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Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain 
regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the 
sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unex-
plored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the 
treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with 
animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on 
the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus 
being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative 
stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin 
receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation 
end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations 
(BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the 
control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit 
an excessive consumption of sweet foods that can affect brain physiology also in the long term.
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Introduction

Fructose, a reducing monosaccharide present in fruit and 
honey, is the major component of the two most used sweet-
eners, namely, sucrose and high fructose corn syrup (HFCS). 
In the last decades, HFCS utilization has grown, essentially 
because of its longer shelf life, cheaper production, and 
higher sweetness which increases the palatability of sugary 
beverages, baked and processed foods [1, 2]. The rise in the 
intake of diets rich in sweeteners, mostly sweetened bever-
ages (fruit juices, alcopops and sport drinks), in young and 
adolescents is particularly troubling [3–6]. Indeed, this kind 
of diet leads to a marked increase in daily fructose consump-
tion that, compared to a natural consumption of 16–24 g/day 
with fruits and honey, can reach 80 g/day, which represents 
the 17–20% of the daily caloric intake [7–9].
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Excessive dietary sugar intake, both in early and later life, 
has also been associated with altered brain metabolism and 
behavioral functioning [10–13]. In this context, it is notewor-
thy that brain maturation, particularly in frontal cortex, con-
tinues approximately until early adulthood (24 years of age) 
[14–16], rendering this brain area particularly susceptible to 
developmental disruption due to early-life nutritional or envi-
ronmental insults [17]. Indeed, the consumption of high-fat 
or high-sugar diets during adolescence was associated with 
both deficits in executive functioning and a reduced volume 
of the frontal cortical region in humans [18–21]. Therefore, 
the assessment of the sugar impact on brain-related outcomes 
is crucial, particularly during the critical windows of growth 
and development, when key features of brain tissue structure 
and function are establishing [22]. While several studies out-
lined the detrimental effect of fructose on hypothalamus or 
hippocampus [13, 23, 24], very little information is available 
on the impact of this sugar on frontal cortex. In this regard, 
we previously reported that, in both adolescent and adult 
rats, a short-term fructose intake affects redox homeostasis, 
autophagy, and the expression of synaptic markers [25]. Fur-
thermore, long-term fructose drinking was associated with 
neuroinflammation, altered insulin signaling and cognitive 
impairment in frontal cortex [26, 27].

Whether the alterations induced by fructose intake during 
adolescence (postnatal day 30–60, P30–P60) are rescued return-
ing to a healthy diet or persist until young adulthood is a critical 
issue that remains unexplored. Therefore, we focused on the 
frontal cortex of adolescent rats fed a fructose-rich (F) or control 
diet (C) for 3 weeks. After this period, to highlight whether the 
effects induced by the short-term fructose diet persist or are 
rescued, fructose-fed rats were fed a control diet for a further 
3 weeks (FR) until young adulthood phase and compared with 
animals that received the control diet for the entire period (CR). 
Thus, we investigated putative damages induced by the sugar 
intake on brain-derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), and their specific receptors, which are 
crucial in modulating survival and development of the nervous 
system, synaptic function and plasticity, learning and memory 
[28, 29], as well as we evaluated the sugar impact on inflam-
mation and oxidative stress. Moreover, a mass spectrometry-
based metabolomic analysis was carried out to ascertain whether 
fructose intake also influences the homeostasis of amino acids, 
amino acid derivatives and other polar metabolites, particularly 
the main neurotransmitters, in the frontal cortex.

Materials and Methods

Materials

Bovine serum albumin fraction V (BSA; catalogue n. 
A6588), amino acids (catalogue n. LAA21), dopamine 

(catalogue n. H8502), acetylcholine (catalogue n. A6625) 
tyramine (catalogue n. T2879), γ-aminobutyric acid 
(GABA, catalogue n. 03,835), DL-lysine-4,4,5,5-d4 
dihydrochloride (d4-lysine, catalogue n. 489,034), for-
mic acid (catalogue n. 5.33002), salts, and buffers were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Nε-carboxymethyllysine (CML, catalogue n. HAA2950) 
and Nε-carboxyethyllysine (CEL, catalogue n. HAA2940) 
were obtained from Iris Biotech (Marktredwitz, Germany). 
Acetonitrile (catalogue n. 1.00029), water (catalogue n. 
1.15333), and ammonium formate (catalogue n. 70,221) 
of mass spectrometry grade were obtained from Merck 
(Darmstadt, Germany).

Polyvinylidene dif luoride (PVDF; catalogue n. 
GEH10600021) and nitrocellulose membranes (catalogue 
n GEH10600001) were from GE Healthcare (Milan, Italy).

Fuji Super RX films (catalogue n. 47,410–19,284), 
FujiFilm Man-X Developer (catalogue n. 949–966) and 
FujiFilm Man-X Fixer (catalogue n. 949–974) were from 
Laboratorio Elettronico Di Precisione (Naples, Italy).

Experimental Design

Male Wistar rats (30 days old, P30) were purchased from 
Charles River; Calco, Como, Italy. Animals were caged 
individually in a temperature-controlled room (23 ± 1 °C) 
with a 12-h light/dark cycle (06.30–18.30), and divided 
into two groups, one fed a fructose rich diet (F group), 
the other one fed a control diet (C group) for 3 weeks. At 
the end of treatment, half of the rats from each group was 
euthanized, while the other half received a control diet (FR 
and CR groups) for further 3 weeks (P72). The composi-
tion of both control and fructose rich diet is reported in 
Table 1. The fructose-rich diet and the control diet were 
isocaloric, as differing only for qualitative content of car-
bohydrates (Table 1).

At the end of dietary treatment, the animals were then 
euthanized by decapitation, and frontal cortex was har-
vested and dissected as previously described [25]. In 
details, the brains were quickly harvested, moved on a 
metal plate placed in dry ice, and washed with cold PBS 
to remove surface blood. In order to dissect frontal cor-
tex, brain was cut longitudinally, into right and left hemi-
sphere, and the olfactory bulb was removed with a cut 
from the medial view of the hemisphere. Finally, fron-
tal cortex was dissected from a slice about 2.5–4.5 mm 
anterior to bregma, taking into account published stere-
otaxic atlas resources [30, 31]. Pieces of each sample were 
immediately snap frozen in liquid nitrogen and stored 
at − 80 °C for metabolomic and protein analyses. Mito-
chondrial oxygen consumption was immediately assessed 
in little aliquots of tissue as reported below. Pieces of each 
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sample were fixed for immunofluorescence analysis. As 
post-mortem metabolism is known to provoke rapid and 
progressive changes in the levels of many compounds [32, 
33], dissection of frontal cortex from each animal was per-
formed into 1.5 min. The time of handling before freezing 
was standardized to minimize the effect of post-mortem 
metabolism.

Mitochondrial Analyses

Freshly isolated frontal cortex samples were homogenized 
(1:1000, w/v) in Mir05 medium containing 110 mM sucrose, 
60 mM K-lactobionate, 20 mM Hepes, 20 mM taurine, 
10 mM KH2PO4, 6 mM MgCl2, 0.5 mM EGTA, and 0.1% 
w/v fatty acid-free BSA, pH 7.0.

Homogenates (2 mg) were transferred into calibrated 
Oxygraph-2 k (O2k, Oroboros Intruments, Innsbruck, Aus-
tria) 2-mL chambers. Oxygen polarography was performed 
at 37 ± 0.001 °C (electronic Peltier regulation), and oxygen 
concentration (μM) and oxygen flux (pmol O2 s−1 mL−1) 
were real-time recorded and corrected automatically for 
instrumental background by DatLab software (Oroboros 
Intruments, Innsbruck, Austria).

After addition of the homogenates, the O2 flux was 
allowed to stabilize. A substrate, uncoupler, inhibitor 
titration (SUIT) protocol was applied to assess qualitative 
and quantitative mitochondrial changes [34]. After stabi-
lization, leak respiration supported primarily by electron 
flow through complex I of the respiratory chain was evalu-
ated by adding the substrates malate (0.5 mM), pyruvate 
(5 mM), and glutamate (10 mM). Electron transfer was 
coupled to phosphorylation by the addition of 2.5 mM 
ADP, assessing phosphorylating respiration with electron 
transfer supported by complex I. Succinate (10 mM) was 
added to the chamber to induce maximal phosphorylating 
respiration with parallel electron input from complexes 
I and II. Oligomycin (2.5 mM) was added to assess leak 
respiration when substrates and ADP were provided, but 
ATP synthase was inhibited. Maximum capacity of the 
electron transport chain was obtained by addition of the 
uncoupler carbonyl cyanide p-trifluoromethoxyphenylhy-
drazone (FCCP, 0.5 mM). Rotenone (0.5 μM) was added 
to inhibit complex I; hence, the maximal capacity sup-
ported by complex II alone was determined. Residual 
oxygen consumption was established by addition of the 
inhibitor antimycin A (2.5 mM) and the resulting value 
was subtracted from the fluxes in each run, to correct for 
non-mitochondrial respiration. All samples were run in 
duplicates and the mean was used for analysis.

Procedures to test mitochondrial integrity were routinely 
carried out at the beginning of each measurement, by evalu-
ating the stimulating effect of 10 mM exogenous cytochrome 
c on mitochondrial respiration in the presence of complex 
I- linked substrates and ADP.

Metabolic Parameter Assay

The amount of fructose, uric acid, and glucose in frontal 
cortex samples were measured by colorimetric enzymatic 
methods, using commercial kits according to the manufac-
turer’s instruction (Fructose assay kit: catalogue n. FA-20, 
Sigma Aldrich, St. Louis, MO, USA; Uric acid kit: catalogue 
n. 4059, GS Diagnostics SRL, Guidonia Montecelio, Rome, 
Italy; Glucose assay kit: catalogue n. 4058, GS Diagnostic).

Protein Extraction

Aliquots of frontal cortex (about 50 mg) were homogenized 
in seven volumes (w/v) of cold RIPA buffer, as previously 
published [35]. Protein concentration was titrated by the col-
orimetric Bio-Rad assay, based on the Bradford method [36], 
using the Bio-Rad dye reagent (catalogue n. 5,000,006, Bio-
Rad, Hercules, CA, USA), according to the manufacturer’s 
instruction. Then, protein extracts were used for titrating 
the markers reported below by ELISA or Western blotting.

Table 1   Ingredients and nutritional composition of experimental diets

a 4RF21, Mucedola, Italy
b  Estimated by computation using values (kJ/g) for energy content 
as follows: proteins 16.736, lipids 37.656, and carbohydrates 16.736. 
ME = metabolizable energy

Ingredients, g/100 g Control diet Fructose diet

Standard Chowa 50.5 50.5
Sunflower Oil 1.5 1.5
Casein 9.2 9.2
Alphacel 9.8 9.8
Cornstarch 20.4 –-
Fructose –- 20.4
Water 6.4 6.4
AIN-76 mineral mix 1.6 1.6
AIN-76 vitamin mix 0.4 0.4
Choline 0.1 0.1
Methionine 0.1 0.1
Energy content and composition
  Gross Energy Density (kJ/g) 17.2 17.2
  ME content (kJ/g)b 11.1 11.1
  Proteins (% ME) 29.0 29.0
  Lipids (% ME) 10.6 10.6
  Carbohydrates (% ME) 60.4 60.4
  Of which:
  Fructose –- 30.0
  Starch 52.8 22.8
  Sugars 7.6 7.6
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Analysis of Tumor Necrosis Factor Alpha (TNF‑Alpha)

TNF-alpha concentration was evaluated by sandwich ELISA 
in frontal cortex homogenates diluted 1:20 [37] using the 
TNF-alpha Duo-Set kit (catalogue n. DY510, R&D, DBA 
Italia). Data were reported as pg of TNF-alpha per mg of 
total proteins.

Western Blotting

Aliquots (30 µg) of cortex proteins were resolved by elec-
trophoresis, under denaturing and reducing conditions [38], 
on 12.5% (to quantify glucose transporter-5, Glut-5; glucose 
transporter-4, Glut-4; glial fibrillary acidic protein, GFAP; 
synaptophysin; brain derived neurotrophic factor, BDNF; 
nerve growth factor, NGF; extracellular signal-regulated 
kinase, Erk1/2) or 10% (post-synaptic density protein 95, 
PSD-95; synaptotagmin I; peroxisome proliferator-acti-
vated receptor gamma coactivator 1-alpha, PGC-1α; nerve 
growth factor (NGF) receptor, p75NTR; tropomyosin recep-
tor kinase B, TrkB; tropomyosin receptor kinase A, TrkA; 
thyroxine hydroxylase, TH) polyacrylamide gels. Proteins 
were then blotted onto PVDF or nitrocellulose membrane 
[39], and the following washing and blocking steps were 
performed according to [40].

The membranes were then incubated (overnight, at 4 °C) 
with primary antibody dilutions, followed by incubation 
(1 h, at 37 °C) with the appropriate peroxidase-conjugated 
secondary IgGs (see Supplementary Table 1).

For loading control, β-actin or vinculin was revealed 
after detection of each marker. To this aim, the membranes 
were stripped [41] and then treated with mouse anti-β-actin 
IgG or with mouse anti-vinculin IgG (overnight, at 4 °C) as 
described in Supplementary Table 1.

The Excellent Chemiluminescent detection Kit (Westar 
Antares, catalogue n. XLS142, Cyanagen s.r.l., Bologna, 
Italy) was used for detection. Chemidoc or digital images 
of X-ray films exposed to immunostained membranes were 
used for densitometric analysis and quantification was carried 
out by Un-Scan-It gel software (Silk Scientific, UT, USA).

Haptoglobin (Hpt) Evaluation

Hpt concentration in frontal cortex samples was meas-
ured by ELISA as previously reported [40]. Samples were 
diluted (1: 3,000, 1:10,000, 1:30,000) with coating buffer 
(7 mM Na2CO3, 17 mM NaHCO3, 1.5 mM NaN3, pH 9.6), 
and aliquots (50 µl) were then incubated (overnight, at 
4 °C) in the wells of a microtiter plate (Nunc MaxiSorp, 
catalogue n. 44–2404-21, Thermo Fisher Scientific). Wash-
ing and blocking were carried out as previously reported 
[42], then the wells were incubated (1 h, at 37 °C) with 
50 µl of rabbit anti-human Haptoglobin IgG (catalogue n.  

H8636, Sigma-Aldrich, St. Louis, MO, USA) diluted 1:500 
in T-TBS (130 mM NaCl, 20 mM Tris–HCl, 0.05% Tween, 
pH 7.4) containing 0.25% BSA, followed by 60 µl of goat 
anti-rabbit horseradish peroxidase-conjugated IgG (cata-
logue n. GtxRb-003-DHRPX, Immunoreagents, Raleigh, 
NC, USA; 1:5000 dilution in T-TBS containing 0.25% BSA; 
1 h, at 37 °C). Peroxidase-catalyzed color development from 
o-phenylenediamine was measured at 492 nm.

Evaluation of Nitro‑Tyrosine Levels, 
Acetylcholinesterase (AChE) and Monoamine 
Oxidase (MAO) Activities

Nitro-tyrosine (N-Tyr) titration was carried out by ELISA 
in frontal cortex homogenates as previously described [43]. 
Samples were diluted (1:1,500, 1:3,000, 1:6,000) with coat-
ing buffer, and aliquots (50 µl) were then incubated in the 
wells of a microtiter plate (overnight, at 4 °C). After washing 
and blocking, the wells were incubated (1 h, 37 °C) with 
50 µl of rabbit anti-N-Tyr IgG (catalogue n. CVL-PAB0188, 
Covalab, distributed by VinciBiochem, Vinci, Italy; 1: 1000 
dilution in T-TBS containing 0.25% w/v BSA) followed by 
60 µl of goat anti-rabbit horseradish peroxidase-conjugated 
IgG (1:9,000 dilution; 1 h, at 37 °C). Peroxidase-catalyzed 
color development from o-phenylenediamine was measured 
at 492 nm. Data were reported as OD per milligram of total 
proteins.

The acetylcholinesterase (AChE) activity was measured 
in frontal cortex samples as previously described [25]. 
Enzyme activity was expressed as nmol/min mg protein.

The monoamine oxidase (MAO) activity was measured 
spectrophotometrically following the conversion of ben-
zylamine to benzaldehyde, as previously described [44].

Immunofluorescence Analysis

Paraffin embedded sections of frontal cortex from all the 
groups were stained with the phospho-cAMP response ele-
ment-binding protein (p-CREB) specific monoclonal antibody 
(Ser 133) (87G-3) (catalogue n. 9198, Cell Signaling Tech-
nology; 1:1,000 in dilution in PBS containing 2% w/v BSA; 
overnight, at 4 °C), and DAPI (catalogue n. D9542, Sigma 
Aldrich, Saint Louis, MO, USA). For the analysis, images 
were acquired with × 40 magnification and 3 random fields/
section per rat were analyzed using ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA). Images were captured 
and visualized using a Nikon Eclipse E1000 microscope.

Liquid chromatography high resolution tandem 
mass spectrometry (LC–MS/MS)

Polar hydrophilic compounds were analyzed by 
liquid chromatography  high  resolution tandem mass  
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spectrometry (LC–MS/MS) as previously reported [45], with 
minor modifications. Frontal cortex samples (25 ± 10 mg) 
were dissolved in 0.390 mL of 0.1% formic acid along with 
10 µL of 10 µg/mL lysine d-4; suspensions were accurately 
homogenized by using a stainless-steel disperser (IKA 
T10, Staufen, Germany, 3 passes, 30  s) in an ice bath. 
Supernatants (0.1 mL) were further purified by directly using 
0.3 mL of 0.1% formic acid in acetonitrile in a protein 
precipitation and phospholipids removal cartridge (Phree, 
1 mL, Phenomenex, Torrance, CA); eluates were collected 
and dried by using a centrifugal evaporator (SpeedVac, 
Thermo Fisher Scientific, Bremen, Germany). Dried 
samples were dissolved in 0.1 mL of a mixture acetonitrile: 
water: formic acid (50:49.9:0.1, v/v/v) and 5 µL injected 
into the LC–MS/MS system consisting in a linear ion trap 
with Orbitrap detector (LTQ Orbitrap XL) interfaced to 
an Ultimate 3000 RS (Thermo Fisher Scientific, Bremen, 
Germany). Analytes were separated through hydrophilic 
interaction chromatography and analyzed in data dependent 
scan positive ions mode for identification and quantitation.

Chromatographic separation was achieved through a 
silica sulfobetaine zwitterionic modified HILIC column 
(100 × 2.1 mm, 1.7 µm, Syncronis HILIC, Thermo Fisher, 
Bremen, Germany) at 35 °C. Mobile phases consisted in 
0.1% formic acid in acetonitrile:water 95:5 (v/v, solvent 
A) and 0.1% formic acid in water (solvent B) both with 
5 mM ammonium formate. Analytes (thermostated at 4 °C) 
were separated through the following gradient of solvent B 
(minutes/%B): (0/3), (3.5/3), (15.5/75), (17.5/75) at a flow 
rate of 0.25 mL/min. Electrospray interface (ESI) parameters 
were the following: spray voltage 5.0 kV, capillary voltage 
21.0 V, capillary temperature 300 °C, sheath gas flow and 
auxiliary gas flow were 25 and 4 arbitrary units, respec-
tively. Profile data type were acquired in full scan FTMS 
mode (Fourier transformed) in the mass range 75–750 m/z. 
For data-dependent scanning mode, MS/MS normalized col-
lision energy was set to 20, activation Q 0.25, activation time 
25 ms, with a 1 m/z isolation window, while a reject mass 
list was generated by injecting blank samples consisting in a 
mixture of acetonitrile:water:formic acid (50:49.9:0.1, v/v/v).

For compound identification, differential analysis, princi-
pal component analysis (PCA), hierarchical clustering, and 
identification of metabolic pathways, raw data were loaded 
in Compound Discoverer (v. 3.2, Thermo Fisher Scientific). 
The workflow included the identification of both expected and 
unknown metabolites; briefly, each node performed retention 
time alignment, expected compound detection, biotransfor-
mation, dealkylation, and dearylation products formation. 
Resolution and isotope pattern matching with unknown com-
pounds detection were used across all samples with a mass 
accuracy below 5 ppm. FISh (fragment ion searching) scoring 
was applied to all expected compounds with automatic frag-
ment annotations based on targeted and untargeted compound 

chemical behavior outlined in Human Metabolome Database 
(https://​hmdb.​ca/), ChemSpider (http://​www.​chems​pider.​com), 
mzCloud (https://​www.​mzclo​ud.​org/) and KEGG pathway 
database (https://​www.​genome.​jp/​kegg/​compo​und/).

According to the background in blank samples, the pro-
cedure predicted elemental compositions for all unknown 
compounds, while quality control samples (QC, consisting 
in pooled samples spiked with amino acid standards) cor-
rected signal intensities each 10 runs. Hierarchical clustering 
was obtained through filtering procedures based on techni-
cal replicates coefficient of variation (CV%), retention time, 
and mass accuracy, excluding analytes eluting close to the 
solvent front, with poor response for coefficient of separation 
k’, peak shape, and spectrum purity in both full scan and data-
dependent mode. The workflow included differential analysis 
(p-values, adjusted p-values, ratios, fold change; Supplemen-
tary Tables 2 and 3), Euclidean distance, and complete link-
age method without data normalization to enhance differences 
among frontal cortex of groups fed different diets. Analytes 
based on hierarchical clustering were scaled before clustering 
through a z-score transformation.

For targeted analyte quantitation, a calibration curve of the 
compounds listed in Supplementary Table 4 was built in the 
range 100–5000 ng/mL by using lysine-d4 as internal standard. 
Linearity and the responses of intraday and interday assays 
were monitored by using Xcalibur 2.1 with a mass accuracy 
fixed at 5 ppm (Thermo Fisher Scientific, Bremen).

Statistical Analysis

Data were expressed as mean values ± SD. The program 
GraphPad Prism 9.3.1 (GraphPad Software, San Diego, CA, 
USA) was used to verify normal distribution of data by Shap-
iro–Wilk normality test and to compare groups with one-way 
ANOVA followed by Bonferroni post-test. P < 0.05 was con-
sidered significant in the reported analyses.

Results

Metabolic Analyses

At the end of dietary treatment, no significant variation 
was evident in final body weight (C rats = 295 ± 4  g; F 
rats = 292 ± 5 g; CR rats = 350 ± 6 g; FR rats = 367 ± 3 g). 
Daily energy intake showed no significant variation in 
F rats compared to C rats (C rats = 358 ± 5  kJ/day; F 
rats = 360 ± 5 kJ/day). Similarly, comparable energy intake 
was found in CR and FR rats (CR rats = 340 ± 4 kJ/day; 
FR rats = 344 ± 5 kJ/day). In addition, fasting levels of glu-
cose were unchanged both in F rats compared to C rats (F 
rats = 123 ± 5 mg/dL; C rats = 130 ± 5 mg/dL), and in FR 
rats compared to CR rats (FR rats = 113 ± 6 mg/dL; CR  
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rats = 121 ± 6 mg/dL). These data evidence that the impact 
of fructose on brain is not due to an increase of body 
weight or change in daily energy intake.

Inflammation, Oxidative Stress, and Mitochondrial 
Activity

To investigate whether the dietary treatment induces 
fructose transporter and metabolism, the protein expres-
sion of Glut-5, as well as the level of fructose and uric 
acid, one of the main products of fructose metabolism, 
was analyzed in frontal cortex after 3 weeks of a fructose-
rich diet. The amount of Glut-5 was significantly higher 
[F (3, 28) = 7.625; P < 0.01] in frontal cortex of F rats 
compared to C rats, while this increase disappeared in FR 
rats (Fig. 1a). Unlike Glut-5, no significant difference was 
found in the level of Glut-4 between C and F rats or CR 
and FR (Supplementary Figure 1). According to the Glut-5 
increase, a significant rise in the levels of fructose [F (3, 
28) = 5.191; P < 0.01] and uric acid [F (3, 28) = 6.258; 
P < 0.01] was found in F rats compared to C rats, while no 
significant differences were found in FR rats compared to 
CR ones (Fig. 1b, c). The cortex level of glucose did not 
differ between C and F, or CR and FR rats (Supplementary 
Figure 1).

We then investigated the inflammatory status by meas-
uring the protein expression of GFAP, a marker of astro-
gliosis, the pro-inflammatory cytokine TNF-alpha, and 
Hpt, a marker of inflammation very sensitive to nutritional 
changes [37, 40, 46]. As shown in Fig. 1d–f, an increase 
of inflammatory markers in frontal cortex was associated 
with the fructose-rich diet. As a matter of the fact, signifi-
cantly higher levels of GFAP [F (3, 28) = 4.979; P < 0.01; 
Fig. 1d], TNF-alpha [F (3, 28) = 11.57; P < 0.01; Fig. 1e], 
and Hpt [F (3, 28) = 5.656; P < 0.01; Fig. 1f] were found 
in frontal cortex of F rats compared to C rats. Importantly, 
these conditions were rescued after switching to a control 
diet as no difference in the levels of these markers was 
detected between CR and FR rats.

In line with previous results obtained in the hippocampus 
[47], fructose feeding was also associated with an increase 
of N-Tyr, the footprint of protein oxidative damage induced 
by peroxynitrite [48] in fructose-fed rats [F (3, 28) = 7.283; 
P < 0.001; Fig. 1g]. The observed condition of redox imbal-
ance was corroborated by changes in mitochondrial activ-
ity induced by fructose-rich diet. In detail, F rats showed a 
significant decrease in leak respiration with complex I and 
II-linked substrates [F(3, 28) = 10.36; P < 0.0001], in ADP-
supported respiration with complex I [F (3,28) = 13.58; 
P < 0.0001] or complex I- and II-linked substrates [F (3, 
28) = 11,61; P < 0.0001] and in FCCP-stimulated respiration 
with complex II [F (3, 28) = 52.51; P < 0.0001] or complex 

I and II-linked substrates [F (3, 28) = 3.70; P = 0.023; 
Fig. 1l]. The above mentioned mitochondrial dysfunction 
was reversed when rats were switched to a control diet. The 
analysis of PGC-1α was performed as a marker of mitogen-
esis, and no difference was observed (Fig. 1m).

We also detected higher levels of Nε-carboxymethyllysine 
(CML) [F (3, 28) = 10.62; P < 0.01; Fig.  1h] and Nε-
carboxyethyllysine (CEL) [F (3, 28) = 7,756; P < 0.05; 
Fig. 1i], two advanced glycation end-products [49], both in 
free form, in frontal cortex of F rats compared to C rats. 
Notably, after switching to the control diet, the differences 
in N-Tyr between CR and FR rats disappeared, while CML 
and CEL levels persisted higher in FR compared to CR 
rats (P < 0.01).

Neurotrophins and Synaptic Proteins

The level of BDNF, a key cerebral factor involved in a 
wide range of neurophysiological processes such as neu-
ronal survival, synaptic transmission and plasticity [50], 
was measured in the frontal cortex of all groups of rats. 
As shown in Fig. 2a, a significant fructose diet-dependent 
decrease of the mature form of BDNF was observed [F 
(3, 28) = 11.84; P < 0.01]. Notably, alterations of BDNF 
amount persisted after switching to a control diet, as 
displayed by FR rats compared to CR rats (P < 0.001). 
No difference was found in the levels of BDNF precur-
sor (pro-BDNF), suggesting that changes in this neuro-
trophin are likely at post-translational level. The protein 
amount of TrkB, the high-affinity receptor of BDNF, was 
also analyzed, as its activation enhances synaptic plas-
ticity, neuroprotection, and neurite outgrowth [50]. As 
shown in Fig. 2b, TrkB level was significantly lower in 
the frontal cortex of F rats compared to C ones [F (3, 
28) = 3.994; P < 0.05], and its level in FR rats returned 
to values comparable to CR rats. We further investigated 
the extent of phosphorylation of CREB, the major down-
stream effector of BDNF [51, 52], as marker of BDNF 
signalling. In line with the decrease of BDNF, a decrease 
in the activating phosphorylation of CREB (p-CREB) was 
found in both F rats compared to C, and FR compared to 
CR [F (3, 28) = 12.42; P < 0.01; Fig. 2c], as assessed by 
immunofluorescence.

According to previous works in human, rat, and mouse 
brain, reporting that mature NGF is absent while pro-NGF 
is the predominant species [53, 54], mature NGF was not 
detectable in any frontal cortex samples analyzed. Moreover, 
no significant difference between the experimental groups 
was found in the levels of its precursor pro-NGF (Fig. 3a). 
Interestingly, the protein level of TrkA, the receptor of 
NGF, was increased in F rats respect to C [F (3, 28) = 3.769; 
P < 0.05], while no difference was detected in FR compared 
to CR, after the sugar removal from the diet (Fig.  3b). 
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Fig. 1   Evaluation of Glut-5, fructose, uric acid, inflammatory and 
oxidative stress markers, mitochondrial function in frontal cortex. (a) 
Glut-5 level (representative western blot and densitometric analysis); 
(b) fructose amount; (c) uric acid amount; (d) GFAP amount (rep-
resentative western blot and densitometric analysis); (e) TNF-alpha 
concentration (titrated by sandwich ELISA); (f) Hpt concentration 
(titrated by ELISA, (g); N-Tyr levels (titrated by ELISA); (h) CML 
amount and (i) CEL amount (as determined by LC–MS/MS); (l) non-
normalized respiration after addition of malate + pyruvate + glutamate 

(PMG), ADP, succinate (S), oligomycin (O), FCCP, and rotenone 
(R); (m) PGC-1α amount (representative western blot and densito-
metric analysis), in frontal cortex of control adolescent (C), fructose-
fed adolescent (F), young-adult control rescued (CR), young-adult 
fructose-rescued (FR) rats. Data are the means ± SD of 8 rats/group. 
*P < 0.05, **P < 0.01, ***P < 0.001 versus C rats. ##P < 0.01 versus 
CR rats.  Source of variation: one-way ANOVA followed by Bonfer-
roni post-test. FCCP carbonyl cyanide p- trifluoromethoxyphenylhy-
drazone
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Furthermore, no changes were observed in the amount of 
the low-affinity NGF receptor p75NTR (Fig. 3c). In addition, 
the phosphorylation degree of both Erk1 [F (3, 28) = 7.93; 
P < 0.01], and Erk2 [F (3, 28) = 14.16; P < 0.001], signifi-
cantly increased in F compared to C rats (Fig. 3d), with per-
sistent increased levels in FR compared to CR rats (P < 0.01 
and P < 0.001, respectively).

We further investigated the impact of fructose on the 
amounts of two pre-synaptic proteins, namely synaptophysin 
and synaptotagmin I, and the post-synaptic protein PSD-95, 
which play a key role in synaptic plasticity [55]. The fruc-
tose-rich diet led to decreased levels of all the three proteins 
[synaptophysin, F (3, 28) = 6.601; P < 0.001; synaptotagmin 
I, F (3, 28) = 6.978; P < 0.01; PSD-95, F (3, 28) = 5.452; 
P < 0.01], while the switch to control diet rescued their 
amount (Fig. 4a–c).

The effect of the short-term fructose diet on the activity 
of AChE, a pivotal enzyme involved in the regulation of 
cholinergic pathway [56], was also evaluated. As shown in 
Fig. 4d, fructose feeding resulted in a significant increase 
of AChE activity of F compared to C rats [F (3, 28) = 4.36; 
P < 0.05]. This increase was also found in FR rats compared 
to CR (P < 0.05). Notably, the activity of MAO, a central 
player in the modulation of monoamine neurotransmitters 
level [57], increased in F rats compared to C rats [F (3, 
28) = 29.12; P < 0.0001; Fig. 4e), with no significant change 
between FR and CR rats.

Metabolites and Neurotransmitters

Polar hydrophilic metabolites were isolated from fron-
tal cortex homogenates, purified by using protein and 

phospholipids cartridges, and finally measured by using 
HILIC coupled to high-resolution tandem mass spectrom-
etry according to the nature and duration of the interven-
tion study. To point out the role of fructose intake on small 
molecules fingerprinting, the C rat group was compared 
with the F one, while CR was matched to FR. Results are 
reported in the heat-maps (Fig. 5). Figure 5a highlighted 
a clear discrimination between fructose-diet (orange line) 
and control diet (blue line) through Euclidean distance 
between over- and down-represented analyte intensities in 
the centred and scaled area range − 2.8 and 3.9, as related 
to the m/z current ion associated with 89 molecules. Sup-
plementary Table 2 shows over-represented compounds 
reported in Fig. 5c as well as the corresponding analyti-
cal performance and fold change values, along with their 
respective MSI (metabolomic standard initiative) levels 
[58]. Sample clustering was outlined in an explorative 
PCA combined with loading plots and differential analysis, 
which highlighted (in light blue) the compounds (Supple-
mentary Table 2) having a log2 fold change higher than 
0.5 and a negative log10 of the p-value higher than 0.05 
(Supplementary Figure 2a).

In a similar way, polar hydrophilic metabolites differenti-
ated rescue fructose-diet (light blue arrow, FR) and rescue 
control diet (blue arrow, CR) (Fig. 5b) when considering 
up to 272 over- and down-represented compounds. Supple-
mentary Table 3 shows over-represented compounds in FR 
rats reported in Fig. 5d with a log2 fold change higher than 
0.5 and with a negative log10 of the p-value higher than 
0.05, as a result of the differential analysis (Supplementary 
Figure 2b). PCA illustrates how loadings plot contributed to 
the spatial arrangement of FR and CR samples, confirming 

Fig. 2   Evaluation of BDNF, 
TrkB and pCREB amount in 
frontal cortex. (a) pro-BDNF 
and BDNF levels (representa-
tive western blot and densito-
metric analysis), (b) TrkB level 
(representative western blot 
and densitometric analysis), 
(c) immunofluorescence of 
p-CREB (magnification 40 × , 
scale bar = 50 μm) in frontal 
cortex of control adolescent 
(C), fructose-fed adolescent (F), 
young-adult control rescued 
(CR), young-adult fructose-
rescued (FR) rats. Data are the 
means ± SD of 8 rats/group. 
*P < 0.05, **P < 0.01 versus C 
rats. ##P < 0.01 versus CR rats.  
Source of variation: one-way 
Anova followed by Bonferroni 
post-test
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results obtained through heat-map and hierarchical cluster-
ing (Supplementary Figure 2b).

Then, each of the over-represented compounds differen-
tiated by the kind of diet (Supplementary Tables 2 and 3) 
was included in Metabolika node within Compound Discov-
erer with the aim to identify the most influenced metabolic 
pathways. Results obtained after loading the increased abun-
dance of metabolites in Fig. 5c pinpointed metabolic path-
ways involving aromatic amino acids, namely tyrosine, phe-
nylalanine, and tryptophan, along with sulphur compounds 
(cysteine and reduced glutathione) and other derivatives.

On the other hand, loading of data from the second 
heat-map deriving from differential analysis on rescue diet 
(Fig. 5d) outlined metabolic pathways associated with some 
polar basic amino acids, such as lysine and CEL, second-
ary amides and other acid compounds, like aspartic acid 

derivatives and glutamic acid (Fig. 5d). In this view, we 
hypothesized that the metabolism of aromatic amino acids, 
lysine, and glutamic acid can be the focus of high fruc-
tose diet. This hypothesis is in accordance with a previous 
observation [59], which reported that amino acids linked 
to tricarboxylic acid cycle, such glutamate and aspartate, 
undergo specific enrichment when young rats are fed with a 
high-fructose diet. Furthermore, a coherent alteration of the 
lysine catabolism was recently observed in diurnal metabolic 
pathways impacted by high-fat diet, suggesting that fructose 
intake can similarly exacerbate the alteration of amino acid 
metabolism [60].

Based on the above-reported untargeted analysis 
(Fig. 5), we then focused on the targeted quantification 
of six metabolites, based on full scan high resolution 
acquisition and the use of authentic reference standards, 

Fig. 3   Evaluation of pro-NGF, 
TrkA, p75NTR, and Erk1/2 in 
frontal cortex. Representative 
western blot and densitometric 
analysis of (a) NGF level, (b) 
TrkA level, (c) p75NTR level, 
(d) pErk1/2/Erk1/2 ratio, in 
frontal cortex of control adoles-
cent (C), fructose-fed adoles-
cent (F), young-adult control 
rescued (CR), young-adult 
fructose-rescued (FR) rats. Data 
are the means ± SD of 8 rats/
group. *P < 0.01, **P < 0.01, 
***P < 0.001 versus C rats. 
##P < 0,01, ###P < 0.001 versus 
CR rats.  Source of variation: 
one-way Anova followed by 
Bonferroni post-test
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to highlight quantitative differences between C and F rats, 
and between CR and FR. Indeed, a major aim of the study 
was to evaluate the quantitative impact of the fructose diet 
on the profile of the major neurotransmitters (Fig. 6). We 
observed that the concentration of acetylcholine (ACh), 
one of the main neuromodulators of the central nervous 
system regulating individual attention, learning, and mem-
ory [61], was significantly higher in F rats compared to C 
[F (3, 20) = 4.202; P < 0.01], and this increase was rescued 
in FR (Fig. 6a). Conversely, the levels of dopamine, the 
neurotransmitter regulating the food eating reward circuit, 
motor activity, and emotion [62, 63], were reduced in F 
rats compared to C ones [F (3, 20) = 11.62; P < 0.001; 
Fig. 6b], and no difference between CR and FR groups 
was observed. Similarly, levels of both dopamine precur-
sors tyrosine and tyramine decreased in F compared to C 
rats [tyrosine, F (3, 20) = 6.788, P < 0.01; tyramine, F (3, 
20) = 6.509, P < 0.05; Fig. 6c–d], and returned to control 
values after the switch to the standard diet. On the other 
hand, no changes in the amounts of TH, the enzyme cata-
lysing the rate-limiting step of catecholamine biosynthesis 
[64], were observed between F and C groups (Fig. 6e). 
Interestingly, the levels of the most common neurotrans-
mitter in the CNS, namely glutamate [65], were lower in 
F group with respect to C one [F (3, 20) = 7.047; P < 0.01; 
Fig. 6f]. A different trend was observed after the switch to 

control diet, as FR showed higher glutamate levels com-
pared to CR (Fig. 6f; P < 0.01). These results demonstrated 
that fructose intake is associated with a dysregulation of 
glutamate metabolism, which is further observed, but with 
an opposite quantitative trend, after switching to control 
diet. Finally, GABA levels did not differ between C and 
F groups, while increased amounts were observed in FR 
compared to CR [F (3, 20) = 3.477; P < 0.01; Fig. 6g].

Discussion

Different lines of evidence have recently highlighted the 
fructose impact on brain metabolic alterations [13, 23], 
but it remains unclear whether the observed sugar-induced 
adverse effects are limited exclusively to the period of 
increased intake or are persistent even when it is elimi-
nated from the dietary regimen. We recently reported that 
the fructose-rich diet impacts different metabolic param-
eters by inducing systemic inflammation, hepatic insu-
lin resistance, increase of plasma triglycerides [66], and 
“leaky gut” [67], which persisted after switching to control 
diet. Sugar-driven systemic inflammation and metabolic 
dysfunction could impact on brain as well. Here we stud-
ied, by using the same experimental design, the metabolic 
effects of the sugar in frontal cortex of adolescent animal 

Fig. 4   Evaluation of synaptic proteins, acetylcholinesterase and 
monoamino oxidase activity in frontal cortex. (a) Synapthophysin 
level (representative western blot and densitometric analysis), (b) 
synaptotagmin I level (representative western blot and densitometric 
analysis), (c) PSD-95 level (representative western blot and densito-
metric analysis), (d) AChE activity, and (e) MAO activity in frontal 

cortex of control adolescent (C), fructose-fed adolescent (F), young-
adult control rescued (CR), young-adult fructose-rescued (FR) rats. 
Data are the means ± SD of 8 rats/group. *P < 0.05, **P < 0.01, 
***P < 0.001 ****P < 0.0001 versus C rats. #P < 0.05 versus CR rats.  
Source of variation: one-way Anova followed by Bonferroni post-test
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model, since, to our knowledge, poor information is avail-
able on this issue.

The fructose diet was associated with increased levels of 
the fructose transporter Glut-5 in rat frontal cortex, and a 
concomitant increase of fructose and uric acid, which were 
suggestive of an enhanced fructose metabolism therein. The 
change of Glut-5 and metabolite levels were paralleled by 
an inflammatory status. A similar pattern was previously 
found in the hippocampus [47], thus showing that dietary 

fructose reaches the brain and is utilized in several cerebral 
areas. Augmented levels of uric acid were also reported to 
elicit oxidative stress [68–70] and consistently we found a 
higher extent of oxidative damage to proteins. Inflammation 
and oxidative stress are often related to a mitochondrial dys-
function [71, 72], and indeed we evidenced a corresponding 
general impairment of the mitochondrial oxidative capacity 
not linked to a lower organelle mass, since PGC-1α level was 
not altered. All above-mentioned fructose-dependent effects 

Fig. 5   Metabolomic analysis of frontal cortex. (a) Heat-map hier-
archical cluster analysis of metabolites detected in frontal cortex 
of fructose-fed adolescent (F, orange) and control adolescent (C, 
blue) rats. (b) Heat-map hierarchical cluster analysis of metabolites 
detected in frontal cortex of young-adult fructose-rescued (FR, light 
blue) and young-adult control rescued (CR, blue) rats. Dendrograms 
on the left report the molecular grouping and distance between 
molecular classes, while dendrograms on the top report the sample 
grouping. Corresponding iterative zoomed regions on the right (pan-
els c and d) report identified molecules according to the number of 

matched over-represented compounds as result of differential analy-
sis processing node within Compound Discoverer software (Supple-
mentary Figure 2, and Supplementary Tables 2 and 3). Analytes were 
identified with a metabolite identification level of 2 as in the case that 
compound name was used and 4 in the case where only the calculated 
molecular weight (MW) was reported, as defined by Metabolomics 
Standards Initiative (MSI) [58]. Normalized area ranges and Eculid-
ean distance were used in all cases; scaled expression values of each 
range are plotted in red to blue through white color scale
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on mitochondrial activity were reverted when this sugar was 
removed from the dietary regimen.

More importantly, higher advanced glycation end-prod-
ucts (CML and CEL) were found in fructose-fed rats, in 
line with previous works showing that fructose can lead to 
the formation of highly reactive intermediate products as 
α-dicarbonyls [73], which in turn can favor the formation of 
advanced glycation end-products, as CML and CEL [74], 
thus acting as potent glycating agent [75] and negatively 
impacting the brain function [13, 76, 77]. Interestingly, the 
observed augmented levels of CML and CEL in fructose-fed 
rats were not restored to control values in FR group, suggest-
ing the persistence of the sugar-associated effects.

Given the key role of neurotrophins in brain activity 
[50], we focused on the analysis of BDNF and NGF and we 
observed that the level of BDNF and its receptor TrkB was 
lower in fructose-fed rats. This result is in line with previous 
findings obtained in adult rats experiencing a long- or short-
term fructose intake [25, 27], highlighting this neurotrophin 
as a crucial target of fructose diet independently from the 
age. The early reduction of BDNF in adolescent rats and its 
persistent decrease later was corroborated by the observa-
tion of lower activation of its downstream effector, namely 

CREB, both in F compared to C rats and in FR compared 
to CR counterparts. Since CREB is implicated in the tran-
scription of genes essential for synaptic plasticity [78], the 
persistent reduction in its phosphorylated form is suggestive 
of a possible long-term brain impairment. The sugar-induced 
impairment of BDNF signaling might be compensated, at 
least in part, by the increase of TrkA and activation of its 
downstream transducers Erk1/2. This process is regulated 
by pro-NGF and critically depends on the balance of TrkA 
and p75NTR [79, 80]. This pathway is indeed committed to 
prevent apoptotic signals, with a positive effect on neuronal 
survival and neurite outgrowth [54].

The persistent impairment of BDNF-CREB signaling 
prompted us to investigate the issue of synaptic function-
ing. A decrease of pre- (synaptophysin, and synaptotagmin 
I) and post-(PSD-95) synaptic proteins following fructose 
dietary treatment was found, and this change was rescued 
after the switch to the standard diet, suggesting that the 
homeostasis of these proteins is restored more rapidly than 
that of BDNF. To gain further insight into synaptic physiol-
ogy, we also measured the activity of AChE and MAO, as 
well as the levels of important neurotransmitters involved 
in synaptic transmission. In particular, increased activity of  

Fig. 6   Evaluation of neu-
rotransmitters and tyroxine 
hydrolase in frontal cortex. 
(a) Acetylcholine amount, (b) 
dopamine amount, (c) tyrosine 
amount, (d) tyramine amount, 
(e) tyroxine hydroxylase level 
(representative western blot 
and densitometric analysis), (f) 
glutamate amount, (g) GABA 
amount in frontal cortex of 
control adolescent (C), fructose-
fed adolescent (F), young-adult 
control rescued (CR), young-
adult fructose-rescued (FR) 
rats. Data are the means ± SD 
of 6 rats/group. *P < 0.01, 
**P < 0.01, ***P < 0.001 versus 
C rats. ##P < 0,01 versus CR.  
Source of variation: one-way 
Anova followed by Bonferroni 
post-test
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AChE and MAO was detected in fructose-fed rats. While 
increased MAO rescued after switching to standard diet, 
AChE increase persisted after fructose removal from the 
diet. In this context, it is worth mentioning that the enhanced 
AChE activity in the hippocampus and prefrontal cortex was 
previously proposed as an early event linked to hypercho-
lesterolemia- or high-fat diet-induced alterations in cogni-
tive function [81–83]. Notably, despite the enhanced AChE 
activity, we detected increased levels of ACh in fructose-fed 
rats. In this regard, previous studies showed that an abnor-
mal intake of fructose provokes an immediate drop in the 
ATP/AMP ratio, a decreased acetyl-CoA carboxylase activ-
ity, and a consequent lowering of malonyl-CoA levels [84]. 
Accordingly, it can be hypothesized that the increased ACh 
levels after fructose intake might derive from the increased 
availability of acetyl CoA, consequent to the decreased 
activity of acetyl-CoA carboxylase. In this sense, the higher 
AChE activity may represent an adaptive response to prevent 
prolonged ACh signaling. The increase of ACh levels in F 
rats suggests that a short-term fructose enriched diet may 
disrupt cholinergic signaling and predispose adolescents 
to altered states, such as anxiety disorders and depression, 

also corroborated by BDNF and dopamine reduction. The 
observed decrease of dopamine, which regulates different 
brain functions such as reinforcement processing, motiva-
tion, and attention [85], might be ascribed to both the corre-
sponding enhanced MAO activity and the reduced amounts 
of tyrosine and tyramine. In agreement with our findings, 
previous studies have reported that HFCS can impair dopa-
mine function in the absence of weight gain or increased fat 
consumption [10]. As a reduced dopamine activity has been 
implicated in reduced energy expenditure [86, 87], changes 
in dopamine metabolism were proposed to precede and pos-
sibly contribute to obesity in the long-term period [10].

A general alteration of some metabolic pathways related 
to specific aromatic or sulfur-containing amino acids, lysine 
and glutamic acid was also deduced from F vs C, and FR 
vs CR comparisons. Glutamate is the principal excitatory 
neurotransmitter involved in learning, memory and cogni-
tion, and any unbalance of its turnover may have severe con-
sequences [65]. Decreased glutamate levels in fructose-fed 
rats and then an increase of this neurotransmitter in FR rats 
compared to CR counterpart might be suggestive of a gluta-
matergic persistent dysregulation after fructose intake, which 

Fig. 7   Fructose impact on brain health of adolescent rats and persis-
tence of its effect after switching to a control diet. Up arrows indicate 
parameters increased and down arrows indicate parameters reduced. 
ACh, acetylcholine; AChE, acetylcholinesterase; MAO, monoamine 
oxidase; BDNF, brain derived neurotrophic factor; TrkB, tropomyo-

sin receptor kinase B; TrkA, tropomyosin receptor kinase A; pErk1/2, 
pospho-extracellular signal-regulated kinase 1/2; Erk1/2, extracellular 
signal-regulated kinase 1/2; pCREB, pospho-cAMP-response element 
binding protein; GFAP, glial fibrillary acidic protein; Hpt, hapto-
globin; CML, Nε-carboxymethyllysine; CEL, Nε-carboxyethyllysine
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might prelude to long term dysfunction. Indeed, glutamater-
gic dysregulation has already been reported being an impor-
tant contributor to different neurological pathologies [65].

ACh, dopamine, and glutamate changes observed in fructose-
fed rats were not paralleled by GABA alterations. Since higher 
levels of glutamate were observed in FR rats, we cannot exclude 
that the concomitant increase of GABA amount may represent 
a compensatory mechanism to prevent possible dysfunction 
related to concomitant quantitative changes of its precursor.

In conclusion, this study demonstrates that the fructose 
feeding causes a perturbation of various biochemical machin-
eries involved in brain metabolism and function, such as neu-
rotrophins signaling and a consequent possible modification 
of excitatory/inhibitory neurotransmitter balance, which is 
essential for the proper functioning of the central nervous 
system (Fig. 7). Undoubtedly, these data also point out that 
adolescence represents a developmental window of vulnera-
bility, in which extreme attention should be devoted to limit an 
excessive consumption of industrial and processed sweet food, 
since it can impact brain physiology not only immediately but 
also in the long term. Since previous reports showed different 
susceptibilities of males and females to fructose supplemen-
tation [88, 89], future experiments will be critical to clarify 
whether the sugar-adverse effects and/or their persistence in 
brain can be different depending on the sex.
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