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Keywords:
High-performance computing

A B S T R A C T

In the near future, Exascale systems will need to bridge three technology gaps to achieve high performance
while remaining under tight power constraints: energy efficiency and thermal control; extreme computation
efficiency via HW acceleration and new arithmetic; methods and tools for seamless integration of reconfigurable
accelerators in heterogeneous HPC multi-node platforms. TEXTAROSSA addresses these gaps through a co-
design approach to heterogeneous HPC solutions, supported by the integration and extension of HW and SW
IPs, programming models, and tools derived from European research.
1. Introduction

High Performance Computing (HPC) is a strategic asset for countries
and large companies alike. Such infrastructures are of key importance
to support a variety of applications in domains such as oil & gas,
finance, and weather forecasting. Recently, emerging domains have
been gaining traction, such as bioinformatics, medicine, security and
surveillance. These newer applications tend to fall in the classes of High
Performance Data Analytics (HPDA) and High Performance Computing
for Artificial Intelligence (HPC-AI). The trend in the design of such
infrastructures is more and more exploiting heterogeneous hardware
architectures to cope with the request of peak performance and to
meet the need of achieving a ‘‘Green HPC’’. These paths have prompted
Europe to align its research priorities in HPC along a Strategic Research
Agenda (SRA1) resulting from wide consultations within the European
Technology Platform for HPC (ETP4HPC), the PRACE initiative,2 and
he PlanetHPC3 initiative.

The need to achieve high efficiency, while remaining within rea-
onable power and energy bounds, is extensively discussed in the
RA, focusing also on the main technology challenges posed by these
bjectives. Such challenging goal can only be addressed with an holistic
pproach that takes into account multiple factors across the HPC hard-
are/software stack, including the use of extremely efficient
pplication-specific hardware accelerators, software management of re-
ources, applications, and cooling systems. Together, these components
an provide the desired computational power while keeping under
ontrol the power consumption of the supercomputer.

The TEXTAROSSA project [1] originates from such a vision and
ims at providing key technological advances on all three aspects and to
alidate them on new development platforms representative of future
PC systems, using a wide range of applications, selected considering

raditional HPC application fields as well as coming from emerging
omains. Fig. 1 highlights the strategic goals of TEXTAROSSA, set
gainst the EuroHPC initiative and the broader framework of Euro-
ean research in High Performance Computing. More in detail, TEX-
AROSSA will implement the above-mentioned approach by pursuing
he following goals:

• Technical goals
1. Energy efficiency and thermal control. A two-phase cooling

technology deployed at both node and rack levels will be
fully integrated with a multi-level runtime resource man-
ager. The on-board sensor data feeds the power, energy,
and thermal models.

2. Sustained application performance. The applications and un-
derlying ecosystem (libraries, programming models, . . . )
are optimized through an efficient exploitation of par-
allel accelerators (GPUs and FPGAs) and by exploiting
data/stream locality, efficient algorithms, and innovative
IPs.

1 https://www.etp4hpc.eu/sra.html (last accessed March 2022)
2 https://prace-ri.eu (last accessed March 2022)
3

2

https://cordis.europa.eu/project/id/248749 (last accessed March 2022) k
3. Seamless integration of reconfigurable accelerators. The tools
necessary for the design and implementation phases, such
as Vitis and OmpSs@FPGA, will be extended to support
new IPs and methodologies, including power/energy
monitoring and control, in a mixed-precision computing
context.

4. Development of new IPs. Mixed-precision computing is ap-
plied to several fields, including artificial intelligence, data
compression, security, power monitoring, and workload
scheduling.

5. Integrated Development Platforms. Two heterogeneous Inte-
grated Development Vehicles (IDVs) are in development,
one as a dedicated testbed for two-phase cooling tech-
nology, and one to support a wider range of technical
goals.

• Strategic goals
1. Alignment with the European Processor Initiative (EPI) by test-

ing, extending and boosting key technologies applicable to
future EPI evolution.

2. Supporting the objectives of EuroHPC as reported in
ETP4HPC’s Strategic Research Agenda (SRA) for open HW
and SW architecture.

3. Building over European expertise gained through past re-
search projects as well as through the Centers of Excellence
in HPC.

4. Opening of new usage domains, including High Performance
Data Analytics (HPDA) and High Performance Artificial
Intelligence (HPC-AI) applications, alongside support for
traditional HPC domains.

1.1. The TEXTAROSSA consortium

TEXTAROSSA is a three-year project co-funded by the European
High Performance Computing (EuroHPC) Joint Undertaking. The
project is led by ENEA (Italy) and aggregates 17 institutions and
companies, including the linked third parties, located in 5 European
countries: CINI, an Italian consortium grouping together three leading
universities, Politecnico di Milano, Università degli studi di Torino,
and Università di Pisa, Fraunhofer (Germany), INRIA (France),
ATOS (France), E4 Computer Engineering (Italy), BSC (Spain), PSNC
(Poland), INFN (Italy), CNR (Italy), In Quattro (Italy), Université
de Bordeaux (France), CINECA (Italy) and Universitat Politècnica de
Catalunya (UPC). The three Italian universities are part of the lab of
CINI,4 created in 2021, that is grouping together the main academic
and research entities working in the field of high-performance and
Exascale computing in Italy. CINI is providing also the technical

4 https://www.consorzio-cini.it/index.php/it/laboratori-nazionali/hpc-
ey-technologies-and-tools (last accessed March 2022)

https://www.etp4hpc.eu/sra.html
https://prace-ri.eu
https://cordis.europa.eu/project/id/248749
https://www.consorzio-cini.it/index.php/it/laboratori-nazionali/hpc-key-technologies-and-tools
https://www.consorzio-cini.it/index.php/it/laboratori-nazionali/hpc-key-technologies-and-tools
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Fig. 1. Impact strategy of TEXTAROSSA and positioning within the landscape of the European initiatives on HPC.
leadership of the project. More information on the activities carried
out during the execution of TEXTAROSSA can be found in the project
website.5

1.2. Organization of the paper

The paper is structured as follows: Section 2 introduces the TEX-
TAROSSA co-design approach, and the key technological innovations
are described in Section 3. Section 4 provides an overview of the
industrial application and use cases. Section 5 concludes the article by
highlighting future research directions.

2. TEXTAROSSA co-design approach

From a methodological point of view, TEXTAROSSA adopts a co-
design process as key strategy for Fast Forward and Exascale comput-
ing, considering the entire system stack from underlying technologies
to applications. The co-design process includes five layers covering the
whole HPC stack:

1. User Application: representing a wide range of scenarios,
from mathematical libraries, to mini applications and flagship
codes for numerical modeling with massive parallelism in
HPC/HPDA/AI applications. The performance of HPC appli-
cations depends on the level of optimization of them and
also of the underlying tools. Research usually focuses on both
facets separately: optimizing the applications on one side and
improving hardware/middleware layers on the other side. This
is not the case with our co-design approach: We aim at
connecting both aspects by evaluating the impact of novel
technologies on a set of target HPC applications, and, at the
same time, studying which improvements at lower levels could
be beneficial to these applications.

2. Runtime Services: ensuring that application requirements are dy-
namically satisfied and mapped onto system resources, including
execution models with workload handling, fault tolerance, and
data management. These services are well established in tra-
ditional HPC data centers, and the users, mainly belonging to
academic and big enterprises research, are aware enough to use
the computing resources. Because there has been a growth of
edge applications in the last years aimed at effectively analyzing
big data in a timely manner, a cloud edge continuum enabling

5 https://textarossa.eu (last accessed March 2022)
3

HPC/HPDA is becoming a business case. As the levels and fi-
delity of instrumentation increase and the types and volumes
of available data grow, new classes of applications are being
explored that seamlessly combine real-time data with complex
programming models and data analytics to monitor and manage
systems of interest.

3. Programming Models: underlying the applications, they define the
toolchains and SW development tools able to implement appli-
cations in parallel architectures. The HPC community provided
several programming models that have demonstrated their po-
tential to develop efficient applications. However, parallelization
models are used separately, and most of them target CPUs or
combinations of CPUs/GPUs, but not FPGAs. However, FPGAs
open new possibilities that can be highly beneficial to almost any
HPC application, providing toolchains to handle heterogeneous
architectures.

4. System Architecture: including the processor core’s micro-
architecture, the arrangement of cores within a chip, memory
hierarchy, system interconnect, and storage subsystems. Future
HPC platforms increasingly depend on heterogeneous node
architectures to meet power and performance requirements.
In the HPC landscape, two main approaches have appeared
as viable solutions for a possible system architecture bridging
the current gaps in terms of power and performance that
are required in Exascale computing: the first approach relies
on multi-core processors whose high performance is boosted
by the use of GPU-based accelerators; the second approach
aims at integrating FPGA-based accelerator within the host
architecture. Additionally, interconnection networks featuring
very low latency are going to be essential to support the high
performance of the computation nodes.

5. Platforms: concerning the HW platform at node and rack lev-
els, they need to be able to achieve performance requirements
in terms of computing power and energy consumption. High-
density computing power at node/rack level requires new tech-
nologies of direct cooling on the chip able to remove heat with
high efficiency in order to reduce energy consumption. Direct
cooling provides a more efficient method to transfer the heat
from these hot components to the building chilled water loop
and then outside with very little additional energy, compared
to transferring the heat first to air and then to the building
chilled water system. In addition, in a direct cooling system, the
water temperature returning after cooling the IT equipment is
much higher than typically found in data centers, and provides
more opportunity for heat reuse or the ability to reject this heat

https://textarossa.eu
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Fig. 2. The TEXTAROSSA Co-Design Approach.
to the atmosphere with a dry cooler, thereby eliminating the
requirement of a cooling tower or chiller plant in most climates.

Fig. 2 provides an overview of the co-design approach adopted
in TEXTAROSSA, showing how the five layers of the HPC stack are
addressed in each of the four main stages of the co-design process:

1. Gap Analysis: to compare the current state-of-art of the tech-
nological assets with the objectives of the project in order to
identify the gap to be filled by developments or update in
co-design process.

2. Requirements: to define specifications and requirements of the
technological solutions for designing and developing.

3. Proof of Concept : to develop HW/SW prototype solutions able
to achieve the KPIs (Key Performance Indicators) of the project
objectives.

4. Benchmarking : to provide performance results of the technologi-
cal solutions by means of benchmark tools.

3. TEXTAROSSA technologies

TEXTAROSSA develops, starting from the results of previous Euro-
pean research activities mentioned in Fig. 1, a set of technologies to
deal with each of the four layers of the HPC stack, as well as appli-
cations, which will be covered in full in Section 4. Fig. 3 provides an
overview of the primary technology bricks adopted by TEXTAROSSA.
In the rest of this section, we provide insights on specific technology
bricks developed within the project

3.1. Programming models & toolchains

Vitis based HLS flow. Vitis [2] is the software development platform
developed by Xilinx which translates an application written as a C/C++
program into a bitstream able to run on an FPGA card. Vitis also
supports the communication between the FPGA and programs run-
ning on the host node. In order to facilitate the development process,
Vitis allows the developers to emulate the whole system’s behavior
(host program and FPGA code) by running and debugging the C/C++
code in an user-friendly IDE. After the verification of the functional
correctness, i.e., the program produces the expected results, the HLS
engine translates the C/C++ code into an equivalent and optimized
hardware implementation for the FPGA. The host node, memory banks,
4

Fig. 3. The TEXTAROSSA key technologies.

and other external world components are accessed from the FGPA via
a presynthesized layer containing the interested interfaces, such as
PCIe, DDR, HBM, etc. Vice versa, the FPGA resources are accessed by
the host node through the runtime and APIs provided by Xilinx. Vitis
is very customizable, because based on the open-source LLVM-based
front-end6 and many open-source libraries (e.g., math, video process-
ing, AI, signal processing).7 In the TEXTAROSSA project, Vitis will be
extended by adding multi-precision arithmetic. In this way, we enable
the usage of new data types based on the Posit format, and we provide
a library used for inter-FPGA direct communications. The inter-node
communication layer, namely MPI, will also be updated to transfer data
without requiring memory copies between FPGAs and hosts. A new set
of APIs, named TEXTAROSSA APIs, will be defined over the previously

6 https://github.com/Xilinx/HLS (last accessed August 2022)
7 https://xilinx.github.io/Vitis_Libraries (last accessed August 2022)

https://github.com/Xilinx/HLS
https://xilinx.github.io/Vitis_Libraries
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mentioned APIs, in order to create an homogeneous interface for the
accelerators. These extensions will require the definition of new IPs
to be integrated into the flow of the Vitis program. Consequently, we
will develop the hardware modules, their C++ implementation and we
will integrate all the necessary information needed by the HLS tool to
properly manage (i.e., schedule and connect) the new functionalities.

StarPU, OmpSs. Task-based programming models have demonstrated
their potential to address the programming challenges of heterogeneous
computing nodes. Indeed, in current computing nodes, due to the
automated management of energy and therefore of the speed of the
computing resources and the difficulty to precisely predict the duration
of the communications, it is very difficult to build a reliable model
that would allow to design an optimal placement and scheduling of
computing tasks. On the contrary, task-based systems make scheduling
and placement decisions at runtime, relying on low-cost strategies but
on a precise vision of the platform state. These dynamic strategies have
shown their efficiency, especially in the context of regular applications
consisting of a small number of task types, such as linear algebra [3–5].
Moreover, the task-based approaches allow the developers to achieve
high productivity by providing higher-level abstractions and still gener-
ating high-performance applications. In Textarossa we will improve and
study two task-based runtime sytems: OmpSs8 [6] and StarPU9 [7]().

Task-based programming models can simplify FPGA programming
[8]. This set of approaches has the main advantage of making the
memory allocation and data copies automatic and transparent to the
users. Additionally, it makes the automation of the code generation of
the CPU and FPGA binaries possible. Finally, it can transparently run
open or vendor tools when advantageous. Using high-level tools like
tracing directly from inside the FPGA [8] can subsequently improve
performance. In addition, kernel invocations can be replaced by tasks
described by data dependencies [9]. This is why, we plan to move part
of the runtime system work inside the hardware to create a fast task
scheduler [9,10] with the objective of enhancing the performance. It
has been shown [10] that this type of mechanism can significantly
improve the performance for many applications when using FPGAs
directly from high-level language programs. In addition, we plan to
broaden the range of programs that prove these optimal results with
the tools used by further adapting the environment to TEXTAROSSA
platforms. New features obtained from these platforms will then be
ported back to the frameworks in order to benefit the whole range of
systems targeted by our tools.

Training Deep Neural Network (DNN) is a memory-intensive oper-
ation. Indeed, the training algorithms of most DNNs require to store
both the model weights and the forward activations in order to perform
back-propagation [11]. In practice, training is performed automati-
cally and transparently to the user through autograd tools for back-
propagation available in frameworks such as PyTorch or TensorFlow.
Unfortunately, the memory limitation of current nodes often prevents
data scientists from considering larger models, higher resolution input
date or larger batch sizes, especially in recent NLP models [12]. Our
goal is to extend StarPU to enable inference and training, taking
advantage of both the heterogeneity of the architecture to select where
to place layers and the memory architecture in order to minimize
transfers. In particular, we will rely on the RoToR framework10 [13]
which allows to control the memory consumption and to minimize the
energy consumed by data exchanges.

Several problems should be solved to use FPGAs more efficiently
and control energy consumption. In the TEXTAROSSA project, we
will extend these two task-based runtime systems, OmpSs and StarPU,
which use different approaches to support FPGA. This will allow the
integrated development vehicle to benefit from their existing features,
but also to study their complementarity while validating the robustness
of the new HW against different runtime systems.

8 https://github.com/bsc-pm-ompss-at-fpga (last accessed July 2022)
9 https://starpu.gitlabpages.inria.fr (last accessed July 2022)

10
5

https://gitlab.inria.fr/hiepacs/rotor (last accessed July 2022)
FastFlow. Stream processing is gaining increasing industrial atten-
tion for real-time data analytics and data-driven applications [14].
FastFlow [15] is a C++ programming library targeting multi/many-
cores. It offers both a set of high-level ready-to-use parallel pattern
implementations and a set of mechanisms and components (called
building blocks) to support low-latency and high-throughput data-flow
streaming networks. FastFlow simplifies the development of parallel
applications modeled as a structured, directed graph of processing
nodes. The graph of concurrent nodes is constructed by the assembly
of sequential and parallel building blocks and higher-level components
(i.e., parallel patterns) modeling recurrent schemas of parallel compu-
tations (e.g., pipeline, task-farm, parallel-for, etc.). FastFlow efficiency
stems from the optimized implementation of the base communica-
tion and synchronization mechanisms and its layered software design.
Besides, stream processing is the natural paradigm for event-driven
distributed applications that need to communicate with each other via
message passing. Finally, some data streaming paradigms are naturally
suited for implementation on reconfigurable platforms [16], e.g. the
dataflow/actor paradigm. In TEXTAROSSA, we aim at exploiting recon-
figurable platforms to accelerate HPDA tasks leveraging the FastFlow
framework [17].

StreamFlow. The StreamFlow framework [18,19] is a container-native
Workflow Management System (WMS) written in Python 3 and based
on the Common Workflow Language (CWL) Standard [20]. StreamFlow
has been designed around two main principles: 1. Allowing the exe-
cution of tasks in multi-container environments, in order to support
concurrent execution of multiple communicating tasks in a multi-agent
ecosystem; 2. Relaxing the requirement of a single shared data space,
in order to allow for hybrid workflow executions on top of multi-
cloud or hybrid cloud/HPC infrastructures. StreamFlow source code is
available on GitHub under the LGPLv3 license. A Python package is
downloadable from PyPI and Docker containers can be found on Docker
Hub. More details about the tool and its applications can be found in
the StreamFlow website.11

Compiler technology for mixed-precision support . Many applications
of HPC are error-tolerant, a characteristic that can be exploited –
either in hardware or in software – to achieve important savings in
system costs or power efficiency improvements [21]. Hardware-based
proposals take advantage of inherent sensor limitations, redundant
data, and reduced precision input, or introduce additional uncertainty
by adopting design features that produce approximate results. On the
other hand, software-based approximate-computing approaches such
as floating-point optimization or loop perforation allow to trade-off
algorithm exactness for a more efficient implementation [22]. To this
end, high complexity of modern applications makes approximate com-
pilers increasingly important. We aim to focus on mixed-precision
compilers [23], which are a subset of approximate compilers. Recently,
new data types specifically geared for mixed-precision are emerging,
such as Posit [24] and BFloat16 [25]. Posit is a new compressed
floating-point data format for which University of Pisa has developed
a software library called CppPosit [26,27]. From the first results of
applying the CppPosit library to AI/DNN problems, Posit can lead to the
same processing accuracy of single-precision floating-point but with a
data compression from a factor 2 to 4 [26,27]. This means that applying
Posit to the application cases (HPC, HPDA and AI/CNN) has the poten-
tial to reduce data storage issues and allows for fast data movement.
BFloat16 (Brain Floating Point) is used in upcoming Intel AI processors
(NERVANA), XEON processors, Google Cloud TPU and ARMv8.6-A, as
well as in RISC-V extensions [28]. In contrast to other standardized 16-
bit floating point formats, BFloat16 offers a greater dynamic range and
higher compatibility with the conventional single-precision floating-
point format defined by the IEEE-754 standard. In TEXTAROSSA, we

11 https://streamflow.di.unito.it (last accessed March 2022)

https://github.com/bsc-pm-ompss-at-fpga
https://starpu.gitlabpages.inria.fr
https://gitlab.inria.fr/hiepacs/rotor
https://streamflow.di.unito.it
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aim at exploiting and extending the tools for precision tuning developed
as part of the H2020 FETHPC ANTAREX project [29] collected in the
TAFFO framework [30,31]. The TAFFO framework is implemented as
a set of plugins for the LLVM compiler. Based on programmer hints
expressed as attributes, TAFFO performs value range analysis, data type
and code conversion, and static estimation of the performance impact,
automatically producing a mixed-precision application with statically-
guaranteed error bounds. TAFFO is language-independent, supports
data types ranging from fixed-point to standard floating-point formats,
and allows the user to finely tune the performance-precision trade-off
to their needs [32]. The extensions to TAFFO will allow it to cover a
wider range of target platforms, such as FPGAs through integration with
the TEXTAROSSA High Level Synthesis (HLS) toolchain. Additionally,
we aim to include support for emerging data types such as Posit and
BFloat16, expanding the use of the tools to heterogeneous systems with
reconfigurable components, and to improve the performance estimation
by exploiting recent analysis techniques [33] as well as a deeper
understanding of the target processor pipeline.

3.2. Runtime services: Energy/power management

The linear increment of power consumption, due to the end of the
Dennard’s scaling, is not sustainable for the next generation of Exascale
computing systems. This, in fact, would have a huge impact. The energy
consumption of the HPC centres would increase dramatically, other
than posing severe issues in terms of thermal and power management.
Overall, the deriving increase of costs and energy requirements is far
from being an attractive perspective for an HPC center. Moreover,
this increase of power requirements would represent an additional
contribution to growth of the global carbon footprint, due to the
information technologies [34]. Therefore, the design and deployment
of energy-efficient HPC infrastructures is a primary concern, at all
the possible levels. In this regard, the scientific community converged
on the idea that providing computing nodes equipped with hetero-
geneous processing is an effective solution. This means that also the
HPC infrastructures must be characterized by the presence of different
processing units, such that, the workload allocation could follow an
energy efficiency driven schema. This means to deploy a resource
manager or job dispatcher capable of selecting the most efficient unit
with respect to the specific job or application to serve [35]. How-
ever, energy efficiency can then be maximized if we can actually
rely on a suitable resource management strategy at different levels.
Although the state-of-the-art already includes some solutions, recent
projects, like MANGO [36] and RECIPE [37], have shown that we need
to take into account the platform-specific characteristics, other than
develop suitable knobs to profile and monitor the execution of the
workload, at run-time [38]. This enables more accurate resource man-
agement policies [39,40]. In addition, by integrating the programming
model with the resource management layers we could dynamically tune
the numerical accuracy (precision) of the algorithms’ implementation,
with respect to the actual application requirements and power/energy
constraints [41]. Similarly, this applies to the problem of guarantee
real-time requirements to time-critical applications [42,43]. In general,
given the reference hardware platform and the application use-cases,
the TEXTAROSSA project would represent an extremely interesting test-
bench for exploring novel power and energy management strategies,
by operating at both software and hardware level. At the hardware
level, for example, we can provide a major contribution, by instru-
menting the computing architecture with ad-hoc power monitors [44]
and controllers [45,46], in order to minimize the monitoring latencies,
while increasing the effectiveness of the management policies. On the
software side, we partially start from an already existing resource
management framework [47], and aim at revising its implementation,
by introducing the support for the new target hardware, integrating
the precision tuning mechanisms and the developing new platform-
specific resource management policies. Overall, this would allow us to
explore all the possibilities offered by the platform, and the application-
side integration, to increase the FLOPS-per-Watt ratio, with respect to
6

state-of-the-art HPC solutions.
3.3. Posit hardware accelerators

Within EPI and the European programs, accelerators based on RISC-
V cores enable energy-efficiency for applications using stencil pat-
terns or neuromorphic algorithms. Such accelerators implement float-
ing point units able to work on classic fp32 float or new BFloat16
formats. To increase performance, one could try to reduce the number
of bits in the floating point representation. But when reducing the
precision of the used arithmetic, iterating over many timesteps, the
derivations may become unstable and hence affect the final result of
the simulations. The novel Posit binary arithmetic format can offer
higher precision while using less bits than standard IEEE floating-
point numbers. Recent literature shows [26,27] that 16 bit Posit can
leverage comparable results like fp32 and Posit with 8 bit precision
outperform in terms of accuracy fp16 (for CNN 8 bit Posit can leverage
comparable results like fp32). Calculations can be done even with
simple bit manipulations on the Posit format without extraction, further
decreasing the complexity of the operations. It is thus possible to
enhance memory bandwidth, and lower level cache utilization, power
footprint, and throughput of the arithmetic units.

Within TEXTAROSSA, a RISC-V unit will be extended with support
for alternative data representations, including fine-grained reduced
precision floating point [28] and Posit arithmetic. To complement the
hardware IP developments, the LLVM compiler, also adopted in EPI,
will be extended for Posit and data compression support and real-world
HPC applications and CNN kernels will be ported to leverage the IP.
Fast software co-design will be enabled through software implementa-
tion of Posit in the CppPosit library.12 Two approaches will be followed:
the first called light PPU (Posit Processing Unit) will add Posit to/from
float and Posit to/from integer converter to a RISC-V 64b 6 stages core
with ALU and FPU. This way, with minimal circuit overhead, estimated
in less than 1%, and exploiting the instruction customization of RISC-
V, the support of Posit8 and Posit16 is also added. Since with the light
PPU, Posit processing replies on ALU or FPU back-end the advantage
is mainly in the compression properties of Posits that allows a compact
storage of large CNNs, while the inference part will be done using the
FPU with floats. In the second approach a full PPU will be added to
the RISC-V 64b core, replacing the FPU. This version will be suited to
use Posits for both storage and inference. Beside the implementation
of accelerators for new data formats, other analysis will be carried out
to provide basic blocks to implement novel cryptosystems onto FPGAs,
like multipliers for large binary polynomials [48] and decoders for
post-quantum cryptography [49].

The generated IPs will be considered for the sake of the global en-
ergy and power management and optimization, thanks to the exploita-
tion of a methodology capable to automatically identify the power
model of a generic hardware module and to augment the original de-
sign with its RTL implementation [50]. Note that such power monitors
are properly designed in order to prevent the creation of an entry point
for side-channel attacks.

The novel IPs will be ported to FPGAs for benchmarking. Both
techniques have not been implemented on top of a completely co-
designed accelerator so far and will provide a huge benefit for the
European IP portfolio.

3.4. Hardware platform optimization

HPC systems have historically always been limited by thermal con-
siderations and computing architectures need both optimized heat
dissipation solutions and runtime thermal control policies to oper-
ate reliably and efficiently. The TEXTAROSSA project will provide
contributions in both areas.

For what concerns heat dissipation improvements, the company
InQuattro has developed an innovative thermal management solution

12 https://github.com/eruffaldi/cppPosit (last accessed March 2022)

https://github.com/eruffaldi/cppPosit
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Fig. 4. Schematic of the two-phase cooling system (left) and its embedding in a server (right).
(patent pending) based on two-phase mechanically pumped loops,
which uses a flow boiling heat transfer for cooling electronics in a more
efficient way. This allows the use of the latent heat of vaporization so
that flow rates are significantly reduced, temperature gradients are kept
small, and heat transfer coefficients are increased compared to not only
air cooling but also liquid cooling systems. Two-phase cooling systems
using evaporation and condensation are known to be the best way to
meet demanding cooling requirements in terms of compactness, weight,
and energy-consumption. A possible configuration of the two-phase
cooling system for a single node is shown in Fig. 4.

In TEXTAROSSA, an optimized two-phase cooling solution for HPC
is being developed and customized to fit the requirements of node and
rack levels for Exascale applications. The development cycle consists of
an initial cooling solution design phase complemented by the design of
a dynamic model to be used for simulation, as well as for the design
of thermal control policies. The following step consists of the actual
production of a prototype cooling solution, to be fully characterized
resulting in refinements of its model through experimental data. The
final step will be the testing on HPC node(s) provided by E4 and ATOS
and developed with the objective to serve an entire rack. Such a testing
will be performed jointly with the thermal control policies. It is foreseen
to develop two solutions of the two-phase cooling system that could be
patented during the project on the principal components of the cooling
system (evaporator, condenser). This innovative technology is expected
to improve the cooling efficiency up to 70% compared to traditional air
cooling, and up to 30% compared to existing liquid cooling and will be
tested on both ATOS and E4 infrastructures.

It should be stressed that both the design of cooling solutions and
thermal control policies critically relies on thermal models. Thermal
simulators for CPUs/MPSoCs have been proposed, but most of them
can only represent a limited range of heat dissipation solutions, and
are not easy to extend towards two-phase liquid cooling solutions
or to encompass the simulation of an entire rack. For this reason,
in TEXTAROSSA, we are taking advantage of a recently introduced
paradigm for the modeling of MPSoC cooling systems [51]: the co-
simulation of highly optimized IC thermal model with heat dissipation
models expressed by means of equation-based object-oriented modeling
languages. This approach allows at the same time to leverage the
performance of traditional IC thermal model, and to be able to simulate
the complex, nonlinear thermal phenomena that arise when bringing
evaporative cooling into play.

A key aspect of thermal modeling is the need for experimental data.
As some of the thermal phenomena to be modeled rely on empirical cor-
relations, experiments are needed to provide correct parameter values
in order to accurately model heat dissipation phenomena. Moreover,
the availability of high quality experimental data allows to perform val-
idation of thermal models. However, the direct use of MPSoCs such as
processors or GPUs to perform thermal experiments is made extremely
difficult by the uncertainty in the power spatial distribution across the
silicon die during computational workloads in modern processors, as
well as due to the insufficient number of temperature sensors to fully
reconstruct the temperature spatial distribution. In TEXTAROSSA, we
are overcoming these limitations by relying on a thermal test chip
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platform [52] developed at Politecnico di Milano. Thermal test chips
are integrated circuits dedicated to thermal testing, providing an array
of on-silicon heating elements and temperature sensors, allowing to
capture accurate silicon thermal maps connected to the proposed heat
dissipation solution, considering both spatial (e.g. hot spots) and tem-
poral temperature variations. The integration of the two-phase cooling
system with the TTC is currently underway (Fig. 5). The collected
experimental data will be used to improve and validate the thermal
models as well as for the design of the control policies.

For what concerns thermal control policies, in TEXTAROSSA the
integration of two-phase cooling will be made by means of a multilevel
thermal control strategy, aiming to overcome the complexity of control-
ling an HPC platform from node to system level. To reduce overhead,
we will exploit and extend the use of event-based control policies
(patent pending) developed at Politecnico di Milano to provide effective
thermal control with minimal overhead. As the fastest temperature
gradients occur at the silicon active layer, we will use fast event-based
control loops [53] acting on DVFS to limit the maximum operating
temperature of compute elements. These inner control loop will in
turn interact with higher level control loops operating the two phase
cooling infrastructure of the node, which is comparatively slower and
has higher overheads but has the capability to increase the heat transfer
coefficient on-demand, thus allowing to relieve the need to reduce
frequency using DVFS, in turn improving performance. A further super-
visory control layer will allow to set the desired temperatures at the
rack level based on reliability metrics. Multilevel control allows thus
to partition the system level control problem into multiple interacting
control loops, each optimized for the specific thermal dynamics to
control.

3.5. Low-latency communication between FPGAs

The usage of FPGAs as accelerators is getting so widespread that
even big cloud providers are now installing reconfigurable devices in
their instances (e.g. on Microsoft Azure and Amazon EC2). Interaction
of hundreds to thousands of FPGAs requires a scalable approach to hold
them together, in order to guarantee a low latency connection among
them. A definitive approach has to be found, to provide users with the
best flexibility, meanwhile easing the usage for software developers.
As an example, the latest version of the Microsoft Catapult fabric,
puts a Stratix 10 device between each NIC on the x86 servers and
the ToR switch, enabling a fast path for accelerators to communicate
among themselves with a few microseconds latency. The Brainwave
project [54] leverages this architecture to provide a deep learning
platform for real-time AI inference on the cloud. While this framework
offers a very friendly interface for users to deploy their models on
top of this architecture, it loses the flexibility of delivering the cores
as black boxes, and providing an implementation of only a few pre-
trained models. Our approach, on the other hand, is more flexible: users
can define processing tasks freely using C++, the configuration tools
developed in the project will generate automatically all the glue logic
needed for the FPGA bitstream generation. This will allow developers
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Fig. 5. Two-phase evaporator prototype installed on the Thermal Test Chip (left) and thermal chamber calibration of the TTC on-die temperature sensors (right).
Fig. 6. Architectural partition of Communication IP.
to define a scalable application using a streaming programming model
(Kahn Process Network [55]) that can be efficiently deployed on a
multi-FPGAs system. TEXTAROSSA is developing a communication IP
and its software stack, providing the implementation of a direct net-
work that allows low-latency communication between processing tasks
deployed on FPGAs, even if hosted in different computing nodes. The
communication IP, based on the ExaNet IPs (switch, router, high-speed
channels [56]) developed in ExaNeSt H2020 project [57] and EuroEXA
H2020 [58], can be split into two Interface Blocks – InterNode IF
and IntraNode IF – which manage data flow, and a switch_component,
in charge of dynamically interconnect all ports of IFs (Fig. 6). The
Communication IP meets the interface requirements to be used as an
RTL kernel within the Vitis IDE.

To better take advantage of the framework and to easily allow the
interconnection of computational kernels, we are developing a tool to
simplify the inclusion and the configuration of the interconnection IP
without the need to add an ad-hoc custom project. The user can specify
the number of the ports as parameter, as well as how to connect the
different kernels to the available ports in a custom configuration file.
This configuration file is then used to generate the project files. This
way the interconnection logic is built automatically by the configu-
ration tool based on the application needs, allowing the end user to
focus on the processing/computing kernels. The direct communication
between tasks deployed on FPGAs avoids the involvement of the CPUs
and system bus resources in the data transfers, improving the platform’s
energy efficiency and reducing communication latency.
8

4. TEXTAROSSA applications

In this section, we briefly provide an overview of the use case appli-
cations adopted in TEXTAROSSA. To address the variety of application
domains of future Exascale systems, TEXTAROSSA applications include
basic mathematical libraries (MathLib), traditional HPC applications
(UrbanAir, TNM, HEP, and RTM), and applications from emerging
domains (RAIDER, DPSNN, Danger Detection).

4.1. MathLib

Mathematical libraries are key components of the SW stack for
HPC applications. They are building blocks implementing methods
and algorithms for solving main mathematical problems that domain
scientists reuse in form of basic components and then are critical to
the accuracy, performance and energy efficiency of HPC applications.
Any new generation of computer architecture requires new generation
of mathematical SW libraries and the race to exascale, featured by
computing elements of increasing complexity and heterogeneity, is no
exception. Within the TEXTAROSSA project, extensions and improve-
ments of high-performance algorithms and SW libraries for kernels in
numerical linear algebra [3,59] and graph computation, such as itera-
tive [60–63] and direct linear solvers, edge weighted graph matching,
and fast multipole methods [5] will be deployed. We will provide new
high-performance algorithms and SW modules for some of the so-called
Colella’s dwarves, that classified numerical methods crucial for science
and engineering. In particular, we will focus on algorithms and SW for
sparse linear algebra, where data sets include many zero-values and
are usually stored in compressed data structures to reduce storage and
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memory bandwidth requirements. Those data structures are generally
accessed with indexed loads and stores, and main computational ker-
nels are communication bound. We intend to develop and benchmark a
library of kernels optimized for hybrid nodes embedding NVDIA GPUs
in order to pursue node-level performance further than multi-node
scalability. Scalability will be improved by leveraging overlap between
communication and computation. We will also investigate the chance
of using mixed-precision floating-point arithmetic, which offers many
advantages in terms of memory footprint and computational efficiency,
by applying strategies for preserving robustness and correctness, such
as defect-correction approaches to meet application’s accuracy and
reproducibility needs. The library kernels will be of immediate use in a
wide range of applications, ranging from classical scientific simulation
to AI techniques, including automatic pattern recognition in complex
systems, and will be tested on well established benchmarks.

4.2. HPDA and HPC-AI applications

Real-time AI-based data analytics on hetERogeneous distributed sys-
tems (RAIDER). A Proof-of-Concept shall be provided as a typical
High Energy Physics (HEP) real-time AI-based data analytics on hetero-
geneous distributed system, a processing paradigm that INFN APE Lab
has already successfully adopted in the context of the NA62 experiment
at CERN where we have developed the GPU-RICH system [64,65].
GPU-RICH integrates one CPU, one FPGA and one GPU in a single com-
puting node and implements a real-time track reconstruction pipeline
in which the FPGA-based NIC receives eight data streams from the
RICH Cherenkov detector, processes them and injects the output stream
directly into the GPU memory through the PCIe bus (GPUDirect RDMA)
for the track reconstruction parallel processing.

Future experiments, which will handle high volume of data and high
costs, push the need for new techniques in Trigger and Data Acquisition
(TDAQ) systems to improve particle identification and further suppress
background events in trigger systems, or to perform an efficient online
data reduction for trigger-less ones. Architecturally, data streams from
different channels/sources/detectors can be recombined through some
processing layers using a low-latency, modular and scalable network
infrastructure (configurable in number of channels, topology and size).
Each processing layer performs feature extraction through machine
learning leveraging Deep Neural Networks implemented on heteroge-
neous devices. This implementation must take into account the limited
memory and floating point resources of some of the devices (usually
those located at the edge) deploying resource-demanding Neural Net-
work layers (e.g. CNN) in subsequent processing layers and studying
reduced precision and/or compression techniques for input data.

These concepts define the RAIDER software application and its ref-
erence hardware platform, whose combination yields a distinguishing
feature that is the capability of performing this distributed inference
scheme with real-time constraints. FPGA devices are the key archi-
tectural elements enabling the implementation of the general RAIDER
architecture in application scenarios characterized by very low-latency
classification requirements. In fact, these devices allow the imple-
mentation of data transport and processing stages characterized by a
highly predictable and low latency. Wrapping up overview and studies
concerning available low-latency communication IPs and frameworks
for Neural Networks (NNs) deployment on FPGA, it was straightforward
to actualize a preliminary but functional testbed for distributed data-
analytics. Henceforth having the possibility to evaluate pros and cons of
a programming model focused on the realization of a real-time AI-based
data analytics heterogeneous distributed system. For this purpose, a
distributed HLS development framework is required, hence we will
work toward the extension of one of those frameworks, namely Xilinx
Vitis, in order to be able to deploy in a straightforward manner multi-
FPGA distributed low-latency applications, such as RAIDER. It shall be
done integrating INFN set of Interconnection IPs (switch, low-latency
9

data channels) in the Xilinx Vitis framework also through the definition
and implementation of the full software stack supporting those IPs for
the very low-latency data transfer between processing tasks deployed
on the same FPGA (intra-node communication) and on different FPGAs
(inter-node communication), in order to offer hardware support for
the execution of applications developed according to the streaming
programming models on a system made of multiple interconnected
FPGAs. The careful design and implementation of the HW/SW inter-
face, through the Vitis HLS flow to define the communication protocol
(HLS communication primitives) and to map the I/O ports of the Vitis
HLS flow on those provided by the communication IPs will be of great
importance to fully exploit the potential of the hardware.

Brain simulation (DPSNN). INFN started tackling neural simulations
with its own engine, the Distributed and Plastic Spiking Neural Net-
work (DPSNN), which is a scalable C++/MPI code for HPC platforms
at extreme scales simulating the spiking dynamics of a brain cortex
modeled as a grid of cortical columns populated with neurons and their
interconnecting synapses. It has been used to first model brain cortex
behavior – with a special focus on sleep-like states [66] – and to gauge
compute and power efficiency on different architectures [67]. INFN
has now transitioned to another, more versatile tool, the NEST Simula-
tor [68]. This is a C++/MPI/OpenMP code by the NEST Initiative13 that
mpowers an user with a domain-specific language to design a virtual
europhysiology experiment, from the equations driving the dynamics
f the components of interest in the cortex (with a rich library of many
ypes of either neurons and synapses ready to be used) to the topology
f their interconnections – the so-called connectome – all the way to
he necessary supporting tools, like probing or stimulating electrodes
hat read or inject electrical currents into the simulated cortex. NEST
ffers to the experimenter an intuitive Python interface to easily setup
detailed and complex protocol of interaction between a simulated

ortex and a set of external stimuli. Coupled with the huge set of
ools for analysis, visualization and data transformation available to
he Python user, NEST allows for a compact yet expressive way to
erform even very involved neural simulations. INFN has used NEST to
mplement a biologically-inspired thalamo-cortical model which is able
o be trained in classification of handwritten digits from the MNIST data
et and then mimic the wake-sleep cycle, in order to test the enhancing
ffects of sleep on the quality of learning and recognition [69], even in
oisy environments [70].

mart cities video surveillance. Implementing distributed video
urveillance systems in the context of smart cities provides a huge
mount of data for processing, using also AI techniques for detection
nd classification. Possible applications are related to safety versus
ovid-19, e.g., by detecting in real-time people, their body temperature,
he respect of social distancing, or if they are wearing protective facial
asks. A design activity will be carried out for a real-time danger alarm

ystem composed of a network of smart cameras where a pre-processing
tage plus an AI algorithm (e.g. a Yolo based CNN) is implemented on
n EDGE server.

.3. Traditional HPC applications

ir pollution (UrbanAir). The UrbanAir concerns the modeling and
orecasting of the concentration and dispersion of pollutants. It is a 3D
ultiscale model that combines a numerical weather prediction (NWP)
odel, running at larger scale (e.g. mesoscale), with a city-scale geo-
hysical flow solver (EULAG) for accurate prediction of contaminant
e.g. NO2, PM2.5, PM10) transportation through the street corridors,
ver buildings and obstacles. A design activity shall be carried out
o use mixed-precision computing and energy-efficient accelerators for
aster response while preserving results accuracy. The EULAG is a
ortran application which exploits message passing parallelization in

13 https://nest-initiative.org (last accessed March 2022)

https://nest-initiative.org
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two (2P) or three (3P) dimensions. In each version, the computa-
tional domain is balanced between CPU workers — horizontally for
the former version, horizontally and vertically for the latter. Some
of the kernels of 3P version have been already adapted to GPU to
reduce processing time. The computational domain can be divided
between GPU accelerators only or between CPUs and GPUs. In the latter
case the subdomain sizes are carefully chosen to avoid unbalanced
computations. Moreover, the 3P version has been adapted with the Bar-
bequeRTRM runtime resource manager to manage computing resources
allocation, to dynamically switch between CPUs and GPUs to increase
energy efficiency, and to increase reliability with checkpoint/restore
mechanism [71].

Quantum simulation (TNM). Tensor Network Methods (TNM) are a
class of powerful numerical methods developed to study the equilib-
rium and out-of-equilibrium properties of strongly correlated many-
body quantum systems [72]. TNM are complementary to Monte Carlo
methods as they do not suffer from the sign problem. A design activity
shall be performed to overcome current TNM limitations studying how
to push the simulation boundaries towards high-dimensional systems
with the support of HPC infrastructure. As important steps in this
direction, the first tensor network simulations of lattice gauge theo-
ries in (2+1) and (3+1) dimensions have been performed [73,74]. In
particular, lattice Quantum Electrodynamics (QED) in the Hamiltonian
formulation including dynamical matter has been considered and, by
using the sign-problem-free TNM, it has been possible to compute
the ground states of the model at zero and finite charge densities,
and to address fundamental questions such as the characterization
of collective phases of the model, the presence of a confining phase
at large gauge coupling, and the study of charge-screening effects.
These simulations have been performed on computer clusters by taking
advantage only of OpenMP parallelization on single multi-core nodes.
Further developments shall be carried out to simulate larger system
sizes, by exploiting large-scale parallelization of TNM by means of MPI
or GPU acceleration.

High Energy Physics (HEP). The HEP community has the transition
to heterogeneous computing on its roadmap for the next decade, in
order to profit from the large investments in HPC systems, and in
general to access resources with a better cost/performance ratio [75].
A number of solutions have appeared in the last 4–5 years in the
market; they, with their own peculiarities and strong and weak points,
promise a seamless utilization of a variety of platforms, with a clear
separation between a frontend part (seen by the user/programmer) and
a backend part (taken care by the framework via a toolset of libraries
and compilers). The HEP community, and in particular the LHC ex-
periments, have started an experimentation with a few products, like
Alpaka [76], Kokkos [77], Intel OneApi and SYCL. In TEXTAROSSA, we
plan to select a representative set of applications, mission critical in
their scientific domains, and evaluate the porting to the frameworks.
Whenever successful, a thorough benchmarking will follow on the
main target platform, and auxiliary ones. A first target for migration is
certainly the collection of high-level software libraries used by the LHC
experiments for simulation and data analysis. They include Geant4 [78]
and Fluka [79] for particle–matter simulation, the use of high-level
analysis tools like those in ROOT [80], and simulation packages of high-
energy collisions. A design activity will be focused to optimize these
software frameworks for the realization of code bases able to execute on
multiple architectures, including the next generations of pre-Exascale
and Exascale European HPC systems.

Biomedical application (HPC-Drugs). Nowadays, Ligand binding
affinity predictions carried out with Molecular Dynamics simulation
is one of the main research focus in computational chemistry, due
to its potential impact in industrial drug discovery. A design activ-
ity shall be carried out for HPC-backed pharmaceutical applications
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based on n-body kernel functions running in specialized cores of GPU
__kernel void kforce(global double i-th part.);
for each particle j-th do

evaluate the force on j-th part. by i-th part.;
end
end __kernel kforce;

Algorithm 1: n-body kernel function algorithm.

and FPGA, relying on recently discovered non-equilibrium thermo-
dynamics theorems and capable of delivering absolute binding free
energies of drug-size molecules in a predictable wall-clock time with a
credible confidence interval, hence bypassing the limitations of the tra-
ditional equilibrium-based Free Energy Perturbation (FEP) alchemical
approaches [81].

Heterogeneous architecture based on GPU/FPGA is already used to
reduce the huge processing time in MD simulations. Its programming
model provides a top-level abstraction for low-level hardware routines
as well as consistent memory and execution models for dealing with
massively-parallel code execution. A standard programming model is
OpenCL, which is composed of one CPU-based ‘‘Host’’ controlling mul-
tiple ‘‘Compute Devices’’ such as GPUs and FPGAs. Each of these
coarse-grained compute devices consists of multiple ‘‘Compute Units’’,
and within these are multiple ‘‘Processing Elements’’. At the lowest
level, these processing elements all execute OpenCL ‘‘Kernel Func-
tions’’. These kernel functions compute the forces by involving in an
n-body interaction a particle system on which all coordinates are fixed
during the force computation that can be parallelized for the different
values of each particle. In terms of streams and kernels, this can be
expressed as the kernel function shown in the pseudo-code of Algorithm
1.

Reverse Time Migration (RTM). The Reverse Time Migration applica-
tion and mini-kernels are used within EPI to co-design the STX Accel-
erator and have been ported to FPGAs within the EuroEXA project. The
respective kernels will be analyzed to which extent they can leverage
the new, energy-efficient, capabilities like Posit arithmetic and lossy
compression to enhance performance and energy efficiency. The RTM
kernels are stencil-based kernels. Hence, they provide conclusions on
many stencil based applications. Reverse Time Migration by FHG for
HPC applications to Oil & Gas and Geo-Services.

5. Conclusions

The EuroHPC TEXTAROSSA project addresses technology gaps tar-
geting pre-Exascale and Exascale scenarios. In particular, the project
aims at developing new IPs, algorithms, methods, and software compo-
nents for HPC, HPC-AI, and HPDA applications. A co-design methodol-
ogy is employed to reach the technical goals: from the optimization
of the user application to the development of runtime services and
programming models able to exploit the parallelism of the architecture.
Then the CPU architecture and HW platforms, including at the rack-
level, are optimized to achieve performance targets not only in terms
of computing power, but also of power and energy consumption. The
majority of the TEXTAROSSA tools will be open-source and able to be
adopted as standalone building blocks or to interoperate with other
Exascale-ready components developed within the EuroHPC initiative.
The use-case applications adopted in TEXTAROSSA include mathemat-
ical libraries, traditional HPC software, and applications from emerging
domains.
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