

ISTI-TR-2024/002

ISTI Technical Reports

Weak ±-Minimisation for Model Checking Polyhedra
Nick Bezhanishvili, University of Amsterdam, Amsterdam, The Netherlands

Laura Bussi, CNR-ISTI, Pisa, Italy

Vincenzo Ciancia, CNR-ISTI, Pisa, Italy

David Gabelaia, Tbilisi State University, Tbilisi, Georgia

Mamuka Jibladze, Tbilisi State University, Tbilisi, Georgia

Diego Latella, CNR-ISTI, Pisa, Italy

Mieke Massink, CNR-ISTI, Pisa, Italy

Erik P. de Vink, Eindhoven University of Technology, Eindhoven, The Netherlands

 ISTI-TR-2024/002

Weak ±-Minimisation for Model Checking Polyhedra
Bezhanishvili N.; Bussi L.; Ciancia V.; Gabelaia D.; Jibladze M.; Latella D.; Massink M.; de Vink E.P.
ISTI-TR-2024/002

Abstract
The work in this paper builds on the polyhedral semantics of the Spatial Logic for Closure Spaces
(SLCS), and the geometric spatial model checker PolyLogicA. Polyhedral models are central in
domains that exploit mesh processing, such as 3D computer graphics. A discrete representation of
polyhedra is given by face-poset models, which are amenable to spatial model checking using the
logical language SLCSη and PolyLogicA. In this work, we propose a procedure that computes the
minimal model with respect to weak ±-bisimilarity – that is SLCSη- logical equivalence – via a
translation to LTSs and branching bisimilarity. Because of its reduced size, the minimal model
makes geometric model checking more efficient. We provide a preliminary experimental validation
of the approach exploiting the minimization capabilities of mCRL2.

Keywords
Polyhedral models, Spatial bisimilarity, Spatial logics, Logical equivalence, Spatial model
checking, Strong Bisimulation, Branching Bisimulation.

Weak ±-minimisation for model checking polyhedra © 2024 by Bezhanishvili N.; Bussi L.; Ciancia V.;
Gabelaia D.; Jibladze M.; Latella D.; Massink M.; de Vink E. P. is licensed under CC BY 4.0. To view a copy of
this license, visit https://creativecommons.org/licenses/by/4.0/

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Area della Ricerca CNR di Pisa
Via G. Moruzzi 1
56124 Pisa Italy
http://www.isti.cnr.it

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

Weak ±-Minimisation for
Model Checking Polyhedra⋆

Nick Bezhanishvili1, Laura Bussi2, Vincenzo Ciancia2, David Gabelaia3,
Mamuka Jibladze3, Diego Latella2, Mieke Massink2, and Erik P. de Vink4

1 ILLC, University of Amsterdam, NL
n.bezhanishvili@uva.nl

2 ISTI, Consiglio Nazionale delle Ricerche, Pisa, IT
{Laura.Bussi, Vincenzo.Ciancia, Diego.Latella, Mieke.Massink}@cnr.it

3 RMI, Tbilisi State University, GE
{gabelaia, mamuka.jibladze}@gmail.com
4 Eindhoven University of Technology, NL

evink@win.tue.nl

Abstract. The work in this paper builds on the polyhedral semantics of
the Spatial Logic for Closure Spaces (SLCS), and the geometric spatial
model checker PolyLogicA. Polyhedral models are central in domains
that exploit mesh processing, such as 3D computer graphics. A discrete
representation of polyhedra is given by face-poset models, which are
amenable to spatial model checking using the logical language SLCSη

and PolyLogicA. In this work, we propose a procedure that computes
the minimal model with respect to weak ±-bisimilarity – that is SLCSη-
logical equivalence – via a translation to LTSs and branching bisimilarity.
Because of its reduced size, the minimal model makes geometric model
checking more efficient. We provide a preliminary experimental valida-
tion of the approach exploiting the minimization capabilities of mCRL2.

Keywords: Polyhedral models · Spatial bisimilarity · Spatial logics · Logical
equivalence · Spatial model checking · Strong Bisimulation · Branching Bisimu-
lation.

1 Introduction and Related Work

Spatial and spatio-temporal model checking have recently been successfully em-
ployed in a variety of application areas, including Collective Adaptive Sys-
tems [19, 15], signals [26], images [18, 22, 1] and polyhedra [7, 14, 8, 9]. Interest in
these methods for spatial analysis is increasing in computer science and in other
domains, including initially unanticipated ones, such as medical imaging [4, 2].
⋆ The authors are listed in alphabetical order, as they equally contributed to the work

presented in this paper.
Diego Latella was a Senior Researcher with CNR at the time of writing the present
document. Since Sept. 1, 2024 he retired.

2 N. Bezhanishvili et al.

Spatial model checking is a global technique: it comprises the automatic ver-
ification of properties, expressed in a suitable spatial logic, such as SLCS [17, 18],
on each point of a spatial model. The logic SLCS has been defined originally for
Čech closure spaces [27], a generalisation of topological spaces, and model check-
ing algorithms have been developed for finite closure spaces also in combination
with discrete time, leading to spatio-temporal model checking [15]. The spatial
model checker VoxLogicA, proposed in [15], is very efficient in checking proper-
ties of large images –represented as symmetric finite closure models– expressed
in SLCS [4, 3, 2]. For example, the automatic segmentation via a suitable SLCS
formula characterising the white matter of the brain in a 3D MRI image consist-
ing of circa 12M voxels (i.e. 256×256×181), requires approximately 10 seconds,
using VoxLogicA on a desktop computer [3].5

In [13, 20] several bisimulations for finite closure spaces have been studied,
with the aim to improve the efficiency of model checking via model minimisa-
tion. These notions cover a spectrum from CM-bisimilarity, an equivalence based
on proximity — similar to and inspired by topo-bisimilarity for topological mod-
els [5] — to its specialisation for quasi-discrete closure models, CMC-bisimilarity,
to CoPa-bisimilarity, an equivalence based on conditional reachability. Each of
these bisimilarities has been equipped with its logical characterisation.

The spatial model checking techniques mentioned above targeting grid-based
structures have been extended to polyhedral models [6, 24]. Polyhedra are sub-
sets in Rn generated by simplicial complexes, i.e. finite collections of simplexes
satisfying certain conditions. A simplex is the convex hull of a set of affinely
independent points. Given a set PL of proposition letters, a polyhedral model is
obtained from a polyhedron by assigning a polyhedral subset to each proposition
letter p ∈ PL, namely those points that “satisfy” p. Polyhedral models in R3 can
be used for (approximately) representing objects in continuous 3D space. This
is typical of many 3D visual computing techniques, where an object is split into
suitable parts of different size. Such ways of splitting of an object are known
as mesh techniques and include triangular surface meshes or tetrahedral volume
meshes (see [23]).

In [6] a version of SLCS has been proposed for expressing spatial properties
of points lying in polyhedral models, and in particular conditional reachability
properties. Besides negation and conjunction, the particular logic, called SLCSγ
in the sequel, provides the γ reachability operator. Informally, a point x in a
polyhedral model satisfies the conditional reachability formula γ(Φ1, Φ2) if there
is a topological path starting from x, ending in a point y satisfying Φ2, and such
that all the intermediate points of the path between x and y satisfy Φ1. Note
that neither x nor y is required to satisfy Φ1. Many other interesting properties,
such as proximity (in the topological sense, i.e. “being in the topological closure
of”) or “being surrounded by” can be expressed using reachability (see [6]). A
weaker version of conditional reachability, denoted by η, has been introduced

5 Intel Core i9-9900K processor (with 8 cores and 16 threads) and 32GB of RAM.
Note that VoxLogicA checks such logical specifications for every point in the model
exploiting parallel execution, memoization, and state-of-the-art imaging libraries [4].

Weak ±-Minimisation for Model Checking Polyhedra 3

in [8, 9]. A point x in a polyhedral model satisfies the conditional reachability
formula η(Φ1, Φ2) if there is a topological path starting from x, ending in a
point y satisfying Φ2, and x and all the intermediate points of the path between
x and y satisfy Φ1. Thus now x is required to satisfy Φ1. It should be clear to the
reader that η can easily be expressed using γ and, in fact, in [8, 9] it has been
shown that the logic where γ has been replaced by η (SLCSη, in the sequel), is
strictly weaker than SLCSγ .

Interestingly, polyhedral models can conveniently be represented by discrete
structures, the so-called cell poset models: each point of the polyhedron is mapped
to a “cell”, i.e. an element of the associated cell poset model. Furthermore, as it
has already been shown for SLCSγ [6], also SLCSη can be interpreted on cell poset
models so that the mapping from a polyhedral model into its cell poset model
preserves and reflects the logic [8]: a point satisfies a formula of SLCSη iff the
cell which it is mapped to satisfies the formula. This result has paved the way
to the definition and implementation of model checking techniques for SLCSη on
polyhedral models, by working on their discrete representations. The interested
reader is referred to [6] for the description of the model checker PolyLogicA.

As in the case of traditional (temporal) model checking, efficiency of spatial
model checking can be improved by suitable model minimisation techniques. In
particular, we are interested in techniques based on spatial bisimilarity. In [8],
weak simplicial bisimilarity on polyhedral models (≈△) has been introduced and
it has been shown that it enjoys the Hennessy-Milner property (HMP) with
respect to SLCSη, i.e. ≈△ coincides with logical equivalence as induced by SLCSη,
namely ≡η. In [8], a notion of bisimulation equivalence has been proposed for cell
poset models as well, namely weak ±-bisimilarity (≈±, to be read as ‘weak plus-
minus’ bisimilarity) such that two points in the polyhedral model are weakly
simplicial bisimilar iff their cells are weakly ±-bisimilar. Also, it has been shown
that on cell poset models ≈± coincides with ≡η.

In the present paper, we build upon the theoretical results of [8, 9] by showing
a spatial model minimisation procedure based on weak ±-bisimilarity, namely
weak ±-minimisation. The procedure uses an encoding of cell poset models into
labelled transition systems (LTSs) following an approach that is similar to that
presented in [16] for finite closure models. More precisely, in the case of cell poset
models, there is a one-to-one correspondence between the states of the LTS and
the cells of the poset model. It is shown that two cells are weakly ±-bisimilar in
the poset model iff they — as states of the LTS — are branching bisimulation
equivalent. This provides an effective way for computing the equivalence classes
for the set of cells, from which the minimal model is built, on which SLCSη model
checking can be safely performed. Such a computation can be very efficient since
efficient LTS minimisation tools are available for branching bisimulation, such as
mCRL2 [21]. As we will see in Section 5, this can bring to a drastic reduction of the
size of the spatial model, thus increasing the practical efficiency of spatial model
checking. For instance, a larger variant of the model in Figure 6a, composed of
6,154 cells, is reduced to a model consisting of 38 nodes, which is a reduction of
two orders of magnitude. Summarising, the main original contributions are:

4 N. Bezhanishvili et al.

– Introduction of a novel polyhedral model minimisation procedure based on
weak ±-bisimilarity, including formal proofs of correctness of the procedure;

– Proof-of-concept of its practical potential and effectiveness through a pro-
totype toolchain and spatial model checking examples. It is shown that the
cell poset models can be drastically reduced by several orders of magnitude.

The paper is structured as follows. Section 2 presents relevant background and
notation. Section 3 presents the minimisation approach. Section 4 gives an
overview of the related toolchain and Section 5 presents applications of the min-
imisation procedure. Finally, Section 6 presents conclusions and plans for future
work. Detailed proofs, further background and notational details are presented
in the Appendix.

2 Preliminaries

In this section we collect general definitions and notation, and introduce some
basic notions regarding the language SLCSγ , its polyhedral and poset models,
and the truth-preserving map F between these models. For further details we
refer the reader to [6, 14, 9].

General notions and notation. For sets X and Y , a function f : X → Y,
and subsets A ⊆ X and B ⊆ Y we define the direct image f(A) of A and the
inverse image f−1(B) of B by {f(a) | a ∈ A} and {a | f(a) ∈ B}, respectively.
The restriction of f to A is denoted by f |A. The powerset of the set X is denoted
by 2X . For a relation R ⊆ X ×X we let R− = {(y, x) | (x, y) ∈ R} denote its
converse and we let R± denote R ∪ R−. In the remainder of the paper we
assume a set PL of proposition letters to be given. The sets of natural numbers
and of real numbers are denoted by N and R, respectively. We use standard
interval notation: for x, y ∈ R we let [x, y] be the set {r ∈ R |x ⩽ r ⩽ y},
[x, y) = {r ∈ R |x ⩽ r < y}, and so on. Intervals of R are equipped with the
Euclidean topology. We use a similar notation for intervals over N: for n,m ∈ N
we use [m;n] to denote the set {i ∈ N |m ⩽ i ⩽ n}, [m;n) = {i ∈ N |m ⩽ i < n},
and so on.

Topological notions. A simplex σ is the convex hull of d + 1 affinely in-
dependent points v0, . . . ,vd in Rm, also called vertices, where d ⩽ m, thus
σ = {λ0v0 + . . .+ λdvd | λ0, . . . , λd ∈ [0, 1] and

∑d
i=0 λi = 1 }. For instance, a

segment AB together with its end-points A and B is a simplex in Rm, for m ⩾ 1.
Any subset of the set of points characterising a simplex σ induces a simplex σ′,
and we write σ′ ⊑ σ, noting that ⊑ is a partial order, e.g. A ⊑ AB ⊑ AB.

The relative interior σ̃ of a simplex σ is the same as σ “without its borders”,
i.e. σ̃ = {λ0v0+ . . .+λdvd |λ0, . . . , λd ∈ (0, 1] and

∑d
i=0 λi = 1 }. For instance,

the relative interior ÃB of the closed segment AB is the open segment AB,
without the end-points A and B. The relative interior of a simplex is often
called a cell and is, for d > 0, equal to the topological interior taken inside the

Weak ±-Minimisation for Model Checking Polyhedra 5

affine hull of the simplex.6 The partial order ⊑ is reflected on cells: σ̃1 ≼ σ̃2 iff
σ1 ⊑ σ2. Note that σ̃1 ≼ σ̃2 iff σ̃1 ∈ CT (σ̃2), where CT is the topological closure.

A simplicial complex K is a finite collection of simplexes in Rm such that
(i) if σ ∈ K and σ′ ⊑ σ then also σ′ ∈ K, and (ii) if σ, σ′ ∈ K and σ ∩ σ′ ̸= ∅,
then σ∩σ′ ⊑ σ and σ∩σ′ ⊑ σ′. The cell poset of simplicial complex K is (K̃,≼)

where K̃ is the set { σ̃ |σ ∈ K}. The polyhedron |K| of K is the set-theoretic
union of the simplexes in K. Note that |K| inherits the topology of Rm.

A polyhedral model is a pair (|K|, V) where V : PL → 2|K| maps every
proposition letter p ∈ PL to the set of points of |K| that satisfy p. It is required,
for all p ∈ PL, that V (p) is always a union of cells in K̃. Similarly, a poset model
(W,≼,V) is a poset equipped with a valuation function V : PL → 2W. Given a
polyhedral model P = (|K|, V), we say that (K̃,≼,V) is the cell poset model
of P iff (K̃,≼) is the cell poset of K and, for all σ̃ ∈ K̃, we have: σ̃ ∈ V(p)
iff σ̃ ⊆ V (p). We let F(P) denote the cell poset model of P and, with a bit of
overloading, for all x ∈ |K|, let F(x) denote the unique cell σ̃ such that x ∈ σ̃,
then the map F : |K| → K̃ is a continuous function [10, Corollary 3.4]. Note
that poset models are a subclass of Kripke models. We say that F is a cell poset
model to mean that there exists a polyhedral model P such that F = F(P).

Fig. 1a shows a polyhedral model with three proposition letters, viz. red,
green and gray, indicated by corresponding colours. The model is ‘unpacked’
into its cells in the middle of the Fig. 1b. The cells are collected in the cell poset
model, whose Hasse diagram is shown in Fig. 1c.

B

A

D

C

F

E

(a)
B

A

D

C

F

E

(b)

B̃Ã D̃C̃ F̃Ẽ

ÃB B̃DB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(c)

Fig. 1: A polyhedral model P (1a) with its cells (1b), and the Hasse diagram of
the related cell poset model (1c).

In a topological space (X, τ), a topological path from x ∈ X is a total, continuous
function π : [0, 1]→ X such that π(0) = x. We call π(0) and π(1) the starting and
ending point of π, respectively, while π(r) is an intermediate point of π for r ∈
(0, 1). Fig. 2a shows (in blue) a path from a point x on the open segment ÃB to
the vertex D in the polyhedral model of Fig 1a.

6 But note that the relative interior of a simplex composed of just a single point is the
point itself and not the empty set.

6 N. Bezhanishvili et al.

B

A

D

C

F

E

x

(a)

B̃Ã D̃C̃ F̃Ẽ

ÃB B̃DB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(b)

Fig. 2: (2a) A topological path from point x to vertex D in the polyhedral
model P of Figure 1a. (2b) The corresponding ±-path (in blue) in the Hasse
diagram of the cell poset model F(P).

Topological paths are represented in cell posets by so-called ±-paths, a sub-
class of undirected paths. For technical reasons,7 in this paper we extend the
definition given in [6] to general Kripke frames. Given a Kripke frame (W,R),
an undirected path of length ℓ ∈ N from w is a total function π : [0; ℓ] → X
such that π(0) = x and R±(π(i), π(i + 1)) for all i ∈ [0; ℓ). The starting and
ending points are π(0) and π(ℓ), respectively, while π(i) is an intermediate point
for i ∈ (0; ℓ). The path is a ±-path iff ℓ ⩾ 2, R(π(0), π(1)), and R−(π(ℓ−1), π(ℓ)).

The ±-path8 (ÃB, ÃBC, B̃C, B̃CD, D̃), drawn in blue in Fig. 2b, faithfully
represents the path from x shown in Fig. 2a. Note that a path π such that,
say, π(0) ∈ C̃D, π(1) = E, and π((0, 1)) ⊆ C̃DE, i.e. a path that “jumps
immediately” to C̃DE after starting in C̃D cannot be represented in the poset
by any undirected path π′, of some length ℓ ⩾ 2 such that π′(0) ≻ π′(1) (or
π′(ℓ− 1) ≺ π′(ℓ), for symmetry reasons), while it is correctly represented by the
±-path (C̃D, C̃DE, Ẽ), where C̃D ≺ C̃DE ≻ Ẽ.

The logic SLCSη. The logic SLCSη, a version of SLCS for polyhedral models,
has been introduced in [8]. Apart from proposition letters, negation, and con-
junction, it has a single modal operator η, expressing conditional reachability.
The satisfaction of η(Φ1, Φ2), for a polyhedral model P = (|K|, V) and x ∈ |K|,
is recalled below:
P,x |= η(Φ1,Φ2)⇔ there is a topological path π : [0, 1]→ |K| with π(0) = x,

P,π(r) |= Φ1 for all r ∈ [0,1), and P,π(1) |= Φ2.

We also recall the interpretation of SLCSη on poset models. The satisfaction
of η(Φ1, Φ2), for a poset model F = (W,≼,V) and w ∈W , is given by

F,w |= η(Φ1,Φ2)⇔ there is a ±-path π : [0; ℓ]→W with π(0) = w,
F,π(i) |= Φ1 for all i ∈ [0; ℓ), and F,π(ℓ) |= Φ2.

In [8] it has been proven that for each point x ∈ |K| and formula Φ in SLCSη

7 We are interested in model-checking structures resulting from the minimisation, via
bisimilarity, of cell poset models, and such structures are often just (reflexive) Kripke
models rather than poset models.

8 For undirected path π of length ℓ we often use the sequence notation (xi)
ℓ
i=0 where

xi = π(i) for i ∈ [0; ℓ].

Weak ±-Minimisation for Model Checking Polyhedra 7

we have P, x |= Φ iff F(P),F(x) |= Φ. In addition, the notion of weak simpli-
cial bisimilarity, as introduced in [8] for polyhedral models, enjoys the classical
Hennessy-Milner property: two points x1, x2 ∈ |K| are weakly simplicial bisim-
ilar, written x1 ≈P

△ x2, iff they satisfy the same SLCSη formulas, i.e. they are
equivalent with respect to the logic SLCSη, written x1 ≡P

η x2.
The result has been extended to the notion of weak ±-bisimilarity on finite

poset models, a notion of bisimilarity based on ±-paths: w1, w2 ∈W are weakly
±-bisimilar, written w1 ≈F

± w2, iff they satisfy the same SLCSη formulas, i.e.
w1 ≡F

η w2 (see [8] for details). In summary, we have:

x1 ≈P
△ x2 iff x1 ≡P

η x2 iff F(x1) ≡F(P)
η F(x2) iff F(x1) ≈F(P)

± F(x2).

As a closing remark, since ±-paths are defined on Kripke structures, the satis-
faction relation of SLCSη on poset models extends naturally to Kripke structures.

3 Building the Minimal Model Modulo ≡η

In this section we present a minimisation procedure for finite poset models mod-
ulo weak ±-bisimilarity. Given a finite poset model F = (W,≼,V), the procedure
consists of three steps:

Step 1: The poset model F is encoded as an LTS denoted SC(F). The set of
states of SC(F) is W. The encoding ensures that logically equivalent points are
mapped to branching bisimilar states. Thus, for points w1, w2 ∈ W that are
logically equivalent with respect to SLCSη in the poset model F , i.e. w1 ≡F

η w2,
we must have that they are branching bisimilar as states in the LTS SC(F), i.e.
w1 ↔SC(F)

b w2.

Step 2: The LTS SC(F) is reduced modulo branching bisimilarity using avail-
able software tools, such as mCRL2 [21]. This step yields the set of equivalence
classes of W for ↔SC(F)

b . Because of the correspondence of logical equivalence
and branching bisimilarity, we obtain W/≡F

η .

Step 3: The minimal model is built. It turns out that this model is not neces-
sarily a poset model (see the example in Fig. 5 in Section 5). However, it is a
reflexive Kripke model of the form (W/≡F

η , R) where R is a relation induced by
the ordering ≼ of F .

In the remainder of this section we focus on Step 1 and Step 3.

3.1 The Encoding of F as SC(F)

We obtain the LTS SC(F) from the poset F as follows.

Definition 1. For finite poset model F = (W,≼,V) and symbols τ, c,d /∈ PL,
the LTS SC(F) is defined by SC(F) = (S,L,→) where

8 N. Bezhanishvili et al.

D E F

(a)

D̃ Ẽ F̃

D̃E ẼF

(b) (c)

D̃ D̃E

ẼẼFF̃

τ

d
τ,d

red

τ,d

red

τ,d

blue

c d

τ

d

τ

d

blue

τ,dτ,d

blue

(d)

D̃, D̃E

Ẽ, ẼF , F̃

d, s

red

d, s

blue

s d

(e)

Fig. 3: (3a) A polyhedral model P ′; (3b) poset model F ′ = F(P ′); (3c) minimal
Kripke model F ′

min; (3d) the LTS SC(F ′) obtained from F ′ by the encoding of
Def. 1; (3e) The LTS SA(F ′) obtained from F ′ by the encoding of Def. 3. Note
that whenever s ℓ−→ s′ and s′ ℓ−→ s a “double transition” s ℓ←→ s′ is drawn in
the figure between s and s′.

– the set of states S is the set W ;
– the set of labels L consists of PL ∪ {τ, c,d};
– the transition relation → is the smallest relation on S × L × S induced by

the following transition rules.

(PLC)
w ∈ V(p)
w

p−→ w
(TAU)

w ≼± w′ V−1({w}) = V−1({w′})
w

τ−→ w′

(CNG)
w ≼± w′ V−1({w}) ̸= V−1({w′})

w
c−→ w′

(DWN)
w ≽ w′

w
d−→ w′

•

Fig. 3a shows an example of a simple polyhedral model P ′. The LTS SC(F ′)
associated to the poset model F ′ of P ′ is shown in Fig. 3d.9

In order to show that the above definition establishes that w1 ≡F
η w2 iff

w1 ↔SC(F)
b w2, it is convenient to consider an intermediate structure, that is

an LTS too. We denote this second LTS by SA(F). This structure helps in the
proofs to separate concerns related to the various equivalences that are involved.
Suppose that points w1 and w2 in F are encoded by the states s1 and s2 in SA(F),
9 Note that τ self-loops in LTSs are irrelevant since we are working modulo branching

bisimilarity. In this paper we focus mainly on correctness, while in future work we
will address optimisation of the encoding procedures.

Weak ±-Minimisation for Model Checking Polyhedra 9

respectively. We will have that points w1 and w2 are logically equivalent in F
with respect to SLCSη iff states s1 and s2 are strong bisimilar (in the sense
of [25]) in SA(F), written s1 ≃SA(F)s2. Furthermore, it will hold that s1 and s2
are strongly bisimilar in SA(F) iff w1 and w2 are branching bisimilar in SC(F),
thus providing the correctness of the construction.

LTS SA(F) is more abstract than SC(F). Define Θ = { V−1({w}) |w ∈ W }
and consider, for α ∈ Θ, the α-connected components of F . Then, each state s
of SA(F) is an α-connected component of F , for some α as above. So, we group
together all the points in W that can reach one another only via a path in F
composed of elements all satisfying exactly the same proposition letters.

The above intuition is formalised by the following definition.

Definition 2. Given finite poset model (W,≼,V), we define relation ⇌ ⊆W ×W
as the set of pairs (w1, w2) such that an undirected path π of some length ℓ exists
with π(0) = w1, π(ℓ) = w2, and V−1({π(i)}) = V−1({π(j)}), for all i, j ∈ [0; ℓ].

The relevant definitions lead straightforwardly to the following observation.

Proposition 1. Let (W,≼,V) be a finite poset model. Then ⇌ is an equivalence
relation on W . ⊓⊔

We are ready to actually define the encoding to the more “abstract” LTS.

Definition 3. Given finite poset model F = (W,≼,V), and s,d /∈ PL, we define
the LTS SA(F) = (S,L,→) where

– the set S of states is the quotient W/⇌ of W modulo ⇌;
– the set L of labels is 2PL ∪ {s,d};
– the transition relation is the smallest relation on W ×L×W induced by the

following transition rules:

(PL) [w]⇌
V−1({w})−→ [w]⇌

(Step)
w ≼± w′

[w]⇌
s−→ [w′]⇌

(Down)
w ≽ w′

[w]⇌
d−→ [w′]⇌

•

An example of SA(F) is shown in Fig. 3e. The following theorem ensures that
the points w1 and w2 are logically equivalent in F with respect to SLCSη if and
only if their equivalence classes [w1]⇌ and [w2]⇌ are strongly bisimilar in SA(F).

Theorem 1. Let F = (W,≼,V) be a finite poset model. For all w1, w2 ∈ W it
holds that [w1]⇌ ≃SA(F) [w2]⇌ iff w1 ≡F

η w2.

The implication from left to right is proven by induction on SLCSη formulas.
For the reverse direction one shows that the relation B on the set of states
of SA(F) such that B(s1, s2) iff w1 ≡η w2 for some w1 ∈ s1, w2 ∈ s2, is a strong
bisimulation.

The following theorem ensures that [w1]⇌ and [w2]⇌ are strongly bisimilar
in SA(F) if and only if w1 and w2 are branching bisimilar in SC(F).

10 N. Bezhanishvili et al.

Theorem 2. Let F = (W,≼,V) be a finite poset model. For all w1, w2 ∈ W it
holds that [w1]⇌ ≃SA(F) [w2]⇌ iff w1 ↔SC(F)

b w2.

To prove the implication from left to right we show that the relation BC on W
such that BC(w1, w2) iff [w1]⇌ ≃SA(F) [w2]⇌ is a branching bisimulation. For
the reverse implication one shows that the relation BA on W/⇌ with BA(s1, s2)

iff w1 ↔SC(F)
b w2 for some w1 ∈ s1, w2 ∈ s2, is a strong bisimulation.

From Theorems 1 and 2 we finally obtain our claim:

Corollary 1. Let F = (W,≼,V) be a finite poset model. For all w1, w2 ∈ W

the following holds: w1 ≡F
η w2 iff w1 ↔SC(F)

b w2.

Now that we have characterised logical equivalence ≡η for SLCSη for the points
of a poset model F in terms of branching bisimilarity ↔b for the LTS SC(F),
we can compute the minimal LTS modulo branching bisimilarity with standard
techniques available, such as branching equivalence minimisation provided by
the mCRL2 tool set.

3.2 Building the Minimal Model

Via the correspondence of SLCSη-equivalence for a poset model and branching
bisimilarity of its encoding, one can obtain the equivalence classes of SLCSη
by identifying the branching bisimilar states in the LTS. With the equivalence
classes modulo ≡η for the poset model available, we can consider the ensued
quotient model. We obtain a Kripke model that is minimal with respect to ≡η,
but which is not necessarily a poset model.

Definition 4 (Fmin). For finite poset model F = (W,≼,V) let the Kripke model
Fmin = (Wmin, Rmin,Vmin) have

– set of points Wmin =W/≡η, the equivalence classes of W with respect to ≡η,
– accessibility relation Rmin ⊆Wmin ×Wmin satisfying

R([w1], [w2]) iff w′
1 ≼ w′

2 for some w′
1 ≡η w1 and w′

2 ≡η w2

for w1, w2 ∈W , and
– valuation Vmin : PL→ 2Wmin such that

Vmin(p) = { [w] ∈Wmin |w′ ∈ V(p) for some w′ ≡η w }
for p ∈ PL. •

Clearly, Fmin is a reflexive Kripke model. Reflexivity of the accessibility rela-
tion Rmin is immediate from reflexivity of the ordering ≼. Furthermore, it is
minimal with respect to SLCSη by definition of ≡η and W/≡η

. An example of the
minimal Kripke model of the polyhedral model in Fig. 3a is shown in Fig. 3c.
The following theorem ensures that the model defined above is sound and com-
plete with respect to the logic, so that the minimisation procedure is correct. It
is proven by induction on the structure of Φ.

Weak ±-Minimisation for Model Checking Polyhedra 11

Theorem 3. Given finite poset model F = (W,≼,V) let Fmin be defined as in
Definition 4. Then, for each w ∈ W and SLCSη formula Φ the following holds:
F , w |= Φ iff Fmin, [w]≡η |= Φ.

Finally, the following theorem turns out to be useful for simplifying the pro-
cedure for the effective construction of Fmin:

Theorem 4. For any poset model F = (W,≼,V) and Fmin as of Def. 4 and
for all α1, α2 ∈ Wmin, it holds that Rmin(α1, α2) if and only if α2

d−→ α1 is a
transition of the minimal LTS obtained from SC(F) via branching equivalence.

4 An Experimental Minimisation Toolchain

In this section we provide a brief overview of an experimental toolchain to study
the minimisation procedure for polyhedral models and to illustrate the practical
potential of the theory presented in the previous section. The further develop-
ment and a thorough analysis of the toolchain will be the subject of future work.
Fig. 4 illustrates the elements of the toolchain that, starting from a polyhedral
model in json format, produces the set of equivalence classes and the minimal
Kripke model. The former may serve as input for the PolyVisualizer tool10 [6],
a polyhedra visualizer, to inspect the results, whereas the latter can be used for
spatial model checking through an adapted version of PolyLogicA that can check
spatial properties on Kripke models using ±-paths instead of regular paths. The
toolchain is also able to map the results obtained on the minimal Kripke model
back to the original polyhedral model, because of the direct correspondence be-
tween the states of the Kripke model and the equivalence classes.

Poly2Poset Poset2mcrl2 mcrl2lps

lps2lpspp

lps2lts

findStates
renameLps

ltsMinimise

Classes +
Kripke model

Fig. 4: Tool chain for polyhedral model minimisation. Parts in green are com-
mand line operations of the mCRL2 tool suite. Parts in blue are developed in
Python in the context of the current paper.

The toolchain uses several command line operations provided by the mCRL2
tool suite [11] (shown in green in Fig. 4) and a number of operations developed
in the context of this paper (shown in blue in Fig. 4). The prototype aims to
demonstrate the feasibility of our approach from a qualitative perspective, pro-
viding support for examples that illustrate the practical usefulness of the theory.

10 http://ggrilletti2.scienceontheweb.net/polyVisualizer/polyVisualizer_static_maze.html

12 N. Bezhanishvili et al.

Further performance issues, computational complexity and a full implementa-
tion of the approach will be addressed in future work. The operation Poly2Poset
transforms the polyhedral model into a poset model. The operation Poset2mcrl2
encodes the poset model into a mCRL2 specification of an LTS following the pro-
cedure defined in Definition 1. The operations mcrl2lps and lps2lts trans-
form the encoding into a linearised LTS-representation which is then minimised
(ltsMinimise) via branching bisimulation. The operation lps2lpspp provides a
textual version of the linear process which is used to obtain the correspondence
between internal state labels of the minimised LTS and the cells of the origi-
nal polyhedral model present in the equivalence classes. The latter, in turn, are
essential for the generation of the result files of model checking the minimised
model and form the input to the PolyVisualizer (together with the original
polyhedral model and a colour definition file). Figs. 6 and 7 in the next section
show an example. Maintaining the relation between internal state labels of the
minimised LTS and the original states of the poset and polyhedral model is the
most tricky part of the toolchain as such internal state labels are assigned dy-
namically in the lps2lts procedure. This aspect is dealt with by the findStates
and renameLps procedures.

5 Minimisation at Work

Fig. 5a shows the model which was presented in Fig. 1a. Its poset representation
is shown in Fig. 5b with equivalence classes indicated in different colours.11 The
minimal Kripke model is shown in Fig. 5c. In the latter, the colours of the borders
of the elements (red, green, and grey) recall the original atomic propositions used
in Fig. 5a, whereas the colour of the interior reflects the colour of the equivalence
class as used in Fig. 5b. Note that vertex A is not part of the equivalence class
of the other grey points. It can be distinguished from, for example, grey point D
because D satisfies SLCSη-formula ϕ1 = η(grey∨green,green) whereas point A
does not satisfy ϕ1. Note also that formula ϕ2 = η(grey ∨ red, red) is satisfied
by D, but also by point E (actually by any grey point, including A).

Recall that in the minimal model the Kripke states represent equivalence
classes modulo ≡η. There is a transition in the Kripke model (Fig. 5c) between
two states, say x and y, respectively, if and only if there is a cell in the class
related to x and one in class related to y that are connected in the poset (see
Fig. 5b). This is the standard way to build such minimal models (see Def. 4). In
Fig. 5b it is easy to see that cell D̃ (brown) is a face of C̃D (cyan) and C̃ (cyan)
is a face of C̃E (brown), so they are mutually ‘below’ each other. This explains
the presence of a loop in the minimal Kripke structure between the brown and
the cyan class (see Fig. 5c).

The example in Fig. 6a shows a simple symmetric 3D cube composed of one
white ‘room’ in the middle surrounded by 26 green ‘rooms’ in a snapshot of

11 Note that such colours have only an illustrative purpose. In particular, they are not
related to the colours expressing the evaluation of proposition letters.

Weak ±-Minimisation for Model Checking Polyhedra 13

B

A

D

C

F

E

(a)
B̃Ã D̃C̃ F̃Ẽ

ÃB B̃DB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(b) (c)

Fig. 5: Polyhedral model (5a), its classes in the poset (5b) and its minimised
Kripke model (5c).

the PolyVisualizer tool. Rooms are connected by grey ‘corridors’ as shown
in the figure. In total, the structure consists of 2,620 cells. Fig. 6b shows the
minimal LTS with respect to branching bisimilarity as produced by mCRL2. (The
numbering of the states is as generated by mCRL2). It has 7 states: one white
state C1, three grey ones (C3, C0, and C5) and three green states (C4, C2,
and C6). The white state represents the class of all the cells of the white room.
Transition labels chg and dwn denote c and d, whereas ap_X denotes atomic
proposition X. Green state C4 (visualised on the original polyhedron in Fig. 6d)
represents the the class of green rooms that are directly connected to the white
room by a corridor. Green state C2 (visualised in Fig. 6e) represents the class
of green rooms situated on the edges of the cube. Green state C6 (visualised in
Fig. 6f) represents the class of green rooms situated at the corners of the cube.
Fig. 6c shows the minimal Kripke model modulo ≡η.

It is not difficult to find SLCSη formulas that distinguish the various green
classes. For example, the cells in C4 satisfy Φ1 = η(green∨η(grey, white),white),
whereas no cell in C2 or C6 satisfies Φ1. To distinguish class C2 from C6 and C4,
one can observe that cells in C2 satisfy Φ2 = η(green∨η(grey, Φ1), Φ1) whereas
those in C3 do not satisfy Φ2. Figure 7 shows the result of PolyLogicA model
checking for the formulas Φ1 (see Fig. 7b) and Φ2 (see Fig. 7c).12

Table 1 provides a more detailed insight in the time performance of the var-
ious components of the toolchain on models of the cube of different sizes, all
with green rooms forming the outer frame of the cube and white rooms posi-
tioned inside the cube. Note the substantial reduction in size (several orders of
magnitude) of the minimised model, where the number of states corresponds to
the number of equivalence classes, compared to the full model (nr. of cells). This
leads to a similar reduction in model checking time (see last two lines of Table 1).
However, regarding the minimisation procedure itself, there seems to be a bot-
tleneck of performance in lps2lts, whereas the time to encode and minimise
the model (see ltsMinimise) is actually very small. Note that the minimised
model, once obtained, can be used for multiple model checking sessions. Future
work will address further improvements of the efficiency of the constituents of
the minimisation procedure, even if the current results are already very encour-

12 All tests were performed on a workstation equipped with an Intel(R) Core(TM)
i9-9900K CPU @ 3.60 GHz (8 cores, 16 threads).

14 N. Bezhanishvili et al.

aging. More specifically, the lps2lts step might be avoided by implementing
our encoding directly into the binary mCRL2 LTS format. This requires usage of
the mCRL2 C++ application programming interface, and is left to future work.

(a) Cube

C0C1 C2C3 C4 C5 C6

ap_corridor

dwn
chg

chg

dwn
dwndwn

ap_corridor

chg
chg

dwn

dwn
dwn

ap_corridor

dwn

chg
chg

dwn

chg
ap_G

dwn

ap_G

dwn

chg
chg

chg

ap_G

dwn

chg

ap_W

dwn

chg

(b) LTS encoding

C1 C4 C2 C6

C3 C0 C5

(c) Minimal model (d) C4 (e) C2 (f) C6

Fig. 6: Cube with 27 rooms: 26 green and one white in the middle.

(a) (b) Result ϕ1 (c) Result ϕ2

Fig. 7: (7a) The 3D cube. Results of PolyLogicA model checking of the formulas
ϕ1 (7b) and ϕ2 (7c) on the minimised model mapped back onto the full 3D cube
with PolyVisualizer.

6 Conclusions

Polyhedral models are widely used in domains that exploit mesh processing
such as 3D computer graphics. These models are typically huge, consisting of
very many cells. Spatial model checking of such models is an interesting, novel

Weak ±-Minimisation for Model Checking Polyhedra 15

Table 1: Performance for 3D cube example. All times are in seconds.
Cube 3x3x3 Cube 3x5x3 Cube 3x5x4 Cube 5x5x5

Nr. of classes 7 21 38 21
Nr. of cells 2,619 3,568 6,145 13,375
Nr. of vertices 216 288 480 1,000
poly2poset 0.35 0.34 0.43 1.10
loadData 0.00 0.00 0.01 0.02
poset2mcrl2 0.16 0.30 0.42 0.95
mcrl2lps 1.71 3.51 5.42 23.72
lps2lpspp 0.24 0.41 0.57 1.95
findStates 0.17 0.31 0.41 4.18
renamelps 0.54 0.95 1.34 4.47
lps2lts 21.41 78.26 135.22 794.33
ltsMinimise 0.06 0.23 0.24 0.35
createJsonFiles 6.35 51.37 160.53 587.99
createModelFile 0.01 0.01 0.01 0.03

Model checking original model 8.76 24.90 64.50 671.30
Model checking minimised model 0.02 0.03 0.03 0.03

approach to verify properties of such models and visualise the results in a graph-
ically appealing way. In previous work the polyhedral model checker PolyLogicA
was developed for this purpose.

In order to reduce model checking time and computing resources, we have
proposed an effective procedure that computes the minimal model, modulo log-
ical equivalence with respect to the logic SLCSη, of a polyhedral model. Such
minimised models are also amenable to model checking with PolyLogicA. The
procedure has been formalised and proven correct. A prototype implementa-
tion of the procedure has been developed in the form of a toolchain, that also
involves operations provided by the mCRL2 toolset, to study the practical feasi-
bility of the approach and to identify possible bottlenecks. We have also shown
how the model checking results of the minimal model can be projected back onto
the original polyhedral model. This provides a direct 3D visual inspection of the
results through a polyhedra visualizer.

In future work we aim at a more sophisticated implementation of the proce-
dure, possibly using in a more direct way the minimisation operations provided
by mCRL2 and integrating the various steps in the procedure. Furthermore, we
would be interested in extending SLCSη with further operators, for example those
concerning notions of distance.

Acknowledgments. Research partially supported by Bilateral project between Na-
tional Research Council of Italy and Shota Rustaveli National Science Foundation of
Georgia “Model Checking for Polyhedral Logic” (#CNR-22-010); European Union -
Next GenerationEU - National Recovery and Resilience Plan (NRRP), Investment
1.5 Ecosystems of Innovation, Project “Tuscany Health Ecosystem” (THE), CUP:
B83C22003930001; European Union - Next-GenerationEU - National Recovery and Re-

16 N. Bezhanishvili et al.

silience Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTMENT N. 1.1, CALL
PRIN 2022 D.D. 104 02-02-2022 – (Stendhal) CUP N. B53D23012850006. Shota Rus-
taveli National Science Foundation of Georgia grant #FR-22-6700.

We also would like to thank Jan Friso Groote for launching the idea to investigate
the use of branching bisimulation minimisation in the context of spatial model checking
and for his help with the mCRL2 tool suite.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
22(2), 195–217 (2020), https://doi.org/10.1007/s10009-019-00511-9

2. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) 9th IEEE/ACM International Conference on Formal Methods in
Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, May 17-21, 2021.
pp. 1–12. IEEE (2021), https://doi.org/10.1109/FormaliSE52586.2021.00007

3. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back - Essays Dedicated
to Stefania Gnesi on the Occasion of Her 65th Birthday. Lecture Notes in Computer
Science, vol. 11865, pp. 85–109. Springer (2019), https://doi.org/10.1007/978-3-
030-30985-5_7

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: A spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International Con-
ference, TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp. 281–298.
Springer (2019), https://doi.org/10.1007/978-3-030-17462-0_16

5. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Benthem, J.v. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer (2007), https://doi.org/10.1007/978-1-4020-5587-4_5

6. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink,
M.: Geometric Model Checking of Continuous Space. Log. Methods Comput. Sci.
18(4), 7:1–7:38 (2022), https://lmcs.episciences.org/10348, DOI 10.46298/LMCS-
18(4:7)2022. Published on line: Nov 22, 2022. ISSN: 1860-5974

7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.:
Geometric model checking of continuous space. CoRR abs/2105.06194 (2021),
https://arxiv.org/abs/2105.06194

8. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Jibladze, M., Latella, D., Massink, M.,
de Vink, E.P.: Weak simplicial bisimilarity for polyhedral models and SLCSη. In:
Castiglione, V., Francalanza, A. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems - 44rd IFIP WG 6.1 International Conference, FORTE
2024, Held as Part of the 19th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2024, Groningen, The Netherlands, June 17-21,

Weak ±-Minimisation for Model Checking Polyhedra 17

2024, Proceedings. Lecture Notes in Computer Science, Springer (2024), accepted
for publication

9. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Jibladze, M., Latella,
D., Massink, M., de Vink, E.P.: Weak simplicial bisimilarity
for polyhedral models and SLCSη — extended version. CoRR
abs/2404.06131 (2024). https://doi.org/10.48550/arXiv.2404.06131,
https://doi.org/10.48550/arXiv.2404.06131

10. Bezhanishvili, N., Marra, V., McNeill, D., Pedrini, A.: Tarski’s theorem on
intuitionistic logic, for polyhedra. Annals of Pure and Applied Logic 169(5),
373–391 (2018). https://doi.org/https://doi.org/10.1016/j.apal.2017.12.005,
https://www.sciencedirect.com/science/article/pii/S016800721730146X

11. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing con-
current systems - improvements in expressivity and usability. In: Vojnar, T., Zhang,
L. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 25th
International Conference, TACAS 2019, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Repub-
lic, April 6-11, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol.
11428, pp. 21–39. Springer (2019). https://doi.org/10.1007/978-3-030-17465-1_2,
https://doi.org/10.1007/978-3-030-17465-1_2

12. Chrschn: A triangle mesh of dolphin (2007),
https://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png, accessed on
Feb. 7, 2023

13. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: On
logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., , van den Bos,
P. (eds.) A Journey From Process Algebra via Timed Automata to Model Learning
- A Festschrift Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 13560, pp. 98–115. Springer (2022)

14. Ciancia, V., Gabelaia, D., Latella, D., Massink, M., de Vink, E.P.: On bisimilar-
ity for polyhedral models and SLCS. In: Huisman, M., Ravara, A. (eds.) Formal
Techniques for Distributed Objects, Components, and Systems - 43rd IFIP WG
6.1 International Conference, FORTE 2023, Held as Part of the 18th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lis-
bon, Portugal, June 19-23, 2023, Proceedings. Lecture Notes in Computer Science,
vol. 13910, pp. 132–151. Springer (2023). https://doi.org/10.1007/978-3-031-35355-
0_9, https://doi.org/10.1007/978-3-031-35355-0_9

15. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink,
M.: Spatio-temporal model checking of vehicular movement in public trans-
port systems. Int. J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018),
https://doi.org/10.1007/s10009-018-0483-8

16. Ciancia, V., Groote, J., Latella, D., Massink, M., de Vink, E.: Minimisation of
spatial models using branching bisimilarity. In: Chechik, M., Katoen, J.P., Leucker,
M. (eds.) 25th International Symposium, FM 2023, Lübeck, March 6–10, 2023,
Proceedings. Lecture Notes in Computer Science, vol. 14000, p. 263–281. Springer
(2023). https://doi.org/10.1007/978-3-031-27481-7_16

17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Díaz, J., Lanese, I., Sangiorgi, D. (eds.) Theoretical Computer
Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy,
September 1-3, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8705,
pp. 222–235. Springer (2014), https://doi.org/10.1007/978-3-662-44602-7_18

18 N. Bezhanishvili et al.

18. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spa-
tial logics for closure spaces. Log. Methods Comput. Sci. 12(4) (2016),
https://doi.org/10.2168/LMCS-12(4:2)2016

19. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th International Symposium, ISoLA 2016,
Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 9952, pp. 657–673 (2016), https://doi.org/10.1007/978-
3-319-47166-2_46

20. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarity for quasi-
discrete closure spaces (2023), https://arxiv.org/abs/2301.11634

21. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Com-
put. Log. 18(2), 13:1–13:34 (2017), https://doi.org/10.1145/3060140

22. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Girard, A.,
Sankaranarayanan, S. (eds.) Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, HSCC’15, Seattle, WA, USA, April
14-16, 2015. pp. 189–198. ACM (2015), https://doi.org/10.1145/2728606.2728633

23. Levine, J.A., Paulsen, R.R., Zhang, Y.: Mesh processing in medical-image analy-
sis – a tutorial. IEEE Computer Graphics and Applications 32(5), 22–28 (2012).
https://doi.org/10.1109/MCG.2012.91

24. Loreti, M., Quadrini, M.: A spatial logic for simplicial models. Log. Meth-
ods Comput. Sci. 19(3) (2023). https://doi.org/10.46298/LMCS-19(3:8)2023,
https://doi.org/10.46298/lmcs-19(3:8)2023

25. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

26. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods
Comput. Sci. 14(4) (2018), https://doi.org/10.23638/LMCS-14(4:2)2018

27. Čech, E.: Topological Spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp.
233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience
Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966), Revised
edition by Zdeněk Frolíc and Miroslav Katětov. Scientific editor, Vlastimil Pták.
Editor of the English translation, Charles O. Junge. MR0211373

Weak ±-Minimisation for Model Checking Polyhedra 19

Appendix

This appendix contains the proofs for all the results presented in Sections 2
and 3 (Section B) and presents detailed background information and results, as
well as notational details (Section A).

A Background and Notation in Detail

For sets X and Y , a function f : X → Y , and subsets A ⊆ X and B ⊆ Y ,
we define f(A) and f−1(B) as {f(a) | a ∈ A} and {a | f(a) ∈ B}, respectively.
The restriction of f on A is denoted by f |A. The powerset of X is denoted by
2X . For relation R ⊆ X × X we let R− denote its converse and R± denote
R ∪ R−. In the sequel, we assume that a set PL of proposition letters is fixed.
The set of natural numbers and that of real numbers are denoted by N and R
respectively. We use the standard interval notation: for x, y ∈ R we let [x, y]
be the set {r ∈ R |x ≤ r ≤ y}, [x, y) = {r ∈ R |x ≤ r < y} and so on,
where [x, y] is equipped with the Euclidean topology inherited from R. We use
a similar notation for intervals over N: for n,m ∈ N [m;n] denotes the set
{i ∈ N |m ≤ i ≤ n}, [m;n) denotes the set {i ∈ N |m ≤ i < n}, and similarly
for (m;n] and (m;n).

A topological space is a pair (X, τ) where X is a set (of points) and τ is a
collection of subsets of X satisfying the following axioms: (i) ∅, X ∈ τ , (ii) for
any index set I,

⋃
i∈I Ai ∈ τ if each Ai ∈ τ , and (iii) for any finite index set I,⋂

i∈I Ai ∈ τ if each Ai ∈ τ . We let CT denote the topological closure operator.
A Kripke frame is a pair (W,R) where W is a set and R ⊆ W × W , the

accessibility relation on W .
A Kripke model is a tuple (W,R,V) where (W,R) is a Kripke frame and

V : PL→ 2W is the valuation function, assigning to each p ∈ PL the set V(p) of
elements of W where p holds.

In the context of the present paper, it is convenient to view a partially or-
dered set — poset, in the sequel — (W,⪯) as a Kripke frame where the relation
⪯⊆W ×W is a partial order, i.e. it is reflexive, transitive and anti-symmetric.
Similarly we define a poset model as a Kripke model where the accessibility rela-
tion is a partial order. For partial orders (W,⪯), we use the standard notation,
i.e.: ⪯− will be denoted by ⪰, w1 ≺ w2 denotes w1 ⪯ w2 and w1 ̸= w2, and
similarly for ≻.

A.1 Simplexes, Simplicial Complexes, Polyhedra, and Polyhedral
Models

The notions of simplex, simplicial complex and polyhedron form the basis for
geometrical reasoning in a finite setting, amenable to polyhedral model-checking
and related techniques [6]. A simplex is the convex hull of a set of affinely inde-
pendent points13, namely the vertices of the simplex.
13 v0, . . . ,vd are affinely independent if v1 −v0, . . . ,vd −v0 are linearly independent.

In particular, this condition implies that d ≤ m.

20 N. Bezhanishvili et al.

(a) (b) (c) (d)

Fig. 8: (8a) A simplicial complex (actually a simplex itself). (8b) Decomposed
into its simplexes as faces. (8c) Partitioned into its cells. (8d) A triangular surface
mesh of a dolphin [12].

Definition 5 (Simplex). A simplex σ of dimension d is the convex hull of a
finite set {v0, . . . ,vd} ⊆ Rm of d+ 1 affinely independent points, i.e.:

σ = {λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ [0, 1] and
d∑

i=0

λi = 1}.

The barycentre bσ of σ is defined as follows: bσ =
∑d

i=0
1

d+1vi. Given a simplex
σ with vertices v0, . . . ,vd, any subset of {v0, . . . ,vd} spans a simplex σ′ in turn:
we say that σ′ is a face of σ, written σ′ ⊑ σ. •

Clearly, ⊑ is a partial order. Note that a simplex is a subset of the ambient
space Rm and so it inherits its topological structure.

The relative interior σ̃ of a simplex σ plays a similar role as the notion of
“interior” in topology and is defined as follows:

Definition 6 (Relative Interior of a Simplex). Given a simplex σ with
vertices {v0, . . . ,vd} the relative interior σ̃ of σ is the following set:

{λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ (0, 1] and
d∑

i=0

λi = 1}.

•

We write σ̃′ ⪯ σ̃ whenever σ′ ⊑ σ. Note that the topological closure CT (σ̃)
of the relative interior σ̃ of a simplex σ is σ itself, that σ̃′ ⪯ σ̃ if and only if σ̃′

is included in CT (σ̃) and that ⪯ is a partial order as well.
The notion of simplicial complex builds upon that of simplex and is the

fundamental tool for constructing complex geometrical objects as sets of points
in Rm, namely polyhedra, out of simplexes.

Definition 7 (Simplicial Complex and Polyhedron). A simplicial com-
plex K is a finite collection of simplexes of Rm such that: (i) if σ ∈ K and
σ′ ⊑ σ then also σ′ ∈ K; (ii) if σ, σ′ ∈ K and σ ∩ σ′ ̸= ∅, then σ ∩ σ′ ⊑ σ and
σ∩σ′ ⊑ σ′. The polyhedron |K| of K is the set-theoretic union of the simplexes
in K. •

Weak ±-Minimisation for Model Checking Polyhedra 21

We recall that the polyhedron |K| is a subset of the ambient space Rm and so
it inherits the topological structure of Rm. We furthermore recall that different
simplicial complexes can give rise to the same polyhedron.

In the polyhedral semantics of SLCS proposed in [6], all the points of a poly-
hedral model that belong to the same cell are required to satisfy the same set of
atomic proposition letters. This is reflected in the definition below:

Definition 8 (Polyhedral Model). For a simplicial complex K and a set of
proposition letters PL, a polyhedral model is a pair (|K|, V) where V : PL→ 2|K|

is a valuation function assigning to each proposition letter p the set V (p) of the
points that satisfy p. It is required that, for all p ∈ PL, V (p) is a union of cells
in K̃. •

So, polyhedra are topological spaces and polyhedral models are a subclass of
topological models.

A.2 Cell Posets and Cell Poset Models

Relations ⊑ and ⪯ on simplexes are inherited by simplicial complexes: relation
⊑ on simplicial complex K is the union of the face relations on the simplexes
composing K, and similarly for ⪯. We let K̃ be the set {σ̃ |σ ∈ K} of all the
relative interiors of the simplexes of K. The elements of K̃ are called cells. It is
easy to see that (K̃,⪯) is a poset.

Definition 9 (Cell Poset). Given a simplicial complex K, the cell poset of K
is the poset (K̃,⪯). •

Note and that K̃ forms a partition of polyhedron |K|. By definition of parti-
tion, each x ∈ |K| belongs to a unique cell. We define the mapping F : |K| → K̃
by letting F(x) be such a unique cell. Note that F is a continuous function.

Example 1. Fig. 8a shows a triangle as an example of a simplicial complex.
Its simplexes in the face relation are shown in Fig. 8b. The triangle can be
partitioned into 7 cells (see Fig. 8c): its interior (ÃBC, an open triangle), three
open segments (ÃB, B̃C, ÃC, the sides without endpoints) and the (singletons
of the) three vertices (Ã, B̃, C̃). Each vertex is in the ⪯ relation with two open
segments (and the open triangle itself), and each open segment is in the ⪯
relation with the open triangle. The figure shows also a small example of a
simplicial complex (actually a triangular surface mesh) of a dolphin (Fig. 8d). ⋄

The following definition characterises the discrete representation of polyhe-
dral models we will use in the rest of the paper.

Definition 10 (Cell Poset Model). Given a polyhedral model P = (|K|, V),
the cell poset model of P is the poset model (W,⪯,V) where (W,⪯) = (K̃,⪯) is
the cell poset of K and σ̃ ∈ V(p) if and only if σ̃ ⊆ V (p). •

22 N. Bezhanishvili et al.

With a little bit of overloading, given polyhedral model P = (|K|, V) we
extend the notation F in the obvious way, i.e. we let F(P) = (W,⪯,V) as defined
in Definition 10 on page 21.

Example 2. Figure 1a shows an example of a polyhedral model P with atomic
propositions red, green and gray. The Hasse diagram of the cell poset model
F(P) associated to P is shown in Figure 1c. ⋄

A.3 Labelled Transition Systems

Definition 11. A labelled transition system, LTS for short, is a tuple (S,L,−→)
where S is a non-empty set of states, L is a non-empty set of transition labels
and −→⊆ S × L× S is the transition relation. •

Definition 12 (Strong Bisimulation and Strong Equivalence). Given
LTS S = (S,L,−→) a binary relation B ⊆ S × S is a strong bisimulation
if, for all s1, s2 ∈ S, if B(s1, s2) then the following holds:

1. if s1
λ−→ s′1 for some λ and s1, then s′2 exists such that s2

λ−→ s′2 and
B(s′1, s

′
2), and

2. if s2
λ−→ s′2 for some λ and s2, then s′1 exists such that s1

λ−→ s′1 and
B(s′1, s

′
2).

We say that s1 and s2 are strongly equivalent in S, written s1 ≃S s2 if a strong
bisimulation B exists such that B(s1, s2). •

It has been shown that ∼S is the union of all strong bisimulations in S, it is
the largest strong bisimulation and it is an equivalence relation [25].

Definition 13 (Branching Bisimulation and Equivalence). Given LTS
S = (S,L,−→) such that τ ∈ L a binary relation B ⊆ S × S is a branching
bisimulation iff, for all s, t, s′ ∈ S, and λ ∈ L, whenever B(s, t) and s λ−→ s′, it
holds that: (i) B(s′, t) and λ = τ , or (ii)B(s, t̄), B(s′, t′) and t τ∗

−→ t̄, t̄ λ−→ t′,
for some t̄, t′ ∈ S.

Two states s, t ∈ S are called branching equivalent in S, written s ↔S
b t if

B(s, t) for some branching bisimulation B for S.

We will omit the superscript S in ≃S and ↔S
b when this will not cause con-

fusion.

A.4 Paths

Paths play a crucial role in the present paper. In the sequel, we provide definitions
for the different kinds of paths we will use later on in the paper and we prove
some useful properties of theirs.

Weak ±-Minimisation for Model Checking Polyhedra 23

a b c d

Fig. 9: A simple finite Kripke frame. Arrows in the figure represent the accessi-
bility relation R.

Definition 14 (Topological Path). Given a topological space (X, τ) and x ∈
X, a topological path from x is a total, continuous function π : [0, 1]→ X such
that π(0) = x. We call x the starting point of π. The ending point of π is π(1),
while for any r ∈ (0, 1), π(r) is an intermediate point of π. •

Definition 15 (Paths Over Kripke Frames). Given a Kripke frame (W,R)
and w ∈W :

– An undirected path from w, of length ℓ ∈ N, is a total function π : [0; ℓ]→W
such that π(0) = w and, for all i ∈ [0; ℓ), R±(π(i), π(i+ 1));

– A ↓-path (to be read as “down path”) from w, of length ℓ ≥ 1, is an undirected
path π from w of length ℓ such that R−(π(ℓ− 1), π(ℓ));

– A ±-path (to be read as “plus-minus path”) from w, of length ℓ ≥ 2, is a
↓-path π from w of length ℓ such that R(π(0), π(1));

– An ↑↓-path (to be read as “up-down path”) from w, of length 2ℓ, for ℓ ≥ 1, is
a ±-path π of length 2ℓ such that R(π(2i), π(2i+1)) and R−(π(2i+1), π(2i+
2)), for all i ∈ [0; ℓ). •

We call w the starting point of π. The ending point of π is π(ℓ), while for any
i ∈ (0; ℓ), π(i) is an intermediate point of π. •

Below, we will show some facts regarding the relationship among ↑↓-paths, ±-
paths and ↓-paths, but first we need to introduce some notation and operations
on paths over Kripke frames. For undirected path π of length ℓ we often use the
sequence notation (wi)

ℓ
i=0 where wi = π(i) for all i ∈ [0; ℓ].

Definition 16 (Operations on Paths). Given a Kripke frame (W,R) and
paths π′ = (w′

i)
ℓ′

i=0 and π′′ = (w′′
i)

ℓ′′

i=0, with w′
ℓ′ = w′′

0 , the sequentialisation
π′ · π′′ : [0; ℓ′ + ℓ′′]→W of π′ with π′′ is the path from w′

0 defined as follows:

(π′ · π′′)(i) =

{
π′(i), if i ∈ [0; ℓ′],
π′′(i− ℓ′), if i ∈ [ℓ′; ℓ′ + ℓ′′].

For path π = (wi)
ℓ
i=0 and k ∈ [0; ℓ] we define the k-shift of π, denoted by

π↑k, as follows: π↑k = (wj+k)
ℓ−k
j=0 and, for 0 < m ≤ ℓ, we let π←m denote the

path obtained from π by inserting a copy of π(m) immediately before π(m) itself.
In other words, we have: π←m = (π|[0;m]) · ((π(m), π(m)) · (π↑m)). Finally,
any path π|[0; k], for some k ∈ [0; ℓ], is a (non-empty) prefix of π. •

24 N. Bezhanishvili et al.

Example 3. For Kripke frame ({a, b, c, d}, R) with R = {(a, b), (b, c), (c, d)} (see
Figure 9), path (a, b, c) of length 2 and path (c, d) of length 1, we have that
(a, b, c) · (c, d) = (a, b, c, d), of length 3, (a) · (a, b) = (a, b), (a) · (a) = (a). Note
the difference between sequentialisation and concatenation ‘++’: for instance,
(a, b)++(c) = (a, b, c) whereas (a, b) · (c) is undefined since b ̸= c, (a)++(a) is
(a, a) whereas (a) · (a) = (a). We have (a, b, c)↑1 = (b, c) and (a, b, c)↑2 = (c)
while (a, b, c)←1 = (a, b, b, c). Paths (a), (a, b), (a, b, c) are all the (non-empty)
prefixes of (a, b, c). ⋄

As it is clear from Def. 15, every ↑↓-path is also a ±-path, that is also a
↓-path. Furthermore, the lemmas below ensure that, for reflexive Kripke frames:

– for every ±-path there is a ↑↓-path with the same starting and ending points
and with the same set of intermediate points, occurring in the same order
(Lemma 2 below);

– for every ↓-path there is a ↑↓-path with the same starting and ending points
and with the same set of intermediate points, occurring in the same order
(Lemma 3 below);

– for every ↓-path there is a ±-path with the same starting and ending points
and with the same set of intermediate points, occurring in the same order
(Lemma 1 below).

Lemma 1. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→W ,
there is a ±-path π′ : [0; ℓ′′]→W , for some ℓ′, and a total, surjective, monotonic,
non-decreasing function f : [0; ℓ′]→ [0; ℓ] with π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

Proof. See [9]

Lemma 2. Given a reflexive Kripke frame (W,R) and a ±-path π : [0; ℓ]→W ,
there is a ↑↓-path π′ : [0; ℓ′]→W , for some ℓ′, and a total, surjective, monotonic
non-decreasing function f : [0; ℓ′] → [0; ℓ] such that π′(j) = π(f(j)) for all
j ∈ [0; ℓ′].

Proof. We proceed by induction on the length ℓ of ±-path π.
Base case: ℓ = 2.
In this case, by definition of ±-path, we have R(π(0), π(1)) and R−(π(1), π(2)),
which, by definition of ↑↓-path, implies that π itself is an ↑↓-path and f : [0; ℓ]→
[0; ℓ] is just the identity function.

Induction step. We assume the assertion holds for all ±-paths of length ℓ and
we prove it for ℓ+1. Let π : [0; ℓ+1]→W be a ±-path. Then R−(π(ℓ), π(ℓ+1)),
since π is a ±-path. We consider the following cases:
Case A: R−(π(ℓ− 1), π(ℓ)) and R−(π(ℓ), π(ℓ+ 1)).
In this case, consider the prefix π1 = π|[0; ℓ] of π, noting that π1 is a ±-path
of length ℓ. By the Induction Hypothesis there is an ↑↓-path π′

1 of some length
ℓ′1 and a total, surjective, monotonic non-decreasing function g : [0; ℓ′1] → [0; ℓ]
such that π′

1(j) = π1(g(j)) = π(g(j)) for all j ∈ [0; ℓ′1]. Note that π′
1(ℓ

′
1) = π(ℓ)

so that the sequentialisation of π′
1 with the two-element path (π(ℓ), π(ℓ+ 1)) is

Weak ±-Minimisation for Model Checking Polyhedra 25

well-defined. Consider path π′ = (π′
1 · (π(ℓ), π(ℓ + 1))) ← ℓ′1, of length ℓ′1 + 2

consisting of π′
1 followed by π(ℓ) followed in turn by π(ℓ+1). In other words, π′ =

(π′
1(0) . . . π

′
1(ℓ

′
1), π(ℓ), π(ℓ+ 1)), with π′

1(ℓ
′
1) = π(ℓ) — recall that R is reflexive.

It is easy to see that π′ is an ↑↓-path and that function f : [0; ℓ′1+2]→ [0; ℓ+1],
with f(j) = g(j) for j ∈ [0; ℓ′1], f(ℓ′1 + 1) = ℓ and f(ℓ′1 + 2) = ℓ + 1, is total,
surjective, and monotonic non-decreasing.
Case B: R(π(ℓ− 1), π(ℓ)) and R−(π(ℓ), π(ℓ+ 1)).
In this case the prefix π|[0; ℓ] of π is not a ±-path. We then consider the path
consisting of prefix π|[0; ℓ − 1] where we add a copy of π(ℓ − 1), i.e. the path
π1 = (π|[0; ℓ − 1]) ← (ℓ − 1) — we can do that because R is reflexive. Note
that π1 is a ±-path and has length ℓ. By the Induction Hypothesis there is an
↑↓-path π′

1 of some length ℓ′1 and a total, surjective, monotonic non-decreasing
function g : [0; ℓ′1] → [0; ℓ] such that π′

1(j) = π1(g(j)) = π(g(j)) for all j ∈
[0; ℓ′1]. Consider path π′ = π′

1 · (π(ℓ − 1), π(ℓ), π(ℓ + 1)), of length ℓ′1 + 2, that
is well defined since π′

1(ℓ
′
1) = π(ℓ − 1) by definition of π1. In other words, π′ =

(π′
1(0), . . . , π

′
1(ℓ

′
1), π(ℓ), π(ℓ+1)), with π′

1(ℓ
′
1) = π(ℓ−1). Path π′ is an ↑↓-path. In

fact π′|[0; ℓ′1] = π′
1 is an ↑↓-path. Furthermore, π′(ℓ′1) = π(ℓ−1), R(π(ℓ−1), π(ℓ)),

R−(π(ℓ)), π(ℓ + 1) and π(ℓ + 1) = π′(ℓ′1 + 2). Finally, function f : [0; ℓ′1 + 2] →
[0; ℓ+ 1], with f(j) = g(j) for j ∈ [0; ℓ′1], f(ℓ′1 + 1) = ℓ and f(ℓ′1 + 2) = ℓ+ 1, is
total, surjective, and monotonic non-decreasing.

Lemma 3. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→W ,
there is a ↑↓-path π′ : [0; ℓ′′]→W , for some ℓ′, and a total, surjective, monotonic
non-decreasing function f : [0; ℓ′] → [0; ℓ] such that π′(j) = π(f(j)) for all
j ∈ [0; ℓ′].

Proof. The proof is carried out by induction on the length ℓ of π.
Base case. ℓ = 1. Suppose ℓ = 1, i.e. π : [0; 1]→W with R−(π(0), π(1)). Then
let π′ : [0; 2]→W be such that π′(0) = π′(1) = π(0) and π′(2) = π(1) — we can
do that since R is reflexive — and f : [0; 2]→ [0; 1] be such that f(0) = f(1) = 0
and f(2) = 1. Clearly π′ is an ↑↓-path and π′(j) = π(f(j)) for all j ∈ [0; 2].
Induction step. We assume the assertion holds for all ↓-paths of length ℓ and
we prove it for ℓ+ 1. Let π : [0; ℓ+ 1]→ W a ↓-path and suppose the assertion
holds for all ↓-paths of length ℓ. In particular, it holds for π ↑ 1, i.e., there
is an ↑↓-path π′′ of some length ℓ′′ with π′′(0) = π(1), and total, monotonic
non-decreasing surjection g : [0; ℓ′′] → W such that π′′(j) = π(g(j)) for all
j ∈ [0; ℓ′′]. Suppose R(π(0), π(1)) does not hold. Then, since R is reflexive, we
let π′ = (π(0), π(0), π(1)) ·π′′ and f : [0; ℓ′′+2]→ [0; ℓ+1] with f(0) = f(1) = 0
and f(j) = g(j − 2) for all j ∈ [2; ℓ′′ + 2]. If instead R(π(0), π(1)), then we let
π′ = (π(0), π(1), π(1)) · π′′ and f : [0; ℓ′′ + 2]→ [0; ℓ+ 1] with f(0) = 0, f(1) = 1
and f(j) = g(j − 2) for all j ∈ [2; ℓ′′ + 2].

A.5 The χ Formula

It is useful to define a “characteristic” SLCSη formula χ(w) that is satisfied by
all and only those w′ such that w′ ≡η w.

26 N. Bezhanishvili et al.

Definition 17. Given a finite poset model (W,⪯,V), w1, w2 ∈W , define SLCSη
formula δw1,w2

as follows: if w1 ≡η w2, then set δw1,w2
= true, otherwise pick

some SLCSη formula ψ such that F , w1 |= ψ and F , w2 |= ¬ψ, and set δw1,w2 =
ψ. For w ∈W define χ(w) =

∧
w′∈W δw,w′ . •

Proposition 2. Given a finite poset model (W,⪯,V), for w1, w2 ∈ W , it holds
that

F , w2 |= χ(w1) if and only if w1 ≡η w2. (1)

The following result states that to evaluate an SLCSη formula η(Φ1, Φ2) in a
poset model, it does not matter whether one considers ±-paths or ↓-paths.

Proposition 3. Given a finite poset F = (W,⪯,V), w ∈ W and an SLCSη
formula η(Φ1, Φ2) the following statements are equivalent:

1. There exists a ±-path π : [0; ℓ]→W for some ℓ with π(0) = w, F , π(ℓ) |= Φ2

and F , π(i) |= Φ1 for all i ∈ [0; ℓ).
2. There exists a ↓-path π : [0; ℓ]→W for some ℓ with π(0) = w, F , π(2ℓ) |= Φ2

and F , π(i) |= Φ1 for all i ∈ [0; ℓ).

Proof. The equivalence of statements (1) and (2) follows directly from Lemma 1
and the fact that ±-paths are also ↓-paths.

A.6 Further Minimisation Example

Fig. 10a shows an example of a blue triangle with one red edge and one red
vertex. Its cell poset model is shown in Fig. 10b. In Fig. 10c the nodes of the
poset model that are in the same equivalence class modulo ≡η are given the
same colour.14 The minimal Kripke model is shown in Fig. 10d. The colours
of the borders of the nodes in Fig. 10d correspond to the proposition letters of
the model in Fig. 10a whereas the interior colour of the nodes correspond to
the colour of the corresponding equivalence classes in Fig. 10c. Note that the
minimal model itself is not a poset.
14 Note that such colours have only an illustrative purpose. In particular, they have

nothing to do with the colours expressing the evaluation of proposition letters.

C

A B

(a)

A B C

AB AC BC

ABC

(b)

A B C

AB AC BC

ABC

(c) (d)

Fig. 10: A blue triangle with red vertex and a red side (10a), its poset model
(10b), poset model with equivalence classes (10c) and minimal Kripke model
(10d).

Weak ±-Minimisation for Model Checking Polyhedra 27

A.7 Additional Material Cube Examples of Sect. 5

Below the spatial logic specification in ImgQl is shown, that was used for model
checking the various cube-variants in Table 1 in Sect. 5 with PolyLogicA. ImgQl
is the input language of PolyLogicA in which spatial logic properties of SLCSη
can be expressed. In the specification below, first the polyhedral model is loaded
in json format. Then the definition of the operator η follows, which can be
expressed in terms of the built-in reachability operator through, which, in turn,
represents operator γ. After that, the atomic propositions green, white and
corridor are defined. This is followed by a number of properties for the cube
that should be self-explanatory. They include the formulas for ϕ1 and ϕ2 that
were introduced in Sect. 5. Finally, the lines starting by save are defining which
results to save in a file. Such files contain the name of a property and for each
property a list of true/false items, one for each cell in the polyhedral model and
in the order in which these cells are defined in that polyhedral model.

load model = "mazeG1W3x3Model.json"

// Define eta in terms of gamma (through):
let eta(x,y) = x & through(x,y)

let green = ap("G")
let white = ap("W")
let corridor = ap("corridor")

let greenOrWhite = (green | white)

let oneStepToWhite = eta((green | eta(corridor,white)),white)
let twoStepsToWhite = eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite) & (!oneStepToWhite)
let threeStepsToWhite = eta((green | eta(corridor,twoStepsToWhite)), twoStepsToWhite) & (!twoStepsToWhite) & (!oneStepToWhite)

let phi1 = eta((green | eta(corridor,white)),white)
let phi2 = eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite)

let greenThree = green & (!oneStepToWhite) & (!twoStepsToWhite)

//save "greenOrWhite" greenOrWhite

save "phi1" phi1
save "phi2" phi2

save "oneStepToWhite" oneStepToWhite
save "twoStepsToWhite" twoStepsToWhite
save "threeStepsToWhite" threeStepsToWhite

//save "greenOneStepToWhite" green & oneStepToWhite
//save "greenTwoStepsToWhite" green & twoStepsToWhite
//save "greenThreeStepsToWhite" green & threeStepsToWhite
//save "greenThree" greenThree

Figure 11 shows the 3x5x3 and the 3x5x4 cubes and their minimised LTSs.
Note that in the LTSs not all transition labels are shown to avoid cluttering.
However, states corresponding to corridors, green rooms and white rooms, are
shown in grey, green and white, respectively.

28 N. Bezhanishvili et al.

(a) Cube 3x5x3 (b) Minimised LTS

(c) Cube 3x5x4 (d) Minimised LTS

Fig. 11: Cubes of dimension 3x5x3 (Fig. 11a) and 3x5x4 (Fig. 11c) and their
respective minimal LTSs (Figs. 11b and 11d).

Weak ±-Minimisation for Model Checking Polyhedra 29

B Detailed Proofs

B.1 Proof of Theorem 1

Theorem 1. Let F = (W,⪯,V) be a finite poset model. For all w1, w2 ∈W the
following holds: [w1]⇌ ≃SA(F) [w2]⇌ if and only if w1 ≡F

η w2.

Proof. We first prove that if [w1]⇌ ≃SA(F) [w2]⇌ then w1 ≡F
η w2. We proceed

by induction on SLCSη formulas and consider only the case η(Φ1, Φ2), since the
others are straightforward. Suppose [w1]⇌ ≃SA(F) [w2]⇌ and F , w1 |= η(Φ1, Φ2).
Since F , w1 |= η(Φ1, Φ2), there is (a ±-path, and so, by Proposition 3) a ↓-path
π1 from w1 of some length ℓ1 ≥ 1 such that F , π1(ℓ1) |= Φ2 and F , π1(i) |= Φ1

for all i ∈ [0; ℓ1). At this point, we use induction on ℓ1, together with induction
on the formulas, for showing that also F , w2 |= η(Φ1, Φ2) holds.

Base case: ℓ1 = 1.
In this case we have F , w1 |= Φ1 and F , π1(1) |= Φ2, with w1 ⪰ π1(1). Moreover,
by the Induction Hypothesis on formulas, we also have F , w2 |= Φ1. In addition,
by Rule (Down), we get [w1]⇌

d−→ [π1(1)]⇌. Since [w1]⇌ ≃ [w2]⇌ by hypothe-
sis, we also get [w2]⇌

d−→ [w′
2]⇌, for some [w′

2]⇌ with [w′
2]⇌ ≃ [π1(1)]⇌. Note

that, by definition of ⇌ and since [w2]⇌
d−→ [w′

2]⇌, there is a path π′
2 from

w2 of some length ℓ′2 such that π′
2(j) ⇌ w2 for all j ∈ [0; ℓ′2] and π′

2(ℓ
′
2) ⪰ w′′

2 ,
with w′′

2 ∈ [w′
2]⇌. Recalling that F , w2 |= Φ1, by Lemma 4 below, we also

get that F , π′
2(j) |= Φ1 for all j ∈ [0; ℓ′2]. Recalling also that F , π1(1) |= Φ2,

again by the Induction Hypothesis on formulas, from [w′
2]⇌ ≃ [π1(1)]⇌, we get

F , w′
2 |= Φ2 and, by Lemma 4 below, we also get F , w′′

2 |= Φ2. Consider now
path π2 : [0; ℓ′2 + 1]→W defined as follows:

π2(j) =

π′
2(j), if j ∈ [0; ℓ′2],

w′′
2 , if j = ℓ′2 + 1.

Clearly π2 is a ↓-path from w2 since π′
2 is an undirected path and π2(ℓ

′
2) ⪰

π2(ℓ
′
2 + 1). Furthermore, we have shown above that F , π2(ℓ′2 + 1) |= Φ2 and

F , π2(j) |= Φ1 for all j ∈ [0; ℓ′2 + 1). Thus, we have that F , w2 |= η(Φ1, Φ2),
witnessed by π2.

Induction step: We assume the assertion holds for ℓ1 = n, for n ≥ 1 and we
show it holds for ℓ1 = n+ 1.
Since w1 ≼± π1(1), by Rule (Step), we have that [w1]⇌

s−→ [π1(1)]⇌, and since,
by hypothesis, [w1]⇌ ≃ [w2]⇌, we also know that [w2]⇌

s−→ [w′
2]⇌ for some

w′
2 such that [w′

2]⇌ ≃ [π1(1)]⇌. Note, furthermore, that F , π1(1) |= η(Φ1, Φ2)
since ℓ1 ≥ 2 and that this is witnessed by π1 ↑ 1, which is a ↓-path of length
n. Thus, by the Induction Hypothesis on ℓ1, we get that F , w′

2 |= η(Φ1, Φ2)

since [w′
2]⇌ ≃ [π1(1)]⇌ (see above). From [w2]⇌

s−→ [w′
2]⇌, by Rule (Step),

we know that w ∈ [w2]⇌ and w′ ∈ [w′
2]⇌ exist such that w ≼± w′. Since

30 N. Bezhanishvili et al.

w ∈ [w2]⇌ an undirected path π′
2 exists from w2 to w, of some length ℓ′2, such

that π′
2(j) ⇌ w2 for all j ∈ [0; ℓ′2]. By the Induction Hypothesis on formulas, we

know that F , w2 |= Φ1, and so, by Lemma 4 below, we get also F , π′
2(j) |= Φ1

for all j ∈ [0; ℓ′2]. Moreover, since F , w′
2 |= η(Φ1, Φ2) (see above) and w′ ⇌ w′

2,
again by Lemma 4, we get F , w′ |= η(Φ1, Φ2). This means that there is a ±-path
π′′
2 from w′ of some length ℓ′′2 witnessing F , w′ |= η(Φ1, Φ2). Define π2 as follows:
π′
2 ·(w,w′) ·π′′

2 . It is easy to see that π2 is a ↓-path witnessing F , w2 |= η(Φ1, Φ2).
Now we prove that if w1 ≡F

η w2 then [w1]⇌ ≃SA(F) [w2]⇌. We do this by
showing that the following binary relation B on W is a strong bisimulation:

B = {(s1, s2) ∈ S × S | there are w1 ∈ s1, w2 ∈ s2 such that w1 ≡η w2}.

Let, without loss of generality, s1 = [w1]⇌ and s2 = [w2]⇌, for some w1, w2 ∈W
with w1 ≡η w2 and suppose B([w1]⇌, [w2]⇌), with w1 ≡η w2. We distinguish
three cases:

Case A: [w1]⇌
α−→ [w′

1]⇌ with α ∈ 2PL.
If [w1]⇌

α−→ [w′
1]⇌ for some α ∈ 2PL and w′

1 ∈ W , then, by Rule (PL), we
know that [w′

1]⇌ = [w1]⇌. Furthermore, since w1 ≡η w2, we also know that
V−1({w2}) = V−1({w1}) = α. In addition, again by Rule (PL), we get that
[w2]⇌

α−→ [w2]⇌ and, by hypothesis B([w1]⇌, [w2]⇌).

Case B: [w1]⇌
d−→ [w′

1]⇌

If [w1]⇌
d−→ [w′

1]⇌ for some w′
1 ∈W , then, by Rule (Down) there are w ∈ [w1]⇌

and w′ ∈ [w′
1]⇌ such that w ⪰ w′. Note that (w,w′) is a ↓-path witnessing

F , w |= η(χ(w), χ(w′)), where χ is as in Definition 17 on page 26. Since w ⇌ w1,
we have that F , w1 |= η(χ(w), χ(w′)) holds, by Lemma 4. Moreover, since, by
hypothesis, w1 ≡η w2, we also have F , w2 |= η(χ(w), χ(w′)). Then a ±-path
π : [0; ℓ] → W from w2 such that F , π(ℓ) |= χ(w′) and F , π(j) |= χ(w) for all
j ∈ [0; ℓ). This in turn, by Proposition 2, means that π(ℓ) ≡η w

′ and π(j) ≡η w
for all j ∈ [0; ℓ), By Lemma 4, since w′ ⇌ w′

1, we get w′ ≡η w′
1, and by

transitivity, since π(ℓ) ≡η w
′ (see above), we also have π(ℓ) ≡η w

′
1. Similarly, we

get π(j) ≡η w ≡η w1, which implies V−1({π(j)}) = V−1({w1}), for all j ∈ [0; ℓ).
Recall that w1 ≡η w2, which implies V−1(w2) = V−1({w1}) and so we get also
V−1({π(j)}) = V−1({w2}), for all j ∈ [0; ℓ). In addition, for all j ∈ [0; ℓ) we
have that π|[0; j] connects π(0) = w2 to π(j). This means that, for all j ∈ [0; ℓ),
π(j) ∈ [w2]⇌ = [π(ℓ−1)]⇌ and since π(ℓ−1) ⪰ π(ℓ), by Rule (Down) we deduce
[π(ℓ− 1)]⇌

d−→ [π(ℓ)]⇌, that is [w2]⇌
d−→ [π(ℓ)]⇌. Recall that π(ℓ) ≡η w

′
1, so

that, by definition of relation B, we finally get B([w′
1]⇌, [π(ℓ)]⇌).

Case C: [w1]⇌
s−→ [w′

1]⇌
Suppose, finally, that [w1]⇌

s−→ [w′
1]⇌ for some w′

1 ∈ W . We distinguish two
cases:
Case C1: w′

1 ∈ [w1]⇌. In this case, by Lemma 4 below, we have also w′
1 ≡η w1.

Furthermore, w1 ≡η w2 by hypothesis, thus we get w′
1 ≡η w2. But then, since

w2 ≼± w2, by Rule (Step), we know that [w2]⇌
s−→ [w2]⇌ and since w′

1 ≡η w2,

Weak ±-Minimisation for Model Checking Polyhedra 31

by definition of relation B, we finally get B([w′
1]⇌, [w2]⇌).

Case C2: w′
1 /∈ [w1]⇌. We know there are w ∈ [w1]⇌ and w′ ∈ [w′

1]⇌ such
that w ≼± w′. Since w ⇌ w1, then V−1({w}) = V−1({w1}) and since w′ ⇌ w′

1,
then V−1({w′}) = V−1({w′

1}). Furthermore, since w ≼± w′, there is path (w,w′)
connecting w with w′. So there is a path connecting w1 to w′

1 and if V−1({w1}) =
V−1({w′

1}) would hold, it could not be that w′
1 /∈ [w1]⇌. Consequently, it must

be V−1({w1}) ̸= V−1({w′
1}), which in turn implies w1 ̸≡η w

′
1. We note that the

following holds:

F , w1 |= η(χ(w1), η(χ(w1) ∨ χ(w′
1), χ(w

′
1)))

and, since w1 ≡η w2 we also have

F , w2 |= η(χ(w1), η(χ(w1) ∨ χ(w′
1), χ(w

′
1))).

Let π a ±-path from w2 witnessing the above formula and let k be the first index
such that F , π(k) |= χ(w′

1). We have that, for all j ∈ [0; k), F , π(j) |= χ(w1)
and π|[0; j] connects π(0) = w2 to π(j). Furthermore, for all such j, we have
π(j) ≡η w1, by Proposition 2, which entails V−1({π(j)}) = V−1({w1}). Thus
π(j) ∈ [w2]⇌ for all j ∈ [0; k) and since π(k−1) ≼± π(k) we have, by Rule (Step)
[w2]⇌

s−→ [π(k)]⇌. Finally, recalling that, again by Proposition 2, w′
1 ≡η π(k),

we get B([w′
1]⇌, [π(k)]⇌).

Lemma 4. Given finite poset model F = (W,⪯,V) and w1, w2 ∈W the follow-
ing holds: if w1 ⇌ w2, then w1 ≡η w2.

Proof. By induction on the structure of SLCSη formulas. We show only the case
for η(Φ1, Φ2) since the others are straightforward. Suppose F , w1 |= η(Φ1, Φ2).
Then there is a ±-path π from w1 of some length ℓ such that F , π(ℓ) |= Φ2

and F , π(i) |= Φ1 for all i ∈ [0; ℓ). In particular, we have that F , w1 |= Φ1. So,
by the Induction Hypothesis, since w1 ⇌ w2, we get that also F , w2 |= Φ1. In
addition, by definition of ⇌, and given that w2 ⇌ w1, there is an undirected
path π′ of some length ℓ′ such that π′(0) = w2, π(ℓ

′) = w1 and V−1({π′(i)}) =
V−1({π′(j)}), for all i, j ∈ [0; ℓ′]. Note that, by definition of ⇌, we have that
π′(k) ⇌ w1 for all k ∈ [0; ℓ′]. Thus, again by the Induction Hypothesis, we also
get F , π′(k) |= Φ1 for all k ∈ [0; ℓ′]. Clearly, the sequentialisation π′ · π of π′

with π is a ↓-path since π is a ±-path. Furthermore, by Lemma 1, there is a
±-path π′′ with the same starting and ending points as π′ · π, and with the
same set of intermediate points, occurring in the same order. Thus π′′ witnesses
F , w2 |= η(Φ1, Φ2).

B.2 Proof of Theorem 2

Theorem 2. Let F = (W,⪯,V) be a finite poset model. For all w1, w2 ∈W the
following holds: [w1]⇌ ≃SA(F) [w2]⇌ if and only if w1 ↔SC(F)

b w2.

32 N. Bezhanishvili et al.

Proof. We first prove that if [w1]⇌ ≃SA(F) [w2]⇌ then w1 ↔SC(F)
b w2. We show

that the following relation is a branching bisimulation:

BC = {(w1, w2) ∈W ×W | [w1]⇌ ≃SA(F) [w2]⇌}.

Let us assume BC(w1, w2). We have to consider a few cases:

Case A: w1
p−→ w1.

If w1
p−→ w1, then, by Rule (PLC), we have p ∈ V−1({w1}). By definition of

BC and by hypothesis we know that [w1]⇌ ≃ [w2]⇌ and so, by Lemma 5 below,
we get V−1({w1}) = V−1({w2}). It follows then that p ∈ V−1({w2}) and, again
by Rule (PLC), we finally get w2

p−→ w2, which is the required mimicking step
since B(w1, w2).

Case B: w1
τ−→ w′

1.
If w1

τ−→ w′
1 for some w′

1 ∈W , then, by Rule (TAU), we know that w1 ≼± w′
1,

with V−1({w1}) = V−1({w′
1}), which, by definition of ⇌, means [w′

1]⇌ = [w1]⇌
and since [w1]⇌ ≃SA(F) [w2]⇌ by definition of BC , given that BC(w1, w2), we get
[w′

1]⇌ ≃SA(F) [w2]⇌. This, in turn, again by definition of BC , means BC(w
′
1, w2).

Case C: w1
c−→ w′

1.
If w1

c−→ w′
1 for some w′

1 ∈ W , then, by Rule (CNG), we know that w1 ≼±

w′
1, with V−1({w1}) ̸= V−1({w′

1}), and, by Rule (Step), we have [w1]⇌
s−→

[w′
1]⇌. Since, by definition of BC and by hypothesis, [w1]⇌ ≃SA(F) [w2]⇌, we

also have [w2]⇌
s−→ [w′

2]⇌ for some [w′
2]⇌ ≃SA(F) [w′

1]⇌. From [w2]⇌
s−→

[w′
2]⇌, by Rule (Step), we know there are w3 ∈ [w2]⇌ and w′

3 ∈ [w′
2]⇌ such

that w3 ≼± w′
3. By Lemma 5 below, since [w1]⇌ ≃SA(F) [w2]⇌ by hypothesis

and [w′
1]⇌ ≃SA(F) [w′

2]⇌ (see above), we have V−1({w1}) = V−1({w2}) and
V−1({w′

1}) = V−1({w′
2}) and since V−1({w1}) ̸= V−1({w′

1}) (see above), we
get V−1({w2}) = V−1({w1}) ̸= V−1({w′

1}) = V−1({w′
2}). Consequently, since

w3 ∈ [w2]⇌ and w′
3 ∈ [w′

2]⇌, we also finally get that V−1({w3}) ̸= V−1({w′
3}).

Thus, by rule (CNG), we know that w3
c−→ w′

3. Now, since w3 ∈ [w2]⇌, by
definition of ⇌ and by construction of SC(F) we know there are s0, . . . sn ∈ W
with s0 = w2, sn = w3 such that si

τ−→ si+1 and si+1
τ−→ si, for all i ∈ [0;n).

We note that BC(w1, si) for all i ∈ [0;n]. In fact for each i ∈ [0;n] we have
that [si]⇌ = [w2]⇌ by definition of ⇌ and we also know that [w2]⇌ ≃SA(F)

[w1]⇌, since BC(w1, w2) by hypothesis. Thus we get [si]⇌ ≃SA(F) [w1]⇌, i.e.
BC(w1, si). Furthermore, we also note that BC(w

′
1, w

′
3). In fact [w′

3]⇌ = [w′
2]⇌,

since w′
3 ∈ [w′

2]⇌. Furthermore, [w′
2]⇌ ≃SA(F) [w′

1]⇌ (see above). So, we get
[w′

3]⇌ ≃SA(F) [w′
1]⇌, i.e. BC(w

′
1, w

′
3). In conclusion, we have that if w1

c−→ w′
1

for some w′
1 ∈ W , then w2 = s0

τ−→ s1
τ−→ . . .

τ−→ sn = w3
c−→ w′

3 with
BC(w

′
1, w

′
3) and BC(w1, si) for all i ∈ [0;n].

Case D: w1
d−→ w′

1.
If w1

d−→ w′
1 for some w′

1 ∈W , then, by Rule (DWN), we know that w1 ⪰ w′
1,

Weak ±-Minimisation for Model Checking Polyhedra 33

and, by Rule (Down), we have [w1]⇌
d−→ [w′

1]⇌. Since, by definition of BC and
by hypothesis, [w1]⇌ ≃SA(F) [w2]⇌, we also have [w2]⇌

d−→ [w′
2]⇌ for some

[w′
2]⇌ ≃SA(F) [w′

1]⇌. From [w2]⇌
d−→ [w′

2]⇌, by Rule (Down), we know there
are w3 ∈ [w2]⇌ and w′

3 ∈ [w′
2]⇌ such that w3 ⪰ w′

3 and, by Rule (DWN) we
know that w3

d−→ w′
3. Now, since w3 ∈ [w2]⇌, by definition of ⇌ and by con-

struction of SC(F) we know there are s0, . . . sn ∈W with s0 = w2, sn = w3 such
that si

τ−→ si+1 and si+1
τ−→ si, for all i ∈ [0;n). We note that BC(w1, si)

for all i ∈ [0;n]. In fact for each i ∈ [0;n] we have that [si]⇌ = [w2]⇌ by
definition of ⇌ and we also know that [w2]⇌ ≃SA(F) [w1]⇌, since BC(w1, w2)
by hypothesis. Thus we get [si]⇌ ≃SA(F) [w1]⇌, i.e. BC(w1, si). Furthermore,
we also note that BC(w

′
1, w

′
3). In fact [w′

3]⇌ = [w′
2]⇌, since w′

3 ∈ [w′
2]⇌. Fur-

thermore, [w′
2]⇌ ≃SA(F) [w′

1]⇌ (see above). So, we get [w′
3]⇌ ≃SA(F) [w′

1]⇌, i.e.
BC(w

′
1, w

′
3). In conclusion, we have that if w1

d−→ w′
1 for some w′

1 ∈ W , then
w2 = s0

τ−→ s1
τ−→ . . .

τ−→ sn = w3
d−→ w′

3 with BC(w
′
1, w

′
3) and BC(w1, si)

for all i ∈ [0;n].

We now prove that if w1 ↔SC(F)
b w2, then [w1]⇌ ≃SA(F) [w2]⇌. We show

that the following relation is a strong bisimulation:

BA = {(s1, s2) ∈ S × S | there are w1 ∈ s1, w2 ∈ s2 such that w1 ↔SC(F)
b w2}.

Let, without loss of generality, s1 = [w1]⇌ and s2 = [w2]⇌ for some w1, w2 ∈W
with w1 ↔SC(F)

b w2, and suppose BA([w1]⇌, [w2]⇌). We distinguish three cases:

Case A: [w1]⇌
α−→ [w′

1]⇌ with α ∈ 2PL:
By Rule (PL), if [w1]⇌

α−→ [w′
1]⇌ for α ∈ 2PL and w′

1 ∈W , then [w′
1]⇌ = [w1]⇌

and α = V−1({w1}). On the one hand, if p ∈ α then w1
p−→ w1 by rule (PLC).

Since w2 ↔SC(F)
b w1 it follows that w2

τ−→ . . .
τ−→ w̄2

p−→ w′
2 for w̄2, w

′
2 ∈W

such that p ∈ V−1({w̄2}), w̄2 ↔SC(F)
b w1, and w′

2
↔SC(F)

b w1. By rule (TAU),
p ∈ V−1({w2}). Thus, α ⊆ V−1({w2}). On the other hand, if p ∈ V−1({w2})
then w2

p−→ w2 by rule (PLC). Since w1 ↔SC(F)
b w2 we have that w1

τ−→
. . .

τ−→ w̄1
p−→ w′

1 for w̄1, w
′
1 ∈ W such that p ∈ V−1({w̄1}), w̄1 ↔SC(F)

b w2,
w′

1
↔SC(F)

b w2. By rule (TAU) we obtain that p ∈ V−1({w̄1}). Thus, p ∈ α.
Hence, V−1({w2}) ⊆ α. So, V−1({w2}) = α. Therefore, [w2]⇌

α−→ [w2]⇌ by
rule (PL). By assumption, BA([w1]⇌, [w2]⇌) for target states [w1]⇌ and [w2]⇌
as required.

Case B: [w1]⇌
d−→ [w′

1]⇌

If [w1]⇌
d−→ [w′

1]⇌ for some w′
1 ∈ W , then, by Rule (Down), we know that

there are w3 ∈ [w1]⇌ and w′
3 ∈ [w′

1]⇌ such that w3 ⪰ w′
3. This implies, by Rule

(DWN), that w3
d−→ w′

3. By definition of ⇌ and by construction of SC(F)
we know that there are m ≥ 0 and t0, . . . , tm ∈ W with t0 = w1, tm = w3

34 N. Bezhanishvili et al.

such that ti
τ−→ ti+1 and ti+1

τ−→ ti, for all i ∈ [0;m). This implies that
w1 ↔SC(F)

b w3, and consequently w2 ↔SC(F)
b w3, since w1 ↔SC(F)

b w2 by hypoth-
esis. Furthermore, since w3 ↔SC(F)

b w2, there are n ≥ 0 and v0, . . . , vn, vn+1 ∈W
with w2 = v0

τ−→ · · · τ−→ vn
d−→ vn+1, such that w′

3
↔SC(F)

b vn+1 and
w3 ↔SC(F)

b vi for all i ∈ [0;n]. Moreover, by Rule (DWN), we have vn ⪰ vn+1

which imples, by Rule (Down), that [vn]⇌
d−→ [vn+1]⇌. Note that, by con-

struction of SC(F) we also have V−1(w2) = V−1(v0) = . . . = V−1(vn) and so
[vi] = [w2]⇌ for all i ∈ [0;n]. Thus, [w2]⇌ = [vn]⇌

d−→ [vn+1]⇌. Furthermore,
BA([w

′
3]⇌, [vn+1]⇌) holds, since w′

3
↔SC(F)

b vn+1 (see above) and, recalling that
[w′

3]⇌ = [w′
1]⇌, we also know that BA([w

′
1]⇌, [vn+1]⇌).

Case C: [w1]⇌
s−→ [w′

1]⇌
If [w1]⇌

s−→ [w′
1]⇌ for some w′

1 ∈W , then, by Rule (Step), we know that there
are w3 ∈ [w1]⇌ and w′

3 ∈ [w′
1]⇌ such that w3 ≼± w′

3. We distinguish two cases:
Case C1: V−1({w3}) = V−1({w′

3}).
If V−1({w3}) = V−1({w′

3}), then, by Rule (TAU), we know w3
τ−→ w′

3. But
then, by definition of ⇌, we get [w3]⇌ = [w′

3]⇌ and since [w3]⇌ = [w1]⇌ and
[w′

3]⇌ = [w′
1]⇌ (see above), we get [w′

1]⇌ = [w1]⇌. On the other hand, since,
trivially, w2 ≼± w2, by Rule (Step), we also get that [w2]⇌

s−→ [w2]⇌. More-
over, since by hypothesis, we also have BA([w1]⇌, [w2]⇌), we finally get that
also BA([w

′
1]⇌, [w2]⇌).

Case C2: V−1({w3}) ̸= V−1({w′
3}).

If V−1({w3}) ̸= V−1({w′
3}), then, by Rule (CNG), we know w3

c−→ w′
3. By

definition of ⇌ and by construction of SC(F) we know that there are m ≥ 0 and
t0, . . . , tm ∈W with t0 = w1, tm = w3 such that ti

τ−→ ti+1 and ti+1
τ−→ ti, for

all i ∈ [0;m). This implies that w1 ↔SC(F)
b w3, and consequently w2 ↔SC(F)

b w3,
since w1 ↔SC(F)

b w2 by hypothesis. Furthermore, since w3 ↔SC(F)
b w2, there

are n ≥ 0 and v0, . . . , vn, vn+1 ∈ W with w2 = v0
τ−→ · · · τ−→ vn

c−→
vn+1, such that w′

3
↔SC(F)

b vn+1 and w3 ↔SC(F)
b vi for all i ∈ [0;n]. More-

over, by Rule (CNG), we have vn ≼± vn+1 which imples, by Rule (Step),
that [vn]⇌

s−→ [vn+1]⇌. Note that, by construction of SC(F) we also have
V−1(w2) = V−1(v0) = . . . = V−1(vn) and so [vi] = [w2]⇌ for all i ∈ [0;n].
Thus, [w2]⇌ = [vn]⇌

s−→ [vn+1]⇌. Furthermore, BA([w
′
3]⇌, [vn+1]⇌) holds,

since w′
3
↔SC(F)

b vn+1 (see above) and, recalling that [w′
3]⇌ = [w′

1]⇌, we also
know that BA([w

′
1]⇌, [vn+1]⇌).

Lemma 5. Given finite poset model F = (W,⪯,V). Then for all w1, w2 ∈ W
the following holds: if [w1]⇌ ≃SA(F) [w2]⇌, then V−1({w1}) = V−1({w2}).

Weak ±-Minimisation for Model Checking Polyhedra 35

Proof. By Rule (PL), we have [w1]⇌
V−1({w1})−→ [w1]⇌ and, by hypothesis, we

also have [w2]⇌
V−1({w1})−→ [w′

2]⇌, for some [w′
2]⇌ ≃ [w1]⇌. But then, using again

Rule (PL), we get [w′
2]⇌ = [w2]⇌ and V−1({w1}) = V−1({w2}).

B.3 Proof of Theorem 3

Theorem 3. Given finite poset model F = (W,⪯,V) let Fmin be defined as in
Definition 4. Then, for each w ∈W and SLCSη formula Φ the following holds:

F , w |= Φ if and only if Fmin, [w]≡η
|= Φ.

Proof. We first prove that F , w |= Φ implies Fmin, [w]≡η |= Φ. We proceed by
induction on the structure of Φ and we show the proof only for Φ = η(Φ1, Φ2) the
other cases being straightforward. Suppose F , w |= η(Φ1, Φ2). This means there is
a ±-path π of some length ℓ ≥ 2 such that π(0) = w, F , π(ℓ) |= Φ2 and F , π(i) |=
Φ1 for all i ∈ [0; ℓ). Define now πmin : [0; ℓ]→ Wmin with πmin(i) = [π(i)] for all
i ∈ [0; ℓ]. We show that πmin is a ±-path with respect to Rmin. We have that
Rmin(πmin(0), πmin(1)) by definition of Rmin because π(0) ∈ [π(0)] = πmin(0),
π(1) ∈ [π(1)] = πmin(1) and π(0) ⪯ π(1) by assumption. Similarly, we have
that R−

min(πmin(ℓ − 1), πmin(ℓ)) and also that R±(πmin(i), πmin(i + 1)) for all
i ∈ (0; ℓ− 1). Furthermore, since F , π(ℓ) |= Φ2, by the Induction Hypothesis, we
have that Fmin, πmin(ℓ) |= Φ2. Similarly, we have that Fmin, πmin(i) |= Φ1 for all
i ∈ [0; ℓ) since F , π(i) |= Φ1. So Fmin, [w]≡η |= η(Φ1, Φ2).

Now we prove that Fmin, [w]≡η
|= Φ implies F , w |= Φ. Also in this case we

proceed by induction on the structure of Φ and we show the proof only for
Φ = η(Φ1, Φ2). Suppose Fmin, [w]≡η

|= η(Φ1, Φ2). If Fmin, [w]≡η
|= η(Φ1, Φ2)

then there is a ±-path πmin such that πmin(0) = [w]≡η , Fmin, π(ℓmin) |= Φ2 and
Fmin, πmin(i) |= Φ1 for all i ∈ [0; ℓmin). Since Rmin is reflexive, using Lemma 2 on
page 24, we know that there is also an ↑↓-path π̂min from [w]≡η

of some length
2k, for k ≥ 1, with the same starting-/ending points and the same intermediate
points as πmin and that obviously witnesses η(Φ1, Φ2) for [w]≡η

. By induction on
k, in the sequel, we show that there is a ±-path π from w witnessing η(Φ1, Φ2).

Base case: k = 1.
In this case, we have that

– π̂min(0) = [w]≡η
,

– Fmin, π̂min(0) |= Φ1

– Fmin, π̂min(1) |= Φ1, and
– Fmin, π̂min(2) |= Φ2

Furthermore, since π̂min is an ↑↓-path with respect to Rmin, we know that

π̂min(0) = [w]≡η
, Rmin(π̂min(0), π̂min(1)), R

−
min(π̂min(1), π̂min(2))

and, by definition of Rmin, there are w0 ∈ π̂min(0) = [w]≡η
, w′

1, w
′′
1 ∈ π̂min(1)

and w2 ∈ π̂min(2) such that w0 ⪯ w′
1 and w′′

1 ⪰ w2. Moreover, by the Induction

36 N. Bezhanishvili et al.

Hypothesis with respect to the structure of formulas, we have that F , w0 |= Φ1,
F , w′

1 |= Φ1, F , w′′
1 |= Φ1, and F , w2 |= Φ2. Note that F , w′′

1 |= η(Φ1, Φ2),
witnessed by the following ±-path: (w′′

1 , w
′′
1 , w2). But then we have that also

F , w′
1 |= η(Φ1, Φ2) holds since w′

1 ≡η w′′
1 , recalling that w′

1, w
′′
1 ∈ π̂min(1) ∈

W/≡η
. There is then a ±-path π′ : [0; ℓ′] → W from w′

1 of some length ℓ′ such
that F , π′(ℓ′) |= Φ2 and F , π′(i) |= Φ1 for all i ∈ [0; ℓ′). Furthermore, w0 ⪯ w′

1

by hypothesis and so π = (w0, w
′
1) · π′ : [0; ℓ′ + 1] → W is a ±-path from w0

witnessing F , w0 |= η(Φ1, Φ2). Finally, recalling that w,w0 ∈ π̂min(0) ∈ W/≡η
,

we know that w ≡η w0 and so we have proven the assertion F , w |= η(Φ1, Φ2).

Induction step: k = n+ 1 assuming the assertion holds for k = n, for n > 0.
Since k > 1, we know that Fmin, π̂min(1) |= Φ1 and Fmin, π̂min(2) |= Φ1 ∧ ¬Φ2.
Furthermore,

π̂min(0) = [w]≡η , Rmin(π̂min(0), π̂min(1)), R
−
min(π̂min(1), π̂min(2))

because π̂min is an ↑↓-path. By definition ofRmin, there are w0 ∈ π̂min(0) = [w]≡η ,
w′

1, w
′′
1 ∈ π̂min(1) and w2 ∈ π̂min(2) such that w0 ⪯ w′

1 and w′′
1 ⪰ w2. By the

Induction Hypothesis with respect to the structure of the formula, we get that
F , w0 |= Φ1, F , w′

1 |= Φ1, F , w′′
1 |= Φ1, and F , w2 |= Φ1 ∧ ¬Φ2. We consider now

the ↑↓-path π̂min ↑ 2 from π̂min(2) of length 2n, noting that it witnesses η(Φ1, Φ2),
since so does π̂min and k > 1. In other words, we have that Fmin, π̂min(2) |=
η(Φ1, Φ2) with w2 ∈ π̂min(2). By the Induction Hypothesis with respect to k, we
then have that F , w2 |= η(Φ1, Φ2). So there is a ↑↓-path π2 : [0; ℓ2] → W from
w2 of some length ℓ2 such that F , π2(ℓ2) |= Φ2 and F , π2(i) |= Φ1 for i ∈ [0; ℓ2).
Note that F , π2(0) |= Φ1 as well, since π2(0) = w2 and F , w2 |= Φ1 ∧ ¬Φ2 (see
above). Let us consider now the path π′′ = (w′′

1 , w
′′
1 , w2) ·π2. Such a path is an ↑↓-

path since so is π2, and w′′
1 ⪰ w2 by hypothesis. Note that ↑↓-path π′′ witnesses

F , w′′
1 |= η(Φ1, Φ2). But then we have that also F , w′

1 |= η(Φ1, Φ2) holds since
w′

1 ≡η w′′
1 , recalling that w′

1, w
′′
1 ∈ π̂min(1) ∈ W/≡η

. Thus, we have that the
following holds: F , w′

1 |= Φ1 ∧ η(Φ1, Φ2). There is then a ±-path π′ : [0; ℓ′]→W
from w′

1 of some length ℓ′ such that F , π′(ℓ′) |= Φ2 and F , π′(i) |= Φ1 for all
i ∈ [0; ℓ′). Furthermore, w0 ⪯ w′

1 by hypothesis and so π = (w0, w
′
1) · π′ :

[0; ℓ′ + 1] → W is a ±-path from w0 witnessing F , w0 |= η(Φ1, Φ2). Finally,
recalling that w,w0 ∈ π̂min(0) ∈ W/≡η

, we know that w ≡η w0 and so we have
proven the assertion F , w |= η(Φ1, Φ2).

B.4 Proof of Theorem 4

Theorem 4. For any poset model F = (W,⪯,V) and Fmin as of Def. 4 and
for all α1, α2 ∈ Wmin, it holds that Rmin(α1, α2) if and only if α2

d−→ α1 is a
transition of the minimal LTS obtained from SC(F) via branching equivalence.

Proof. In the sequel, we let SC(F)/↔b
denote the minimal LTS obtained from

SC(F) via branching equivalence. First of all, by Corollary 1,Wmin coincides with
the quotient of the set of states W of SC(F) modulo branching equivalence. Now,

Weak ±-Minimisation for Model Checking Polyhedra 37

suppose that α2
d−→ α1 is a transition of SC(F)/↔b

. By standard construction
of the minimal LTS modulo an equivalence on its state set, we know that w1 ∈ α1

and w2 ∈ α2 exist such that w2
d−→ w1 is a transition of SC(F). But then, by

Rule (DWN), we get that w1 ⪯ w2 and so, by definition of Fmin, we finally
get R(α1, α2). If, on the other hand, R(α1, α2) holds, then we know that there
exist w1 ∈ α1 and w2 ∈ α2 such that w1 ⪯ w2, by definition of Fmin. But then,
by Rule (DWN), we get that w2

d−→ w1 is a transition of SC(F). Again, by
standard construction of the minimal LTS modulo an equivalence on its state
set, we know that α2

d−→ α1 is a transition of SC(F)/↔b
.

