
Visualizing the Outcome of Dynamic Analysis

of Android Malware with VizMal

Andrea De Lorenzoa, Fabio Martinellib, Eric Medveta, Francesco Mercaldob,c,
Antonella Santonec

aDipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy
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Abstract

Malware detection techniques based on signature extraction require security an-
alysts to manually inspect samples to find evidences of malicious behavior. This
time-consuming task received little attention by researchers and practitioners, as
most of the effort is on the identification as malware or non-malware of an entire
sample. There are no tools for supporting the analyst in identifying when the
malicious behavior occurs, given a sample. In this paper we propose VizMal, a
tool able to visualize the execution traces of Android applications and to highlight
which portions of the traces correspond to a potentially malicious behavior. The
aim of VizMal is twofold: assisting the malware analyst during the inspection of
an application and pushing the research community to organize and focus its effort
on the malicious behavior localization. VizMal is able to discern if the application
behavior during each second of execution are legitimate or malicious and to show
this information in a simple and understandable way. We validate VizMal experi-
mentally and by means of a user study: the results are promising and confirm that
the tool can be useful.

Keywords: Malware analysis, Android, Machine Learning, Multiple Instance
Learning, LSTM-RNN, Security

1. Introduction

Nowadays, most of malware is conveyed by mobile applications, since smartphone
and mobile devices in general are the preferred tools to access online resources [53].
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Malware writers are encouraged to focus their efforts in continuously developing
new and sophisticated techniques for thwarting malware detectors [65]. In this
scenario, it is fundamental to find effective mobile malware detection methods and
tools [35, 5] in order to address the increasing need of privacy protection and secure
usage of mobile platforms.

Many detection methods are based on static analysis, investigating static fea-
tures observed before running the application (e.g., occurrences of opcodes in
disassembled code [47], API usage in code [4]). While these approaches may
be very effective, they may also be circumvented with obfuscation techniques
easily [11, 27, 50]. Indeed, malicious software writers increasingly implement
sophisticated methods [69, 21] for bypassing signature-based detection strate-
gies [42, 25, 23, 16, 57, 19]. Malware code is often able to execute a set of
transformations to dynamically change its structure [19], such as in the cases of
polymorphic and metamorphic malware [54].

In addition to the limitations in presence of code obfuscation, static analysis de-
tection faces also some weaknesses peculiar to the Android platform. Common
antimalware technologies derived from the desktop platform exploit the possibil-
ity of monitoring file system operations, to monitor a possible suspicious behavior
of an application. For example, if an application starts to download malicious
code, this activity will be detected immediately by the antimalware responsible
for scanning the disk drive. Nevertheless, Android does not allow applications to
monitor the file system: each application can only access its own disk space, and
resource sharing is allowed only if expressly provided by the software developer.
This means that applications can download updates and run new code without
any kind of control by the operating system. Malicious behavior of this form
(“update-attack” [69, 30, 31]) cannot be detected by antimalware software.

Despite the previously mentioned weaknesses, static detection based on predefined
signatures is still the most common approach adopted by commercial antimalware
for mobile platforms. Such an approach, moreover, has proven to be quite costly
since the procedure for developing a malware signature is laborious and time-
consuming.

In order to address the limitations of static analysis, a detection based on dynamic
analysis is needed. Typically dynamic analysis is related to process monitoring
[10], memory analysis [67, 56] and network traffic [61, 64].

In our work, the detection is based on the investigation of features observed while
the application is running (e.g., device resource consumption [18], frequencies of
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system calls [43]). Dynamic analysis demonstrated to be more effective in the
malware detection task than static analysis, as discussed in [27].

Most of the currently proposed dynamic detection methods are able to classify
applications as malicious or benign as a whole, i.e., without providing any insight
on which parts of the application executions are actually malicious. Moreover,
because of the huge volume of dynamically collected data, trying to inspect those
data in order to gain insight into how tools make their decision is very hard. For
example, in many approaches of dynamic detection based on Machine Learning,
the volume of the raw data makes visualization impractical, leaving aside the
possibility of being comprehended—this is, indeed, a common issue and interesting
line of research in the field of big data visualization [34]. It follows that an analyst
who aims at gaining a better understanding of malware behavior obtains little help
from these methods.

In this paper we propose VizMal, a tool for supporting the malware analysts in
understanding the nature of the malware Android application. VizMal works on
an execution trace of an application represented as a sequence of system call invo-
cations and constructs an image consisting of a sequence of colored boxes, one for
each interval of execution (corresponding to one second in this work). Each box
delivers two kinds of information to the analyst: the color represents the degree
of maliciousness of the execution in that interval, while the size represents the
activity level in terms of number of invoked system calls.

VizMal may be a valuable tool for many tasks, such as to easily spot similarity in
the behaviour of the analyzed application and a well known sample. It can also be
used together with a tool for executing applications in a controlled environment
to find and understand the relationship between injected events (e.g., an incoming
SMS) and observed behavior with the aim of, e.g., looking for the payload activa-
tion mechanism. Finally, it can be used to debug a malware detection method by
performing a fine-grained analysis of misclassified applications.

Internally, VizMal analyzes the execution trace using a Long Short-Term Memory
(LSTM) neural network which labels each single interval of the execution trace.
LSTM networks are a form of RNN (Recurrent Neural Network) that have been
proven to be able to learn long term dependencies in the input sequence [36, 68].
The LSTM framework fits our scenario very well because it is able to label se-
quences of widely varying length effectively. We train an LSTM with long execu-
tion traces labelled as malware or non-malware, then we use the trained LSTM
for labelling each piece of a long trace. In this way we may associate information
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highly useful to an analyst with each single interval of an execution trace. We
remark that the purpose of VizMal is not to classify if an application is or is not
a malware, but to show in a quick and easily understandable way what is the
behavior of such an application.

A very preliminary paper introducing VizMal was presented in [9]. In the present
study, we extend the preliminary version in two ways: (i) we introduce and ex-
perimentally evaluate a new classification method based on a Long Short-Term
Memory recurrent neural network (LSTM-RNN), (ii) we consider more design al-
ternatives for the visualization part and analyze them more in detail, and (iii) we
conduct a user study in the form of a questionnaire, filled by 33 users, in order to
evaluate if VizMal may serve as a useful tool for malware analysts.

This paper is organized as follows. In Section 2 we briefly review the state-of-the-
art on malware Android detection; in Section 3 we describe how the tool (VizMal)
works; in Section 4 we discuss the results of VizMal experimental validation; in
Section 5 we compare some alternatives for the main components of VizMal; in
Section 6 we report the results of a user-based study for assessing the user-perceived
effectiveness of our tool; finally, in Section 7, we draw some conclusions and propose
future lines of research.

2. Related work

In this section, we review the current literature related to Android malware de-
tection. We first discuss techniques for malicious payload localization in a mobile
environment. Then, we focus on techniques based on the analysis of system calls.
It can be seen that the existing literature is mostly focused on the problem of
classifying the behavior of an executable as a whole (malware/legitimate). Our
work is instead concerned with how to obtain and visualize indications about the
localization of malicious behavior in an executable.

2.1. Malware detection in mobile environments

Several methods of static analysis have been proposed for identifying the pattern of
interaction among the modules of an application (inter-component communication,
ICC ) and obtaining indications about possible privacy leaks. Amandroid [66] exe-
cutes an ICC analysis by constructing a Data Flow Graph and a Data Dependence
Graph. FlowDroid [8] includes in the ICC analysis both the code and configuration
files of the examined app, which may help in reducing both missed leaks and false
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positives. Epicc [51] is able to construct a specification for every ICC source and
sink, including the location of the ICC entry point or exit point, the ICC Intent
action, data type and other information useful for the analysis, e.g., name of the
interacting ICCs.

Static analysis has been also proposed for classifying executables (malware vs
legitimate).

AndroDialysis [32] proposes a classifier that exploits the rich semantics of Intents,
i.e., a messaging object of the Android communication system describing the op-
erations that an application intends to perform and that can be extracted from
the code. The cited paper shows that the use of Android Intents allows obtaining
a better detection ratio that the use of permissions [20].

Methods based on static analysis do not require infecting any device nor do they
require any instrumented platform for collecting data during execution in a con-
trolled environment. On the other hand, static methods may be circumvented by
code obfuscation techniques rather easily [15, 24, 49, 45, 48].

A classification method based on features collected both statically and dynamically
is proposed in [41]. The authors designed a tool able to assess the maliciousness of
Android applications. The authors employ a machine learning technique with the
aim of classifying Android applications using a feature set gathered from static and
dynamic analysis of a set of known malicious and legitimate mobile applications.
The BRIDEMAID [46, 29] framework advocates a similar hybrid approach and
includes a multi-level monitoring of device, app and user behavior in order to
detect malicious behaviors at run time. The Andromaly framework [60] proposes
a classification based solely on dynamic features. The framework consists of a
form of Host-based Malware Detection System able to monitor features (i.e., CPU
consumption, number of packets sent through the network, number of running
processes and battery level) and events obtained from the mobile device during
execution.

A combination of static and dynamic techniques is used in [12] for analyzing sus-
picious Android applications. The approach consists, essentially, in executing the
application within a sandbox and catching all potentially dangerous events, e.g.,
file open operations, connections to remote server and so on. The method is as-
sessed on an example application that implements a form of Denial of Service, i.e.,
a fork bomb which uses Runtime.Exec() to start an external binary program and
creates sub-processes of itself in an infinite loop.

Several techniques for dynamic analysis have been proposed that consider power
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consumption as the discriminating feature between benign and malicious mobile
applications. Authors in [26] hypothesized that there is a strong correlation be-
tween mobile devices power consumption pattern and location and studied power
consumption data from twenty smartphone users collected over a period of three
months. They tested the method on a Nokia 5500 Sport to evaluate real-world
mobile malware. Method proposed in reference [39] consists in a power-aware
malware-detection framework that monitors and detects unknown energy-depletion
threats. Their solution is composed of (1) a power monitor which collects power
samples and builds a power consumption history from the collected samples, and
(2) a data analyzer which generates a power signature from the constructed history.
To generate a power signature, noise-filtering and data-compression are applied,
with the aim to reduce the detection overhead. They conducted the experiment
using an HP iPAQ running a Windows Mobile OS.

The Jackdaw [52] tool is based on the correlation of control and data-flow infor-
mation obtained from binaries both statically and dynamically. Basically it is able
to find groups of API calls that represent high level actions, exploiting hybrid
analysis. Authors evaluated Jackdaw on 2,136 distinct binaries, including both
malicious and benign libraries.

TaintDroid [28] is an extension to the Android operating system with the ability to
track the flow of privacy sensitive data through third-party applications: basically
it assumes that downloaded, third-party applications are malware, and monitors
in real time how these applications access and manipulate personal data of users.

Researchers in [59] detect suspicious temporal patterns to decide whether an in-
trusion is found, using patterns predefined by security experts. They use several
features to perform this task, for instance memory, CPU and power consumption,
keyboard usage and so on. Their dataset was formed by five Android malicious
applications, which were developed by the authors.

The approach presented in [33] exploits supervised and unsupervised classification
in order to identify the moment in which an application exhibits a malware behav-
ior. Despite the general idea and aim are similar to those of this work, the cited
paper lacks the visualization component and hence can hardly be used directly by
the analyst.

2.2. Malware detection exploiting system calls

CopperDroid demonstrated the possibility of reconstructing the behavior of ma-
licious applications automatically, based on dynamic collection and analysis of
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Android system call traces [62]. The resulting framework also allows uncovering
malicious behavior through suitable stimulations that can be selected based on
reconstructed behavior profiles. The method was validated on a set of 1600 mali-
cious apps, and was able to find the 60% of the malicious apps belonging to one
sample (the Genoma Project), and the 73% of the malicious apps included in the
second sample (the Contagio dataset).

The proposal in [38] is able to track and examine the flow of sensitive information
by monitoring and logging file I/O operations and InterProcess Communication
through Intents objects. In detail this method consists of two modules: the first one
hooks a function to monitor IPC/RPC events, while the second hooks system calls
to trace and log the malicious behavior of a specific application. The technique is
implemented using the Loadable Kernel Module programming interfaces and the
Kprobes debugging mechanism. The authors used a customized kernel on a real
device, and the evaluation of the solution considers two malicious apps developed
by the authors.

In [63] the authors characterize the response of an application in terms of a subset
of system calls generated from untrusted activities in background when simulat-
ing apps with user interface events. They use an Android emulator for running
experiments and their evaluation is based on two malicious samples belonging to
the DroidDream malware family.

Authors in [58] propose an anomaly detection system for Android based on tech-
niques analogous to those that can be used in a Linux kernel, based on network
traffic, system calls, and file system logs.

The techniques presented in [37] are based on collecting and analyzing a set of sys-
tem calls related to management of file, I/O and processes. A log collector records
all system calls and filters events associated with the selected target application.
A log analyzer matches activities with signatures described by predefined regular
expressions, in the attempt of detecting a malicious activity. Signatures of infor-
mation leakage are automatically generated using the smartphone IDs, e.g., phone
number, SIM serial number, and Gmail accounts. The cited work used a physical
device, with an Android 2.1 based modified ROM image. The evaluation phase
considered 230 applications mostly downloaded from Google Play. The proposed
method detected 37 applications which steal some kinds of personal sensitive data,
14 applications which execute exploit code and 13 destructive applications.
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3. The proposed tool: VizMal

In this work, we focus on the visual evaluation of malware Android app through
a visualization tool. Such tool aims for fast and precise individuation of malicious
behaviors during the app execution. The tool takes as input an execution trace t
of an app and outputs an image consisting of a sequence of colored boxes, one box
for each interval of T seconds of t. An execution trace is a sequence of system call
invocations, each invocation consisting only of an indication of the specific system
call invoked without arguments.

The color of the box is related to the degree of maliciousness of the application
behavior during the corresponding interval. The shape of the box (in particular, its
height) is related to how active was the application in the corresponding second.
The duration T of the interval is a parameter: we set T = 1 s which is a good
trade-off between informativeness and easiness of comprehension.

VizMal is composed by two components: an image builder, which builds the im-
age, and a trace classifier, which processes the trace t and decorates it with its
maliciousness and activity levels. As briefly introduced in Section 1, the trace clas-
sifier is based on LSTM: before being able to process execution traces, it has to be
trained on a set of labeled execution traces (one label in {malware, non-malware}
for each trace). In the following sections, we describe the two components.

3.1. Image builder

The image builder takes as input a sequence L = {(m1, a1), (m2, a2), . . . } of pairs
of values. The i-th pair refers to the subtrace of the syscall trace t starting at
(i − 1)T second and ending at iT second: mi ∈ [0, 1] is the maliciousness level
of that subtrace (0 means no maliciousness) and ai ∈ [0, 1] represents the activity
level of that subtrace (0 means no activity).

The image builder provides as output an image composed of an horizontal sequence
(i.e., a row) of boxes, one for each element in the input sequence L. Boxes have
the same width w and are separated by a small empty gap for clarity. The height
of the i-th box is aiw, where ai is the activity level of the corresponding subtrace.
The fill color of the i-th box is solid and determined based on mi: 1. for mi = 0,
green; 2. for mi = 1, red; 3. for mi ∈ (0, 1), the color corresponding to the point on
a segment connecting green and red in the HSL color space whose distance from
green is mi (distance normalized with respect to the segment length).
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Figure 1: Examples of the images obtained by VizMal on 4 execution traces of malware apps:
only the first 18 s are here depicted.

Figure 1 shows 4 images obtained with VizMal applied to execution traces of
malware apps: different maliciousness and activity levels can be seen in the color
and height of the boxes.

3.2. Trace classifier

The trace classifier is constructed in a preliminary learning phase that requires a
set of labeled execution traces (benign vs malicious). In the classification phase,
the trace classifier takes an unlabeled execution trace t as input and provides a
sequence L of maliciousness and activity levels as output.

Execution traces are represented as sequences of one-hot vectors, as follows. Vec-
tors are all the same size, equal to the number of possible system calls. Each
vector element is associated with one of the possible system calls. Each system
call invocation is represented by a vector with all elements set to 0 and only one
element, the one associated with the invoked system call, set to 1.

The trace classifier consists of a Long-Short Term Memory (LSTM) neural net-
work, a particular type of recurrent neural networks (RNN). RNN are a type of
artificial neural network in which the processed information is not discarded, but
recycled as an auxiliary weighted input. In this way, the network can mimic the hu-
man memory and maintain a kind of information persistence. However, traditional
RNN can store information for few steps and tends to forget older information.
LSTM tries to solve this problem introducing a special component in hidden re-
current layer. This component weights the recycled information so as to maintain
what may be most useful in next steps. In this work, the network consists of a layer
of 40 LSTM cells, followed by another layer of 40 cells that are fully connected to a
layer with 10 neurons using Rectified Linear Units (ReLu) as activation function.
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These neurons are finally fully connected to a single output neuron using softmax
as activation function.

In the learning phase, the network takes a trace as input and provides a value
v ∈ [0, 1] as output. The network is trained to let the output value match the
label of the input trace. In our experiments, the network has been trained for 300
epochs—i.e., each example of malware or non-malware trace has been seen 300
times by the network. The learning rate is dynamically varied during the learning
with the Adam algorithm [40].

In the classification phase, the network takes a trace as input and provides a
value v ∈ [0, 1] as output. The output value is the maliciousness level of the
corresponding input trace. In order to analyze each subtrace separately, in the
classification phase we split each trace in subtraces and submit each subtrace ti to
the network, thereby obtaining the corresponding maliciousness level mi for each
ti The activity level of each subtrace ti is the normalized length of the subtrace,
i.e., ai = |ti|

maxi |ti| .

4. Validation

We validated our proposal performing a set of experiments, i.e., to verify that
VizMal may actually help the analyst in better understanding malware (and non-
malware) apps behavior. It is important to emphasize how it is impossible to
perform a quantitative evaluation of our proposal, since the labels are associated
to the whole execution trace, not to the single sub-traces.

For this purpose, we used a dataset of 500 Android apps (a subset of those used
in [14]), including 250 non-malware apps and 250 malware apps. We downloaded
non-malware apps from the Google Play Store and malware apps from the Drebin
dataset [7]. For each app in the dataset, we obtained 3 execution traces by execut-
ing the app for (at most) 60 s on a real device with the same procedure followed
by [17] (i.e., by generating events with the monkeyrunner tool [3] and by recording
the corresponding system call invocations).

In order to simulate the usage of VizMal to analyze new, unseen malware, we
partitioned the dataset into two set of 450 and 50 apps. We trained our tool using
the 450 × 3 traces corresponding to the former set and then applied the tool to
the 50 × 3 traces of the latter. We repeated the procedure 10 times by varying
the dataset partitioning and obtained consistent results. Several interesting obser-
vations may be made and we report here a subset of the images obtained in one
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(a) Malware app 1.

time [s]0 10 20 30 40 50

(b) Malware app 2.

time [s]0 10 20 30 40 50

(c) Malware app 3.

Figure 2: Traces from different malware apps represented by VizMal.

repetition.

Figure 2 shows the images obtained by Vizmal applied to the 3 traces of 3 malware
apps. The different length of the visualized traces depends on the machinery used
for stimulating the apps, which may generate events that can can stop the execu-
tion [17]. Red boxes indicate, with high confidence, intervals of malicious activity.
Green boxes represent, with high confidence, intervals with no malicious activity.
Yellow and orange boxes show intervals in which the execution is “borderline”:
these seconds are classified as non-malware (in yellow) and as malware (in orange)
with a lower confidence. The figure also highlights varying activity levels during
the execution: the height of the boxes clearly differentiates intervals with almost
no activity (in terms of system call invocation) from intervals with a very high
number of system call invocations.

Thanks to the VizMal tool, it is immediately observable when an app exhibits
a general malicious behavior, when it behaves “normally” or “borderline”. For
instance, traces 2 and 3 of malware app 2 in Figure 2b, highlight a malware
behavior; trace 1 and 2 of malware app 3 show benign activities; trace 1 of malware
app 1 exhibits a “borderline” execution. As can be clearly understood, Vizmal
allows an analyst to easily identify the intensity and the exact moment during
which a malware behavior occurs.

Similar considerations can be made for images obtained with non-malware apps
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(a) Non-malware app 1.

time [s]0 10 20 30 40 50

(b) Non-malware app 2.

time [s]0 10 20 30 40 50

(c) Non-malware app 3.

Figure 3: Traces from different non-malware apps represented by VizMal.

(Figure 3). The entire period of execution of 60 s is represented with a row of green
boxes which means that the app does not present malicious behavior. It can also
be seen that trace 2 of malware app 1 looks suspicious from the point of view of
the sequences of the system calls. This can be an opportunity, for the analyst, to
gain more insight into the execution trace or into the classification machinery.

It is important to note that VizMal applies to a single execution trace: the fact
that a single trace may not be representative of the general behavior of an app in
general is a problem orthogonal to the goal of VizMal. In this scenario, VizMal
may be a valid tool for a faster analysis of several traces collected from the same
app, perhaps in order to maximize the generality of findings, since it allows to
quickly analyze a single execution trace.

4.1. Example of VizMal usage

In order to better highlight the potentials of VizMal, we provide an example of
how our tool cold be used for gaining more insights about an application. Figure 4
contains 4 trace of a malware from the ADRD family executed for 60 s. The
ADRD malicious payload is able to use multiple infected devices to increase the
site ranking for a given web site: its main purpose is the search engine manipulation
and it focused on the search engine Baidu [44]. The ADRD malicious action starts
when the infected device receive a call [69]. During the execution, we injected
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Figure 4: An example of VizMal applied to four execution traces of an app belonging to the
ADRD malware family.

into the app a predefined sequence of events as described in [17]. A representative
subset of such events is reported in the top part of figure.

As can be seen from Figure 4, the initial behavior of the app is not malicious,
probably because the malware waits for a trigger event. This view is reinforced
by the fact that, according to VizMal outcome, the malicious activity starts when
an event related to a call occurs. In fact, three of four execution traces show a
potential malicious activity at the fifth second of activity, when an “incoming call”
event is received by the app. Regarding the fourth execution trace, the malware
activity does not star at the incoming call, but few seconds later, in conjunction
with an “call answered” event. This behavior seems to be consistent with that
described for the ADRD family in [69]: in fact, the ADRD malicious payload is
triggered when the infected device receives a phone call [1].

Moreover, VizMal helps to understand that the behavior of the malware is not
always malicious, but there are several seconds of execution during which the
application behaves like a normal one. This could help an analyst to focus his
effort in the malware analysis when certain events are generated, instead of taking
trace of the whole execution of the app. Considering the third trace, another
finding that emerges thanks to VizMal is the fact that in certain conditions the
malware terminates its execution prematurely: this could be due to an intentional
choice of the malware programmer or to an error in the malware code.

5. Alternative design options

5.1. Alternative image builders

In this section we analyze some alternatives for the image builder we took into
consideration for designing the final visualization step.
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(a) Binary maliciousness level and no activity level.

time [s]0 5 10 15

(b) Binary maliciousness level and activity level related to
number of system calls.

time [s]0 5 10 15

(c) Continuous maliciousness level and no activity level.

time [s]0 5 10 15

(d) Continuous maliciousness level and activity level re-
lated to number of system calls (VizMal design).

time [s]0 5 10 15

(e) Binary maliciousness level and activity level shown us-
ing squares.

time [s]0 5 10 15

(f) Continuous maliciousness level and activity level shown
using squares.

Figure 5: Examples of visualization for 3 malware traces and 1 non-malware trace (bottom row).

In the first and simpler solution, boxes convey only a binary indication for the
maliciousness level (either green or red) and no indication for the activity level.
The result is shown in Figure 5a for 3 execution traces of malware apps (top) and
one trace of a non-malware app (bottom). The resulting information is too coarse
grained to be useful for the analyst, as the bottom row (benign trace) is quite
similar to the second row (malware trace).

For this reason, we decided to introduce an indication of the activity level—i.e.,
the number of system calls executed during each subtrace. An example of this
visualization is shown in Figure 5b, for the same traces of Figure 5a. In this
new visualization, the difference between the benign trace and malware traces is
much more evident: it is much easier to notice that in the trusted app the activity
classified as suspicious is much lower, indeed, fewer system calls were executed
during the time interval if compared to the malware apps.
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A different approach for improving Figure 5a consists in highlighting the mali-
ciousness of a subtrace with a continuous value (as opposed to a binary one) while
omitting any indication related to the activity level. We encoded the confidence
of the classification using the fill color of the boxes, i.e., based on the mi value as
described in Section 3.1. The result can be seen in Figure 5c. The resulting visu-
alization is certainly more informative and useful than the one in Figure 5a, but
the activity level seems to be a crucial component to be presented to the analyst.

The design finally adopted for VizMal is shown in Figure 5d, for the same traces
as the other figures. It can be seen that the visualization conveys a much richer
and more useful amount of information than any of the considered alternatives.
It can also be observed that, with this visualization, the trace of the non-malware
app does not exhibit any subtrace that looks highly suspicious. With the other vi-
sualizations, instead, the analyst could be encouraged to devote precious resources
in analyzing some subtraces of the non-malware app.

For completeness of discussion, we mention a different design option that we ex-
plored for visualizing the activity level. In this variant the activity is shown with
squares whose size is proportional to the activity level Figure 5e. We decided to
not use this approach because the maliciousness level in smallest boxes is barely
visible—when the maliciousness level is continuous the problem is even more ev-
ident. We also report in Figure 5f the variant with the continuous maliciousness
level.

5.2. Alternative trace classifiers

In order to explore different options for the trace classifier, we considered 3 other
algorithms able to work in the considered scenario. We remark that the key prob-
lem consists in the fact that labels (benign vs malware) are associated with full
traces while we need to associate a separate label with each single subtrace, de-
pending on the degree of maliciousness of that subtrace. In this respect, the main
motivation for our usage of an LSTM neural network is that we can train LSTM
on a full trace and then use the trained classifier for labelling traces of arbitrary
length, thus even subtraces of a longer trace.

Another approach which can fit our scenario is the Multiple Instance Learning
(MIL) framework [22, 70]. This is a form of weakly-supervised learning in which
the learning set is composed by instances grouped together and, instead of labelling
each instance, the label is associated with a group.
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We experimented with different variants of MIL approach: sMIL [13], miSVM [6],
and an ad hoc variant of “single instance” SVM (SIL-SVM) which we modified
in order to act as a MIL framework. For sMIL and miSVM, a label is associated
with an entire trace with the following semantic: a malware label means that at
least one subtrace is malware; a non-malware label means that all the subtraces
are non-malware. For SIL-SVM, a malware label means that all subtraces are
malware app and vice versa.

Unlike the LSTM approach, the MIL-based ones require a feature extraction pro-
cedure in order to process a subsequence. We used the same feature proposed
in [17]: frequencies of n-grams of the system calls occurred in the trace. The
feature extraction procedure occurs as follows:

(i) we split a trace t in a sequence {t1, t2, . . . } of subtraces, where each subtrace
lasting exactly T seconds; (ii) we considered subsequences (n-grams) of at most 5
consecutive system call invocations; (iii) finally, we counted the number o(ti, g) of
each n-gram g in each subtrace ti.

In order to assess the 3 variants and to compare them with LSTM approach, we
performed the following procedure:

1. we divided the dataset of 3× 500 + 3× 500 execution traces (see Section 4)
in a balanced learning set composed of 90% of the traces and a testing set
composed of the remaining traces;

2. we trained the all the classifiers on the learning set;

3. we applied the trained classifiers on the traces in the testing set.

The above procedure has been repeated with a 10-fold cross-validation. For each
repetition we measured the performance of the classifiers in terms of False Positive
Rate (FPR) and False Negative Rate (FNR). Since all the considered MIL variants
base on SVM, for a fair comparison we used the linear kernel and C = 1 for all.

Before discussing the results, we emphasize that while it is fair to consider a false
positive as an error (i.e., a subtrace of a non-malware app classified as a malware),
it is not fair to consider a false negative as an error (i.e., a subtrace of a malware
app classified as a non-malware). The reason is because a malware app may exhibit
a legitimate behavior for several seconds during its execution. We also remark that
(a) our experimentation was not aimed at performing a comparison among MIL
frameworks—the interested reader may refer to [55]—and (b) the shown figures
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Table 1: FPR and FNR for LSTM and the three considered variants of MIL classifiers.

Natural threshold Near EER

Classifier FPR FNR FPR FNR

SIL-SVM 0.758 0.113 0.402 0.385
miSVM 0.264 0.424 - -
sMIL 0.098 0.693 0.308 0.364
LSTM 0.098 0.551 0.244 0.260

should not be intended as representative of the accuracy of malware detection for
the considered approaches.

Table 1 presents the results, averaged across the 10 repetitions. The most impor-
tant result is that LSTM outperforms all the MIL approaches in terms of false
positive rate. This result corroborates our design choice of basing VizMal on an
LSTM network and is a very interesting outcome, because, as pointed out above,
FPR is the most important index. Concerning the MIL variants, miSVM outper-
forms both SIL-SVM and sMIL.

The Table 1 also reports1 the FPR and FNR values at Equal Error Rate (EER)
point. The performance indices of the trace classifier can vary in accordance to a
threshold. This indication can be interesting in the perspective of an interactive
tool in which the analyst can vary the classifier threshold in order to modify the
color of the boxes.

6. User-based validation

The motivation for VizMal is to support dynamic analysis and reduce the effort in
individuating the event triggering the malicious behaviour. The degree to which
this goal can be achieved in practice is determined also by the usability of the
proposed tool. In order to assess the usability and, hence, the usefulness of VizMal,
we performed a user study.

The study consisted of a questionnaire which we gave to a set of users familiar
with the concept of malware analysis, but to different degrees. The questionnaire

1The EER values for miSVM are missing due to a limitation of the implementation.
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was composed of four parts: presentation of the tool, simulated usage (two parts),
perceived usefulness.

The first part introduced VizMal with a detailed description of its functionality
and behaviour, with particular attention to the appearance and the meaning of its
output. The second one presented the graphical visualizations obtained by apply-
ing VizMal to two applications, each one with three execution traces, and asked
if the applications appeared as malware or trusted application. In the third part,
the questionnaire showed an execution trace lasting 60 seconds. This trace was
decorated with the events injected during the execution (similarly to Figure 4: the
user can find an arrow annotated with the name of the event in correspondence
of the second in which it has occurred. Then, we asked to the participants to
identify which event triggered the malicious routine and how long the malware
activity lasted. Finally, the last part of the questionnaire proposed four qualita-
tive questions about the perception the user had about the tool. These questions
concerned about (a) how immediate was to identify the event activating the ma-
licious behaviour, (b) how immediate was to identify the duration of a malicious
behaviour, (c) whether VizMal can be useful as a tool to reduce the work of the
malware analyst, and (d) whether it is easy to identify the behavior labeled by
VizMal as malicious. Each of these questions required a value between 1 and 10
as a response, where the lowest value means a fully negative answer (e.g., not
immediate) and the highest means a fully positive answer (e.g., very immediate).
We made the questionnaire and the complete set of answers publicly available [2].

6.1. Questionnaire results

The survey was sent to a set of people familiar with the concept of malware anal-
ysis, including undergraduate, graduate, and PhD students of the Università del
Molise, Italy (Computer Science and Software systems programs), and the Istituto
di Informatica e Telematica, Consiglio Nazionale delle Ricerche (CNR), Italy. We
collected 33 filled questionnaires. The set of respondents was composed by 25
bachelor, 4 master, and 4 PhD students.

Regarding the second part, concerning the identification of malware and trusted
applications, all users correctly identified the malicious and trusted application.
With respect to the third part, 32 over 33 participants correctly answered the
question about the system event triggering the malicious behaviour (i.e., battery
status discharging). One participant indicated two events as possible triggers, one
being the correct one. These results appear to validate our claim that VizMal is
helpful in identifying the event activating the malicious behavior.
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Concerning the duration of the malicious activity, despite the users were in prin-
ciple allowed to input any integer value between 0 and 60, they responded with
values within a limited range, between 6 and 10 seconds. The majority of the
replies indicate 7 seconds (i.e., the correct answer) as the duration of the malware
activity (13 over 33, 39% of the replies), followed by 10 seconds (9 users, with 27%
of the replies). The limited disagreement among users’ answers show how VizMal
can facilitate the potentially hard task of estimating the duration of the malicious
behavior in a rather consistent way.

The results of the last part of the questionnaire are summarized in Figure 6. The
majority of the responses agreed that VizMal helps in identifying the event which
triggers the malicious behaviour (91% of the replies with a score greater than 6).
In particular, 85% of the replies assigned a values equal or greater than 8. This
results is very promising, since one of the contributions of VizMal is to help analyst
in individuating when the applications begins to act as a malware. Concerning the
second statement, about the ease of identifying the duration of malware activity,
again the majority of users agreed in finding VizMal useful. Anyhow, 2 users gave
a score equal to 4 and the majority of votes are limited to 8 (32% of the cases)
and 9 (38%). The third statement asked if VizMal can allow an analyst to reduce
his own work. Respondents mostly agreed, with the 90% of the replies with score
greater than 7. The last statement explored the perception of the user in the
ease of finding the malicious behaviour using VizMal. The users clearly felt that
our tool permits to easily find this portion of the execution, since the majority
of them assigned a score equal or greater than 8 (75%) and the reaming gave a
score of 7 (25%). We believe these results are highly encouraging. Indeed, from
this questionnaire, it is clear that users agreed in finding VizMal a valid tool for
reducing the work required in dynamic analysis.

7. Concluding remarks

In this paper we presented a tool, called VizMal, for displaying the results of a
dynamic malware analysis of Android applications. VizMal visualizes an execution
trace of an Android application as a row of colored boxes. Each box corresponds
to one second of execution and the color and the shape of the box give information
about the maliciousness and the activity levels of the app during the correspond-
ing second of execution. Internally, VizMal exploits the proven ability of LSTM
neural network to cope with long sequence of symbols—i.e., long sequence of sys-
tem calls. We think that VizMal may be a useful and valuable tool for Android
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Figure 6: Violin plot indicating the responses to the 4 statements of the fourth part of the
questionnaire. The purple shape represents the overall distribution of the results. White points
are the responses.

malware analysts, since it can allow them to better understand the behavior of
malware application. Although our tool certainly has to be investigated further,
we believe that VizMal may be an interactive tool for malware analysis, especially
for investigating the relation between the maliciousness activity and the events
generated by system or user interaction. We plan to extend the VizMal analysis
also for malicious behaviour related to desktop platforms by adding more graphical
representations.
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