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A B S T R A C T   

Diabetes is a non-communicable disease that has reached epidemic proportions, affecting 537 million people 
globally. Artificial Intelligence can support patients or clinicians in diabetes nutrition therapy – the first medical 
therapy in most cases of Type 1 and Type 2 diabetes. In particular, ontology-based recommender and decision 
support systems can deliver a computable representation of experts' knowledge, thus delivering patient-tailored 
nutritional recommendations or supporting clinical personnel in identifying the most suitable diet. This work 
proposes a systematic literature review of the domain ontologies describing diabetes in such systems, identifying 
their underlying conceptualizations, the users targeted by the systems, the type(s) of diabetes tackled, and the 
nutritional recommendations provided. This review also delves into the structure of the domain ontologies, 
highlighting several aspects that may hinder (or foster) their adoption in recommender and decision support 
systems for diabetes nutrition therapy. The results of this review process allow to underline how recommen
dations are formulated and the role of clinical experts in developing domain ontologies, outlining the research 
trends characterizing this research area. The results also allow for identifying research directions that can foster a 
preeminent role for clinical experts and clinical guidelines in a cooperative effort to make ontologies more 
interoperable – thus enabling them to play a significant role in the decision-making processes about diabetes 
nutrition therapy.   

1. Introduction 

Diabetes is a non-communicable disease affecting patients of all ages 
in every country of the world. The International Diabetes Federation 
estimated that in 2021, the total number of individuals affected by this 
disease (aged between 20 and 79 years old) was 537 million. This figure 
is expected to increase significantly by 2030 (643 million) and by 2045 
(783 million) [1]. Untreated diabetes leads to elevated amounts of blood 
glucose, which can determine serious health consequences, both acute 
(e.g., hyperosmolar coma, ketoacidemic, hypoglycaemic, etc.) and 
chronic complications (e.g., damage to the heart and cardiovascular 
system, vision impairments, kidney failure, etc.) – which are responsible 
for 1.5 million deaths every year. For these reasons, it is a major global 
concern. In December 2022, the World Health Organization (WHO) 
drafted a research agenda intending to halt the rise in diabetes and 

obesity by the end of 2025 [2]: among the initiatives traced, the role of 
medical devices in managing diabetes was stressed. Patients affected by 
Type 2 Diabetes Mellitus (T2D) can be treated with medical nutrition 
therapy – i.e., a balanced and clinically developed diet – and physical 
activity, sometimes even before considering pharmacological and 
insulin-based therapies [3]. In contrast, patients affected by Type 1 
Diabetes Mellitus (T1D) can take advantage of nutrition therapy and 
pharmacological therapy. Therefore, countries developed different local 
guidelines to give patients general dietary recommendations to prevent 
the development of health issues (particularly T2D). Such guidelines are 
characterized by a high degree of difference among them, as they need 
to address population- or country-based dietary habits. Nonetheless, 
they share some commonalities – e.g., the criteria for defining a diabetic 
patient, some food categories and shares of nutrients to be consumed 
daily, etc. [4]. Guidelines proved to be an efficient way to manage 
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diabetes (in particular T2D). However, they cannot answer to specific 
individual's needs, as the glycemic responses to diet can significantly 
vary from person to person [5]. Moreover, guidelines can support family 
doctors and general physicians in managing diabetic patients, consid
ering that not all clinicians are trained to manage appropriate and 
personalized nutritional interventions for managing diabetic patients 
[6]. 

The availability of general guidelines stimulated researchers to 
develop recommending systems devoted to supporting diabetic patients 
or clinical personnel in managing the disease's consequences and 
comorbidities and its exacerbations [7]. In particular, leveraging expert 
knowledge, such systems can automate some of the clinicians' work and 
enable diabetic patients' monitoring. Domain ontologies [8] can effi
ciently represent in a formal way diabetes, diabetic patients' charac
teristics, and nutritional facts and evidence while fostering data 
interoperability. Furthermore, leveraging monotonic reasoning tech
niques to infer logically entailed information, ontologies can be adopted 
as part of Artificial Intelligence (AI) systems [9]. These features enabled 
the adoption of ontologies and, more in general, Semantic Web tech
nologies in recommender and decision support systems aimed at sup
porting diagnostic processes [10] or identifying possible solutions to 
health-related issues [11]. Ontologies can also play a pivotal role in 
explainable AI systems, since the semantic reasoning – which resembles 
human inference capabilities [12] – can mitigate the risks perceived 
regarding the adoption of AI systems in healthcare: recent researches 
have underlined clinicians' reluctancy to adopt such systems in clinical 
practice ([13–15]). Among the reasons that prevent the wide adoption of 
AI systems in the healthcare industry, the most cumbersome is the lack 
of transparency in the decision making process – also referred to as the 
“black box” model [16]. Therefore, domain ontologies in healthcare 
(which heavily rely on clinicians' expertise and knowledge to develop a 
formalization of a domain) are a promising solution for the adoption of 
AI-based systems in healthcare and in clinical practice. 

Considering the roles ontologies cover in recommender and decision 
support systems for supporting the management of diabetes, this work 
aims to review existing scientific literature and domain ontologies 
describing this disease and its patients. In detail, this review is aimed at 
investigating the following Research Questions (RQs):  

• RQ1: Identifying the types of diabetes treated by the systems, what 
information is required as input for obtaining recommendations 
(output), as well as the type of the recommendation provided (diet 
plan, nutrients recommendation, etc.);  

• RQ2: Examining the target users (family doctors, dieticians, patients, 
etc.) for which the systems were developed;  

• RQ3: Investigating how ontologies are adopted to represent diabetes, 
i.e., which entities are fundamental to model this disease and its 
patients. From an ontology engineering perspective, this question 
entails:  

▪ RQ3a – investigating the conceptualization underlying 
diabetes ontological formalization (whether existing con
ceptualizations support it or it is developed from scratch);  

▪ RQ3b – analyzing the languages adopted to formalize the 
domain ontologies and rules (if used);  

▪ RQ3c – if domain ontologies reuse existing models – a best 
practice of ontology engineering;  

▪ RQ3d – whether ontologies adopt Ontology Design Patterns 
(ODPs) for modelling recurrent knowledge engineering 
problems; 

▪ RQ3e – if ontologists adopted ontology engineering meth
odologies (OEMs) or techniques to develop ontologies on 
diabetes, and if the engineering process was conducted in 
collaboration with domain experts;  

▪ RQ3f – whether the inferences generated by the ontology 
(and by the systems) were validated with real case tests, 
patient data, or with support from clinical personnel. 

This review contributes to the research on knowledge engineering of 
diabetes and its related ontology-based recommender and decision 
support systems aimed at providing support in nutrition therapy; this 
work identifies existing ontology-based models and examines the main 
trends researchers adopt in the ontology engineering processes for 
diabetes. 

This paper is organized as follows: Section 2 presents the review 
methodology adopted and the databases searched. Section 3 illustrates 
the quantitative results of the review process, while Section 4 discusses 
them in light of the RQs described above. Section 5 delves into the im
plications of the findings – from a nutrition therapy and knowledge 
engineering perspective – while Section 6 leverages the findings of 
previous Sections to sketch possible research directions for knowledge- 
based systems devoted to diabetic patients and clinicians. Finally, the 
Conclusions summarize the main outcomes of this review. 

2. Review methodology 

This review adopts the Preferred Reporting Items for Systematic re
views (PRISMA) [17] to conduct a systematic search in scientific liter
ature to investigate the aspects entailed by the three RQs. The PRISMA 
approach enables identifying and selecting relevant works through a 
step-by-step and transparent process. This review focuses on conference 
proceedings, book chapters, and journal articles published between 
January 2000 and June 2023, selecting solely works published in 
English. 

2.1. Databases and search 

To answer the RQs, ISI Web of Science, Scopus, and PubMed data
bases were searched. All databases are accessible online and enable 
queries with logical operators; moreover, these databases allow to 
restric the research to specific types of articles (in the case of this review, 
journal articles, conference proceedings, and book chapters). Consid
ering the specific RQs and their focus on ontology-based recommender 
and decision support systems for diabetes, the search was limited to the 
Computer science, Engineering, and Decision sciences subject areas. 

The resulting query searches scientific literature for: 
((ontolog* AND diabet*) OR (semantic* AND diabet*)) AND (nutri

tion* OR diet*) 
in the databases, focusing on publication years >1999 and < 2024 

(to include among the retrieved results those works accepted for pub
lication within 2023 but expected to be published in 2024 issues) and 
limiting the search in the “Title”, “Abstract” and “Keywords” fields of 
each record. 

Publication years range was selected considering that in the early 
2000s, domain ontologies started to be developed and published 
adopting W3C-endorsed languages (i.e., Ontology Web Language 
(OWL), dated 2004). The database search was conducted in March 2023 
and updated in September 2023. 

2.2. Articles selection process and criteria 

Following the PRISMA approach, the process of identification for the 
works able to answer to the RQs is the following:  

1. Retrieval of relevant articles as a result of databases' search. In this 
step, 240 articles were retrieved from the three databases (journal 
articles, book chapters, conference proceedings). Works considered 
“in press” but already indexed by the databases were included.  

2. Screening of the retrieved articles. The screening process is divided 
into two sub-steps. The first consists of the removal of those works 
that were inaccessible – i.e., they could not be retrieved in their 
complete form for full-reading – (1) and duplicated works – i.e., 
works that were retrieved from two or more databases – (30). The 
second sub-step consists of the analysis of the remaining 209 papers' 
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abstract and title fields to assess whether the papers addressed the 
domain of ontology-based recommender or decision support systems 
for supporting nutrition in diabetic patients. Following this sub-step, 
a total of 145 articles were removed.  

3. Inclusion of the remaining articles (64) was based on the papers' full 
reading. Each author individually read the articles and stated the 
reasons for their inclusion according to the following two criteria (a ̂  
b):  
a. The article presents a recommender or decision support system 

focused on diabetes, involving at least one ontological represen
tation of one or more aspects related to this disease (diabetic 
patient, disease definition, nutritional profiles of diabetic pa
tients, medical nutrition therapy, dietary plan management, etc.).  

b. The article enlists, among its findings, the provision of suggestions 
or recommendations about nutritional aspects. 

At the end of this step, 43 papers were removed. The number of the 
included works after the process is 21. Fig. 1 details the article selection 
process as a PRISMA flow diagram. 

3. Results 

This Section presents the result of the review process. Bibliometric 
results and Content analysis results are illustrated in the following 
subsections, while their discussion is addressed in Section 4. The pre
sentation of bibliometric results focuses on the articles' temporal dis
tribution, typology, and geographical distribution; content analysis 
results are aimed at answering the RQs listed in the Introduction by 
quantitatively analyzing and clustering the papers included in this 
review. 

3.1. Bibliometric distribution of the articles by year 

3.1.1. Temporal distribution of articles by year 
The temporal distribution of the works included in this review – 

depicted in Fig. 2 – indicates that the first contribution addressing the 
topics pertaining to the RQs is dated 2008, thus later than the lower end 
of the time frame considered in the search phase. Interestingly, relevant 
articles are found each year except for years 2009, 2010, and 2016. The 
temporal distribution highlights 2014, 2018, and 2021 as the years with 
the highest number of contributions. Starting from 2017, at least one 
relevant article per year is found. 

3.1.2. Typology of the articles by year 
The selection process considered three types of works – journal ar

ticles, conference proceedings, and book chapters. Fig. 3 illustrates the 
number of works for each type included in this review, detailing their 
distribution through the time frame. 

The distribution by typology clearly indicates the absence of book 
chapters from the included works. Also, it illustrates that most of the 
included works belong to the type Conference proceeding (14), with two 
peaks in 2018 and 2021. A total of 7 journal articles were distributed 
between 2013 and 2021, with 2014 reporting 2 journal articles. 

3.1.3. Geographical distribution of the authors 
To investigate in which countries the topics pertaining ontological 

modelling of diabetes and its management from a nutritional perspective 
were addressed, the articles were analyzed according to the authors' 
geographical distribution. Each of the authors listed in the manuscript 
was considered. The authors' affiliation(s) declared at the time of paper 
publication were scrutinized, and each author was considered only once 
(the same author contributing to two different papers, with two different 
affiliations pertaining to two different countries, was considered twice). 
Table 1 summarizes the geographical distribution of the contributors of 
included works by country, grouped by continent. 

Asian countries registered more authors than other continents (45), 
with countries such as Taiwan (14) and South Korea (11) accounting for 
>50 % of all authors. Europe registers 21 authors, followed by North 
America (11) and Africa (2). In detail, Taiwan, South Korea, the USA 
(10), and Italy (9) are the countries with the highest number of authors. 

3.2. Content analysis 

The results from the analysis of the content of the 21 works included 
allow to shed light on the types of diabetes represented in the ontologies 
and the information required for the ontology to provide its recom
mendation(s) (RQ1). The users for which the ontology-based systems are 
developed are also investigated (RQ2), as well as the conceptualizations, 
techniques, and patterns adopted to model the ontologies (RQ3). This 
Section presents the quantitative results of the content analysis, which 
are discussed in Section 4. 

3.2.1. Types of diabetes, input, and output 
To provide an answer to RQ1, it is necessary to cluster the included 

papers according to the type(s) of diabetes they address. Considering 
that different types of recommendations can be provided to diabetic 
patients, the works are also clustered according to this criterion. Finally, 

Fig. 1. The PRISMA flow diagram for the articles' retrieval, screening, and inclusion.  
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it is required to identify the information that is necessary for the 
ontology (input) to provide the recommendation(s) foreseen (output). 
Diabetes is classified into four types:  

• Prediabetes (a condition characterized by a higher level of sugars in 
blood, but not high enough for a T2D diagnosis);  

• Type 1 diabetes (also referred to as “juvenile” or “insulin-dependent” 
diabetes) (T1D);  

• Type 2 diabetes (also indicated as “non-insulin-dependent” diabetes) 
(T2D);  

• Gestational diabetes (characterizing pregnant women). 

According to different sources, T2D accounts for the vast majority of 
diabetic conditions worldwide (90 %) [18,19], while Prediabetes is a 
condition that is characterized by an impaired glucose tolerance or 
fasting glucose, leading to a higher risk of developing T2D (and its 
related complications) [18]. There also exist rarer conditions that are 
caused by a genetic mutation and result in Neonatal diabetes or Maturity 
onset diabetes of the young (MODY); also, diabetes can be associated 
with other conditions (e.g., diseases of the exocrine pancreas such as 
pancreatitis, pancreatectomy, pancreatic tumors, cystic fibrosis; endo
crinopathies such as Cushing's acromegaly, pheochromocytoma, gluca
gonoma) or genetic syndromes (Down, Klinefelter, Turner, Wolfram, 
Friedreich). However, these conditions are infrequent and afflict <2 % 

Fig. 2. Distribution of the articles by year.  

Fig. 3. Distribution of articles by year, grouped by their types.  
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of the population [20]. Therefore, the four main types of diabetes are 
adopted to cluster the analyzed works. 

To cluster papers according to the outcome their systems prescribe, 
the following criteria were adopted:  

• Diet: the systems aim to provide a diet or a menu (i.e., a set of meals 
organized on a time period, with indications of food quantities or 
amounts and meal frequencies), whether it is on a daily basis or 
longer periods;  

• Meal composition: the systems aim to propose qualitative sets of 
foods or recipes that a patient or his/her clinician (or caregiver) can 
organize in meals;  

• Nutrient(s) amount: the systems are aimed to provide one or more 
specific nutrients or calories intake indications;  

• Management: the systems' purpose is to support diabetic patients (or 
clinical personnel) in managing their insulin intake or glucose level. 

These categories are not mutually exclusive since recommender 
systems can provide both a list of foods (Meal composition) and suggest 
the number of insulin units to be administered (Management). It is also 
interesting to assess whether the investigated recommender systems 
were developed specifically for diabetes and is consequences, or rather 
in the framework of other chronic conditions (with diabetes being one of 
them). Table 2 summarizes the result of the clustering process. 

According to the quantitative results, the majority of the papers (17) 
address the T2D, with only 3 works dedicated to T1D; the system 
depicted in [21] specifies that the proposed system addresses both T1D 
and T2D, while the solutions described in [22,23] does not explicitly 
mention the type of diabetes addressed. The number of papers proposing 
solutions specifically for diabetes is 10, with the remaining articles (11) 
addressing diabetes as one of the possible chronic health conditions that 
can affect a population – and that can be treated by means of nutritional 
advice or therapy. 

With regard to the inputs required by the investigated recommender 
systems, the majority of recommender systems (67 %) require the gender 
of the diabetic patient to be identified, as well as his/her age. The vast 
majority of the ontologies underlying the systems (71 %) request the 
patient's current weight, although only 5 works require the ideal weight 
of the patient. Similarly, height is adopted as input by 62 % of the 
analyzed works. Other measurements related to the patient's condition 
are less adopted: Body Mass Index (BMI) is used in 8 articles (38 %), 
while Basal metabolic rate (BMR) is exploited in 7 systems (33 %). One 
work [24] do not specify any input data to provide recommendations. 
Two fundamental indicators of diabetic condition – glycated hemoglobin 
(Hb) and glucose level – are also represented (respectively, by 38 % and 
52 % of the works). Finally, half of the systems (52 %) require diabetic 

patients to register their physical activity, while 38 % ask for data 
regarding meals. 

Most works provide recommendations about the meal composition, 
suggesting recipes to patients or caregivers (9). A complete diet is the 
recommendation of 7 articles, while the management of particular as
pects of diabetes is addressed in 6 papers. The specification of Nutrients 
amounts is addressed in 4 works. Out of the 21 papers investigated, 4 
provide mixed types of output. Interestingly, diet is the only output 
category that is never mixed with others. 

3.2.2. Target users 
To provide an answer to RQ2, the articles were carefully scrutinized 

to search for explicit references to target users. In particular, the 
recommender or decision support systems described in the works need 
to explicitly refer to whether the solutions were devoted to supporting 
diabetic patients or to supporting clinical personnel in performing some 
activities related to diabetes management. 

All the papers explicitly referenced the target users foreseen by their 
system. The vast majority of works address patients (17), while a smaller 
portion (4) of articles described systems thought for clinical personnel. 
In particular, Wang et al. [25] and El-Sappagh et al. [26] make general 
reference to clinicians, including the team of clinical experts managing 
the disease; on the contrary, in [27] the addressees of the depicted 
systems are nutritionists, while the system described in [28] is thought 
for supporting general practice doctors and family clinicians. 

3.2.3. Domain ontologies analysis 
To answer RQ3, domain ontologies underlying the recommender and 

decision support systems retrieved were analyzed. In particular, this 
review focused on investigating whether the domain ontologies rely on 
an existing conceptualization for diabetes and its features (e.g., inter
national standards, national guidelines, scientific or clinical frame
works, etc.) or if they were developed from scratch (for example, 
leveraging experts in diabetes' knowledge to develop a peculiar 
perspective on the disease) (RQ3a); it also investigates the ontological 
languages adopted to formalize the models and the rules leveraged to 
generate inferences (RQ3b). Taking into account that ontology reuse is 
one of the “best practices” in ontology engineering [29], it is also 
interesting to observe if the domain ontologies reuse any existing 
ontological model (RQ3c) or if they adopt Ontology Design Patterns 
(ODPs) [30] to increase domain ontologies' alignment with other models 
and shareability (RQ3d). Moreover, from an ontology engineering 
perspective, understanding whether domain ontologies are developed 
following an ontology engineering methodology (OEM) that fosters 
cooperation between domain experts and ontologists is essential, espe
cially in the healthcare domain [31] (RQ3e). Finally, the included works 
are scrutinized to understand whether the domain ontologies (and the 
systems exploiting them) underwent a validation or test phase, whether 
with clinical cases (e.g., real-patient data, simulation, etc.) or expert 
assessment (e.g., with clinical personnel, stakeholders, etc.) (RQ3f). 

The quantitative results of this analysis are presented in Table 3 
(dedicated to RQa, RQc, RQd, RQe, RQf) and 4 (detailing RQb). 

Regarding the conceptualization of diabetes, most of the analyzed 
papers acknowledge expert knowledge (e.g., clinical guidelines and 
standards, scientific papers, documents, etc.) as a source for conceptu
alizing the disease. In particular, 4 of these works detailed the docu
ments, clinical standards, and clinical practice guidelines that were 
adopted: American and Canadian Clinical Practice Guidelines for Dia
betes Type 1 management [26], International Classification of Func
tioning, Disability and Health (ICF) and the International Classification 
of Diseases (ICD) [27,32], the Italian Standard for Diabetes Care [28]. 
The ontologies underlying two recommender systems ([28,33]) were 
engineered leveraging the support of domain experts with their knowl
edge and professional experience (in both cases, clinical personnel 
treating diabetic patients and clinical nutrition experts). A total of 6 
works lack indications about the underlying conceptualization of 

Table 1 
The geographical distribution of the authors of the included articles.  

Continent Country Number of unique authors 

Africa Egypt  2 
Asia India  2 

Indonesia  5 
Japan  2 
Malaysia  2 
Pakistan  5 
Qatar  2 
South Korea  11 
Taiwan  14 
Turkey  2 

Europe Bulgaria  4 
Italy  9 
Norway  2 
Spain  3 
United Kingdom  3 

North America Panama  1 
USA  10  
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diabetes ([21–23,25,34,35]). 
The majority of the included works detailed the ontological lan

guages adopted for developing the domain ontologies (19 papers) and 
provided details about the language adopted for specifying inference 
rules (15 papers). However, only 11 articles detailed the logic profile 
adopted (which can be relevant for OWL-developed ontology, consid
ering that different profiles can support different types of reasoning 
[36]). The same amount of works indicated the language adopted to 
query the domain ontologies. Almost all systems specifying an onto
logical language adopted W3C-endorsed OWL (16); the same can be 
registered for a query language, with W3C-endorsed SPARQL used by 8 
systems. Considering there is no W3C recommendation for rule lan
guages, it is interesting to observe that Semantic Web Rule Language 
(SWRL) [37] is used by 11 systems – out of the 15 specifying a rule 
language. 

The reuse of ontological resources related to diabetes is attested in 6 
works – one-third of the investigated papers ([22,26,27,32,33,38,39]). 
In those articles describing complex systems dedicated to chronic dis
eases – thus, not specifically dedicated to tackling diabetes – other 
domain ontologies are reused to cover different domains (for example, 
Villarreal et al. [22] adopt a domain ontology for context modelling, 
while the articles [27,32] made use of Friend of A Friend (FOAF) to 
describe patients' general information). Two papers indicate the adop
tion of existing databases, although it is not specified whether the da
tabases' schemas are somehow adopted as part of the ontologies' TBox 
([35,40]). Reused ontologies can be imported into the target model 
(completely or in some of their parts) to support the description of a 
portion of a domain, or they can be modelled into the target domain 
ontology by referencing the reused entities with their URIs (a practice 
named soft reuse [29]). The import of the reused model in the target 

Table 2 
The type of diabetes, the input data, and the output provided as described in the analyzed papers.   

Diabetes 
type 

Focus on 
diabetes 

Clinical data required (input) Output 

Gender Age Height Weight 
(current) 

Weight 
(ideal) 

BMI BMR Hb Glucose Physical 
activity 

Meal 
data 

Lee et al. 
(2008) [33] 

T2 generic yes yes yes yes no no yes no no no yes Meal composition 

Akkoç and 
Cicekli 
(2011) [24] 

T1 specific unspecified personal and clinical data no no no yes 
Meal composition, 

Management 

Alhazbi et al. 
(2012) [21] T1, T2 generic yes yes yes yes yes no yes no no yes no Nutrients amount 

Arwan et al. 
(2013) [43] 

T2 specific no no yes yes yes yes no no no yes no Diet 

Wang et al. 
(2013) [25] 

T2 generic yes yes yes yes no yes no no no no yes Diet 

Villarreal 
et al. (2014) 
[22] 

not 
specified 

generic yes yes no yes no no no no yes yes no Management 

Faiz et al. 
(2014) [44] 

T2 specific yes yes yes yes yes yes yes no no yes no Diet 

Latha and 
Kumar 
(2014) [34] 

T2 generic yes yes yes yes no no yes no no no no Diet 

Lo et al. 
(2015) [40] T2 generic no no no no no no no no no no no Meal composition 

Chen et al. 
(2017) [49] T2 generic yes yes yes yes yes no no no no yes yes Meal composition 

Yusof and 
Noha 
(2017) [35] 

T2 generic no no no no no yes no no no no no Diet 

Ali et al. 
(2018) [23] 

not 
specified generic no yes no yes no no yes no yes yes no 

Meal composition, 
Management 

Tarabi and 
Juric (2018) 
[45] 

T2 specific no no no no no no no no yes yes no Diet 

Li and Alian 
(2018) [46] 

T2 specific yes no yes yes no yes no no no yes no Meal composition 

El-Sappagh 
et al. (2019) 
[26] 

T1 specific yes yes yes yes yes yes yes yes yes yes yes 
Nutrients amount, 

Management 

Spoladore and 
Sacco 
(2020) [27] 

T2 generic yes yes no no no no no no no no yes Meal composition 

Spoladore 
et al. (2021) 
[32] 

T2 specific yes yes yes yes no yes no no no yes no Meal composition 

Rawte et al. 
(2021) [38] T2 generic yes yes yes yes no no no no yes no yes Management 

Nisheva et al. 
(2021) [39] T2 specific no no no no no no no yes yes no yes Diet 

Woo et al. 
(2022) [54] T2 specific yes yes yes yes no yes no no yes no no 

Meal composition, 
Nutrients amount, 

Management 
Spoladore 

et al. (2023) 
[28] 

T2 specific yes yes yes yes yes yes yes yes yes yes no Nutrients amount  
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Table 3 
Analysis of the domain ontologies from selected articles (Expert knowledge: e.g., clinical guidelines and standards, scientific papers, documents, etc.; Developed with 
experts: clinicians' knowledge and expertise).   

Diabetes 
concept. 

Reuse Adoption of 
ODPs 

Maintenance Engineering Validation 

Reused ontologies Type of 
reuse 

Accessibility Alignment OEM 
adopted 

Collaborative 
approach 

Ontology 
editor  

Lee et al. 
(2008) 
[33] 

Developed with 
experts 

Taiwanese Food 
Ontology; 

Personal food 
ontology 

import no no  
not 

specified 
yes 

not 
specified 

real-patient 
data 

Akkoç and 
Cicekli 
(2011) 
[24] 

Expert 
knowledge 

no  no no  not 
specified 

no Protégé  

Alhazbi et al. 
(2012) 
[21] 

not specified no  no no  not 
specified 

no not 
specified  

Arwan et al. 
(2013) 
[43] 

Expert 
knowledge no  no no  

not 
specified yes Protégé 

real-patient 
data 

Wang et al. 
(2013) 
[25] 

not specified no  no no  not 
specified 

no not 
specified  

Villarreal 
et al. 
(2014) 
[22] 

not specified PIPS project 
food ontology 

not 
specified 

no no  not 
specified 

no not 
specified 

real-patient 
data 

Faiz et al. 
(2014) 
[44] 

Expert 
knowledge 

no  no no  not 
specified 

no Protégé expert 
assessment 

Latha and 
Kumar 
(2014) 
[34] 

not specified no  no no  not 
specified 

no not 
specified  

Lo et al. 
(2015) 
[40] 

Expert 
knowledge 

non-ontological 
resource  

no no  
not 

specified 
yes Protégé  

Chen et al. 
(2017) 
[49] 

Expert 
knowledge 

no  no no  not 
specified 

no not 
specified 

real-patient 
data 

Yusof and 
Noha 
(2017) 
[35] 

not specified non-ontological 
resource  

no no  Ontology 
101 

no Protégé  

Ali et al. 
(2018) 
[23] 

not specified no  no no  not 
specified 

no Protégé 
real-patient 
data; expert 
assessment 

Tarabi and 
Juric 
(2018) 
[45] 

Expert 
knowledge (USA 
CPGs; Canadian 

no  no no  not 
specified 

no Protégé  

Li and Alian 
(2018) 
[46] 

Expert 
knowledge 

no  no no  custom yes Protégé real-patient 
data 

El-Sappagh 
et al. 
(2019) 
[26] 

Expert 
knowledge 

BFO not 
specified 

no yesa 

DOLCE, 
BFO, 

DMTO, 
DDO 

custom yes Protégé expert 
assessment 

Spoladore 
and Sacco 
(2020) 
[27] 

Expert 
knowledge (ICF; 

ICD) 
ICD, ICF soft Reification no  NeOn yes Protégé  

Spoladore 
et al. 
(2021) 
[32] 

Expert 
knowledge (ICF; 

ICD) 
ICD, ICF soft Health 

condition 
no  custom yes Protégé real-patient 

data 

Rawte et al. 
(2021) 
[38] 

Expert 
knowledge 

FoodOn import no yesb  not 
specified 

no not 
specified  

Nisheva et al. 
(2021) 
[39] 

Expert 
knowledge DMTO import no no  custom no 

not 
specified  

Woo et al. 
(2022) 
[54] 

Expert 
knowledge 

no  no no  custom yes 
not 

specified 

real-patient 
data; expert 
assessment 

(continued on next page) 
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ontology is the most represented way of reuse ([33,38,39]), with soft 
reuse represented in two cases ([27,32]), while in two other cases, the 
type of reuse was not detailed ([22,26]). The adoption of ODPs is limited 
to three works ([27,28,32]), although none of them is specifically 
dedicated to representing diabetes. The most adopted pattern is a con
tent ODP that enables the representation of a patient's health condition 
(both represented as OWL individuals) via an object property – so that it 
is possible to characterize a health condition with different features 
without impacting the person [41]. The second ODP is a well-known 
strategy for representing-ary relationships [42]. 

A total of 18 works adopted a representation of foods in their model. 
Of these, 8 works developed their own food ontologies leveraging on 
existing conceptualizations or guidelines ([21,24,25,34,43–46]), while 
6 systems leveraged existing domain ontologies ([33] reused the 
Taiwanese food ontology; [22] adopted a model described in [47]; the 
systems described in [27,32,38] reused parts of FoodOn [48]). As 
already mentioned, 2 articles made use of non-ontological resources 
([35,40]) that involved the representation of foods and their properties, 
while one work [49] does not specify the source of information related 
to foods to be recommended. 

Out of the 21 ontologies described in the included articles, only 3 are 
fully accessible (i.e., there exists a downloadable file containing the full 
ontology) at the time of this literature review. The models proposed in 
[26,28,38] are accessible via the web (Table 3). The alignment of the 
investigated domain ontologies with upper models (or other existing 
models) is limited to [26], which is the only paper explicitly describing 
the mapping between the proposed domain ontology with Descriptive 
Ontology for Linguistic and Cognitive Engineering (DOLCE) [50] and 
Basic Formal Ontology (BFO) [51], and with the domain ontologies 
Diabetes Mellitus Treatment Ontology (DMTO) [52] and Diabetes 
Diagnosis Ontology (DDO) [53]. 

The majority of the articles investigated do not specify any OEM 
(13), while 5 domain ontologies were developed following a custom 
approach ([26,32,39,46,54]). The three works leveraging an OEM 
selected the waterfall approach Ontology 101 [55], the lifecycle meth
odology NeOn [56], and the agile AgiSCOnt [57]. In line with poor 
adhesion to methodologies, less than half of the domain ontologies (9) 
were developed in collaboration with domain experts 
([26–28,32,33,40,43,46,54]). Stanford University open-source ontology 
editor Protégé [58] is the most appreciated choice, as 12 articles indi
cated its use – both within the article text or by illustrating excerpts of 
the ontologies using the editor. The remaining 9 papers did not specify 
the ontology editor adopted. 

Finally, 10 papers described and conducted tests to validate the re
sults produced by (or by means of) the domain ontologies (RQ3f); in 
particular, 5 works ([22,32,33,43,49]) adopted data from patients 
(clinical cases), 2 papers ([26,44]) relied on expert assessment, and 3 
articles validated with both approaches ([28,46,54]). A detailed report 
of the information available for the validation phases of the systems is 
represented in Table 5. The functional validation (i.e., the process of 
verifying that the output generated by the systems [59]) is conducted in 
all works – with the exception of [22] – with different means (relying on 
clinical cases or experts), while the structural validation (i.e., the 

verification of the system's logical consistency [59]) is conducted in only 
two works ([26,46]). One work devotes the validation phase to the 
assessment of the technology acceptance [22]. 

4. Discussion 

In this Section, the quantitative results illustrated in Section 3 are 
discussed in light of some characteristics and findings of the research on 
diabetes and ontology engineering. 

4.1. Diabetes in domain ontologies 

4.1.1. The epidemic characteristics of diabetes 
The geographical distribution of authors underlines the global 

concern for diabetes: in almost all continents, the issue of representing 
diabetes semantically emerged. In particular, Asian countries accounted 
for the majority of authors. This phenomenon could be explained in the 
light of recent data on the age-standardized diabetes prevalence rates 
[60]: adults aged between 20 and 79 affected by diabetes in this region 
(including Taiwan and South Korea, 9.7 % and 6.8 % respectively) range 
from 6 % to 10 %, with peaks of 14 % in China, Kazakhstan, and 
Pakistan, and the notable prevalence between 14 % and 18 % in 
Afghanistan. In 2021, central Asia and high-income Asian countries 
(South Korea, Japan, Singapore, Brunei) registered a significant increase 
in age-standardized cases, primarily due to obesity and exposure to risk 
factors [60]. According to IDF, China's healthcare expenditure for dia
betic patients touched 165.3 billion USD [18]. No global data are 
available for Taiwan and South Korea expenditures. Still, a comparison 
can be drawn if considering the data regarding diabetes-related expen
diture per diabetic person: South Korea spends 2554.6 USD, and China 
reaches 1173.5 USD (no data are available for Taiwan). 

The second geographical cluster comprises authors from Europe, 
which amounts to 21. European countries also saw a notable increase in 
the estimations of diabetic patients (+13 %) in 2021, bringing the total 
of diabetic cases up to 61.4 million adults, according to IDF [18]. The 
total European healthcare expenditure for those patients is estimated at 
189.3 billion USD annually. In particular, Germany's expenditure rea
ches 41.3 billion USD, France's is estimated at 22.7 billion USD, and 
Spain and Italy are about 15 billion USD. 

North America, the third cluster of authors, also registers an increase 
in the number of cases of diabetes. The IDF estimates that the number of 
adults suffering from this disease in the USA increased by 8.5 million 
people in ten years (in 2011 there were 23.7 million diabetic adults), 
bringing the total amount of diabetic patients to 32.3 million adults. This 
geographical area is in the lead for diabetes-related healthcare expen
ditures, with an estimation rising to 415 billion USD – which accounts 
for 43 % of the global expenditure. 

The global increase in cases and expenditure (estimated at 966 
billion USD, with an increase of 734 billion USD in 16 years [18]) can be 
seen as a strong driver for motivating the research in the field of systems 
for the diagnosis, prevention, and management of this disease. However, 
the case of African countries (fourth cluster) seems to contradict such a 
claim: although data from IDF are not complete, Ong et al. (2023) 

Table 3 (continued )  

Diabetes 
concept. 

Reuse Adoption of 
ODPs 

Maintenance Engineering Validation 

Reused ontologies Type of 
reuse 

Accessibility Alignment OEM 
adopted 

Collaborative 
approach 

Ontology 
editor  

Spoladore 
et al. 
(2023) 
[28] 

Developed with 
experts; Expert 

knowledge 
(AMD-SID) 

no  
Health 

condition yesc  AgiSCOnt yes Protégé 
real-patient 
data; expert 
assessment  

a https://bioportal.bioontology.org/ontologies/FASTO 
b https://github.com/ITWSXInformatics/DiabetesNutritionInformationSystem 
c https://www.stiima.cnr.it/wp-content/uploads/DSS_diabetes_validated.txt 
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recently highlighted that North Africa has the highest age-standardized 
rate (9.3 %). This region also registers the second lowest diabetes- 
related expenditure (12.6 billion USD) [18]. It is important to observe 
that the rise in age-standardized rate, together with more complete data, 
is very recent; therefore, it is plausible to expect an increase in attention 
toward diabetes in scientific research in the following years. 

Considering the temporal distribution of articles, the research on 
recommender and decision support systems for managing diabetes via 
nutrition therapy has never stopped since 2008. There is a paucity of 
works related to this topic before that year: this result is in line with the 
findings of [61], who investigated the use of AI techniques related to 
diabetes. They highlighted that 2008 was the first year to mark >2500 
articles produced on this topic. Also, IDF's reports on diabetes started in 
2000, while WHO started to publish materials dedicated to diabetes 
(together with IDF) a few years later (in 2004 [62]). The years between 
2000 and today have seen a significant rise in the number of diabetic 
patients; therefore, a lot of attention is now paid to this chronic condi
tion that has reached epidemic proportions. Estimations by IDF suggest 
that by 2045, 783 million people (12.2 % of the population) will have 
diabetes [18]. This emergency is also reflected in the number of papers 
that try to tackle this disease with AI – which, according to [61], over
came 10,000 works in 2017. Finally, another notable factor contributing 
to the release of domain ontologies in this research field is related to 
technologies: the W3C released Ontology Web Language 2 (OWL 2) in 
2009 [63], thus offering a more complete tool for the semantic repre
sentation of information. This – together with the development of rule 
languages, ontology editors, query languages, and research on authoring 
[64] – pushed ontology engineering forward, resulting in several at
tempts to model diabetes in domain ontologies. 

Therefore, the epidemic characteristics of diabetes, which led to the 
generation of validated and revised local guidelines for its management, 
together with the availability of reliable ontological languages, enabled 
the engineering of a variety of domain models related to the disease – 
including the works here included tackling nutritional management of 
the disease. 

4.1.2. Prevalence of type 2 diabetes mellitus and support systems 
As highlighted by the answers to RQ1 and RQ2, the majority of pa

pers addressed T2D and are dedicated to patients. These findings can be 
explained by the fact that T2D accounts for 90 % of cases worldwide – a 
trend characterizing also new cases [18]. The active role of patients in 
managing T2D is essential since the first therapeutic response consists of 
changing the patient's lifestyle, acting on nutrition to keep blood glucose 
levels under control, and physical activity. This helps shed light on the 
type of outputs provided by the investigated systems, which mainly falls 
into the Meal composition and Diet categories. In fact, while listing in
gredients and suggesting recipes (and their combinations into meals or 
dietary plans) is easy to grasp even for non-nutrition experts, the output 
composed of Nutrients amount may be arduous for patients: only [21] 
provides users with the caloric intake and their daily distribution, while 
the other two works falling into this category either provide some easy- 
to-read output [54] or are devoted to clinical personnel [28]. Not for 
nothing, local patient-dedicated guidelines for managing this chronic 
condition do not refer to nutrients, preferring the adoption of “portions” 
as a unit of measurement of foods or grams [65]. 

The included articles illustrate different approaches to providing 
recommendations involving several input types. It is worth observing 
that the pharmacological management and diagnosis of Diabetes (in 
particular, T2D) have been represented in several international publi
cations. However, nutrition management of this condition still presents 
a fragmented framework. This phenomenon could be in part due to the 
cultural differences characterizing countries – which influence local 
guidelines to some extent – and to the evolution of evidence-based 
nutrition guidelines for the management of the disease (underlining 
some characteristics that are common to all populations): the latter were 
able to generalize the various evidence- and expert-based guidelines into 

medical nutrition recommendations, which are later re-elaborated and 
progressively incorporated by local guidelines [66]. This is evident also 
from those works that adopted specific conceptualizations for the 
formalization of diabetes management: the majority of such conceptu
alizations rely on the same input (diabetic patient's gender, height, age, 
and weight) – which are also adopted in evidence-based studies. How
ever, only a few studies adopted well-known inputs like BMI and ideal 
weight (i.e., the weight a patient should have according to his/her 
height). BMI is deemed essential in indicating underweight, overweight, 
or obesity conditions, which can heavily impact the caloric intake to be 
suggested [67]. However, BMI is adopted in only 9 systems 
([25,26,28,32,35,43,44,46,54]). Similar results are collected regarding 
the calculation of the diabetic patient's BMR. In this case, the majority of 
the included works do not specify any equation or method to calculate 
BMR (14 works). The remaining works all adopt Harris-Benedict equa
tions for estimating patients' BMRs. However, among these articles, only 
one ([28]) underlines the need to use these equations together with 
Mifflin-St. Jeor, which is more indicated to estimate obese patients' BMR 
[68]. The role of BMR in diabetic patients is crucial since this indicator 
tends to be higher than in non-diabetic populations, meaning that 
nutritional corrections should be considered when composing a diet. 
Also, an accurate estimation of BMR can support the early identification 
of diabetic-related secondary issues in T2D patients (e.g., peripheral 
neuropathy) [69]. 

Collected data from the included articles may indicate that the 
conceptualizations adopted – and the underlying input – may not suffice 
to identify diabetic patients' BMR accurately. Moreover, the limited 
adoption of BMI suggests that the systems depicted by the selected works 
may refer to “ideal” diabetic patients (i.e., patients not characterized by 
overweight, obesity, or underweight anthropometric phenotypes). 
However, in such cases, the inferences produced via such systems may 
be inadequate for real diabetic patients, as many of them (especially T2D 
diabetic patients) present either overweight or obesity characteristics – a 
prevalent risk factor for this chronic disease. Therefore, it is unsurprising 
that 8 out of 9 articles involving BMI as one of the input proposed sys
tems specifically dedicated to diabetic patients (or clinicians). At the 
same time, the adoption of Harris-Benedict equations is registered in 
those works ([21,23,33,34]) referring to diabetes as one of the many 
chronic conditions that could be aided by a recommender or a decision 
support system: the estimation of BMR can indeed play a significant role 
in many other conditions [70]. Similarly, the limited representation of 
the level of physical activity conducted by patients (11 papers) may lead 
to thinking that an important piece of information is missing. This is 
particularly relevant for those systems proposing dietary plans – 7 out of 
10 articles not adopting the level of physical activity as an input present 
systems that do not address diabetes specifically. 

4.1.3. Validation of the included systems 
As illustrated in Table 5, half the systems described in the selected 

works underwent a form of validation (10 papers). This finding is in line 
with those reported by Contreras and Vehi (2018), who also highlighted 
that AI-based systems for the prevention and management of diabetes 
usually undergo a validation phase. For recommender and decision 
support systems, the functional validation aims at verifying that the 
output generated by the systems is compliant with the semantic of the 
domain [59]: results show that in almost all papers this validation is 
conducted (in 4 cases relying only on clinical cases ([32,33,43,49]), in 
three cases relying on experts' opinions ([28,46,54]), and in two cases 
relying on a combination of both ([26,44])). 

The structural verification is taken for granted in almost all of the 
papers investigated – i.e., the system's logical formalism is consistent, 
which is something that a reasoner can easily verify – with the notable 
exceptions of [26,46]. While the first relies on a varied set of experts to 
assess the ontology's quality (leveraging on CQs validated with 
SPARQL), the second involves experts in a thorough evaluation of the 
developed ontology: considering the scope of the FASTO ontology (a 
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medical domain ontology heavily connected to biomedical standard 
ontologies), such a meticulous evaluation is not surprising. However, the 
lack of details pertaining the structural validation for the remaining 
works could be explained by the fact the functional validation requires 
the adoption of a DL reasoner – therefore, at least the ontological con
sistency of the domain ontologies should be granted. 

The functional validation of the systems is mostly devoted to 
assessing the correctness of the inferences generated by the reasoning 
process. In three works [32,33,46], clinical cases are used as tests to 
check whether the inferences produced are sound – if compared to 
guidelines and knowledge modelled within the ontology. However, 
those works involving domain experts in the validation process conduct 
an assessment of the inferences with experts' opinion: clinicians' takes on 
the recommendations cover a central role in assessing the functionality 
of SWRL rules [44] and also when it is necessary to provide an evalua
tion of the whole recommendation outputs ([26,28,54]). In two cases, 
the functional validation of the systems is conducted differently from the 
majority of the papers: Arwan et al. [43] matched ontologically 
modelled patient information with caloric information contained in the 
food model; combining weighted tree similarity method and SPARQL 
queries, the food items with the highest degrees of similarities are 
selected to compose a diet. In Chen et al. [49], accuracy is the metric 
adopted to evaluate the functionality of the system: recommended food 
items (combined in a diet) are compared with dieticians-prepared diets; 
the ratio of between the dieticians-prepared food items and the inferred 
items constitutes the accuracy metric of the system (which, in the case of 
this paper, is 100 %). 

Interestingly, in the incidence of cooperative approaches in ontology 
engineering is partially reflected also in aspects, with domain experts 
providing access to patients' data or formulating real use cases 
([28,32,33,43,46,54]). However, this type of validation is combined 
only in a few cases with expert assessment, which could have further 
strengthened the results gained by the system – or it could have possibly 
fostered a maintenance phase aimed at fine-tuning some aspects of the 
ontologies, relying on both results' data and domain experts' interpre
tation of such results. With regard to the type of experts involved in the 
validation, Faiz et al. [44] detailed clinical personnel expertise (endo
crinologists, nutritionist, dieticians) without specifying the number of 
people involved. El-Sappagh et al. [26] also do not provide details 
regarding the professionals involved in the structural and validation 
phases (although, it is evident that clinicians must have been involved at 
some point). Both [28,54] relied on two clinicians (1 nutritionist and 1 
dietician) while [46] extended the validation phases also AI pro
fessionals. These findings strengthen the role of domain experts – a role 
not limited to the engineering phases, rather extended to the validation. 

It is also worth noticing that 9 papers relied on an existing concep
tualization to formalize diabetes ([26,28,32,33,43,44,46,49,54]). The 
possibility of adopting an existing conceptualization and guidelines 
about diabetes' nutritional management could be a facilitator for the 
validation, as experts and clinical cases could be assessed against the 
(ontologically formalized) rules detailed in the conceptualizations. In 
such cases, conceptualizations – whether they are obtained by scientific 
literature, clinical guidelines, or domain experts – do not act only as a 
“starting point” for domain conceptualization tasks. Still, they also 
provide a set of constraints against which to assess the system. 

A completely different validation of the system is performed in [22]: 
twenty patients were involved in assessing the acceptability and us
ability of the proposed system, which included an evaluation of the 
usefulness of the recommendations provided by the system. It is striking 
that no clinicians were asked to assess whether the recommendations 
were safe for patients and their health conditions. While the absence of 
clinical personnel may raise some doubts, this work underlines a 
fundamental aspect that is neglected in all other articles: end users 
assessment of the systems. Tests conducted with end users (patients, but 
also clinicians when the recommender systems are developed as clinical 
decision support systems) are an essential step to understand technology 

acceptance and usability of a digital solution. The lack of investigation in 
this area may be motivated by the fact that most of the articles describe 
prototypical digital solutions – while the system presented in [22] seems 
to be in a more advanced state. Nevertheless, none of the investigated 
papers foresees a framework for testing the recommender systems with 
their target users (Section 3.2.2). 

Finally, it is worth noting that half of the included systems do not 
propose any type of validation, whether the described systems recom
mend food items, diets, or nutrients amount to patients or where 
devoted to supporting clinical personnel in managing diabetic patients. 

4.1.4. The focus on foods 
The role of foods (specific food items and nutrients) and diabetic 

patients' habits are fundamental for nutrition therapy and are under
lined in every guideline. Diabetic patients are suggested to consume 
specific foods – and abstain from other types – to avoid disease exac
erbations and better control blood glucose levels throughout the day 
[71]. Therefore, it is unsurprising that food representation is considered 
by a relevant amount of the works included (86 %), particularly those 
tackling T2D. The representation of foods responds to the need to 
represent specific characteristics, such as the calories, amount of nutri
ents, and servings and frequencies. This can explain why the reuse of 
existing domain ontologies for foods is limited. Authors often preferred 
focusing on foods' specific features rather than reusing large domain 
ontologies. In those systems reusing an existing domain ontology for 
food, only three articles allow for a deeper analysis regarding the 
possible reasons for the adoption of FoodOnt ([27,32,38]) – the other 
works refer to non-accessible ontologies [22,33]. FoodOn presents a 
comprehensive and articulated hierarchy of foods, formalizing >9500 
food products. This feature is interesting for those systems that indicate 
replacing a food with another according to some rules. Moreover, Foo
dOn offers different perspectives for the description and representation 
of foods, enabling the possibility to represent the transformations in
gredients are subjected to and cooking methods. 

4.1.5. Strategies for recommendations generation 
It is interesting to observe the different strategies underlying the 

recommender and decision support systems depicted in the included 
works. In particular, reporting how inferences are generated can foster a 
deeper comprehension of the role of domain ontologies in such systems. 
As reported in the previous Section (and in Table 4), most of the systems 
relied on ontologies developed with OWL – with only the work from 
Woo et al. (2022) adopting the RL profile, the preferred profile for 
reasoning with logical implications. It is interesting to observe that 11 
articles used SWRL to generate inferences. This finding aligns with 
research underlining the role of “If-Then” rules in ontology-driven rec
ommendations. In clinical contexts, this type of rule is adopted to safely 
infer entailed knowledge [72] – sometimes with other reasoning 
mechanisms, such as in [25], where “If-Then” clauses were combined 
with fuzzy reasoning. In general, reasoning with rules in knowledge- 
based systems dedicated to clinical aspects presents similarities with 
the human cognitive processes of decision-making, making it easier to 
follow and explain [73]. This could explain the broad adoption of rule- 
based languages, even to manage knowledge vagueness – exemplified by 
two works adopting Type-2 fuzzy logic [25,46]. Also, the findings of this 
review are aligned with those by [74], devoted to recommender systems 
for nutrition in general: the role of ontology and rule-based systems is 
pivotal in this field. The transparency rule-based recommendation offers 
could explain the prevalence of such systems over more advanced AI 
techniques. Rules are explicit, results produced by these systems are 
auditable, and human users can potentially trace the inference mecha
nism to understand the inference produced via rules entirely [12]. This 
feature is particularly appreciated in clinical domains since data-driven 
systems may be perceived as unreliable – both by patients [75] and 
clinicians ([14,15]) thus, the role of rule-based (and, more in general, 
knowledge-based) systems in explainable AI remains central in the 
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development of tools for diagnosis, prediction, recommendation [76]. 
Among the included papers, rules seem to be developed – either with 
SWRL or Jena – when ontologists rely on expert knowledge (from 
guidelines or clinical standards) or experts: out of the 13 works out of the 
15 adopting rules relied on domain experts or existing conceptualiza
tions, including scientific literature and standards on diabetes detailing 
how to develop inference rules. This supports the importance of experts' 
role in ontology-based clinical recommender systems [72], and further 
underlines the need for expert knowledge-based solutions to improve 
explainable AI tools in clinical contexts. 

Comparing the results of Table 2 regarding the outputs provided by 
the systems with the considerations expressed in Sections 4.1.2 and 
4.1.4 regarding the role of nutrients amount recommendation, it is 
necessary to note that while this recommendation approach might result 
inefficient for systems addressing diabetic patients, it is interesting for 
clinical personnel. In fact, the correct identification of nutrients is the 
basic step for tailored dietary plans development by clinicians. The 
dietician, in order to develop a customized diet plan, takes into account 
the disease-specific available guidelines, but then adapts the guidelines 
to the single patient, considering his or her medical and dietetic history, 
as well as the short- and medium-term goals to be achieved with that 
nutritional intervention, and his or her preferences [77]. Starting with 

Table 4 
The ontological languages adopted to develop and query the domain ontologies 
from selected articles.   

Ontological 
languages 

Logic 
profile 

Rule 
language 

Query 
language 

Lee et al. (2008) 
[33] 

not specified not 
specified 

not specified not 
specified 

Akkoç and Cicekli 
(2011) [24] 

RDF, OWL not 
specified 

Jena SPARQL 

Alhazbi et al. 
(2012) [21] not specified 

not 
specified not specified 

not 
specified 

Arwan et al. 
(2013) [43] OWL DL SWRL SPARQL 

Wang et al. 
(2013) [25] 

Fuzzy markup 
language 

Type-2 
fuzzy 

Fuzzy 
markup 
language 

not 
specified 

Villarreal et al. 
(2014) [22] not specified 

not 
specified not specified 

not 
specified 

Faiz et al. (2014) 
[44] OWL 

not 
specified SWRL 

not 
specified 

Latha and Kumar 
(2014) [34] 

not specified not 
specified 

not specified not 
specified 

Lo et al. (2015) 
[40] 

OWL DL Jena SPARQL 

Chen et al. (2017) 
[49] RDF, OWL Fuzzy Jena 

not 
specified 

Yusof and Noha 
(2017) [35] OWL 

not 
specified not specified SPARQL 

Ali et al. (2018) 
[23] 

RDF, OWL 2 Type-2 
fuzzy 

SWRL SPARQL 

Tarabi and Juric 
(2018) [45] 

OWL not 
specified 

SWRL SQL 

Li and Alian 
(2018) [46] OWL DL SWRL SPARQL 

El-Sappagh et al. 
(2019) [26] RDF, OWL 2 DL SWRL SPARQL 

Spoladore and 
Sacco (2020) 
[27] 

RDF, OWL 2 DL SWRL SPARQL 

Spoladore et al. 
(2021) [32] RDF, OWL 2 DL SWRL SPARQL 

Rawte et al. 
(2021) [38] OWL 

not 
specified not specified 

not 
specified 

Nisheva et al. 
(2021) [39] 

RDF, OWL 2 
not 

specified 
SWRL 

not 
specified 

Woo et al. (2022) 
[54] 

RDF, OWL 2 RL SWRL not 
specified 

Spoladore et al. 
(2023) [28] RDF, OWL 2 DL SWRL SPARQL  

Table 5 
A summary of the validation proposed by the surveyed systems.   

Validation 
type 

Clinical cases 
sample and 

detail 

Number and 
types of 
experts 

Investigated 
features and 
validation 

characteristics 

Lee et al. 
(2008) 

Clinical 
cases 

11 clinical 
cases; gender, 
age, height, 

weight 
(current), 

meal record 

– 

Functional 
validation - 

checking the 
correctness of 
inferences for 
meal (dinner) 
composition 
according to 

favourite foods 
and “Six foods 

groups” 

Arwan 
et al. 

(2013) 

Clinical 
cases 

30 clinical 
cases; age, 

height, 
weight, 

activity, BMR 

– 

Functional 
validation - 

generation of 
inferences and 

similarity 
calculation 

between patients 
and food items 

Faiz et al. 
(2014) 

Expert 
validation – 

nutritionists, 
dieticians 

(unspecified 
number) 

Functional 
validation - the 
correctness of 

inferences for food 
items 

recommendation 
provided via 

SWRL are 
evaluated by 

experts 

Villarreal 
et al. 

(2014) 

Clinical 
cases 

20 clinical 
cases; glucose 
level, gender, 
age, weight 
(current) 

– 

Acceptance - 
patients were 
asked to rate 
application's 

response time, 
usability, and 
quality of the 

recommendations 
generated 

Chen et al. 
(2017) 

Clinical 
cases 

10 clinical 
cases; gender, 

weight 
(current), 

height, 
activity level, 
BMI, chronic 

disease 
(hypertension 
or nephritic 
syndrome or 

high 
cholesterol or 

renal 
insufficiency), 
meal record (7 

days) 

– 

Functional 
validation - the 

recommendations 
generated by the 

ontology are 
evaluated by 
calculating 

“recommendation 
accuracy” 

Li and 
Alian 

(2018) 

Clinical 
cases +
expert 

validation 

unspecified 
number of 

clinical cases; 
gender, BMI, 
activity level 

AI experts, 
nutritionists, 
dieticians, 
diabetes 
doctors 

(unspecified 
number) 

Structural 
validation - 
ontology's 
evaluation 

conducted by 
ontologists with 

CQs generated by 
experts and using 

SPARQL 
Functional 
validation - 

inferences on 
dietary 

recommendations 
generated with 

SWRL 

(continued on next page) 
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the calculation of the patient's energy and macro- and micronutrient 
requirements, the dietician proceeds with qualitative and quantitative 
food choices that overcome the amount of macronutrients offered in the 
nutritional plan. However, clinical outcomes of MNT can vary individ
ually, and considering genetic variations that may affect the specific 
metabolic response to individual macronutrients opens new perspec
tives for precision MNT [78]. 

Therefore, from a clinical perspective, it could be argued that a 
promising approach in the development of tailored nutritional recom
mendations for diabetic patients may derive from a two-steps reasoning 
process aimed at identifying the nutrients and, then, developing a diet. 
However, such an approach is only partially represented in the works 
surveyed here: Spoladore et al. (2023) [28] retrieves only the amounts 
and shares of micro- and macro-nutrients, without extending the 
reasoning process to the composition of a diet; on the contrary (as 

illustrated in 4.1.2 and 4.1.3) most of the works adopt a few anthro
pometrical characteristics (weight, height, gender, age) to infer the 
caloric amount and, from that, food items – neglecting the role of 
nutrients. 

4.2. Domain ontologies for recommender and decision support systems for 
diabetes nutrition therapy: engineering, reuse, and validation 

The results for answering RQ3 provide some insights into the general 
state of domain ontologies adopted as a backbone of recommender and 
decision support systems for diabetes. 

4.2.1. Domain conceptualization: strategies for representing diabetes 
The ontology engineering activities pertaining to the conceptualiza

tion of the domain at hand are among the first to be conducted. Although 
there is no standardized method or technique to conduct such activities, 
several OEMs proposed different approaches [79]. In general, domain 
ontologies can rely on existing models or insights on the domain to be 
modelled (e.g., thesauri, dictionaries, technical documentation, etc.) or 
even adopt domain experts' advice [80]. The included papers present 
two-thirds of the domain ontologies being developed relying on an 
existing conceptualization, usually in the form of expert knowledge 
(provided by clinical standards, reference frameworks, guidelines, 
domain experts, or a combination of such elements). For the remaining 
works, the conceptualization of diabetes might appear somehow 
neglected at first glance; however, this could not be the case. Those 

Table 5 (continued )  

Validation 
type 

Clinical cases 
sample and 

detail 

Number and 
types of 
experts 

Investigated 
features and 
validation 

characteristics 

El- 
Sappagh 

et al. 
(2019) 

Expert 
validation 

unspecified 
number of 

experts 

unspecified 
type and 

number of 
clinicians 

Structural 
validation - 
ontology 

correctness, 
completeness, 
extensibility, 

organizational 
fitness assessed by 

domain experts 
Functional 
validation - 
inferences 
assessed by 

domain experts +
system's full 
functionality 

validated with a 
one patient's 

complete real-time 
monitoring and 

recommendation 
process (therapy 
plan including 

dietary 
recommendations) 

Spoladore 
et al. 

(2021) 

Clinical 
cases 

2 clinical 
cases; gender, 
height, age, 

weight 
(current), BMI, 
activity level, 

chronic 
disease 

– 

Functional 
validation - for 

each clinical case, 
the food item 

suggestions and 
meal compositions 
correctness were 

assessed by 
ontologists 
leveraging 
guidelines 

Woo et al. 
(2022) 

Clinical 
cases +
expert 

validation 

1 clinical case; 
gender, age, 

height, weight 
(current), BMI, 
glucose level 

1 
nutritionist, 
1 dietician 

Functional 
validation - results 
generated by the 

system were 
assessed and rated 

by experts 

Spoladore 
et al. 

(2023) 

Clinical 
cases +
expert 

validation 

2 clinicians 
6 clinical 

cases; gender, 
age, height, 

weight (ideal 
and current), 
BMI, BMR, 
glycated 

hemoglobin, 
activity level 

1 
nutritionist, 
1 dietician 

Functional 
validation - results 
generated by the 

system were 
assessed and rated 

by experts  

Table 6 
Evaluation of the accessible ontologies.  

OEM outcome features El-Sappagh 
et al. (2019) 

[26] 

Rawte et al. 
(2018) 
[38]a 

Spoladore 
et al. (2023) 

[28] 

Reused models 
Non- 
ontological 

American and 
Canadian 
Clinical 
Practice 

Guidelines for 
Diabetes Type 

1 
management; 
FHIR standard 

Expert 
knowledge 

from 
scientific 
literature 

AMD-SID 
guidelines 

Ontologies BFO FoodOn ICD, ICF 

Documentation 
delivery 

List of 
Competency 
Questions 

yes no no 

Glossary / 
Lexicon 

yes no no 

Conceptual 
map yes yes yes 

Relevance of the 
model 

Domain and 
range defined yes partial yes 

Disjunctions 
defined 

yes no yes 

Restrictions 
defined 

yes no yes 

Unsatisfiable 
concepts no no no 

Structural measures 

9577 classes, 
658 object 
properties, 

164 datatype 
properties, 460 

individual, 
59,976 axioms, 

140 SWRL 
rules, 127 
annotation 
properties 

6 classes 
2 object 

properties 
15 datatype 
properties 

19 classes, 4 
object 

properties, 
56 datatype 
properties, 

30 
individuals, 
539 axioms, 

95 SWRL 
rules, 2 

annotation 
properties 

Logical consistency yes yes yes  

a Structural measures for this paper do not include entities from FoodOn since 
they are not included in the online version of the ontology. 
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articles not specifying any conceptualization for diabetes 
([21,22,25,34,35,38,46]) still manage to produce some nutritional rec
ommendations – in two cases even specifying rules [25,46] –, which 
indicates that some sort of conceptual model for the representation of 
diabetes and its functioning must be underlying the proposed systems. 
This may lead to the consideration that, in some works, the specification 
of the conceptualization is somehow neglected, either because of the 
epidemic characteristic of the disease (i.e., it is taken for granted how 
diabetes works) or because the focus of those works is not specifically on 
diabetes (i.e., the articles are focused on chronic conditions in general). 

Nevertheless, it is interesting to note that only a few works 
([26,27,32]) leveraged WHO standards or specified clinical guidelines to 
the point of enabling an evaluation of the type of entities adopted to 
represent diabetes: in these cases, concepts derived from the adopted 
knowledge resources were modelled as OWL classes ([26]) or both as 
classes and datatype properties ([27,32]). For the remaining papers, by 
analyzing the rules presented, it is possible to safely assume that many of 
the data required for the recommender or decision support systems to 
work were represented as datatype properties. This phenomenon 
strengthens the idea that, in general, conceptualization in diabetes 
domain ontologies is not scrupulously presented, omitting details that 
could have enabled an in-depth analysis of the ontologies underlying the 
systems. 

It is worth observing that many articles adopted local guidelines for 
the development of portions of the conceptualization, including rules 
([28,33,35,40,43,44,46,49,54]). This underlines the local (national) 
level of diabetes management and the role of guidelines in defining 
thresholds, amounts of nutrients, categories, and types of foods, and – 
where applicable – drugs' dosage and administration. 

Similarly, the conceptualization of another relevant aspect of dia
betes – nutrition – does not follow specific rules in the ontologies 
investigated. While the reuse of existing ontologies in this specific field 
is limited, part of the varied conceptualizations regarding foods may be 
due to the necessity of representing local needs (e.g., foods' availability, 
restrictions on food consumption due to culture, etc.) and to the repre
sentation of specific perspectives on foods (e.g., amounts of nutrients, 
quantity, portions, etc.). In this regard, once again, local guidelines may 
play a central role in guiding ontologists toward those concepts that 
should be given more attention. 

4.2.2. Reuse of existing ontological and non-ontological resources 
The reuse of existing ontologies specifically dedicated to diabetes is 

attested only in [39], who adopted DMTO [52] as part of their model, 
while 6 papers reused existing ontologies that provide concepts or re
lationships reusable for diabetes' representation; therefore, <29 % of the 
included works reused existing resources. The rate increases to 43 % if 
we also consider those papers that reuse non-ontological resources 
[35,40] and those works reusing ontologies not directly related to dia
betes and its formalization (but connected with foods or person's rep
resentation). The paucity of reuse is in line with the findings by 
Fernández-López et al. [81], who investigated the reuse of ontologies 
within the same domains by conducting an empirical evaluation – 
concluding that the reuse rate attested around 30 %. 

Except for very few papers not indicating how reused ontological 
resources were adopted, the majority of the systems reusing an ontology 
(or a portion of it) specify the type of reuse, or it was possible to assess 
the type of reuse conducted ([26,27,32,38,39,54]), with import being 
preferred over soft reuse. This partially contrasts with the considerations 
reported by Tudorache [64], who highlighted how identifying ontol
ogies to be reused is easier than putting reuse into practice. For the case 
of the papers investigated, it seems that the identification of reusable 
domain ontologies is pretty limited, while the ways to reuse the few 
models identified were quite clear. 

It is worth noting that the reuse of ontologies started to be more 
consistent around 2019, with well-known ontologies being considered 
reusable: El-Sappagh et al. [26] opted for BFO, while the two works 

([27,32]) relied on WHO classifications ICF and ICD to describe diabetes 
and its related conditions, [38] imported FoodOn for the representation 
of foods, and [39] reusing DMTO. If the reuse of WHO classification 
might be seen as part of a trend leveraging standards to model health- 
related conditions [82], the reuse of BFO, FoodOn, and DMTO un
derlines the pivotal role these models cover in their respective domain as 
influential sources. 

4.2.3. Ontology engineering, ODPs reuse, and maintenance 
The majority of systems reusing an ontological resource leveraged on 

an OEM to move from an informal to a formal representation of the 
diabetes domain: this agrees with the general purposes of a methodology 
– effectively support engineering activities, including the identification 
and reuse of existing resources, insights on how to conceptualize the 
domain, formalizing the ontology's goals. Nonetheless, only 8 works 
specified the methodology followed to develop the domain ontologies 
described in the papers. This phenomenon could be, in part, explained 
by the fact that expert ontologists may prefer relying on different and 
personalized approaches rather than existing OEMs [83]; this explana
tion is also supported by the presence of articles ([26,32,39,46,54]) 
clearly adopting a custom approach, showing the presence of some 
features of ontology engineering (e.g., competency questions, collabo
rative development processes, reuse, etc.) without endorsing any exist
ing OEM. The adoption of (parts of) the activities described in many 
methodologies and their rearrangement into a custom methodology is 
widely documented in recent trends in ontology engineering [79], 
supporting the claim that expert ontologists recognize the role and ad
vantages of following an OEM – still, they can personalize the approach 
to ontology engineering according to their needs. The OEMs reported in 
the included work are exemplary of the “types” of methodologies 
developed over two decades of research on ontology engineering: [35] 
opted for Ontology 101 [55], which is among the first methodologies to 
be developed and includes support at authoring level (thus, guiding 
ontologists in “how to model” the domain by selecting constructs and 
entities); [27] selected the NeOn methodology [56], which can be used 
both as a waterfall and a lifecycle OEM, with a focus on supporting the 
reuse of ontological and non-ontological resources; finally, [28] relied 
on AgiSCOnt [84], an agile OEM underlining the role of conceptuali
zation leveraging collaborative engineering processes. 

The importance of collaborative ontology engineering in health- 
related domains has been stressed considerably in the past years 
([31,64,79]): in such domains, the possibility of relying on clinical ex
perts (e.g., physicians, specialized personnel, etc.) and stakeholders (e. 
g., patients, rehabilitators, etc.) can result in the development of more 
effective domain conceptualizations, thus enhancing the ontology's 
output. The collaborative approach involving ontologists and domain 
experts is nowadays pervasive in any methodology [79] – including the 
most recent agile paradigm [85]. However, less than half of the included 
works leveraged experts to develop their knowledge bases in any 
ontology engineering phase. Interestingly, in 7 articles 
([26,28,32,33,43,46,54]) the collaboration with domain experts led to a 
validation of the recommender and decision support systems adopting 
the domain ontologies. Moreover, all articles developing their ontol
ogies collaboratively resorted to an existing conceptual model as a 
framework for the conceptualization of the diabetes domain. Also, 
collaboration is attested in 4 of the 7 reuse cases, while 6 works adopted 
a custom or existing OEM for the ontology engineering process. The 
general lack of collaboration in the development of domain ontologies 
may be seen as a consequence of the scarce adoption of existing meth
odologies – which could have underlined the role of domain experts 
throughout the ontology engineering process. The cooperation with 
clinical personnel and their expertise in diabetes could have granted 
access to real use cases or patients' data for the validation of the systems 
described. 

The lack of cooperation is somewhat surprising, considering that 12 
domain ontologies were developed leveraging Protégé, an ontology 
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editor that enables online cooperative engineering of models. Consid
ering that this editor is free of charge, maintained by a community of 
360,000 active users [64], and periodically updated with new features, 
plug-ins, and new versions, scarce cooperation cannot be ascribed to the 
absence of cooperative tools. 

Also limited is the adoption of ODPs: no significant patterns were 
adopted to describe diabetes' specific characteristics, while only a gen
eral content pattern representing patients and health conditions [41] 
and a pattern for the representation of n-ary relationships were adopted. 
Moreover, no further patterns emerge by investigating the (few) avail
able ontologies. The limited reuse of ODPs in domain ontologies related 
to diabetes retraces a result that is common in the healthcare domain 
(see, for example, the reuse of ODPs in domain ontologies describing 
disabilities [82]). Among the different research areas and industries 
investigated by researchers involved in ODPs, the healthcare domain is 
the least studied, with a notable and well-known resistance to adopting 
patterns (as attested in [86]). 

OEMs can also support ontologists in maintenance actives, although 
no standardized methodologies or techniques are devoted to support 
them in this task. Each methodology focuses on one or more particular 
aspects of the engineering process; therefore, ontology engineers choose 
the methodology that best suits their needs. In particular, maintenance 
is aimed at updating domain ontologies and making them available; 
thus, it takes place after the development (and testing, if foreseen) 
phase. However, only 3 domain ontologies among the included works 
are accessible. Thus, the general lack of maintenance may be ascribed to 
the specific OEMs selected or the set of activities composing custom 
methodologies – which may not foresee a maintenance phase. Never
theless, the poor rate of accessible domain ontologies on diabetes in
dicates that the “lost” ontologies (those not accessible nor retrievable) 
are destined not to be reused, forcing ontologists to find reusable models 
elsewhere [64]. 

4.2.4. Evaluation of the accessible ontologies and their systems 
As illustrated in the previous Sections, three papers published online 

the ontologies they present. These three models can be thus investigated 
to assess their quality in representing diabetes and to understand the 
role they play in providing recommendations. However, it is important 
to observe that there is no standard ontology evaluation framework or 
methodology (ontologies are always content and ontologists' perspective 
dependent). Nonetheless, it is still possible to observe some of the on
tologies' metrics to get an indication of the models overall quality by 
reusing an evaluation framework proposed in [85]. The framework 
summarizes some of the main metrics that can provide some hints 
regarding an ontology's overall quality:  

• Reused models: check if the ontology reuses existing models.  
• Documentation delivery: check if the documents (CQs, glossaries, 

conceptual maps), comments and labels (within the ontologies), or 
any other form of description are present to support users in un
derstanding the conceptualization underlying the ontology  

• Relevance of the models: evaluates how the ontology provides the 
information expected to be modelled using domain and range defi
nitions, class restrictions or disjunctions, unsatisfiable concepts  

• Structural measures: surveys the features available in the ontology 
language and that are used to describe the domain at hand (e.g., 
SWRL rules, datatype or object properties, individuals, classes, etc.)  

• Logical consistency: assess the DL-consistency of the model using a 
reasoner 

The results of the evaluation conducted on the three available on
tologies are reported in Table 6. 

At first glance, it is obvious that the three ontologies are very 
different among them. In terms of reused models, [26] is a medical 
model deeply rooted in biomedical ontologies, reusing BFO and 
leveraging different standards for diabetes management and healthcare 

data interoperability, while the other two ontologies are domain ones. 
The difference can be observed also in terms of documentation delivery, 
where [28,38] do not provide many details – while, on the contrary, 
[26] presents a complete documentation, with lexicon represented 
within the ontology by means of annotation properties. 

In the relevance of the model and structural measures the differences 
between the ontologies are even more marked: [26] presents all the 
characteristics of a large medical ontology, founded on BFO, while the 
ontology in [28] is a complete domain ontology limited to its purpose. 
However, the ontology in [38] is scant: the only features adopted to 
model the domain are ranges on datatype properties. Taking into ac
count the three ontologies' characteristics, it could be concluded that 
[26,28] are two domain ontologies (although, the first is a large medical 
domain ontology and the second is more contained and lightweight), 
while [38] presents an application ontology – a model developed to 
answer data representation needs within a specific application. 

It is interesting to observe that while ontologists were tackling 
similar domains and sometimes adopted similar and predictable 
modelling choices for some domain features (e.g., the use of datatype 
properties to model nutrients amount and patient's clinical data), the 
output consists of very different ontologies. The differences can be 
partially explained by the purposes of the three systems and the ways 
selected to pursue them. 

The remarkable differences among the three ontologies are mirrored 
in the validation of their systems (Section 4.1.3): [26] proposes a 
detailed validation conducted with domain experts, encompassing both 
structural and functional aspects; a simpler functional validation is 
presented in [28], devoted to assess the quality and correctness of the 
inferences generated by the ontology; no validation at all is proposed in 
[38]. There seems to be a correlation between the completeness of the 
models (observable via the relevance of the model and structural measures 
features) and their validation. 

5. Implications 

5.1. Implications for ontology-based recommender and decision support 
systems for diabetes nutrition therapy: Balancing general guidelines and 
personalization 

Most of the systems depicted in the included works are devoted to 
proposing a set of food items to patients based on some criteria (meal 
composition). While this approach underlines the pivotal role of clinical 
nutritionists and dieticians in composing a patient's diet, it proves its 
limitations as a patient-based recommendation. This type of food item 
recommendation implies patients can compose a healthy and nutri
tionally balanced diet independently. On the contrary, the Diet type of 
recommender and decision support systems can provide more specific 
and strict indications to patients. The management type of systems can 
support both clinicians and patients in handling some day-to-day aspects 
of the chronic disease, thus supporting patients in preventing the exac
erbation of diabetes. Finally, those systems mainly focused on suggest
ing specific nutrient amounts can provide only partial support to patients 
(i.e., they can help them manage their caloric intake) while greatly 
aiding clinical personnel (who can discern the appropriate amounts of 
nutrients according to the patient's needs). The variety of recommender 
and decision support systems underlines that, from a nutrition therapy 
perspective, diabetes is a complex chronic condition – perhaps even too 
complex to be handled by a single knowledge-based system. All the 
systems described in the included papers can only cover a portion of the 
guidelines they adopted as a framework, thus providing only support to 
specific aspects. 

An example of the limitations traced in all systems pertains to the age 
of the end users: all the systems are devoted to adult patients – or do not 
specify any age range. However, diabetes nutrition therapy is different 
according to the patient's age, as the pediatric population's outputs must 
consider the growth process and cannot simply rework the indications 
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given to the adult. Another important point to be highlighted is the 
weight used by the systems to give quantitative nutritional recommen
dations: users should be informed about the differences in the consid
eration of real or ideal weight, together with a clear explanation of how 
the ideal weight has been calculated. 

Considering the rule-based strategies for generating recommenda
tions, more transparency for the guidelines and formulas used for 
anthropometric and nutritional calculations is required, also from a 
national and international perspective. Furthermore, considering the 
accessibility of information directly provided to the patient in terms of 
meal composition, meal composition and diet types should relate to social 
and cultural backgrounds. Indeed, in clinical practice, dietitians/nutri
tionists try to adapt diets or menus to the eating habits of patients with 
different cultures and dietary habits while following the guidelines for 
the specific disease. The cultural, religious, and social background, 
however, is considered by very few papers ([25,35,46,54]). For some 
individuals with diabetes, adherence to nutritional recommendations 
could be challenging in terms of adoption and maintenance of the health 
behavior [87]: systems dedicated to patients may not yield any health 
and nutritional improvement due to the lack of a professional interme
diary to educate and motivate patients to change their dietary habits. 
The role of experts and specialized clinical personnel is pivotal for the 
success of diet and meal composition activities in clinical practice – thus, it 
is more central in recommender and decision support systems. In fact, 
one of the most common mistakes made when planning a nutritional 
intervention is the absence of personalized diet adjustment. This means 
that the number and time of meals and the amount of macro and 
micronutrients per meal and portions, when not adjusted to the patients' 
metabolic targets or to oral or insulin therapy, may lead to diabetic 
patients' non-adherence to nutrition therapy [88]. Standardized rec
ommendations are often given in clinical practice without any person
alization, and they do not take into account any comorbidity. In addition 
to being ineffective, this can make such recommendations a cause of 
failure to meet the individual patient's metabolic, glycemic, weight, and 
body composition targets. For example, a common goal is to reduce body 
weight, even in the case of patients who are not obese or clearly over
weight. In these cases, caloric restriction is likely to have a negative 
impact on lean mass (the metabolically active mass) without providing 
benefits in the course of the diabetic disease. 

Considering the perspective of clinical personnel, who daily deal 
with the treatment and monitoring of patients of all ages with diabetes, 
several observations can be offered. Given the increasing prevalence of 
non-communicable diseases requiring long-term management, 
including diabetes, and the scarcity of human and economic resources 
within the healthcare sector [89], recommender and decision support 
systems will increasingly support clinical and nutritional treatment. For 
this reason, it seems fundamental to define the end-user of these sys
tems, starting from the conceptualization and design phase up to the 
validation. Whether it be the healthcare staff or the patient/target who 
uses such systems directly without the support of professionals, systems 
should always be designed around the patient and his/her needs to tailor 
the information and make it accessible, understandable, easy-to-use and 
not harmful. The value generated by these systems should always lie in 
their use under close monitoring and continuous re-evaluation by 
healthcare professionals so that systems may be capable of identifying 
those borderline cases that could not benefit from nutritional recom
mendations without adjustments – e.g., individuals with comorbidities 
requiring a careful clinical anamnesis and dedicated nutritional 
indications. 

5.2. Implications for ontology engineering and maintenance in the field of 
nutrition therapy decision support 

The discussion of the results allows us to shed some light regarding 
the practices of ontology engineering and maintenance in this field. 
Regarding ontology engineering, the role of OEMs seems to be clearer in 

the articles starting from 2017: either custom or existing OEMs, the 
adoption of methodologies is enforced in most of the papers after this 
year. Also, the adoption of OEMs can be linked to a more consistent 
presence of systems' validation and cooperative approaches. It is worth 
noting that ontologists – in particular, experts – often adopt custom 
approaches to ontology engineering, i.e., they stress some particular 
aspects of the domain analysis, conceptualization, or development 
processes in a way that suits their research interests and possibilities (e. 
g., access to domain experts, validation opportunities, access to patients' 
data, etc.). This phenomenon continues a trend already registered in 
2014 by Vigo et al. [83] which strengthened during the past decade 
[79]. The road to move ontology engineering from a form of art to a craft 
[90] marked a few steps more in the direction of the wider adoption of 
the methodologies – still, despite the recent advancements, many chal
lenges need to be tackled [64]. OEMs can play a central role in key ac
tivities such as conceptualization and knowledge acquisition – on which 
the quality of the recommendations depends – and they can foster the 
development of technical documentation for maintenance activities. 
However, the included works underline an effort in the adoption of 
guidelines or domain experts' knowledge in the conceptualization and 
knowledge acquisition activities, while the maintenance of the devel
oped model remains significantly neglected; therefore, more efforts need 
to be enforced to make ontologies accessible (and reusable). The issue of 
ontologies' maintenance and their accessibility is common among 
“small” domain ontologies (a feature shared with other healthcare do
mains [82]). Still, it significantly impacts the diffusion of domain on
tologies for their reuse. Similarly, the lack of mapping between domain 
ontologies and existing upper ontologies hinders the adoption of domain 
ontologies. The lack of attention to update and maintenance activities 
hints at a larger issue characterizing ontology engineering: current 
OEMs seem to be unable to support ontologists in these activities, 
resulting in a set of consolidated instructions or guidelines for the 
domain analysis activities (which usually include knowledge identifi
cation and acquisition, conceptualization, reuse activities [80]) but 
lacking guidance in central tasks devoted to development (for example, 
authoring) and dedicated to keeping the ontologies “alive” (mainte
nance and alignment). 

However, as already highlighted in other works [31], the role of 
cooperation remains pivotal – especially in healthcare, where the expert 
knowledge deriving from clinical personnel, standards, clinical guide
lines, and patients' data is essential. The results from the included arti
cles underline that the cooperative approach has become more and more 
present starting in 2018. This could indicate that ontologists “learned 
the lesson” about cooperation, also thanks to the evolution of method
ologies – lifecycle and agile OEMs all stress the fundamental role of 
domain experts and continuous cooperation throughout all the phases of 
the ontology engineering process ([64,79,85]). In the majority of the 
works involved, the availability of “ready-to-use” clinical guidelines 
may have acted as a partial substitute for domain experts; however, 
expert knowledge derived from clinical experts remains pivotal for 
diabetic patients, in particular when a higher degree of personalization 
is required (both for patients [32,46,54] and clinicians [26–28]). 
Moreover, the cooperative approach seems to remain the privileged path 
to validation since it is fundamental to access patients' data to interpret 
the results generated via the reasoning processes and enable rules' fine- 
tuning. 

From a practical perspective, when developing domain ontologies 
for the nutrition therapy of diabetic patients, ontologists should leverage 
clinical personnel's expertise. Expert knowledge and clinical experience 
in managing such patients can offer precious insights to non-experts in 
interpreting (and adapting, if necessary) guidelines and standards. 
Among the included papers, only one [28] adopted two sets of equations 
(Harris-Benedict and Mifflin-St. Jeor) to estimate patients' BMR – which 
enables the identification of more precise estimations for obese patients 
[68]. It is plausible to assume that in most of the included works, on
tologists referred to guidelines that did not take into account this 
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finding, while clinical experts did not participate in the knowledge 
elicitation activities – which could have underlined the possibility of 
relying on two sets of equations, rather than one. Therefore, it is 
important to stress that clinicians' role in ontology engineering should 
not be limited to a “simple check” of acquired knowledge; on the con
trary, clinical personnel should actively participate in the identification 
of relevant pieces of information and their re-elaboration into a coherent 
model to be conceptualized. 

In such a scenario, clinical guidelines, standards, and scientific 
literature – together with the knowledge modelled in existing and reused 
ontologies – should act as a general reference framework upon which 
ontologists and domain experts cooperate to produce a coherent con
ceptual model. Therefore, considering the role and diffusion of clinical 
standards and practical guidelines for the management of diabetes, 
ontologists should be oriented toward their adoption as a general 
reference framework – but they should actively involve physicians, di
eticians, clinical nutritionists, and all clinical professionals involved 
with diabetes' management in the re-elaboration of such knowledge 
sources. 

In this regard, OEMs can support collaborative tasks ranging from 
knowledge elicitation and acquisition: methodologies can help identify 
an ontology's scope, thus enabling all the participants in the engineering 
process to focus their attention on relevant information. Agile OEMs 
were also developed to help ontologists in decentralized settings [78]. 
Most agile methodologies provide ontologists with techniques and tools 
to support cooperation at different levels and throughout the engi
neering process, especially in contexts characterized by many stake
holders and domain experts. Ontologists' activities would, thus, include 
an “active investigation” role, interviewing domain experts and “chal
lenging” their conceptual models to reach a shared and “irrefutable” 
conceptualization to be later developed into a domain ontology. More
over, after a collaborative inspection by all participants in the ontology 
engineering process, these activities would enable the identification of 
candidate ontologies to be reused (partially or entirely) or ODPs that 
could be modelled. 

Finally, regardless of the type of approach characterizing a meth
odology (waterfall, lifecycle, agile, or custom), the OEM adopted should 
foresee suggestions or at least general instructions for update and 
maintenance activities, including the possibility of aligning the devel
oped domain ontology with existing (upper) ones to increase its inter
operability. For these tasks, modular approaches can support ontologists 
in managing portions of the ontology and mapping them with existing 
models [91]. 

5.3. Ontology-based recommender systems for diabetic patients in the 
framework of AI-based systems and personalized nutrition 

The role of knowledge-based technologies in AI-based systems was 
pointed out in the previous sections – ontologies as components of 
explainable AI systems. However, it is important to put the findings of 
this review in the perspective of recent findings and trends in AI for 
diabetes (and, more in general, nutrition), since the latter can have 
meaningful implications for the future trends of knowledge-based 
recommender systems for diabetic patients. 

Dietary recommendations and AI: an integrative role? According to the 
findings of Contreras and Vehi [61], AI techniques are mostly adopted to 
detect adverse glycemic events, predict and control blood glucose, 
calculate and manage the insulin intake, and provide accurate patient 
stratifications. The identification of meals and physical exercise is less 
represented, and also AI techniques for daily-life support in managing 
the chronic condition do not take into account nutritional recommen
dations. In other words, while the authors identify an acceleration in the 
number of works describing the use of AI techniques for diabetic pa
tients, less papers are focused on nutritional recommendations – thus, 
preferring to investigate other aspects. This may open a new perspective 
for knowledge-based systems: their role in supporting nutritional 

management of diabetes is clear and well-established ([74,92]), there
fore ontology-based recommender systems could play a complementary 
role in providing a more complete coverage of the different aspects 
characterizing the file of diabetic patients. Systems leveraging AI tech
niques to predict and control blood glucose could benefit from dynamic 
and expert-based dietary recommendations, granting an even more 
tailored adherence to patients' real-time conditions. 

Personalized nutrition. Personalized nutrition, or Precision nutrition, 
is a recent discipline that exploits patients' personal information to 
provide a more accurate and more tailored nutritional advice. Consid
ering the biological variability of people in response to nutrition, 
personalized nutrition recognizes that many variables intervene in the 
process of defining an individual's response to dietary interventions: 
biochemical parameters, genetic characteristics, metabolic syndromes, 
anthropometric characteristics, etc. AI techniques, particularly machine 
learning [93], are a promising way to develop predictive model suitable 
for precision nutrition. In a recent and comprehensive systematic review 
of literature, Kirk et al. [93] surveyed scientific papers to investigate 
applications of machine learning to this discipline. Among their find
ings, they underlined that most of works relied on supervised ap
proaches, with classification tasks playing a relevant role. In this regard, 
ontologies (particularly, biomedical ones) can be adopted to harmonize 
heterogeneous data, supporting the integration of large volumes of data 
[94] – thus contributing to tackle a challenge for AI techniques [95]. 

From a technical perspective, the review highlighted that AI tech
niques for diabetic patients are adopted to classify glucose response, 
provide dietary guidance, and predict metabolic conditions (including 
diabetes onsets). Leveraging machine learning, it is possible to overcome 
the “one-size-fits-all” approach of general guidelines and move toward a 
more accurate patient stratification. 

Prevention. The papers surveyed in this review lack in proposing 
recommendations to non-diabetic or pre-diabetic individuals, who may 
benefit from tailored suggestions to avoid diabetes onset. AI-based 
personalized nutrition systems can support this type of tasks [96], 
providing tailored and personalized nutrition intakes and interventions. 
Prevention of diabetes, according to [61], are being revitalized by AI 
approaches, with a significant acceleration in research in the past 8 
years. This phenomenon might indicate that ontology-based solutions 
alone may not be able to foster the delivery of preventive recommen
dations, thus it requires them to be combined with data-driven (and, 
possibly, personalized nutrition) approaches. 

Adding data from sensors. Personalized nutrition systems rely on data 
acquired from patients (via wearable devices, clinical measurements, 
identification of consumed meals, etc.) [97]. However, the articles sur
veyed in this review indicate that the recommender systems require 
patients (or clinicians) to input this type of data. In other words, the 
ontological models do not seem to be ready to conceptualize sensors and 
acquired data for real-time and long-term patient monitoring. None
theless, the inclusion of such aspects can foster more accurate and 
tailored recommendations, as well as using ontologies to homogenize 
data coming from different sources. A notable exception to this trend is 
[26], whose ontology integrates the Semantic Sensor Network (SSN) 
ontology [98]. Also, a few works indicating physical activity as a ther
apeutic indication provide some concepts to capture the semantics of 
data acquired via wearables [22,32] – but not in a structured and solid 
way. Considering the role semantic models can cover in harmonizing 
data deriving from sensors, ontologies can – again – be adopted to label 
data in machine learning supervised tasks. 

5.4. Practical implications for the development of ontology-based systems 
in the context of nutritional recommendation to diabetic patients 

From the analysis of the works surveyed in this review, it is possible 
to summarize some recommendations for the development of 
knowledge-based recommender systems for diabetic patients aimed at 
providing nutrition therapy guidance. Although the following 
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recommendations are based on a limited number of papers, there are a 
few generalizable observations that are worth mentioning. 

Patient-based systems. Any recommender system in this field should 
be patient-based: a thorough, extensive, and complete formalization of 
the concepts pertaining the patients and their conditions must be 
granted a significant effort during the ontology engineering process. 
This means that the (collaborative) effort devoted to conceptualizing the 
patients must be focused on providing those details essential to a suit
able classification of their conditions. Concepts like phenotypes, BMI, 
BMR (properly assessed using the necessary equations according to the 
patient's phenotype [68]), age, and comorbidities are essential, and 
domain experts can support in unveiling the connections among these 
concepts. The richer the patient representation is, the more personalized 
and accurate the recommendations provided can be. Relying on a 
complete “map” of the relationships holding among concepts can sup
port ontologists in developing rules that take into account exceptions (e. 
g., some patients characterized by a particular conditions receive 
different recommendations than others), thus contributing to providing 
patient-tailored recommendations. Moreover, leveraging semantic 
reasoning, the “map” can be enriched by making entailed information 
explicit. 

Whenever possible, patients' information should be mapped to 
existing (and shared) health standards, such as Electronic Health Re
cords frameworks or international health classifications (e.g., ICF, ICD): 
this would enhance the ontology (and the results of the systems adopting 
it) interoperability with other systems. 

Recommendations. Recommendations should be in line with the aim 
of the recommender system – i.e., the purpose of the system and the data 
required for its functioning must be explicit. In the case of ontology- 
based systems, recommendations must be based on expert knowledge 
(e.g., guidelines or scientific literature) or clinicians' expertise. Clinical 
practice should not be neglected, as it may underline some areas in 
which the recommender system could support its end users (patients or 
clinicians). It is interesting to highlight that very few works suggest to 
identifying the amount and types of nutrients, preferring to recommend 
food items or diets. However, nutrients' quantities and percentages, 
together with the calculation of a patient-adequate caloric intake, 
constitute the basis for an accurate definition of a nutrition therapy plan. 
In fact, dieticians and nutritionists' work in nutrition therapy starts with 
the identification of the nutrients requirements to develop a patient- 
tailored diet. Moreover, clinicians and in particular dietitians are able 
to provide nutrition counseling, creating a specific connection with 
patients, listening and motivating them and thus facilitating the 
achievement of goals. Therefore, the identification of patient-tailored 
needs in terms of micro- and macro-nutrients is a promising way to 
provide personalized and clinician-driven nutrition recommendations 
for diabetic patients, adapting the recommendations to patient's needs in 
terms of food choices and to the priority of clinical objectives to be 
achieved. The use of AI could be successful in healthcare practice, but it 
needs to be developed and monitored by healthcare professionals [99]. 

Ontology. With regard to the ontologies that can underlying the 
recommendation systems, the review highlighted some practices – 
mostly ascribable to ontology engineering best practices – that should be 
followed. The role of domain experts (i.e., clinicians with expertise of 
diabetic patients) is always essential: clinical personnel should be 
actively involved in almost all phases of ontology engineering, 
leveraging a collaborative [31] and agile approach to maximize the 
effort – even in decentralized settings ([57,85]). Clinicians' role does not 
end with the conceptualization phase: domain experts can play a central 
role in the preliminary validation of the developed ontology and in the 
assessment of the quality of the generated inferences (particularly, if the 
recommender system relies on rules to generate recommendations): 
thus, clinical personnel can provide meaningful insights in the func
tional validation phases and, possibly, help ontologists in rectifying and 
enhancing the developed ontology [80]. Moreover, domain experts can 
provide insights on how to further enhance or evolve the developed 

ontology, supporting the identification of related health domains that 
could be potentially represented. 

Another significant issue retrieved in this review pertaining the on
tologies underlying the analyzed systems is the scarcity of mapping. 
Ontology alignment is essential to increase a domain ontology's share
ability, since it contributes to put the developed ontology in the context 
of existing (and well-established) models. Therefore, ontologists should 
always refer to guidelines for ontology mapping during the last phases of 
the ontology engineering process, including using automatic matching 
systems [100]. This problem is strictly related to another maintenance 
issue: the majority of the ontologies investigated in this paper are no 
longer accessible online, and this phenomenon is common for domain 
ontologies ([64,82]). However, only by divulging and sharing the 
developed ontology it is possible to get essential feedback to evolve the 
model. It is worth observing that the problem of ontology availability 
does not seem to reflect on machine learning datasets, which are made 
accessible in most of the cases (as surveyed in [93]). 

System. A recommender system is likely to be data-driven or hybrid 
(i.e., combining data-driven AI techniques with knowledge bases). The 
role of AI techniques should be made explicit and the inferences 
generated by AI should be explainable. As highlighted in the Introduc
tion and in Section 4.1.5, it is preferable to rely on explainable AI to 
allow clinicians to have a clear understanding of the rules guiding the 
recommendation process [13]. In this regard, the role of domain experts 
in assessing the system as a whole and its outputs is even more relevant. 
It is important to note that in knowledge-based systems clinicians role is 
not limited to the functional validation of the system, but it extends also 
to structural one: they can check the logical formalism of the ontology, 
identifying missing pieces of knowledge and rectify the incomplete (or 
wrong) ones, together with ontologists. 

As pointed out in the previous Section, ontologies can be a compo
nent of more sophisticated AI-based recommender systems. In this case, 
their role would be “ancillary” – i.e., they can support data labelling to 
reach personalized nutrition predictions. 

Validation. Whether it is the validation of the whole system and its 
recommendations or the ontology, the functional validation cannot 
disregard patients – and patient data. In particular, the majority of the 
works reviewed in this paper relied on patient data to assess different 
functional aspects of the systems. However, if the validation activity is 
conducted combining clinical cases and domain experts' opinion, it can 
support the identification of structural flaws in the knowledge base, as 
well as identifying possibilities to evolve the ontology or the system 
([31,80,85]). The role of experts should not be limited to the engi
neering phases, rather it should be extended to the (structural and 
functional) validation phases to maximize their expertise, the share
ability of the model, and stakeholders' feedback. 

Finally, the validation of prototypical recommenders systems should 
also encompass – for those systems designed to be used by patients or 
clinicians – a proper assessment of the interface's usability and overall 
technology acceptance; to this regard, tests should be conducted on 
different populations (using, for instance, questionnaires such as the 
Simple Usability Scale (SUS) [101] or the Technology Acceptance Model 
(TAM) [102]). It should be kept in mind that opaque reasoning may 
result unpopular among some clinicians ([13,14]), therefore both sys
tems and validation should take into account ways to make reasoning 
processes clear and transparent to human users. 

6. Possible research directions 

The previous Sections enabled the identification of some challenges 
characterizing the field of ontology-based recommender and decision 
support systems for diabetes nutrition therapy. 

Adoption of reference frameworks. The results highlighted that the 
included works adopted local guidelines as frameworks for conceptu
alizing diabetes. However, diabetes is a disease that can be described 
using WHO standards such as the ICD and ICF– thus, global 
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classification. While the first enables the identification of the chronic 
disease unequivocally, the second provides a set of qualities (body 
functions and structures affected by diabetes, social and cognitive ac
tivities impaired by some aspects of the disease, physical and psycho- 
social environmental limitations or facilitators characterizing the pa
tient's surroundings). These two classifications can act as a common 
language for clinicians, enabling clinical information interoperability, 
and can also underline the main aspects on which to focus the action of 
support systems. For example, the ICF Core set for Diabetes [103,104] 
can support ontologists and domain experts in the identification of 
concepts and entities to be tackled by the recommender or decision 
support systems' aims, facilitating clinical personnel's work and helping 
ontology engineers in focusing the attention on specific concepts. While 
the adoption of these two WHO classifications is ascertained in some 
fields of ontology-based systems [82], diabetes research has not taken 
ICD and ICF into proper consideration yet. 

Patient-tailored recommendations. Having observed that rule-based 
reasoning is central in the type of recommender and decision support 
systems analyzed, it is relevant to observe that most of the selected 
works present some degrees of approximation that do not sit well with 
accurate and tailored nutritional recommendations for diabetic patients. 
Therefore, relying on shared standards and experts' knowledge can 
foster the development of more patient-tailored recommendations. 
Failing to tailor the diet to an individual's needs is a common mistake in 
diabetes nutrition therapy. Personalization should consider factors such 
as the number and timing of meals and the patient's cultural restrictions. 
To avoid errors in nutritional therapy, the role of domain experts is 
central: health professionals can individualize and implement recom
mendations providing nutrition care for patients with diabetes, 
personalize diet, and provide patient-tailored recommendations, thus 
enhancing the potential benefits of nutrition therapy. 

Healthcare 5.0 and Precision nutrition. These considerations may ac
quire more importance in a Healthcare 5.0 paradigm, where digital tools 
and applications are expected to cooperate effectively toward a patient- 
centered and personalized approach [105]. In such a context, the role of 
AI-based applications for diagnosis, recommendations, and predictions 
can leverage domain ontologies' ability to formalize expert clinical 
knowledge in computable models. Therefore, the challenges related to 
domain conceptualization need to be tackled to enhance the role of 
ontology-based applications in Healthcare 5.0. In particular, it is 
important to underline the role that ontology-based systems cover in 
health-related explainable AI contexts, in which the possibility to pro
vide human-understandable explanations of inferences is essential for 
the effective adoption of smart technologies in clinical practice [106]. 
Moreover, the push toward AI-based systems underline the role of on
tologies as tools to support data labelling, while the systems are mostly 
devoted to prediction and monitoring. In this regard, the nutritional 
recommendations provided by knowledge-based approaches can inte
grate and enhance machine learning-based systems, leveraging on more 
accurate patient stratifications – and, thus, contributing to move toward 
precision nutrition systems. 

Tackling the traditional limitations of ontology engineering. The results 
of this review also contribute to highlighting some of the traditional 
limitations characterizing the adoption of ontologies for decision sup
port systems – e.g., the lack of standard OEMs or standardized sets of 
activities to support ontologists in the domain analysis phase; the scar
city of supporting tools; the absence of reliable methodologies for the 
evaluation of domain ontologies; the need for support in key activities 
such as maintenance and collaboration. 

An effort toward the standardization of ontology engineering activ
ities, particularly cooperative ones, is necessary to enable ontology- 
based systems to step up in the healthcare field. While, on the one 
hand, relying on standard classifications can foster those activities about 
conceptualization, on the other hand, relying on structured and 
technical-enabled approaches can result in more interoperable ontol
ogies [90] and foster the reuse of existing ones. As shown by the results 

of this review, ontology reuse is a subjective practice, often performed 
manually by expert ontologists. Ontology engineering could dedicate 
more effort to developing methodologies and techniques to provide 
(expert or novice) ontologists with operative instructions on which on
tologies to reuse – and how to reuse them, including supporting ontol
ogists at an authoring level. This should also take into account the reuse 
of ODPs. However, the research on patterns also suffers from some 
limitations (for example, most patterns are implicit and not explicitly 
documented [107]). Moreover, the adoption of patterns in health- 
related ontologies is scarcely attested and poorly documented [86], 
underlining the need for researchers to devote efforts to this area. 

Ontology alignment activities could also benefit from better tools to 
enhance semantic interoperability among different ontologies concep
tualizing the same domains. Some recent approaches in the field of 
automatic alignment seem to be promising [64]: however, the matching 
between entities belonging to different models is still a time-consuming 
and difficult task [108], which often requires the ontologists' manual 
intervention. Alignment activities are usually conducted on ontologies 
that are maintained and updated over time. However, the results of this 
study show that maintenance is another neglected area. This is an 
ontology engineering issue of the final phases of the process: OEMs 
should dedicate more effort to supporting ontologists in uploading, 
sharing, and discussing their ontologies with stakeholders to acquire 
new information (so that ontology updates are possible) and to increase 
the model's shareability. In this regard, agile approaches –more focused 
on decentralized and collaborative approaches – could serve as a 
promising starting point [57,85]. 

Making ontologies “smarter”. Finally, ontology engineering could 
benefit from Ontology Learning – a discipline supporting data-driven 
ontology engineering [109], to reduce the costs and the time devoted 
to this activity. Natural Language Processing (NLP) and Machine 
Learning techniques have significantly contributed to this discipline in 
the past 10 years; however, human intervention is still fundamental to 
verifying and validating the learned ontologies. Considering the chal
lenges related to Ontology Learning (among them: a lack of reference 
framework to compare different extraction models, scarcity of dedicated 
tools, and lack of quality assessment frameworks for learned ontologies), 
ontology engineering could benefit from the role of domain experts for 
the assessment of learned models and validation [110]. 

7. Conclusions and limitations of this work 

This work reviewed the scientific literature to retrieve articles 
describing ontology-based recommender and decision support systems 
devoted to nutrition therapy for diabetes. The results illustrated that 
most works are dedicated to helping patients identify the food items they 
can consume to control blood glucose levels or manage their diet. Most 
of the investigated systems privileged the adoption of local guidelines 
for diabetes management rather than international standards, focusing 
the attention also on the representation of foods. From an ontology 
engineering perspective, the reuse of existing ontologies is scarcely 
attested, while the cooperation with clinical domain experts in ontology 
engineering activities becomes more evident after 2018. 

The discussion of the results highlighted that domain experts' role is 
still pivotal – particularly for rule development and to strengthen rec
ommendations' tailoring. The use of domain ontologies for such systems 
may suffer from some challenges inherited from ontology engineering, 
maintenance and update, and alignment. Although many significant 
advancements in such areas are registered, their efficient adoption in 
developing domain ontologies for diabetes nutrition therapy is still 
lacking. Undertaking the research directions implied by these challenges 
may enable ontology-based recommender and decision support systems 
to cover a central role in explainable AI applications for diabetes 
nutrition therapy. 

The results reported in this review should be interpreted cautiously 
since they present potential limitations. The first limitation consists of 
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the unavailability of most of the ontologies retrieved in the included 
articles: these domain ontologies are no longer accessible, and, thus, the 
sole possible validation for them must rely on the ontology's descriptions 
provided by the articles. A second limitation concerns the sample of 
works addressed in this review. It may be plausible that diabetes 
nutrition therapy could be the secondary focus of papers primarily 
devoted to drug recommendation. 
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[90] Soldatova L, Panov P, Džeroski S. Ontology Engineering: From an Art to a Craft. 
2016. p. 174–81. https://doi.org/10.1007/978-3-319-33245-1_18. 

[91] Pathak J, Johnson TM, Chute CG. Survey of modular ontology techniques and 
their applications in the biomedical domain. Integr Comput Aided Eng Jun. 2009; 
16(3):225–42. https://doi.org/10.3233/ICA-2009-0315. 
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