shown in Table 1 will get monitoring and characterization information 
from the monitoring API. Monitoring API will support HTTP parameters and based on the path it will return 
the related information. Examples of usage are shown in the above Figures. 
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Table 1: Monitoring data needed per ACCORDION Task. 

Tasks  Required Information from Monitoring  

Task 3.2  

Resource indexing & discovery  

Per-node information:  

• Static Hardware: amount of CPU,ram,disk, 
etc.  

• Static Software: installed software (from a 
list of selected) and relative versions  

• Dynamic hardware: load, ram 
consumptions, etc.. (average on 5-10-15 
minutes?)  

Task 3.3  

Edge Storage  

For evaluation:  

• System statistics such as disk usage, ram 
usage and network usage  

• Node health statistics about failing or 
disconnecting nodes and drives.  

During runtime:  

• Node health statistics about failing or 
disconnecting nodes and drives.  

Task 5.5.  

NextGen application development toolkit  

 
 
 

All (or as many as possible) APIs will be used to 
display information to the user, maybe a Grafana or 
similar program will be hosted in an I-frame in order 
to display graphical information directly from the 
Prometheus distributions. 

3.5 Technical Challenges and Mitigation 

A technical challenge that we encountered was that after the deployment of the Prometheus server pod, we 
found that if someone knows the IP of the K3s master or/and the ingress IP developed by the deployment 
files (prometheus.master-ip.nip.io) he/she can bypass the monitoring API and perform PromQL queries on 
the GUI or API of Prometheus. 

To avoid this problem, we had to add an authentication layer to Prometheus. Prometheus on its own does 
not have an authentication mechanism, a reverse proxy needs to be used to have a security layer. The reverse 
proxy that we use is Traefik17 as it is downloaded with K3s by default. To secure the endpoints of Prometheus, 

 

17 https://doc.traefik.io/traefik/ 



 

 ACCORDION – G.A. 871793 

 

D3.1 Edge infrastructure pool framework report (I)                                                                        Page 28 of 51 

we performed a random password generation for the monitoring the user, both credentials stored in a 
htpasswd18 file which was used later on a shell script to create a secret in the monitoring namespace. By 
adding in the Prometheus ingress configuration file, the reverse proxy, the authentication type and the secret 
in the annotations segment the authentication was added successfully to all Prometheus endpoints. The 
credentials were also stored in an encrypted YAML file and in another file the key to decrypting the credential 
file was stored. This is achieved with the usage of Python’s library cryptoyaml19, which uses the Fernet 
symmetric encryption. The only component that needs to know the decryption key and have access to 
credentials YAML file is the monitoring API, every other component won’t have access to Prometheus 
endpoints. 

3.6 Future Work 

For future work, we have to rename some JSON objects and arrays in the JSON response of the monitoring 
API. In addition, the names of the HTTP parameters have to change into simpler ones, also we have to interact 
with the other WPs to see if there is a need for new endpoints in the monitoring API that provide different 
metrics. 

We have already developed some installation scripts for monitoring to automate the deployment and 
installation of Prometheus and Grafana to the K3s master. The next would be to find a way to deploy 
characterization agents as a set of pods and containerize the monitoring API to finalize the automation of 
deployment the monitoring component. Another part of installation scripts would be the installation of the 
required libraries to perform the actions that are described in the Technical Challenges and Mitigation 
Section. 

 

18 https://httpd.apache.org/docs/2.4/programs/htpasswd.html 

19 https://pypi.org/project/cryptoyaml3/ 
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4 Resource indexing & discovery  

4.1 Description & Objectives 

The aim of the Resource indexing & discovery (RID) component is to support and assist the other system 
components. The computational resources available to the ACCORDION nodes inside the Minicloud are 
subject to continuous change due to application activities or the migration of applications 
between Miniclouds. As a matter of fact, in order to effectively orchestrate the available resources, it is highly 
important to rely on the current load state of the components.  

In this context, the role of the RID component is twofold: on one side to keep updated the state of 
computational resources distributed between various Miniclouds in the system and on the other side the RID 
component should provide the functionality for the effective retrieval of information about available 
resources. The main sources of the data for the RID is the Resource monitoring & characterization 
component, described in Section 3.  Nevertheless, the queries can in principle come from any ACCORDION 
component that needs to find resources with specific computational features, in particular the intelligent 
Orchestrator (See deliverables D4.1 and D4.2).  

4.2 Requirements 

The role of the RID component inside the system is twofold. On the one side, the RID component has to keep 
an updated state of the available computational resources in the system. On the other side, the RID 
component should provide an effective functionality for the system state information retrieval. Hence in 
order to provide the high-quality service the RID should address the following requirements: 

• Provide functionality for storing and retrieving information about the dynamically changing 
resources in the system. The functionality should be done in a scalable manner not only in terms of 
amount of data but also in terms of the variety of the information to retrieve. 

• RID component should be able to address the user provided requirements for the resource discovery. 
For example, the requirements in performance and precision of resource discovery. 

• The component should be integrated with resource and queries ontologies presented in the 
Resource monitoring & characterization component description (see Section 3.4). 

4.3 Research Challenges & Advancements Achieved 

Recent years witness the development and use of the technologies for large-scale Heterogeneous 
infrastructures such as Grids [5], Clusters [6], Clouds [5]. These large-scale distributed computing 
environments (LDCE) technologies allow us to rely not only on a single available resource but on the use of 
different heterogeneous physically spread resources in the network. Indeed, one of the most challenging 
issues for these technologies is an effective way to perform resource discovery. Resource discovery is an 
essential part of effective resource utilization in LDCE. It includes locating, retrieving and advertising of the 
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available resources in the system. However, considering the distributed and large-scale nature of LDCE, 
resource discovery technologies in such environments have to address well-known challenges for distributed 
systems, like efficiency, scalability and reliability [7].  

The efficiency of a resource discovery solution can be mostly described as a combination of the conceptual 
metrics latency and load balancing [7]. The latency of resource discovery is built up by different delay sources: 
network transfer time, query processing algorithm, the complexity and type of the query, network size and 
the level of the computing parallelism in the system. The other metric that characterises the 
efficiency of resource discovery is the load balancing for the discovery procedure. In other words, how the 
query load is distributed among resource information providers.  

Among the various proposals, MatchTree [8] is a P2P-based approach that reduces query response times 
with redundant query topologies, dynamic timeout policies and sub-region queries. It also 
balances processing overheads between resources. OntoSum [9] relies on a semantic-aware topology 
construction method for resource discovery in Grids. The method significantly improves the discovery 
efficiency by propagating the discovery requests only between semantically related nodes. SWORD [10] is a 
P2P DHT-based approach that relies on multiple overlays. The load-balancing mechanism of SWORD is less 
efficient in the case of non-uniform distribution of the nodes in the environment. Node-Wiz [11] is a hybrid 
approach. It is load-balanced and supports clustering and self-organization for overlays. It relies on a single 
distributed indexing mechanism.  

Scalability of resource discovery characterises the ability of the system to react and address the variations in 
the system in terms of the amount of resource involved. Scalability is one of the key factors for evaluation of 
the distributed systems. The highest impact on the scalability of the system is made by the size of the 
network. The increase in the system size increases the communications delays and overheard and leads 
to an increase in the response time for the discovery queries. On one side in order to create an effective 
scalable system the one should avoid relying on centralized architecture with the risks of resource bottleneck 
and single point of failure. On the other side the fully distributed architecture has its own drawbacks in terms 
of bootstrapping and the increasing response time for the querying. Zarrin et al. [7] demonstrate that Grid 
and P2P based approaches like OntoSum and MatchTree provide better scalability than the hybrid ones 
like NodeWiz. These conclusions also come from the fact that both OntoSum and MatchTree approaches are 
decentralized and hence have more potential to provide scalable solutions. However, the distributed 
solutions require a higher level of communication that can impact on efficiency.  

In order to achieve the desired level of scalability we plan to apply hybrid distribution strategies for resource 
discovery. We particularly concentrate on the investigation of the approaches that best mix structured and 
unstructured data structures techniques in order to fulfil the issue of scalability in the most effective way.    

Reliability of resource discovery can be described by the following metrics: its accuracy, validity, dynamicity 
and faults tolerance. The accuracy addresses the correctness of the resource description and querying in the 
system. For the high accuracy of resource discovery, the applied resources description and query models 
should correspond to the available resources in the system. At the same time the description model as well 
as the resource querying should satisfy more than just a single match or single resource querying. For 
example, MatchTree algorithm can guarantee query completeness [8]. One more factor of reliability is 
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dynamicity and fault tolerance of the system. The desired reliability should tackle the leaving and joining 
nodes in the system. Resource discovery should provide solutions for dealing with possible failures of the 
resource holders. For example, SWORD and Node-Wiz protocols support dynamic topologies and 
attributes. MatchTree supports fault tolerance in terms of churn rate of nodes and internal node failure. It 
also addresses dynamicity in terms of adding a new attribute. OntoSum also supports dynamicity in terms of 
probability to issue a query, probability to leave the system and the probability of new nodes/resources to 
join the system [7]. The validity of the resource discovery system is of particular interest to ACCORDION. In 
order to build an effective distributed architecture, it is highly important that the resource 
discovered information is valid and updated. 

4.4 Provided Features and APIs 

Each RID component proposes a http interface. This interface allows other components of the ACCORDION 
system to request information about computational resources via queries. The current implemented version 
of the interface supports the queries in JSON format. The queries are sent via 'POST' requests. The results of 
the queries are returned in JSON format.  

The current version of the RID component accepts the following types of hte queries:  

1. Multi attribute range queries on numerical values, e.g., available RAM. 
2. Exact queries for string values, e.g., specific GPU chipset names. 
3. Boolean query for specific feature availability, e.g., availability of a GPU.  

The supported types of queries are subject to changes with the development of the ACCORDION project. 
New types of queries can be added or the existing ones can be changed based on the future requirements of 
the ACCORDION system components. 

4.5 Technical Challenges and Mitigation 

Due to the limited progress of the project in the current state, it is not possible to test the distributed 
solutions for RID components. Most of the planned components of the ACCORDION system are in the 
development phase and, for now, cannot be involved in the emulation and evaluation of the possible 
distributed solutions for the RID. Due to these temporal limitations and in order to proceed with the project 
plans for the RID component we plan to start the evaluation of the available solutions for the RID based on 
the simulation techniques. 

4.6 Future Work 

In the short-term future plans, we are considering simulating the distributed solutions studies for RID 
components. At the same time, with the progress of the development of other system components we plan 
to continue the integration between the RID and other system entities. 
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5 Edge storage  

5.1 Description & Objectives 

The Edge storage component aims to provide an edge storage framework, supporting the QoE needs of the 
users, be it stakeholders, developers, applications or any other interesting person or software. This is 
achieved by optimizing resource usage, allocation and data management plans on edge devices per 
Minicloud. A clearer description of objectives can be derived from the use case requirements.  

In detail, this component needs to provide a reliable, fast, stable and secure shared storage engine, accessible 
by all devices and users of a Minicloud using a role-based security schema. This engine needs to be extremely 
lightweight since it is created for edge devices with extremely limited resources, like Raspberry Pies or other 
micro-computer devices. It also needs multiple access points depending on the role and category of the client 
that needs to access or modify the data. For example, a human administrator would like to have a web-based 
GUI in order to manage the stored data or the storage engine itself. A software client on the other hand 
would like to have either an API or a mounted file path in order to manage the data. The edge storage 
component needs to be provided both in a uniform and easy-to-understand manner.  

5.2 Requirements 

The requirements for the Edge Storage component can be separated into three categories; the general 
requirements, which include general purpose requirements that all data storage systems have, the 
algorithmic requirements, which concern the usage of the storage system by the ACCORDION and its hosted 
applications, and the data administrator requirements, which concern the usage, management and 
configuration of the system by an administrator. All these requirements are analysed in detail in the following 
sub-sections. 

5.2.1 General Requirements 

• Small enough data retrieval latency to cover the needs of all ACCORDION use cases. 
• High availability by employing fault tolerance and mitigation methods. 
• Hight integrity by employing integrity validation methods. 
• Role based security allowing access to all authorized users.  

5.2.2 Algorithmic Access Requirements 

• Singular purpose endpoints with clearly defined APIs. 
• Emulated filesystem support for applications that require it. 
• Automated authorization methods enabling role-based access to authorized systems. 
• Fault proofing for large batch processes. 
• Atomicity to some degree according to the needs of the application. 
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5.2.3 Data Administrator Requirements 

• Easy to learn and use web-based GUI. 
• Strict authorization and security mechanisms.  
• Easy to understand and explore monitoring data about the data storage platform and the hosted 

data. 

5.3 Research Challenges & Advancements Achieved 

The open research issues in the area of edge storage platforms revolves around three main pillars; the 
minimization of overhead when transferring large quantities of small data packets, the intelligent admission 
mechanisms that allow an optimized pre-fetching of useful data and intelligent caching that minimizes the 
network traffic while optimizing the bound resources of edge devices. More details on these research issues 
can be found in the more extended description present in D2.2. 

The first year of the project was aimed at creating a reliable platform, supporting the requirements of the 
ACCORDION use cases and enabling us to run experiments and gather data about the functionality of the 
platform, the bottlenecks and the points that need optimization, which has been achieved using the K3S 
distribution of kubernetes and customized deployments based on the Prometheus monitoring system as well 
as the MinIO and OpenStack datastores. This platform will serve as a basis for advancing the scientific goals 
set by the challenges mentioned. 

5.4 Provided Features and APIs 

The current version of the edge storage component is based on MinIO which provides both a web-based GUI 
and an AWS S3 compatible API library. Also, Prometheus comes bundled with Graphana which provides an 
excellent web-based GUI for displaying the highly customized datasets that Prometheus gathers when 
monitoring the edge storage component and the machines involved in it. A number of wrapping and higher-
level customized endpoints are planned for the next version of the component, covering more specific needs 
of the ACCORDION use cases. 

5.5 Technical Challenges and Mitigation 

Technical challenges concern machine faults, common to edge devices, such as overheating or unstable 
network access. These challenges are one of the motivations of creating a customized edge storage 
component instead of using a generic solution so their mitigation is covered under the fault tolerance and 
mitigation requirement of the component.  
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5.6 Future Work 

For the second year of the ACCORDION project, we aim at tackling at least one of the open research issues, 
creating an innovative prototype, customized and optimized for the ACCORDION use case needs. There will 
also be more endpoints that serve more specialized needs of the use cases, wrapping and grouping some of 
the existing endpoints or creating entirely new ones. 
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6 Lightweight virtualization  

6.1 Description & Objectives 

Specialization is arguably the most effective way to achieve outstanding performance, whether it is for 
achieving high throughput in network-bound applications, making language runtime environments more 
efficient, or providing efficient container environments, to give some examples. Even in the hardware 
domain, and especially with the demise of Moore’s law, manufacturers are increasingly leaning towards 
hardware specialization to achieve better performance; the machine learning field is a primary exponent of 
this.  

In the virtualization domain, unikernels are the golden standard for specialization, showing impressive results 
in terms of throughput, memory consumption, and boot times, among others. Some of those benefits come 
from having a single memory address space, and thus eliminating costly syscall overheads, but many of those 
are the result of being able to hook the application at the right level of abstraction to extract best 
performance: for example, a web server aiming to service millions of requests per second can access a low-
level, batch-based network API rather than going with the standard but slow socket API. Such an approach 
has been taken in several unikernel projects but often in an ad hoc, build-and-discard manner, and despite 
their clear benefits, unikernels suffer from two major drawbacks:  

• They require significant expert work to build and to extract high performance; such work has to for 
the most part be redone for each target application. 
  

• They are often non-POSIX compliant, requiring porting of applications and language environments.  

We argue that these drawbacks are not fundamental, and propose a unikernel architecture built specifically 
to address them. Existing unikernel projects, even those based on library architectures, tend to consist of 
small but mono- lithic kernels that have complex, intertwined and sometimes opaque APIs for their 
components. This means that developers not only have to often port applications to such systems, but that 
optimizing their performance requires digging into the code and the specifics of the (uni)kernel in order to 
understand how to best obtain performance gains.  

Furthermore, such systems typically rely on size-based specializations: removing all unnecessary components 
to achieve minimal images. While this strategy already offers significant benefits, we argue that unikernels 
based on library architectures should ease access to true specialization, allowing users to choose the best 
system component for a given application, environmental constraints, and key performance indicators  

We propose Unikraft, a novel micro-library operating system targeted at painlessly and seamlessly generating 
specialized, high performance unikernels. To do so, Unikraft relies on two key principles:  

• The kernel should be fully modular in order to allow for the unikernel to be fully and easily 
customizable. In Unikraft, OS primitives such as memory allocators, schedulers, network stacks and 
early boot code are stand-alone micro-libraries.  



 

 ACCORDION – G.A. 871793 

 

D3.1 Edge infrastructure pool framework report (I)                                                                        Page 36 of 51 

• The kernel should provide a number of performance- minded, well-defined APIs that can be easily 
selected and composed in order to meet an application’s performance needs. In Unikraft, such APIs 
are micro-libraries themselves, meaning that they can be easily added or removed to a unikernel 
build, and that their functionality can be extended by providing additional such micro-libraries.  

In brief, the key conceptual innovation of Unikraft is defining a small set of APIs for core OS components that 
makes it easy to replace-out a component when it is not needed, and to pick-and-choose from multiple 
implementations of the same component when performance dictates. The APIs have been built to enable 
performance (e.g., by supporting batching by design) and minimality in mind (no unneeded features).  

To support a wide range of applications, we port the musl libc library, and provide a syscall shim layer micro-
library. As a result, running an application on Unikraft can be as simple as building it with its native build 
system, and linking the resulting object files back into Unikraft. 

6.2 Requirements 

Before deriving what the key design principles for Unikraft are, it is worth analyzing the features and 
(heavyweight) mechanisms of traditional OSes that are unnecessary or ill- suited to single application use 
cases: 

• Protection-domain switches between the application and the kernel might be redundant in a 
virtualization context because isolation is ensured by the hypervisor, and result in measurable 
performance degradation.  

• Multiple address spaces may be useless in a single application domain, but removing such support in 
standard OSes requires a massive reimplementation effort. 

• For RPC-style server applications, threading is not needed, with a single, run-to-completion event 
loop sufficing for high performance. This would remove the need for a scheduler within the VM and 
its associated overheads, as well as the mismatch between guest and hypervisor schedulers. 

• For performance-oriented UDP-based apps, much of the OS networking stack is useless: the app 
could simply use the driver API, much like DPDK-style applications already do. There is currently no 
way to easily remove the network stack from standard OSes. 

• Direct access to NVMe storage removes the need for a VFS layer and any actual filesystem, but 
removing filesystem support from existing OSes is very difficult. 

• Memory allocators have a large impact on application performance, and general purpose allocators 
have been shown to be suboptimal for many apps. It would therefore be ideal if each app could 
choose its own allocator; this is however very difficult to do in today’s operating systems because 
the allocators that kernels use are baked in. 

This admittedly non-exhaustive list of application-specific optimizations implies that for each core 
functionality that a standard OS provides, there exists at least one or a few applications that do not need it. 
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Removing such functionality would reduce code size and resource usage but would often require an 
important re-engineering effort.  

The problem we want to solve is to enable developers to create a specialized OS for every single application 
to ensure the best performance possible, while at the same time bounding OS-related development effort 
and enabling easy porting of existing applications. This analysis points to a number of key requirements:  

• Single address space: The focus is on single application scenarios, with possibly different applications 
communicating with each other through networked communications.  

• Fully modular system: All components, including operating system primitives, drivers, platform code 
and libraries should be easy to add and remove as needed; even APIs should be modular.  

• Single processor mode: No user-/kernel-space separation to avoid costly processor mode switches. 
This does not preclude compartmentalization (e.g., of micro- libraries), which can be achieved at 
reasonable cost.  

• Static linking: enables compiler features such as Dead Code Elimination (DCE) and Link-Time 
Optimization (LTO) to automatically get rid of unneeded code.  

• POSIX support: In order to support existing or legacy applications and programming languages while 
still allowing for specialization under that ABI. 

• Platform abstraction: Seamless generation of images for a range of different hypervisors/VMMs. 

6.3 Research Challenges & Advancements Achieved 

Given the requirements above, the question is how to implement such a system: by minimizing existing 
general-purpose operating systems, by starting from existing unikernel projects, or from scratch.  

Existing work has taken three directions in tackling this problem. The first direction takes existing OSes and 
adds or removes functionality. Key examples add support for a single address space and remove protection 
domain crossings: OSv [12] and Rump [13] adopt parts of the BSD kernel and re-engineer it to work in a 
unikernel context; Lupine Linux [14] relies on a minimal, specialized configuration of the Linux kernel with 
Kernel Mode Linux patches. These approaches make application porting easy because they provide binary 
compatibility or POSIX compatibility, but the resulting kernel is monolithic.  

Existing monolithic OSes do have APIs for each component, but most APIs are quite rich as they have evolved 
organically, and component separation is often blurred to achieve performance (e.g., sendfile short circuits 
the networking and storage stacks). 

In summary, starting from an existing project is suboptimal since none of the options were designed to 
support the key principles we have outlined. We opted for a clean-slate API design approach, though we did 
reuse components from existing works where it is relevant.  

As achievements, Unikraft supports a number of already-ported applications (e.g., SQLite, Nginx, Redis), 
programming languages and runtime environments such as C/C++, Go, Python, Ruby, Web Assembly and Lua, 
and a number of different hypervisors (KVM, Xen, Amazon Firecracker and Solo5 as of this writing).  
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Our performance evaluation (e.g., requests per second a nginx web server, or insertions per second for a 
SQLite database) using such applications on Unikraft results in a 30%-50% performance improvement 
compared to Linux guests. In addition, Unikraft images for these apps are around 1MB, require less than 
10MB of RAM to run, and boot in around 1ms on top of the VMM time (total boot time 2ms-70ms). 

6.4 Provided Features and APIs  

Unikraft can improve the performance of applications in two ways: 

1. Unmodified applications, by eliminating syscall overheads, reducing image size and memory 
consumption, and by choosing efficient memory allocators. 

2. Specialization, by adapting applications to take advantage of lower-level APIs wherever performance 
is critical (e.g., a database application seeking high disk I/O throughput).  

 

 

Figure 9: Unikraft architecture (APIs in black boxes) enables specialization by allowing apps to plug into APIs at different levels and to choose 
from multiple API implementations. 

Figure 9 shows Unikraft's architecture. All components are micro-libraries that have their own Makefile and 
Kconfig configuration files, and so can be added to the unikernel build independently of each other. APIs are 
also micro-libraries that can be easily enabled or disabled via a Kconfig menu; unikernels can thus compose 
which APIs to choose to best cater to an application’s needs (e.g., an RCP-style application might turn off the 
uksched API in order to implement a high performance, run-to-completion event loop). The ability to easily 
swap components in and out, and to plug applications in at different levels presents application developers 
with a wide range of optimizations possibilities. To begin with, unmodified applications can plug in to musl 
(➀ in Figure 9), transparently getting low boot times, lower memory consumption and improved throughput 
because of the lack of syscall overheads (note Unikraft provides a syscall shim layer to support musl, but the 
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syscalls result in simple function calls rather than context switches). Likewise, the application developer can 
easily select an appropriate memory allocator (➅) to obtain maximum performance, or to use multiple 
different ones within the same unikernel (e.g., a simple, fast memory allocator for the boot code, and a 
standard one for the application itself).  

Developers interested in fast boot times could further optimize the unikernel by providing their own boot 
code (➄) to comply with the ukboot API. For network-bound applications, the developers can use standard 
socket interface (➁) or the lower level, higher performance API (➆) in order to significantly improve through- 
put. Similarly, disk-bound applications such as databases can follow a standard path through the vfscore 
micro-library (➂), or optimize throughput by coding against the ukblock API (➇). Schedulers are also 
pluggable (➃), and each CPU core can run a different scheduler. 

6.5 Technical Challenges and Mitigation 

Perhaps the main challenges is supporting a wide range of existing applications and those needed by 
ACCORDION use cases. Arguably, an OS is only as good as the applications it can actually run; this has been a 
thorn on unikernels’ side since their inception, since they often require manual porting of applications. More 
recent work has looked into using binary compatibility (e.g., HermiTux [15]), where unmodified binaries are 
taken and syscalls translated, at run-time, into a unikernel’s underlying functionality. This approach has the 
advantage of requiring no porting work, but the translation comes with important performance penalties.  

In order to avoid these penalties costs but still minimize porting effort, we take a different approach: we rely 
on the target application’s native build system, and use the statically-compiled object files to link them into 
Unikraft’s final linking step. For this to work, we ported the musl C standard library, since it is largely glibc-
compatible but more resource efficient, and newlib, since it is commonly used to build unikernels  

To quantify the challenge of supporting additional applications (especially to support ACCORDION use case) 
we conduct a short analysis using the Debian popularity contest data to select a set of 30 popular server 
applications not yet supported by Unikraft (e.g., apache, mongodb, postgres, avahi, bind9). To derive an 
accurate set of syscalls these applications require to actually run, and to extend the static analysis work to 
include dynamic analysis, we created a small framework consisting of various configurations (e.g., different 
port numbers for web servers, background mode, etc.) and unit tests (e.g., SQL queries for database servers, 
DNS queries for DNS servers, etc.). These configurations and unit tests are then given as input to the analyzer 
which monitors the application’s behavior by relying on the strace utility. Once the dynamic analysis is done, 
the results are compared and added to the ones from the static analysis. 

We plot the results against the syscalls currently supported by our system in the heatmap on Figure 10. Each 
square represents an individual syscall, numbered from 0 (read) to 313 (finit_module). Lightly colored 
squares are required by none of the applications (0 on the scale) or few of them (20% of them); black squares 
(e.g., square 1, write) are required by all. A number on a square means that syscall is supported by Unikraft, 
and an empty square is a syscall not supported yet.  
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Figure 10: Syscalls required by a set of 30 popular server applications versus syscalls currently supported by Unikraft. 

As can be seen from the map, more than half the syscalls are not even needed in order to support popular 
applications, and most of the needed syscalls we already support. Of those that are not supported (in the 
order of about 40): 

• several can be quickly stubbed in a unikernel context (e.g., kill, since we do not have processes);  

• many are relatively trivial to implement since the necessary functionality is already supported by 
Unikraft (e.g., semget/semopt/semctl).  

• the remaining syscalls are work in progress (e.g., epoll, eventfd). 

In all, we estimate that a moderate level of additional engineering work to support these missing syscalls 
would result in even wider support for applications. Finally, for cases where the source code is not available, 
Unikraft also supports binary compatibility and binary rewriting. 

6.6 Future Work 

As future work, we are continuing the effort to provide better syscall compatibility in order to transparently 
support even more mainstream applications. We also aim to leverage Unikraft’s modularity for security 
purposes, coding micro-libraries in memory-safe or even statically-verifiable languages and using 
compartmentalization techniques to maintain safety properties as the image is linked together. 
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7 Edge minicloud VIM  

7.1 Description & Objectives 

An adequate management process is needed to put together and handle hardware and software resources 
so that they can be placed strategically near the data source or maybe near the end user, in order to lower 
latency and improve the user experience. The component dedicated to manage resource allocation and 
workload execution in a virtualized environment is known as Virtual Infrastructure Manager (VIM).  
Interaction with a VIM is usually done manually via Command Line Interface (CLI) or programmatically with 
an Application Programming Interface (API). Several different VIM implementations with different focuses 
are already available: there are for example OpenStack and VMware vCloud Director to manage Cloud 
Infrastructure, but also OpenShift (actually Kubernetes) to manage containers. There is also OpenVIM, which 
is a component of the OpenMANO platform for Network Functions Virtualization (NFV). Beside traditional 
cloud frameworks, to manage resources hosted in datacenters, there are also solutions with their own VIM 
developed for different environments, where resources can be scarce or not accountable like in IoT. In our 
research we started reviewing the state of the art, as reported in deliverable D2.2 (sect. 2.4.3.2), and we 
found several projects working on VIMs that could address the identified issues. Therefore, in this first year 
we screened in more detail some of the most promising solutions identified in D2.2, to choose the one that 
better matches our requisites. The evaluated solutions are Eclipse Fog05, LF Eve, Rancher K3S and MicroK8S. 
Eclipse Fog05 [16] is a project sponsored by the Eclipse Foundation, with a very simple architecture and based 
on a communication bus (Zenoh) based on pub/sub, focused on keeping a low-overhead profile even using 
unreliable networks. LF Eve [17] is hosted by the Linux Foundation and focuses on managing IoT resources, 
developing a secure-by-design system to run containers that can be managed remotely.  MicroK8S20 is a 
Kubernetes distribution for IoT hosted and developed by Canonical. Rancher K3S 21  is a Kubernetes 
distribution for IoT. Our objective is to choose one of the solutions listed above as a baseline for our VIM 
component. This VIM should be easy to be extended, able to work well both on cheap hardware such as 
Raspberry PI and on datacenter servers, ensure enough security, and be able to support different kind of 
workloads, i.e. both containers and Virtual Machines.  

7.2 Requirements 

The baseline VIM for ACCORDION must satisfy a set of requirements in different aspects, to have a good 
open-source basis to enable further development. It should be easy to extend with provided interfaces and 
should have an active community working on its evolution. It should be able to manage the kind of limited 

 

20 https://microk8s.io/ 

21 https://k3s.io/ 
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hardware usually available on the edge as well as standard data centre resources. As a way to guide our 
comparison we identified the following list of detailed requirements: 

- VIM should be able to manage non-homogeneous resources, either large or scarce in terms of CPU 
and RAM. 

- It must be able to run on small devices such as Raspberry PI, so it should support both ARM as well 
as x86 CPU-architecture. 

- VIM should use the least possible number of resources for cluster maintenance, keeping more 
available for workloads.  

- A security layer should be available to enforce confidentiality in components’ communication, and 
to support authentication and access control. 

- It must support, either natively or through extensions, the execution of three different kinds of 
workload: it should be able to run Docker containers, which are the mainstream technology for 
containerization, and also Unikernels for high start-up performance and maximum efficiency in 
resources’ utilization. It should also be able to run virtual machines, giving developers the possibility 
to have an environment that manages both containers and virtual machines can simplify the 
migration from legacy to cloud-native applications.  

- To simplify adoption and diffusion of ACCORDION, it’s important that our VIM is accessible using 
standard or industry recognized interfaces. 

The use of open-source components is also important, as it enables developers to modify and extend 
functionality independently, without the need to request permission from software owners or pay license 
fees. 

7.3 Research Challenges & Advancements Achieved 

Due to the number of candidates derived from the first screening, to tackle the selection we adopted an ad-
hoc methodology. The first step was to define a set of criteria, listed below, to be evaluated for each 
candidate. Then the analysis of each solution followed a sequence of three phases, each phase incrementally 
increasing our understanding. First, each project’s website was visited to collect all information available, 
then we reviewed project and software documentation looking at the characteristics of the solution, seeking 
information on the current activity of the project, its developers’ community as well as its diffusion to have 
an idea of the long-term viability and support available for the solution. After the documentation analysis, 
where possible, we experimented by installing the software in our lab, to better understand capabilities, 
compatibility, strengths and weaknesses of each candidate solution. 

In each project’s webpages, we looked for a summary to understand if the available features were matching 
our requirements. Then we extracted the knowledge of each solution by studying its documentation, even if 
sometimes it wasn’t enough and a direct dialogue with the related developer community was needed. Some 
projects are still work in progress and it was necessary to understand their real state of work by filtering all 
the incomplete or misleading information found in websites, source code and presentations. In most cases, 
it wasn’t easy neither to understand if some important feature was present or missing, nor to obtain a 
roadmap of upcoming features.  In some cases, we were able to install the solution locally and verify its 
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functionality by directly testing its features. In all these analysis phases, we collected information following 
a set of criteria based on the requirements defined in the previous section. The criteria were:  

- Documentation: document availability and completeness, from both a developer and administrator 
stand point, is important to simplify the solution adoption in ACCORDION and let all partners get 
acquainted with it. 

- Installability: the complexity of installation on supported systems is a hint about the product’s 
production readiness; moreover, a simple installation is a plus in itself for its smaller operations costs. 

- Licensing: type of open-source license, used to understand if is appropriate and matches the 
requisite of free reuse and modification of source code, like Apache 2.0 

- Community: understanding if there is an active community working on the product and supporting 
it, gives assurances about the software’s future evolution and its present support level. 

- Portability: is VIM usable on different platforms? In ACCORDION, it’s important that the selected 
VIM supports both ARM as well as AMD/x86 architectures. 

- Supportability: linked with Community, indicates if support for the software is promptly available. 
- Architecture: the simpler the solution architecture, the simpler it will be to maintain it. We looked In 

particular at the deployment architecture. 
- Security Features: this criterion is linked to the need of securing the ACCORDION solution from any 

unauthorized and malicious access. 
- Virtualization Supported: what kind of hypervisors are supported. 
- Compatibility: criterion that evaluates how easy it is to integrate this solution with mainstream 

technology. 
- Maintenance: complexity of the day by day operation. 
- Extensibility: if and how the solution supports extensions. 
- Hardware Requirements: how many resources should be dedicated to run VIM processes and are 

thus stolen from users’ workloads 
- Project Maturity: criterion indicating the current state of the project’s development work, answer 

questions such as: has it reached its first stable version?  Is it production ready? 

The criteria listed above guided any phase of our analysis, and any phase gave different contributions for 
each of the solutions under analysis. During the process also the relevance of the criteria become clearer:  as 
for community criteria, especially during the laboratory tests, the presence of an active community to 
support when tackling issues, was crucial.  Security features must be a native part in the VIM solution, at least 
for low level operations, like node management and configuration management. The laboratory test was 
crucial to better understand potential problems in a candidate or even to better understand features poorly 
described in the documentation. For some projects, it has been difficult to find all the information needed 
and even to distinguish some promised features from actually implemented ones. 

As a result of this selection work there is a much clearer picture of the current solutions for virtualization and 
clusterization in environments with few resources. What we learnt drove us to select K3S as VIM baseline. 
K3S shows good evaluations in all criteria, especially for lightweight resource consumption and for 
documentation completeness for both developers and administrators. From Kubernetes, K3S inherits also its 
REST API: an industry recognized interface, a de facto standard. This facilitates the interaction for any third 
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party application and especially enables ACCORDION to leverage on the whole Kubernetes ecosystems: a rich 
and continuously growing set of extensions and integrations for the most disparate tasks. Moreover, it is 
interesting the K3s project governance evolution: recently it joined CNCF (Cloud Native Computing 
Foundation) as a Sandbox project, which increases its chances to be kept available as an open source 
community version. Another interesting feature is its Software conformance22 obtained by Rancher, meaning 
that K3S will keep API compatibility and can be a Kubernetes drop-in. Finally, also other ACCORDION tasks 
are using K3S for their labs, so this choice simplifies their work and the whole ACCORDION integration. Table 
2 summarizes the comparison analysis: each candidate has a column and is evaluated on all criteria 
represented as rows.  

Table 2: Comparison of VIM baseline candidates. 

Criteria Criteria Explanation Fog05 EVE LF-EDGE K3S MicroK8s 

Documentation Comprehensive, 
appropriate, well-
structured user 
documentation? 

Minimum instruction 
install and general 
architecture  

Wiki and 
documentation 
available is high-
level. Not available 
interfaces and 
implementations 
specs. 

Available for both 
users and 
developers. 
Interface is 
inherited from K8S  

For user, not for 
developer to 
contribute. 
Interface in 
inherited from K8S 

Installability Straightforward to 
install on a supported 
system? 

Pkg distribution only 
for Ubuntu. 
Compilation needed 
for windows 

Only on bare metal 
with package made 
via make.  It uses 
type1 hypervisor 
Xen or KVM, open 
to others type 

Straightforward, 
with an installation 
script a basic 
cluster can be 
setup 

Straightforward, 
snap script.  

Licensing Adoption of 
appropriate license? 

Apache License, 
Version 2.0 
 Eclipse Public 
License 2.0 

Apache License 2.0 Apache License 2.0 Apache License 2.0 

Community Evidence of 
current/future 
community?  

Sponsored by 
Eclipse 
Foundation. Not big 
community of 
developer at the 
moment (not 
documented but 
seem less than 4 
persons) 

Part of LF Edge 
program, open to 
external to project 
contributors. 
Approx. less than 
20 contributors in 
the last year 

Joined CNCF 
(Cloud native 
computing 
foundation), SUSE 
announced that it is 
acquiring Rancher 
Labs 

Canonical (Ubuntu) 

Portability Usable on multiple 
platforms?  

Ubuntu Linux and 
Windows 

tested on some IOT 
devices 
https://wiki.lfedge.o
rg/display/EVE/EV
E+in+the+Market 

Linux.  
X86 64bit, ARM64 
and ARMv7 
support 

Linux, Windows, 
macOS. 
 x86, 
Raspberry/ARM 

Supportability Evidence of 
current/future 
developer support? 

Is available a Slack 
channel open to 
anybody to 
communicate bugs 
or receive help. A 
roadmap is not 

Mailing list and chat 
available. A 2021 
roadmap is under 
development 

2020 Roadmap 
available, missing 
2021. Project 
present on GitHub 
for eventual defect. 

Roadmap not 
available. Project 
Active with 
community forum 

 

22 https://www.cncf.io/certification/software-conformance/ 
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available at the 
moment 

Architecture How complex is it? Really simple, 
made of agents and 
distributed 
infrastructure 
manager. 

Simple: controller-
agent  

Simplified wrt k8s, 
one or more single 
process  masters 
nodes and single 
process workers 
nodes 

Simplified respect 
to K8S 

Security Feature Access Control, TLS. non present secure by design: 
access control and 
authentication 
available 

Available from k8s Available from k8s 

Project Maturity Is the project 
consolidated? How 
many project use 
such vim? Is product 
completed or under 
development? 

Under 
development, few 
project using it in 
non-production 
env. 

no evidence of use 
of community 
version in 
production, is also 
a company product 
no public data 
about deployments 

Already used in 
production by a 
Kubernetes cloud 
provider  

Stable version 
1.19, available 

Virtualization 
Supported 

Like Docker 
container, Lxd... 

Containerd 
 Lxd 
 ROS2 
 Kvm 
 Native application 

Virtual Machines, 
Unikernels or 
Docker/OCI 

As K8S distro:  
Docker, 
Containerd, CRI-O, 
and any 
implementation of 
the Kubernetes CRI 
(Container Runtime 
Interface) 

As K8S distro:  
Docker, 
Containerd, CRI-O, 
and any 
implementation of 
the Kubernetes CRI 
(Container Runtime 
Interface) 

Compatibility with OpenStack and 
OCCI 

Compatible with 
ETSI OSM 
Orchestrator, but 
only for few 
features 

No compatibility 
with main stream 
technology 

As K8S distro there 
are several de facto 
standard REST API 
interfaces 

As K8S distro there 
are several de facto 
standard REST API 
interfaces 

Maintenance how is complex day 
by day maintenance 

TBD Enable remote 
maintenance of 
bare metal OS, with 
rollback feature 

available a system-
upgrade-controller 
that automate 
system update 

Automatic security 
update. 
 single command to 
Kubernetes update 

Extensibility Is possible to add 
features? Is it 
complex? 

High: software 
architecture plugin 
based, for OS, FDU 
(fog deployment 
unit, kind of 
workload), network 

Community support 
encouraged, but no 
evidence of 
standard interface 
or external 
contribution like for 
K8S CSI 

Extension can be 
done on K3S. Also 
K8S enable 
extension with 
different interfaces 
widely known like: 
CSI, CRD, and 
CRI… 

Extension done on 
MicroK8s, to 
include new feature 
but also on K8S 
that enable 
extension with 
different interfaces 
widely known like: 
CSI, CRD, CRI… 

Hardware Req.   Seams light: 57mb, 
no details for CPU 
and memory, no 
benchmark 
available 

CPU: Arm or 
Intel/AMD support 
for hypervisor. 1G 
RAM or better 
 1G storage 
 1 network interface 
 1 serial port for 
development 

OS: Linux 
 RAM: 512MB 
Minimum ( 
recommend at least 
1GB) 
 CPU: 1 Minimum 
 Storage: 100Mb 

OS:Lin,Win,mac 
 Ram:4GB 
 Storage: 20GB 

Tested in our lab   Tested looking for:  
- high availability of 
message bus 
zenoh 
 - try running simple 
Container 

It doesn't work with 
nested 
virtualization, found 
problem executing, 
nobody ever tried 
on top of VMware 
or VirtualBox 

Test demonstrates 
simple installation 
and good 
integration with 
VirtualBox for VM  
execution 

N.A. 
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K3S natively can run only Containers, not virtual machines or Unikernels, so it was necessary to find an 
extension to support such other types of workloads. A further selection was needed to find the right plugin 
to extend K3s for supporting at least Virtual Machines.  We found several candidates: Kata Containers23, 
RancherVM24, KubeVirt25, KubeEdge26 and Virtlet27. This time the selection was simple, as most candidates 
have some critical issue: Kata Containers implements VMs as a way to insulate containers, so the main 
workload in this framework is still a Container and not a Virtual Machine. RancherVM is a project from the 
same company providing K3S but it is probably in its early stages or abandoned as the documentation is 
completely missing and there are no signs of a community working on it. Virtlet is quite complete from the 
point of view of functionality and documentation, but it seems to be an abandoned project. KubeEdge 
architecture is not edge-only but needs a cloud component to run. KubeVirt instead matches all the requisites 
of virtual machine management, has a big community around it, it is also hosted by CFCN and is being used 
as the base for the Red Hat OpenShift Virtualization product, therefore KubeVirt is our selection as the K3S 
extension to support Virtual Machines. Table 3 contains candidates’ evaluation for each criterion:  

Table 3: Comparison analysis for candidate baseline extensions to support Virtual Machines. 

Criteria Kata Containers Rancher VM KubeVirt KubeEdge 

Documentation Available for users and 
developers 

Really Poor / Not 
present 

For User and developer For User and developer 

Installability VM with nested 
virtualization: Kata is 
packaged for major 
Linux Distro.  
Bare metal 

N.A. Few cmd line instruction 
to install 

Simple installation of 
agent and controller 

Licensing Apache License 2.0 N.A. Apache License 2.0 Apache License 2.0 

Community Supported by the Open 
Infrastructure 
Foundation 

Rancher CNCF compliant and 
GitHub community with 
more than 30 significant 
contributor in the last 
year 

CNCF compliant and 
GitHub community with 
more than 30 significant 
contributor in the last 
year 

Portability Linux or system with: 
Intel VT-x technology. 
 ARM Hyp mode 
(virtualization 
extension). 
 IBM Power Systems. 
 IBM Z mainframes 

N.A. Linux Linux 

 

23 https://katacontainers.io/ 

24 https://github.com/rancher/vm 

25 https://kubevirt.io/ 

26 https://kubeedge.io/ 

27 https://github.com/Mirantis/virtlet 
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Supportability Project is active in 
development and 
roadmap is under 
development. 

N.A. Roadmap under 
development. 

High level roadmap 
available 

Architecture Duplicate some k8s 
components 

N.A. Duplicate some k8s 
components 

Quite complex, as it 
needs k8s cluster, cloud 
component controller 
and agent, so 2 
separate system to 
maintain 

Security Feature Focused on issue of 
isolation of processes. 
Using Hw Virtualization 

N.A. Like k8s. Like k8s 

Project Maturity  Stable version has 
been released 

N.A. Near to 1.0, most 
feature are available, 
guarantee to keep same 
API. Already used as 
base for commercial 
product 

  

Virtualization Supported Docker/OCI inside VM Support for: qcow2, raw, 
and ISO images 

KVM via libvirt -Docker 
 -Containerd 
 -Cri-o 
 -Virtlet: dead project 
  
 

Compatibility OpenStack Zun 
compatibility 

N.A. K8S and derivate. 
Tested and packaged 
for Katacoda 
 MiniKube 
 Kind 
 Cloud k8s provider 

N.A. 

Maintenance  N.A. N.A. Zero downtime rolling 
updates available 

automatic update 

Note Not to run generic VM       

7.4 Provided Features and APIs 

As stated in the previous section, K3S is a lightweight distribution of Kubernetes (K8S). Its main value is its 
small resource footprint: this flavour of K8S reduced memory usage by consolidating all K8S services in two 
processes: one running on the master node and one running on agent nodes, both packaged as a single binary 
of less than 50MB. The K3S implementation includes support for SQLite3 as default storage mechanism and 
has cut out all unnecessary K8S API code, either alpha or deprecated.  Another important feature is its 
optimization for ARMv7 and ARM64 processors that enable working on several small devices like Raspberry 
Pi, but binaries are available for AMD64 processor architecture too.  

Being a K8S distribution with software conformance certified by CFCN, K3S is fully compliant with K8S 
inheriting most of its features. Features such as the extensibility with Custom Resource Definition (CRD), 
which enable users to define their own custom resources and manage them with a custom API. The CRD 
mechanism has been used by KubeVirt to add two new K8S resource types: Virtual Machine (VM) and Virtual 
Machine Instance (VMI).  There are other ways to extend Kubernetes, and thus K3S, like the Container 
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Runtime Interface (CRI). CRI enables us to plugin different kinds of container runtimes, without the need to 
recompile. The current container runtime implementation for K3S is Containerd28 , which enables more 
efficient execution of Docker containers.  For user interaction, K3S exposes two kind of interfaces: 

- HTTP REST API 
- Command Line Interface (CLI) 

With these interfaces, users are able to configure any aspect of a K3S cluster. 

Documentation for the K8S API and CLI is available online at https://kubernetes.io/docs/reference/  

The latest up-to-date documentation about K3S implementation and customization is available online at 
https://rancher.com/docs/k3s/latest/en/ 

KubeVirt is a Kubernetes add-on: its main features are Virtual Machine management enablement. In doing 
so it has several features like: framework update silently with no downtime, migration of VMIs to a different 
node, and role based access control (RBAC) for authorization. All these features are available to the users via 
a CLI named virtctl, or via a dedicated HTTP REST API. More details about virtctl are available online at 
https://kubevirt.io/user-guide/#/installation/virtctl.  Details on KubeVirt API are also available online, at 
https://kubevirt.io/api-reference/. 

7.5 Future Work 

In the second year we will integrate other ACCORDION edge components: edge storage, resource indexing, 
and resources monitoring, with the aim of obtaining a unique package for the Minicloud. We will start 
integration testing using a sample application, but then the plan is to run experiments using the ACCORDION 
WP6 use cases, to verify if their requirements are satisfied. 

 

28 https://containerd.io/ 
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8 Conclusions 

In conclusion, we can see that the Minicloud platform has achieved most of its goals and objectives for the 
first year of the project. The basic objectives of the Minicloud were to provide a platform which is able to 
improve the QoE for users of ACCORDION supported applications near the edge of the network. This is 
accomplished by having the first version of the Minicloud VIM that is highly scalable, distributed and 
lightweight. A prototype platform has been created, supporting basic functionality while most of the research 
goals have been clearly defined and they are ready to be explored and overcome. In the near future, the 
Minicloud VIM component will integrate its subcomponents and will be able to deploy a sample application 
on edge devices. 

In detail, a monitoring component has been created, tackling the challenge of gathering all the real time 
monitoring metrics and the static characteristics of the virtual and physical machines that are part of the 
ACCORDION framework or even lend resources to the framework. In addition, this monitoring component is 
creating a connection between the physical and virtual layers, unifying them under a common context. The 
RID component is providing the framework with an efficient, reliable and scalable means of discovering and 
identifying resources dynamically as they change, move, enter or exit the resource pool. The Edge Storage 
component is providing the capability of utilizing the edge resources in order to store, retrieve and migrate 
data in a fast, secure and durable way, ensuring the QoS and QoE requirements of the applications using the 
ACCORDION framework. The lightweight virtualization and Unikernels component allow us to deploy images 
on edge nodes using minimal resources, allowing us to use mini-clouds of cheaper devices while keeping the 
performance at the necessary level to preserve the QoE requirements. All these components are tied under 
the VIM component, which integrates them together in a mini-cloud architecture. 

Finally, the targets for the second year of the project have been clearly defined, both on component level 
and on platform level, based on the challenges identified during the first year. This includes additional 
functionality for the Minicloud VIM as well as optimizations to already provided functionality by expanding 
the current status of the art in the domain targeted by each of the WP3 task outcomes. 
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