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Abstract

As systems-of-systems (SoS) increasingly permeate everyday life in various crit-
ical domains, ensuring their fault tolerance becomes crucial due to the severe
consequences that disturbances can cause. Due to their dynamic nature, this
poses significant challenges. The concerns regarding fault tolerance in SoS ex-
tend beyond failures in constituent systems. Fault tolerance in SoS must also
deal with behavioral changes in such constituent systems, whether accidental or
deliberate. The lack of ability to deal with such events can lead to severe conse-
quences. However, current solutions fail to address this dynamism. This article
introduces ReViTA, a framework to assist professionals in designing more fault-
tolerant SoS. With ReViTA, fault tolerance can be achieved by reconfiguring
SoS to an architectural configuration that meets the critical mission require-
ments. We carried out two studies to evaluate ReViTA. Results demonstrate
that our framework can effectively support professionals designing fault tolerant
SoS. It also reveals the capability of improving stakeholder communication and
enhancing resource utilization. Moreover, our research underscores the need for
domain experts and decision-makers to participate in fault tolerance discussions.
Their collaboration facilitates a comprehensive understanding of conflicts and
weaknesses in constituent systems. Employing ReViTA also bring insights into
costs and planning, crucial for implementing fault-tolerance strategies.

1. Introduction

In recent years, we assist to the emergence of large-scale, complex, software-
intensive systems in various domains, including aerospace, defense, and health-
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care, also facilitated by the proliferation of disruptive technologies such as Cloud
Computing, Artificial Intelligence, and the Internet of Things (IoT). These
large-scale complex systems are often composed of independent systems mu-
tually interacting to achieve broader goals, which are commonly referred to as
systems-of-systems (SoS) [1].

SoS are complex networks of constituent systems, each capable of operating
independently, that contribute towards achieving, when interconnected, some
common goals – or missions – surpassing the capabilities of each single con-
stituent system operating in isolation [1]. The complexity of SoS arises from
the diversity of constituent systems, their capacity to evolve independently, and
their interactions. Such interactions can lead to emergent behaviors at the SoS
level, a phenomenon that cannot be predicted from the individual behaviors of
the constituent systems [2].

While SoS hold significant potential in addressing the complex challenges
of the modern world, they come with inherent risks. Given their widespread
adoption and the critical importance of the domains in which they operate, it is
crucial to ensure an adequate level of reliability [3]. The lack of reliability could
lead to severe consequences, such as environmental damage, economic losses,
injuries, and even loss of human lives [4]. In healthcare, for instance, the lack of
reliability of an SoS managing patient data can result in inaccuracies or loss of
critical patient information, thereby threatening patient safety and treatment
effectiveness [5]. As another example, a problem in a traffic management SoS
could lead to traffic congestion or accidents [6].

In traditional systems, reliability is commonly associated with component
failures [7]. In SoS, reliability is also affected by any event, whether deliberate
or unintentional, that affect the ability of an SoS to fulfill its mission [3]. These
events are referred to as “disturbances” [8]. These include failures and undesir-
able behaviors of constituent systems. A significant challenge arises when these
undesirable behaviors, while acceptable in the standalone context of an individ-
ual constituent system, become harmful within the SoS context. This occurs
due to the independence of the constituent systems, which are often managed
by different organizations and operate in diverse environments [9], which may
lead to conflicts SoS goals [3, 10].

As it may be challenging to control the disturbances in SoS due to the
independence of the constituent systems, our focus is on fault tolerance, i.e.,
strategies that ensure SoS continue to provide their function even in the presence
of disturbances. By focusing on fault tolerance, we aim to mitigate the impact
of disturbances and enhance the overall SoS reliability, ensuring the ability of
SoS to fulfill their missions and produce desired effects.

While the existing literature on SoS fault tolerance has advanced in the
last years [3], critical aspects still require investigation. In particular, a signif-
icant gap exists regarding the SoS dynamic nature. Constituent systems can
produce disturbances at the SoS level that might result from failures, implemen-
tation changes, or because, under certain circumstances, deviation from their
roles within the SoS due to competing objectives. In addition, constituent
systems can produce temporary disturbances as they undergo be-
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havioral changes in response to specific environmental stimuli and
return to their normal behavior after a while [11]. Existing literature
has not adequately addressed this additional layer of dynamism to the best
of our knowledge. Hence, the real-world problem is that such dynamism and
unpredictability can affect the overall SoS reliability, making it challenging to
maintain their ability to accomplish missions successfully.

In response to this challenge, we introduce ReViTA (Reconfigurations Via
Transient Architectural Configurations). ReViTA is a prescritive framework
designed to enhance fault tolerance in SoS. This framework provides a struc-
tured approach to assist professionals in designing fault tolerant SoS through
architectural reconfigurations, which consists of changing an SoS architecture
to adapt to new conditions. These reconfigurations involve modifying SoS com-
position and relationships. Unlike studies employing SoS reconfigurations to
mitigate the impact of disturbances, ReViTA harnesses the opportunistic na-
ture of SoS design to leverage fault tolerance. This is vital because it considers
the inherent flexibility of SoS design, offering a more reasonable approach to
handling disturbances.

We performed two studies to evaluate the feasibility of ReViTA, involving
semi-structured interviews with professionals with different backgrounds. In
the first study, we presented the framework to 14 professionals to gather their
perceptions and suggestions on the framework through individual interviews.
The second study involved a group of four professionals who applied ReViTA
using a real-world scenario, specifically an SoS designed to respond to power
outages at a large Brazilian public university with distributed institutes and
campuses. This last study focused on the professionals’ experiences using Re-
ViTA and the potential impact of the framework on their work. The results
indicate the acceptance of ReViTA by professionals. The evaluations further
unveil the ReViTA’s potential in facilitating stakeholder communication and
optimizing resource utilization. Furthermore, our research highlights the needs
for domain experts and decision-makers to engage in discussion concerning SoS
fault tolerance. Their involvement deepens the understanding regarding poten-
tial weaknesses and conflicts of fault tolerance strategies. They also contribute
with essential insights related to costs, resources utilization, and strategic plan-
ning. Our findings reveal that these aspects are vital for successfully enable
fault tolerance in SoS.

The remainder of this article is organized as follows: Section 2 presents the
background and related work; Section 3 details our research method; Section 4
introduces ReViTA; Section 5 presents the results of the evaluation conducted
through two distinct studies; Section 6 presents a discussion of the results,
implications for practitioners and researchers, and lessons learned; Section 7
discusses the threats and limitations of this work; and Section 8 concludes this
article.
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2. Background and Related Work

This section lays the foundation for understanding the key concepts relevant
to our study: SoS, fault tolerance, and systems reconfiguration. Additionally,
we discuss the related work.

2.1. System-of-Systems

An SoS is a network of independent systems, known as the constituent sys-
tems, that are connected to achieve a common goal. The constituent systems are
managed by different organizations, using different technologies, and with dif-
ferent operational objectives. The synergistic interaction among the constituent
systems is essential to the overall functioning of the SoS [1].

SoS are becoming increasingly common in our daily life. For instance, in
healthcare, an SoS integrate a range of constituent systems, including electronic
health records systems, medical imaging systems, and patient monitoring sys-
tems to improve the efficiency and quality of patient care [5]. In the domain
of urban mobility, SoS encompasses urban traffic management, control of intel-
ligent traffic lights, and integrated public transportation systems to optimize
traffic flow and enhance urban mobility [6].

According to Mark Maier [1], the main characteristics of SoS are: (i) Op-
erational Independence: It denotes that constituent systems can function
and achieve their objectives independently of the SoS as a whole; (ii) Manage-
rial Independence: It indicates that each constituent is managed individually,
rather than being centrally controlled; (iii) Evolutionary Development: This
implies that an SoS can evolve over time, responding to changes in its environ-
ment, constituent systems, or objectives; (iv) Distribution: It refers to the
physical decoupling of constituents within the SoS, necessitating a communica-
tion channel for information exchange among these them; and (v) Emergent
Behavior: It suggests that the behavior of SoS as a whole emerges from the
synergistic interaction among its constituent systems, leading to outcomes that
could not be predicted based solely on the properties of the constituent systems.

Moreover, SoS can be categorized according to the levels of authority over
the constituent systems, as in the following [12, 13]: (i) directed: SoS are
centrally managed by an authority responsible for driving operations; (ii) ac-
knowledged: SoS have recognized objectives, a controller, and resources at the
SoS level, but the controller has no complete authority; (iii) in collaborative
SoS, there is no central control and the constituent systems work together to
fulfill agreed purposes; and (iv) in virtual SoS, there is no managerial authority
and no commonly established goals.

SoS exhibits an inherent dynamism, which is a natural consequence of the
independence of constituent systems. This means that the constituent systems
can change at runtime [14], affecting the SoS overall behavior. Such dynamism
implies that a range of potential behaviors, both desired and undesired, can
emerge from the interactions among constituent systems. This characteristic,
in particular, raises considerable concerns about SoS reliability.
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2.2. Fault Tolerance

Fault tolerance is an important characteristic of reliable systems [15]. It
entails a system’s ability to maintain and deliver a desired level of functionality
even in the presence of faults. Ensuring fault tolerance is essential for the unin-
terrupted operation of systems. Typically, it is achieved through a combination
of error detection and subsequent system recovery [16, 17]. While error
detection is designed to generate an error signal or message within the system,
system recovery aims to change a system to a state free from errors and faults,
thereby allowing a system to be reactivated [16].

Employing redundancy is one of the means to achieve fault tolerance as it
ensures that if a component fails, an appropriate backup is in place to take
over its role, enabling the system to maintain its operation [16, 18]. The most
common form of redundancy involves replacing a failed component with an
identical one. On the other hand, when redundancy is applied at a functional
level — replacing a failed component with a different one that performs a similar
function — it is called heterogeneous redundancy [19]. For instance, if a
system that uses push notifications fails, the system could switch to sending
email notifications or Short Messaging Service as an alternative. Though email
and Short Messaging Service are different communication channels than push
notifications, they still fulfill the notification function.

2.3. Systems Reconfiguration

Reconfiguration is a broad term that can apply to various types of systems,
including computer systems, network systems, and manufacturing systems, to
mention a few. In general, reconfiguration refers to the process of changing
the setup or composition of a system [20, 21]. This can involve changing hard-
ware, software, or other system components to improve performance, add new
functionality, or adapt to changing conditions.

In SoS, reconfiguration involves changes in the composition of constituent
systems and their interconnections. In general, two main factors drive SoS re-
configurations [22]. The first involves the need for SoS to adapt to environmental
changes. The second relates to the evolutionary development of SoS. For the re-
configuration process to be effective, it is essential to determine the current and
intended future state of SoS. This involves changes in an SoS architecture by
modifying its composition of and interconnections among constituent systems
[23].

The SoS type can affect the degree of cooperation among the constituent
systems. This can influence reconfigurations, such as the manner and timing of
the reconfiguration operations. For instance, one approach to reconfiguration
involves temporarily placing constituent systems into a “passive” state, i.e., they
cease providing services [23]. This approach may be viable for directed SoS, in
which a central authority strongly influences the constituent systems. However,
in collaborative SoS, this may not be feasible since there is no authority, and
the functioning of these types of SoS is primarily based on agreements.
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2.4. Related Work

Two primary topics are relevant to our research: fault tolerance and SoS
reconfigurations. In this section, we discuss the related work to these subjects.

Regarding SoS fault tolerance, few studies address the topic. Among them,
we highlight the work of Andrews et al. [24], which presented a disciplined
approach for modeling fault tolerant SoS using SysML. The approach is based
on a separation of normal and erroneous behavior of SoS. It supports reasoning
about SoS faults and errors, error propagation, and fault and error handling in
the SoS architecture. This work was later extended to enable the translation of
SysML models into a formal notation [25], allowing for more rigorous modeling
and verification of the SoS architecture concerning fault tolerance.

Andrews et al. [26] also introduced the Fault Modeling Architectural Frame-
work (FMAF), a structured method for capturing requirements for fault-tolerant
SoS. FMAF supports the development of fault-tolerant architectures and pro-
vides a traceable mapping of fault-tolerace requirements into SoS architectural
designs. Ingram et al. [27] presented an example of the application of FMAF in
a traffic management SoS and discussed potential extensions to the framework.

Some studies employed alternative constituent systems as heterogeneous re-
dundancies to compensate for failures or the low performance of primary con-
stituent systems. Uday and Marais [14] introduced the “stand-in redundancy”
concept, offering a methodology to define feasible architectural configurations
in the face of constituent system failures. Ligaarden and Stølen [28] proposed
sharing data among constituent systems as a form of heterogeneous redundancy,
demonstrating its impact on increasing overall reliability. It is important to
highlight that employing heterogeneous redundancy requires SoS reconfigura-
tion to accommodate the new constituent systems.

Regarding reconfiguration in SoS, it has attracted attention within the re-
search community, with different aspects being considered. For instance, Pe-
titdemange et al. [23] introduced reconfiguration patterns to help reasoning
on reconfiguration and maintaining the architectural patterns of an SoS. In a
subsequent study [22], the authors proposed a design process for SoS reconfigu-
ration. They recognize the need for SoS to adapt to environmental changes and
undergo evolutionary development. The proposal was applied in the context of
a realistic case study inspired in the French emergency services.

Wudka et al. [29] introduced an approach for decentralized SoS reconfigura-
tion tailored to support open adaptive SoS. The authors presented the concept of
strategy blueprints, which outline potential combinations of services provided by
the constituent systems. During reconfiguration, each constituent system eval-
uates all strategies that can be instantiated given current conditions and selects
the one that best fulfills predefined goals as the optimal target configuration.

Bhardwaj and Liggesmeyer [30] presented a proposal for a framework that fa-
cilitates the safe reconfiguration of an open adaptive system at runtime. Forte et
al. [21] introduced a novel approach to reconfiguration within a smart product-
based SoS. This approach, grounded in the SoS Engineering Lifecycle Concept,
utilizes an IoT platform to ensure sustainability during SoS operation.
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These studies significantly contributed to the SoS body of knowledge. How-
ever, critical aspects remain unresolved. Firstly, existing literature on fault tol-
erance in SoS addresses representation aspects through modeling and specifying
requirements for fault tolerant SoS. In other words, they provide a comprehen-
sive view from a fault tolerance perspective in SoS. Other studies delves into
using heterogeneous redundancies to enhance fault tolerance, producing positive
results. However, they fail to detail how disturbance detection would be carried
out and how constituent systems are chosen as redundancies. This understand-
ing is paramount for reconfigurations incorporating these constituent systems
into the SoS.

Regarding studies concerning SoS reconfiguration, their focus has predomi-
nantly been on optimization, resilience, security, and sustainability of SoS. There
is a need to explore how reconfigurations can be used for fault tolerance con-
sidering the dynamic nature of SoS, especially when leveraging heterogeneous
redundancies. Moreover, no studies address the possibility that constituent
systems might temporarily change their behavior, accidentally or intentionally.
This aspect holds significant importance in the SoS context since they are pri-
marily designed with “what is available” [31], aiming to fulfill missions rather
than prioritizing optimization. Therefore, when an SoS undergoes reconfigura-
tion using heterogeneous redundancies, the new architectural configuration may
experience losses of security, performance, and privacy, among others. This is
because constituent systems used as heterogeneous redundancies might not pos-
sess the same functionalities as the replaced systems. Consequently, the new
architectural configuration often relaxes non-critical requirements to prioritize
the critical ones. In addition, a new architectural configuration could also lead
to additional costs from integrating new constituent systems. In this context, it
is reasonable to assume that the originally designed architectural configuration
is “the best fitted” for an SoS needs. Consequently, using the initially designed
architectural configuration should be the preferred choice whenever possible -
a factor that has not been considered in the SoS research to the best of our
knowledge.

3. Research Method

The development of the proposed solution was guided by the principles of
Design Science [32], a methodology commonly used in software engineering and
information systems research for the design, evaluation, and refinement of soft-
ware artifacts. As illustrated in Figure 1, our research method consists of four
main steps: Step 1 - Problem investigation, Step 2 - Definition of the objective,
Step 3 - Solution design, and Step 4 - Evaluation. The following subsections
provide detailed descriptions of each step and their respective sub-steps, while
Section 4 outlines the framework developed in Step 3, and Section 5 reports the
results from Step 4.
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Research Method

1. Problem investigation

Step 1.2
Systematic Mapping Study

2. Definition of the objective

Step 2.1
Definition of solution

objectives and requirements

3. Solution design

Step 3.1
Framework development

4. Evaluation

Step 4.1
Study #1

Step 4.2
Study #2

Problem description Objective description Initial version of the
framework Evaluation results

Step 1.1
Exploratory study

Figure 1: Research method.

3.1. Step 1 - Problem Investigation

This step consists of understanding and describing the problem to be ad-
dressed [32]. It involves identifying the needs and challenges that motivate the
research. This process includes observing and analyzing the current context
and identifying gaps or opportunities for improvement that justify the need to
create a new solution or enhance an existing one [32]. To do so, we performed
an exploratory study in a large Brazilian public organization [11], in which we
observed the challenges regarding SoS reliability in the organizational context
and how they are handled in practice.

In the exploratory study, we noticed situations in which the organization
encountered difficulties arising from the dynamism of the SoS, specifically in
managing transient failures and unreported implementation changes within con-
stituent systems. To mitigate this, the organization implemented a fault toler-
ance strategy of activating alternative constituent systems to reduce the impact
caused by the affected systems. This approach often resulted in a trade-off of
quality attributes, as the SoS experienced a decrease in performance. Neverthe-
less, such performance loss was considered acceptable due to the inherent risks
associated with the non-operation of an SoS.

Additionally, we carried out a Systematic Mapping Study (SMS) regarding
SoS reliability [3], which investigated the state of the art of SoS reliability from
three perspectives: factors that affect SoS reliability, approaches used to im-
prove SoS reliability, and metrics used to assess SoS reliability. By analyzing
the 27 primary studies selected in the work, we observed a similar finding to the
exploratory study: heterogeneous redundancy has emerged as a strat-
egy to enhance SoS reliability. However, existing literature overlooks the
dynamic nature when employing heterogeneous redundancies. Although this
strategy can sometimes be a valuable solution when no other alternatives are
available, it can lead to potential losses of performance, security, and privacy,
among others. Additionally, such reconfigurations may increase costs due to in-
tegrating new systems. Given these factors, it is often most appropriate for SoS
to operate in the original architectural configuration whenever possible. This
perspective is overlooked in current literature.
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3.2. Step 2 - Definition of Objective

Based on the results from Step 1, we defined that our solution should assist
professionals in designing fault tolerant SoS considering their dynamic nature.
As a key requirement, we defined that our solution must be adaptable. This is
because different SoS domains have unique requirements, nuances, and specific
characteristics. In this context, adaptability ensures that the solution can be
customized regardless of the domain.

Additionally, a requirement for the solution is to leverage the opportunistic
nature of SoS design. In other words, the focus is on utilizing “at hand” systems
as heterogeneous redundancies, taking advantage of the capabilities of these
existing systems to fulfill the overall mission of the SoS [31].

3.3. Step 3 - Solution Design

We developed a prescriptive framework called ReViTA to meet the solution
objectives defined in Step 2. A prescriptive framework is a structured
set of activities that provides specific directions on how to solve a
problem. It dictates which steps should be followed to ensure a goal’s achieve-
ment [33]. Precisely, the framework’s outcomes inform the monitoring and re-
configuration processes, which are crucial for enabling SoS fault tolerance by
employing heterogeneous redundancies. In other words, our goal is not to intro-
duce specific techniques for monitoring and reconfiguration, given the plethora
of existing solutions for these purposes. Instead, we aim to assist professionals
in implementing these techniques, guided by a systematic approach focused on
fault tolerance that considers the dynamic and opportunistic nature of SoS.

To design our framework, we based on CM4SR, a conceptual model for SoS
reliability [34]. Through a robust theoretical foundation, we developed CM4SR,
encompassing 29 SoS reliability concepts and their relationships, fostering a
comprehensive understanding of the subject. Section 4 details ReViTA and
presents the CM4SR propositions that underlie its design.

3.4. Step 4 - Evaluation

In this research, our focus is on the framework’s acceptance by professionals.
Hence, we seek to understand how ReViTA is perceived and used by profession-
als to gain insights into its usefulness and ease of use. By gathering feedback
and insights from practitioners, we aim to investigate the feasibility of ReViTA
as an novel artifact to improve SoS fault tolerance.

We carried out two studies involving professionals with different backgrounds.
We conducted semi-structured interviews in both studies to gather the partici-
pants’ feedback. In the first study (Study #1 ), the framework was introduced to
the participants, followed by individual interviews to collect their perceptions of
the framework from an intuitive perspective. In the second study (Study #2 ),
the participants employed ReViTA based on a realistic case of SoS. Then, they
exposed their opinions from a practical perspective.

In semi-structured interviews, a guide is developed with questions and topics
that must be addressed [35]. The researcher has a clear objective but has little
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control over the discussion, i.e., questions are planned but are not necessarily
asked in the same order as they are listed in the interview guide. For both
studies, we defined primary questions that could be answered objectively using a
Likert scale to capture a general perception from the participant about a specific
aspect. Such closed-ended questions served as gateways to facilitate open-ended
responses. Therefore, with each participant’s response, we prompted follow-up
with questions such as “Why?, “Why do you think so?”, “Can you elaborate on
that?” and others to continue gathering information as needed. This approach
helps us to deep into the participants’ thoughts, providing richer context and
understanding beyond the initial response. Moreover, it encourages participants
to reflect upon their answers, revealing additional insights [36].

Our interview guide included questions to evaluate the framework’s use-
fulness and ease of use. By doing so, we address important factors that play a
significant role in the acceptance of the framework. The Technology Acceptance
Model (TAM) [37] inspired us to do so. TAM is a well-established information
systems model that explains how users accept and use a particular technology.
It declares that perceived usefulness and ease of use primarily influence tech-
nology acceptance. As Davis [37] explains, perceived usefulness is the degree
to which an individual believes that using a particular technology will enhance
their job performance. On the other hand, perceived ease of use is the degree
to which an individual believes that using a particular technology will be free
of effort. Even if an individual perceives a technology to be useful, its use could
be hindered if perceived as too complex or requiring excessive effort.

We drew inspiration from TAM constructs to formulate our interview guide
and perform a qualitative analysis. By doing so, we benefited from robust theo-
retical foundations enriched by years of research and empirical validation. This
approach allowed us to capture the participants’ perceptions while benefiting
from TAM’s theoretical solid grounding.

We recorded and transcribed the interviews for further analysis. We em-
ployed open coding procedures to support the analysis of participants’ responses.
This systematic approach allows us to analyze the responses and identify com-
mon themes and patterns. Open coding offers a structured way to understand
the raw data, enabling us to categorize the responses based on their key ele-
ments, contributing to a proper data interpretation [38].

3.4.1. Scenario Description

An unique real-world scenario was used as reference for both studies. In
Study #1, the scenario helps us demonstrate the application of ReViTA. Partic-
ipants used the same scenario as a reference to apply the framework in Study #2.
Such a scenario is known by all participants of both studies. This helped the
participants better understand and use the framework. The participants in
both studies were distinct to ensure that participants in Study #2 were not
influenced by any information received in Study #1.

The scenario refers to an SoS that supports the responses to power outage
incidents at a large Brazilian public university with distributed institutes and
campuses. An interruption in the power supply would result in significant loss
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to the university, such as the unavailability of the IT services that support the
daily operation of the university. The importance of this SoS was particularly
underscored during the COVID-19 pandemic, as the university staff had to work
remotely as part of efforts to minimize the spread of the coronavirus1. Since no
employee was on site to notice any power outage, the detection and notification
of such events had to be performed automatically. Therefore, it is a real-world
scenario requiring fault tolerance, making it a practical and meaningful context
for evaluating ReViTA.

The SoS under consideration is a directed SoS composed of four constituent
systems: Power Generator Management System, General Power System, Unin-
terruptible Power Supply Management System, and Telephony Gateway. Dif-
ferent departments independently maintain the constituent systems. The con-
stituent systems of this SoS are described in Table 1.

Constituent system Description
Power Generator
Management System
(PGMS)

A system maintained and operated by the campus electrical depart-
ment. It identifies local power outages and provides information on
the fuel level in the generators.

General Power System
(PSMS)

A system maintained and operated by the campus electrical depart-
ment. It reports the status of the electricity supply at the main cam-
pus substation.

Uninterruptible Power
Supply Management
System (UPSMS)

A system maintained and operated by the campus electrical depart-
ment. It provides information about the electrical energy consump-
tion and the Uninterruptible Power Supply batteries’ level of auton-
omy.

Telephony Gateway A system maintained and operated by the IT department. It notifies
the person in charge of an interruption in the power supply via a
telephone call.

Table 1: Constituent systems of the SoS that support response to power outage incidents.

In this SoS, an additional system was developed to mediate communication
among constituent systems. We call this system as the Orchestrator. The SoS
operates as follows:

1. The Orchestrator monitors the status of the local electricity supply through
periodical queries to the PGMS;

2. If an interruption is detected, the Orchestrator waits 300 seconds and
makes a new query. Sometimes the supply is interrupted for a few seconds,
and this 300-second wait prevents the on-call professional from being called
unnecessarily on weekends or at dawn;

3. If the power supply remains interrupted after 300 seconds, the Orchestra-
tor queries the fuel level in the PGMS. In addition, it consults the UPSMS
to collect information on current power consumption and the Uninterrupt-
ible Power Supply autonomy (determined by battery charge);

4. The Orchestrator calculates the total autonomy, considering the current
power consumption, the fuel level of the generators, and the autonomy
level of the Uninterruptible Power Supply batteries;

1https://www.who.int/westernpacific/emergencies/covid-19/information/

physical-distancing
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5. The Orchestrator consults the PSMS to verify whether the interruption is
local or campus-wide;

6. The Telephony Gateway sends a voice recording to the on-call phone,
informing about the power outage and the total autonomy time.

The constituent systems are independent and serve specific purposes. More-
over, the implementation of the SoS was an initiative of the IT department,
which requested access to the constituent systems maintained by the electrical
engineering department (PGMS, PSMS, UPSMS). However, the electrical en-
gineering department is not engaged in the operation of the SoS. This lack of
engagement implies problems that compromise the response to the interruption
in the electricity supply on the campus. The main problems are:

• P1 - Telephony Gateway unavailability: this constituent system is
installed far from the data center and lacks the appropriate infrastructure.
The network switch that provides connectivity to the Telephony Gateway
is connected to an old Uninterruptible Power Supply with little autonomy.
Sometimes, during an interruption in the power supply, the Uninterrupt-
ible Power Supply shuts down within a few seconds, causing the network
connectivity devices to shut down. When this occurs, the Orchestrator
cannot activate the Telephony Gateway to make the phone call;

• P2 - UPSMS unavailability: this constituent system experiences the
same problem as the Telephony Gateway. When it becomes unavailable,
it is not possible to verify whether the outage is local or campus-wide;

• P3 - Fuel Level Sensor Unavailability: the fuel sensors of PGMS stop
working due to unknown reasons. When this occurs, it is not possible to
calculate the total autonomy. It is necessary to manually reset the sensor
for it to return to operation.

3.4.2. Study #1

In this study, we focused on understanding the participants’ perception of
the framework’s clarity and understanding, ease of use, usefulness, potential to
reduce effort, completeness, intention of use, and adaptability. These criteria
help assess the framework’s feasibility for the intended users and their con-
text. By gathering opinions from professionals, the evaluation can capture their
subjective experiences and perspectives, highlighting strengths and areas for im-
provement. This feedback is crucial in guiding enhancements and adjustments
to increase its chances of successful adoption.

For this study, we defined the following research question: RQ1 - How is
the acceptance of ReViTA among professionals? (RQ1)

The study’s dynamic involved introducing the framework to the partici-
pant and detailing all activities, including their inputs and outputs. Then, we
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demonstrated the framework’s use in the scenario described in Section 3.4.12.
Following that, we carried out the interviews.

The participants of Study #1 (14) were selected because of their experience
deploying an SoS that is in active use within large Brazilian public university.
This ensures that the participants have some familiarity with the complexities
of designing and implementing an SoS, making their feedback and insights all
the more valuable to our study.

In summary, all participants have an academic background in computer sci-
ence. Most participants (8 out of 14) hold an M.Sc., three have a B.Sc., and
three have a Ph.D. Ten participants have more than ten years of professional
experience, and four have between five and ten years of experience. Eight partic-
ipants work as software developers, with three of these also working as software
architects. Four participants are support analysts, and two are IT managers.
Table 2 presents the participants’ profiles.

We presented seven statements to the participants and asked them to ex-
press their opinion on specific aspects of our framework using a 5-point Likert
scale (Strongly Agree, Partially Agree, Neutral, Partially Disagree, and Strongly
Disagree). The statements and related aspects are listed in Table 3. The state-
ments from S1 to S6 are derived from TAM’s aspects. Additionally, we included
a statement (S7) to evaluate ReViTA’s adherence to the requirement of adapt-
ability defined in Step 2. We encouraged participants to provide detailed in-
sights and discuss their perceptions of each aspect. Before proceeding with the
interviews, we conducted a pilot with a software developer to identify potential
improvements in the study’s design. After adjusting our interview guide, we car-
ried out the interviews between October 14th and 24th, 2022. Each interview
session lasted approximately one hour.

3.4.3. Study #2

This study aimed to evaluate ReViTA’s acceptance from a practical per-
spective. We revisited some aspects addressed in Study #1 and introduced new
aspects that only those who employed the framework could evaluate. Specifi-
cally, our focus was to gather information from participants about their learning
experiences while using the framework, their perception of clarity and under-
standing, ease of use, usefulness, and impact on job performance. For this study,
we defined the following question: RQ2 - Is ReViTA feasible from a practical
perspective?

Four professionals, distinct from Study #1, participated in this study, as in
Table 4. All participants support analysts (i.e., they work on the maintenance
and troubleshooting of software-intensive systems, including the SoS in opera-
tion at the university) with more than 5 years of experience. Three of them hold
an M.Sc. and one holds a B.Sc. We selected them due to their expertise in the
SoS operation. They have a daily routine of troubleshooting, and operating the

2A document with the demonstration of ReViTA, as presented to the participants, is
available in English at the following link: https://doi.org/10.5281/zenodo.8102848
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ID
Acad.
degree

Exp.
(years)

Current
position

Software
development

Software
architecture

Software
reliability

IT
mgmt.

P1 M.Sc. 15-20
IT
manager

Very high Average Low Very high

P2 M.Sc. 5-10
Support
analyst

Very high High Low High

P3 M.Sc. 5-10
Support
analyst

High Average Average Very high

P4 B.Sc. 20+
Support
analyst

Very high Low Low High

P5 B.Sc. 15-20
Support
analyst

High High Average Very low

P6 M.Sc. 10-15

Software
developer
and
Software
architect

High High
No
experience

High

P7 Ph.D. 5-10
Software
developer

Very high Average Low Average

P8 M.Sc. 15-20
IT
manager

Very high Very high Very high High

P9 B.Sc. 15-20
Software
developer

Very high Low
No
experience

Low

P10 M.Sc. 5-10

Software
developer
and
Software
architect

Very high Very high High Average

P11 Ph.D. 15-20
Software
developer

Very high Low Average Average

P12 M.Sc. 20+
Software
developer

Very high High Low Low

P13 M.Sc. 10-15
Software
developer

Very high High High Very low

P14 Ph.D. 15-20

Software
developer
and
Software
architect

Very high High High Low

Table 2: Study #1 - Participants’ profile.

SoS. Therefore, participants have a deeper and more practical understanding
of the problems and challenges faced in the context of the SoS, allowing for a
richer and more detailed analysis of the results.

For this study, we developed a toolthat provides a simplified way for perform
the framework activities, mainly through diagrammatic notations and textual
descriptions, without relying on highly specialized approaches. We made this
decision because implementing specialized approaches would require a level of
knowledge and experience that the participants currently do not possess. By
doing so, we ensured that participants could effectively engage with the frame-
work’s concepts and activities without being hindered by a lack of prior knowl-
edge. Moreover, this approach allows the participants to focus on understanding
the fundamentals of the framework and its potential benefits in improving SoS
fault tolerance, setting the basis for improvements.

The dynamics of this study involved training on the framework and the tool.
After the training, the participants performed the framework activities having
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ID Statement Aspect Description
S1 The framework and its

activities are easy to un-
derstand.

Clarity and
understanding

It refers to how easily a participant can un-
derstand the framework and how clear its
activities and related outputs are to them.

S2 The framework activi-
ties are easy to perform.

Ease of use It refers to the degree to which a participant
believes that using the framework would be
free from difficulty.

S3 The framework is useful. Usefulness It refers to the degree to which a participant
believes that using the framework would
produce desirable outcomes.

S4 Using this framework
would reduce the effort
to design fault tolerant
SoS.

Potential to
reduce effort

It refers to the perception of how much the
framework can decrease the amount of work
or effort required to accomplish a goal.

S5 All framework activi-
ties are necessary and
enough.

Completeness It refers to having all necessary activities
needed to achieve a goal.

S6 I will use this framework
if I have the opportunity.

Intention of
use

It refers to the likelihood that a participant
plans to use the framework in the future.

S7 The framework is adapt-
able to all SoS contexts

Adaptability It refers to the degree to which the frame-
work can be adjusted to different SoS con-
texts.

Table 3: Study #1 Statements.

ID Academic degree Experience Current position
P15 M.Sc. 5 - 10 years Support analyst
P16 M.Sc. 5 - 10 years Support analyst
P17 B.Sc. 5 - 10 years Support analyst
P18 M.Sc. 10 - 15 years Support analyst

Table 4: Study #2 - Participants’ profile.

the SoS described in Section 3.4.1 as a reference. Participants employed the tool
to perform the activities of the framework ReViTA, considering their experience
with the SoS described and their knowledge about it.

We formulated five statements for Study #2, using a 5-point Likert scale
(Strongly Agree, Partially Agree, Neutral, Partially Disagree, and Strongly Dis-
agree) to gather the first impression of the participants. Then, we encouraged
the participants to deep into their answers by asking follow-up questions to gain
a more comprehensive understanding. Table 5 lists the statements of Study #2.

Before proceeding with this study, we carried out a pilot with a software
engineer, which led us to make simple adjustments in the interview guide. The
interviews occurred on May 5th and 6th, 2023.

4. The ReViTA Framework

ReViTA is a prescriptive framework comprising activities aimed at support-
ing the design process of fault tolerance oriented reconfigurations in SoS. Re-
ViTA supports designing fault-tolerant reconfigurations by prescribing activities
that inform the monitoring and reconfiguration processes. As Petitdemange
et al. [22] explain, the lifecycle of SoS reconfiguration involves continuous SoS
monitoring. When a monitor detects a situation in which the operational archi-
tectural configuration no longer meets the reliability requirements, it triggers a
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ID Statement Aspect Description
S8 I found the process of

learning to use the frame-
work to be a positive ex-
perience.

Learning
experience

It refers to the participants’ process of
gaining knowledge related to the use of
the framework and how intuitive the
framework is perceived.

S9 The framework’s purposes
and activities were clear
and understandable.

Clarity and
understanding

It refers to how easily a participant can
understand the framework and how clear
its activities and related outputs are to
them.

S10 I found the framework to
be easy to use.

Ease of use It refers to the degree to which a partic-
ipant believes that using the framework
would be free from difficulty.

S11 This framework would be
useful in supporting me to
do my job.

Usefulness It refers to the degree to which a partic-
ipant believes that using the framework
would produce desirable outcomes.

S12 Applying this framework
would allow me to perform
my job more efficiently.

Impact on job
performance

It refers to the degree to which the partic-
ipants believes that using the framework
would improve job efficiency, or allow
them to accomplish tasks more quickly.

Table 5: Study #2 statements.

reconfiguration process. This reconfiguration process presumes that the target
architectural configuration is already known.

Such a monitoring process requires continuous and precise observation of
the behavioral attributes of the constituent systems. Hence, it is imperative to
understand the conditions in which they must operate to contribute to an SoS.
This understanding is critical to ensuring that the monitoring process accurately
identifies situations in which the architectural configuration no longer meets the
reliability requirements.

Additionally, ReViTa encompasses activities for supporting the design of
architectural configurations with heterogeneous redundancies. These configu-
rations inform the reconfiguration process. By following these activities, pro-
fessionals can leverage the opportunistic nature of SoS to design architectural
configurations that maintain SoS ability to achieve its core mission, thus in-
creasing SoS reliability.

As a prescriptive framework, ReViTA can be applied with different tools,
methods, and processes, allowing for customization to better meet the require-
ments of each SoS. This approach aims to achieve the fulfillment of the adapt-
ability requirement outlined in Section 3.2.

4.1. Overview

To design ReViTA, we introduced the concept of Transient Architectural
Configurations (TAC), which are alternative architectural configurations (i.e.,
configurations with a different composition of constituent systems from the de-
sirable architectural configuration) that operate when the desirable architectural
configuration experiences disturbances resulting from failures or undesired be-
havior of one or more constituent systems. We named it “transient” because
we assume the desirable architectural configuration should operate whenever
possible, as it best satisfies all predefined requirements for the SoS, critical
or non-critical. Therefore, our framework envisages continuous monitoring of
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constituent systems so that the desired architectural configuration can resume
operation as soon as the disturbances cease.

Figure 2 illustrates the dynamics of SoS using TAC. TAC X and TAC Y
are alternative architectural configurations that differ from the desired SoS con-
figuration. These configurations involve different constituent systems but serve
the same mission, albeit with some loss in performance or capabilities. The
desired architectural configuration is operational at time t1. A monitor detects
a disturbance at time t2, and the SoS is reconfigured to TAC X. At time t3, the
monitor determines that the previously identified disturbance no longer exists,
and the SoS returns to the desired architectural configuration. At time t4, a
new disturbance, distinct from the one at time t2, is identified, leading the SoS
to be reconfigured to TAC Y, which specifically addresses this new disturbance.
At time t5, the monitor recognizes that the disturbance ceased, and the SoS
reverts to the desired architectural configuration.

Desirable architectural configuration

TAC Y

Desirable architectural configuration

.

.

.

tim
e

CSM1 CSM2 CSM3

Desirable architectural configuration

Constituent 
systems
missions

Constituent 
systems

SoS mission

TAC X

t1

t2

t3

t4

t5

Figure 2: SoS dynamics over time using TAC.

The input of the framework is a description of SoS goals and the outcomes
are the information required for the monitoring and reconfiguration processes
to enable fault tolerance through reconfigurations. Figure 3 shows that ReViTA
has two major steps and two cycles. The smaller cycle represents the continuous
monitoring activity essential for timely reconfigurations. By constantly moni-
toring the state of SoS, potential disturbances can be detected in time, enabling
timely reconfigurations to mitigate or prevent disturbances at the SoS-level.
The larger cycle indicates that ReViTA should be applied continuously as the
missions of an SoS evolve, and the fault tolerance mechanisms need to keep up
with this evolution.

The two major steps are discussed individually in the following sections.
These are the “SoS Characterization” and the “Definition of TAC as a
Fault Tolerance Countermeasure”.
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Figure 3: ReViTA overview.

4.2. SoS Characterization

SoS Characterization step provides a structural and functional view of the
SoS and its constituent systems. It aims to identify constituent systems and
their desired behavior while fulfilling its missions. In addition, it identifies in-
terfaces to verify the behavior of the constituent systems. This step has four
activities: Mission Decomposition, Specification of Mission Requirements, Spec-
ification of States of Interest, and Specification of Observation Points. The
outcomes of this step offer a comprehensive understanding of the SoS structure
and the behavioral aspects of the constituent systems, which are required by
the monitoring process.

4.2.1. Mission Decomposition

As highlighted in CM4SR [34], SoS reliability is closely related to its ability
to fulfill its missions successfully. These missions are made possible through
the interaction among the constituent systems, each fulfilling their individual
missions. Consequently, to ensure fault tolerance in an SoS, and ultimately
to maintain its reliability, we need a comprehensive understanding of the re-
sponsibilities of each constituent system, and their interactions within an SoS.
This understanding is crucial as each constituent system is a potential point
of disturbance that can severely impact the overall SoS reliability. Achieving
such a comprehensive understanding can be reached through a detailed mission
decomposition process.

Mission Decomposition is intended to provide a functional coarse grain view
of the SoS overall mission [39]. It involves breaking down the main mission into
smaller missions, such as SoS sub-missions and constituent systems missions. By
doing so, it is possible to identify the specific responsibilities of each constituent
system and the relationships between them. This prescriptive activity provides
a comprehensive understanding of SoS goals and responsibilities, and it helps
to identify potential sources of disturbances.

The outcome of “Mission Decomposition” is a high-level description of mis-
sions, sub-missions, and individual missions. In addition, the mission decom-
position provides a description of the relationship among missions and informs
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the responsibilities of constituent systems. Different tools can be used to repre-
sent mission decomposition, such as KAOS [40], mKAOS [41, 11], and SysML
[42, 39]. Figure 4 illustrates the result of the mission decomposition of the SoS
that supports the response to power outage incidents on the campus of a large
Brazilian public university, described in Section 3, using the mKAOS notation
[41]. The blue rectangle at the tree’s root represents an SoS main mission, which
undergoes refinement (represented by the yellow circle) into sub-missions until
reaching the level of individual missions. The constituent systems, represented
by orange diamonds, fulfill these individual missions.

Notifying power outage, informing autonomy and 
weather power outage is local or campus-wide

UPSMS PSMSPGMS

Telephony Gateway

Calculating the total 
autonomy

Notifying on-call 
technical team

Checking if power outage is 
local or campus-wide

Reporting current 
power consumption

Informing battery 
autonomy

Informing 
fuel level

Informing local power supply 
status (active/interrupted)

Informing campus-wide power 
supply status (active/interrupted)

Figure 4: Mission decomposition with mKAOS.

mKAOS is a mission-oriented language created specifically to represent in-
formation associated with an SoS mission. The mKAOS language follows the
conceptual model of SoS missions, proposed by Silva et al. [43], who identified
elements that must be considered in the SoS context.

4.2.2. Specification of Mission Requirements

This activity complements “Mission Decomposition” by specifying informa-
tion on constituent systems’ behavioral aspects. Here, we identify the require-
ments that constituent systems must meet to ensure that their individual mis-
sions align with the expectations of an SoS. Essentially, mission requirements
determine how constituent systems must provide individual capabilities to SoS.
As explained in CM4SR, this is particularly important for reliability, as an SoS
can only effectively fulfill its missions if the capabilities at the SoS level are
adequately provided. These SoS-level capabilities, in turn, depend on the con-
stituent systems properly accomplishing their individual missions. To do so,
the individual capabilities of the constituent systems must be properly provided
[34].

For example, if a constituent system’s mission involves data processing, this
constituent system must meet requirements concerning the accuracy, speed, and
reliability of data processing. Failure to meet these requirements could lead to
disturbances such as data errors or delays, causing a cascading effect throughout
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the SoS and compromising the efficiency and effectiveness of other constituent
systems that rely on this processed data.

Therefore, in addition to mission decomposition, a comprehensive assessment
of the requirements for each constituent system is critical in ensuring SoS fault
tolerance. The outcome of this activity is the specification of the requirements
that each constituent system must meet to provide capabilities and accomplish
individual missions. It details conditions, such as time, quantity, and standards,
among others.

4.2.3. Specification of States of Interest

In general, this activity seeks to inform the conditions under which a con-
stituent system can meet its mission requirements. The ability of a constituent
system to fulfill its mission requirements is directly related to its observable be-
havior [8]. In other words, if the constituent system starts behaving differently,
it may not be able to meet its mission requirements. A constituent system can
change its behavior for various reasons. These may include planned (but some-
times not informed) evolution to meet individual requirements or respond to
other stimuli, such as attacks, overload, or hardware issues.

The change of behavior of a constituent system, in turn, produces symptoms
revealed by several measurable attributes, such as availability, response time,
memory utilization, and processor load, to mention a few. The measures of
these attributes characterize the operational state of the constituent system.
Consequently, it is possible to verify the behavior of the constituent systems by
observing their operational states through measurable attributes [34]. Hence,
when a constituent system exhibits behavior in alignment with the needs of an
SoS by fulfilling its mission requirements, it is operating in a state of interest.
Essentially, it behaves desirably in the context of SoS.

For example, Equation 1 illustrates the representation of the state of a con-
stituent system through two properties: processor load (proc load) and response
time (resp time). The constituent system β operates in the state of interest
(value 1) if the processor load is less than 90% and the response time is less
than 10 milliseconds. Otherwise, the constituent system β cannot contribute to
SoS (value 0), which is considered a violation of the state of interest.

cs stateβ =

{
1, if proc load < 90% and resp time < 10ms

0, otherwise
(1)

The outcome of this activity is a description of the measurable attributes
that characterize the state of interest of each constituent system. This outcome
informs the monitoring process, which uses this data to trigger SoS reconfigu-
ration. The properties that characterize the state of interest of the constituent
system must be carefully defined, as it requires a precise selection of properties
and accurate calibration of the measures.

4.2.4. Specification of Observation Points

A monitor is designed to continually observe and evaluate the state of the
constituent systems, which enables immediate detection of undesirable behav-

20



iors. This detection is vital because the sooner a problem is detected, the sooner
a response can be initiated, reducing the potential negative impact. Therefore,
this activity comprises the specification of observation points, which are tech-
nical means to continuously observe the states of constituent systems [44], as
illustrated in Figure 5.

Observation points expose data from behavioral attributes of the constituent
systems, such as hardware, network, operating system, and end-user applica-
tions [44]. Table 6 lists examples of potential observation points that can be
used to monitor constituent systems, according to Lampesberger et al. [44].
The number and types of observation points and data types depend on the level
of control over the constituent systems.

Category Description
Hardware System and processor temperatures, voltages, fan speeds, memory failure coun-

ters, hard drive health, and performance counters.
Network Device availability, error rate, throughput, and response time.
Operating
system

Logs for crashes, debug information, notifications, and events in general. Also, an
operating system typically collects runtime performance metrics such as system
load, processor load, memory utilization, and network interface utilization.

Service Services may maintain individual logs for various purposes, for example, service-
specific events, performance counters, transaction logs for database systems, and
access logs for auditing tasks, to name a few.

Middleware Message routing, coordinated actions, and service orchestration, to name a few.
Moreover, the logging capabilities in middleware components, typically for de-
bugging and auditing, can be valuable observation points.

User The platform or software provided may provide user-centric logging for auditing
or service adaptation, e.g., history, access, authentication, or geolocation logs.

Table 6: List of potential observation points [44].

Observation points can be classified as white-box or black box. In the case of
white-box observation points, it is assumed that the points can be instrumented
according to the needs of SoS, granting direct access to the constituent systems.
Alternatively, black-box observation points operate under the assumption that
there is no direct access to the constituent system, and the system’s state is in-
ferred by monitoring the available interfaces. For instance, in systems connected
to TCP/IP networks, one can estimate processor load by monitoring response
times through the ICMP [45].

The more accurately the observation points reflect the state of the systems,
the more precise the runtime monitoring and subsequent actions will be. Iden-
tifying observation points may require a comprehensive understanding of each
constituent system within the SoS. This includes understanding the constituent
system’s functionality, interfaces, and data formats. In particular, understand-
ing what data is produced, where it is stored, and how it can be accessed is
fundamental in specifying observation points.

The outcome of this activity, which comprises a specification of the obser-
vation points and associated properties of the constituent systems, is essential
to the monitoring process. This outcome also details operational information
about data collection procedures and data formats.
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Figure 5: Dynamics of observation points.

4.3. Definition of TAC as a Fault Tolerance Countermeasure

TAC serves as a fault tolerance countermeasure designed to respond to the
disturbances resulting from the undesirable behavior of constituent systems.
TAC Description requires a deep understanding of SoS structure and potential
points of disturbance, which is why it is tied to the outcomes of SoS Charac-
terization. This step consists of two main activities: “Specification of Mission
Requirements for TAC” and “TAC Description”.

4.3.1. Specification of Mission Requirements for TAC

This activity consists of analyzing the mission requirements, prioritizing the
critical ones, and relaxing the non-critical ones. Relaxing mission requirements
is an essential strategy to ensure fault tolerance in SoS. A certain degree of
relaxation of mission requirements may be necessary to allow an SoS to fulfill
an adapted version of the original mission. It can help an SoS adapt to changes
in operational conditions and ensure it meets the mission’s critical requirements.
Relaxing mission requirements is a key strategy for addressing the severity of
disturbances as it introduces a degree of versatility to SoS, enabling it to adopt
various TAC. This flexibility expands the possibility of using constituent systems
that only partially align with the initial mission requirements. Still, they can
contribute in the face of disturbances.

The activity aligns with the opportunistic nature of SoS design, emphasizing
achieving the main mission rather than optimizing overall performance. In other
words, the focus is not on achieving optimization but on realizing functional
success amid real-world constraints. Relaxing mission requirements amplifies
the likelihood of mission success.

Professionals can design different TAC to harness available constituent sys-
tems by relaxing requirements. While possibly not meeting primary require-
ments fully, these constituent systems can still contribute to SoS when the
primary constituent systems are producing disturbances. This promotes an
adaptable design, maximizing the use of existing resources and increasing the
mission’s success chances.

Furthermore, this activity acknowledges the inherent complexity and unpre-
dictability of SoS environments. Relaxation is a proactive measure against the
problems caused by an SoS dynamic nature. In SoS, disturbances are often
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unavoidable, and by infusing adaptability into mission requirements, we bolster
the SoS reliability.

4.4. TAC Description

This activity encompasses the design of the TAC following the mission re-
quirements specified in the previous activity. The focus of this research is not
to propose a method for TAC design, as it is a complex task that is affected by
many contextual aspects. Moreover, there are already numerous approaches to
this objective. Each of these methods considers specific aspects, such as testa-
bility [31], security [46] and costs [47], among others. This activity results in
a set of architectural descriptions of TAC that feeds the reconfiguration pro-
cess. These descriptions provide detailed information regarding the constituent
systems and their interactions within the SoS. Furthermore, they can encap-
sulate various elements, such as interaction interfaces, system behaviors, and
constraints.

Each TAC must be linked to one or more specific state of interest violations.
To manage situations where several TACs relate to a single violation, assigning
a priority to each TAC is vital. This allows the reconfiguration agent to select
and implement the most suitable TAC given the occurrence of a particular
disturbance. Consequently, a TAC can be succinctly represented as a 3-tuple,
detailed as follows:

TACX = {architectural descriptionX , violationX , priorityX} (2)

TAC can be described using Architectural Description Languages (ADLs).
They can be used to facilitate system design communication by providing means
to describe system structures and behavior. An ADL can be formal, semi-
formal, or informal. Formal ADLs support formal verification and analysis,
meaning they can automatically detect potential design flaws or verify the con-
formity of a system to its specifications. However, their usage requires a deep
understanding of mathematical concepts and logic, which might be complex
and time-consuming. Semi-formal ADLs offer a balance between precision and
usability. They use graphical notations, similar to UML, which are easier to
understand than formal languages. They provide some level of formality, i.e.,
they define precise syntax and somewhat precise semantics, but they typically
do not support the same depth of automatic analysis as formal languages. In-
formal ADLs are mostly textual and graphical, with loose or no semantics, and
are mainly used for communication and documentation purposes. They are easy
to use but lack the precision for automatic analysis or verification. Examples
include block diagrams or simple component diagrams.

For the sake of simplicity in our evaluation studies, we chose to utilize the
mKAOS language to describe TACs. Originally, mKAOS was designed to spec-
ify SoS missions. However, it also conveniently outlines some architectural ele-
ments, such as constituent systems, and illustrates how they interact to achieve
those missions. Therefore, mKAOS can be considered an informal ADL. The
simplicity of use and the speed at which it can be comprehended make mKAOS
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an ideal language for the acceptance evaluation of ReViTA. Using mKAOS helps
streamline the process, making it easier for the participants to understand and
assess the framework.

5. Results

The results from the two evaluation studies are presented in this section.

5.1. Study #1

We conducted this study with 14 participants and introduced them to the
framework. We then asked for their opinions. Figure 6 shows a summary of the
responses from participants about the statements we provided in Table 3. In
short, participants generally had a positive perception of ReViTA. The upcom-
ing sections contain detailed information about the participants’ responses.

2

6

10

14

S1 S2 S3 S4 S5 S6 S7

Strongly disagree Partially disagree Neutral
Partially agree Strongly agree

Figure 6: Study #1 - Participants’ responses.

5.1.1. Clarity and Understanding (S1)

Most participants (12 out of 14) strongly agreed that they found the pre-
scriptive activities of the framework clear and easily comprehensible. However,
two participants had partial agreement with this statement. They mentioned
that having an example of the framework’s application in a familiar context
helped them understand it better. Additionally, participants emphasized that
the sequential logic of the activities, in which the output of one task feeds into
the next, contributed to the overall clarity.

Despite these positive observations, some participants (P1 and P9) men-
tioned that the terminology adopted by ReViTA is not commonly used, which
could lead to confusion when distinguishing between the different activities.
However, they emphasized that this did not hinder their understanding of the
purpose of each activity or the framework as a whole. Additionally, P7 men-
tioned that they found the activities of ReViTA somewhat abstract despite the
presentation of a scenario for its application.

5.1.2. Ease of Use (S2)

Regarding the ease of use, the responses from the participants revealed a
diverse perspective. Most participants (8 out of 14) partially agreed with the
statement that ReViTA is easy to use, indicating that they found the activities
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moderately easy to perform. Three participants strongly agreed that the tasks
are easy to perform, while two partially disagreed. One participant remained
neutral.

Participants acknowledged that the SoS Characterization step, speciallyMis-
sion Decomposition and Specification of Mission Requirements activities, could
pose greater complexity and challenges when dealing with a large-scale system.
The participants recognized that the scale and complexity of the system are
potential factors that could contribute to the increased difficulty of executing
these activities during this step.

Participants also highlighted a crucial point of attention – in the activity
“Specification of mission requirements for TAC”, the relaxation of mission re-
quirements may require the involvement of domain experts since such profession-
als have a deep understanding of the particularities of specific domains. They
also highlighted that the decision to relax requirements is rarely universally pre-
scribed, as it is inherently a highly context-dependent issue. They emphasized
that, in specific scenarios, it could be more beneficial to maintain strict adher-
ence to a requirement, while in others, relaxation could prove beneficial. These
decisions necessitate a deep understanding of the characteristics, constraints,
and objectives of each specific SoS domain. Thus, while the relaxation of re-
quirements can benefit achieving SoS critical objectives, its application must be
careful, strategic, and tailored to individual circumstances.

To address these points, participants suggested the involvement of domain
experts. They emphasized that more than just knowledge in information tech-
nologies might be required to ensure the proper execution of activities. They
considered the participation of domain experts crucial to navigate the complex-
ities inherent to different domains.

5.1.3. Usefulness (S3)

Most participants (11 out of 14) strongly agreed that ReViTA is useful.
They highlighted the framework’s ability to introduce a structured approach
to a problem domain typically addressed intuitively, relying on professionals’
experiential knowledge. They argued that, by offering clear directions for de-
signing fault tolerance oriented reconfigurations in SoS, ReViTA can be seen
as a facilitator in handling the reliability challenges that may arise in such
systems. Participants appreciated the comprehensive view it provides and the
framework’s potential to guide decision-making processes in addressing fault
tolerance. For example, TAC Description can involve additional costs, such as
acquiring constituent systems. They recognized that ReViTA helps by guiding
which actions to take under specific circumstances.

Three participants (P6, P7, and P14) expressed partial agreement regard-
ing ReViTA’s usefulness, noting that applying the framework might be time-
consuming and result in unnecessary effort when dealing with small and non-
critical SoS. Despite this, they emphasized that for large-scale and critical SoS,
ReViTA remains highly valuable.
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5.1.4. Potential to Reduce Effort (S4)

Most participants (13 out of the 14) strongly agreed that ReViTA could
reduce the effort required to deal with fault tolerance in SoS. In addition, par-
ticipants widely acknowledged that the framework offers the advantage of pro-
ducing comprehensive documentation, thus facilitating comprehension and the
subsequent actions.

Furthermore, participants emphasized that the framework introduces a sys-
tematic approach to address critical aspects that might be ignored when rely-
ing solely on intuitive practices. For example, P1 highlighted the importance
of mission decomposition activity, recognizing it as a critical step in ensuring
fault tolerance by enabling the precise identification of system failure points.
Traditionally, this process relies on individual experiences with failures, poten-
tially ignoring a broader range of possible failures that could be easily identified
through a systematic application, as the framework suggests. P5 reinforced this
opinion by asserting that the effort required to handle fault tolerance becomes
more qualitative, implying a shift toward a more comprehensive and systematic
approach that adds value beyond mere quantitative measures.

5.1.5. Completeness (S5)

Most participants (13 out of 14) strongly agreed that completing all activities
is essential for achieving the framework’s objectives. The primary rationale
supporting this consensus arises from the interdependence among the activities.
Furthermore, participants emphasized that removing any individual activity
would disrupt the execution of the remaining activities.

Only one participant partially agreed with the notion of the indispensability
of all activities. This participant attributed the response to a “lack of compre-
hensive knowledge” of the subject. Although this perspective suggests a poten-
tial need for further exploration and understanding, the consensus among the
remaining participants underscores the significance of performing all activities
within the framework to attain its objectives.

5.1.6. Intention of Use (S6)

Most participants (11 out of 14) strongly agreed that they could use ReViTA
framework in future opportunities. They highlighted that ReViTA incorporates
activities commonly used in practice but often not effectively employed due to
the lack of accurate information and appropriate support. P10 expressed that
ReViTA builds upon a strong foundation by emphasizing a clear understanding
of overall goals and culminating in achieving multiple TAC to specific problems.
This objective-oriented approach was viewed as valuable by the participants.

P11 emphasized the significance of adopting a structured approach to tackle
the complex issue of fault tolerance in SoS. P11 acknowledged the challenges
in finding suitable approaches in the existing literature for these types of sys-
tems and recognized the potential of ReViTA in filling this gap. This partici-
pant acknowledged the structured nature of the framework as a positive aspect,
indicating that it holds promise and potential for effectively addressing fault
tolerance in SoS.
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Despite these positive aspects, the participants emphasized the need for
further refinement and customization to suit specific needs. However, they ex-
pressed confidence in ReViTA’s ability to provide a structured and practical
approach to address fault tolerance challenges in SoS contexts.

5.1.7. Adaptability (S7)

Half of the participants (7 out of 14) strongly agreed that the ReViTA frame-
work is adaptable across all SoS contexts. Meanwhile, a smaller group of 4 par-
ticipants expressed partial agreement. One maintained a neutral stance among
the remaining participants, while two strongly disagreed.

Participants recognized the potential adaptability of ReViTA’s generic activ-
ities and acknowledged the framework’s ability to address common challenges
in managing fault tolerance in SoS. In addition, they highlighted the frame-
work’s potential to provide systematic guidance and documentation, which can
contribute to a more comprehensive and structured approach to handling fault
tolerance.

However, there was a certain skepticism among some participants regarding
the universal applicability of ReViTA in all SoS contexts. This perception arose
from recognizing that SoS can exhibit unique characteristics, complexities, and
uncertainties that a generic framework may not fully capture. In addition,
participants noted that predicting and accounting for all possible failures in a
given SoS context can be almost impossible, as unforeseen failures and behaviors
can arise during the operational phase.

5.1.8. How is the Acceptance of ReViTA Among Professionals? (RQ1)

In general, ReViTA was well-accepted by the participants, considering as-
pects regarding usefulness and ease of use. They highlighted the clarity and
understandability of the activities, along with the perceived usefulness and po-
tential for reducing effort, as positive aspects of the framework. Participants
also underscored the need for domain-specific expertise, considering the frame-
work’s objective to be adaptable across different SoS contexts. Participants also
emphasized that ReViTA provides a systematic approach to a problem that is
addressed based on participants’ previous insights and experiences. The exis-
tence of a framework such as ReViTA can facilitate communication and promote
a more assertive discussion among professionals about fault tolerance, which can
facilitate planning and reduce the probability of errors.

While professionals received ReViTA positively, it became evident that there
is a need for the development of appropriate tools to implement the activities of
the framework, particularly in large-scale or critical SoS. This need stems from
the fact that fault tolerance is often a crucial aspect; thus, the availability of
suitable tools is critical to minimize potential errors during the monitoring and
reconfiguration of SoS.

5.2. Study #2

Study #2 involved four professionals who applied the ReViTA framework to
a real-world case. They used a tool that supports the application of the frame-
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work. After the participants received training about the ReViTA framework
and the tool, we asked them to:

1. Perform Mission Decomposition using the mKAOS modeler included in
the tool;

2. Perform Specification of Mission Requirements for each individual mission
defined in Mission Decomposition;

3. Perform the Specification of States of Interest of the constituent systems;
4. Perform the Specification of Observation Points of constituent systems;
5. Perform the Specification of Mission Requirements for TAC, which can be

relaxed in relation to the desirable architectural configuration;
6. Use mKAOS modeler to perform TAC Description.

For feasibility reasons, the tool offers a simplified framework instantiation,
as mentioned in Section 3. Except for the “Mission Decomposition” and “TAC
Description” activities, which an mKAOS modeler supported, all other activities
were conducted with textual descriptions. All the information provided by the
participants was organized in a dashboard. This dashboard serves as a guide
for professionals to design fault-tolerance-oriented reconfigurations. Figure 7
provides a summary of the participants’ responses regarding the statements
listed in Table 5.
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Figure 7: Study #2 - Participants’ responses.

5.2.1. Learning Experience (S8)

In the process of using the framework, all participants reported having a
positive learning experience. Participants P15 and P17 specifically noted that
the learning curve associated with the framework was not steep, implying that
it was relatively easy to understand.

P15 further emphasized the helpfulness of the framework’s structure, which
is designed in a step-by-step format. This structured approach was found to
facilitate the learning process.

Both P15 and P16 pointed out that having prior familiarity with the scenario
or context in which the framework is being applied can significantly ease the
learning process. This familiarity allows for a more intuitive understanding of
the framework and its application.

However, all participants also identified a particular challenge in the process:
decomposing missions. They found it difficult to break down missions to a
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level of granularity that a single constituent system can fulfill. This task was
described as non-trivial, indicating that it requires a substantial amount of effort
and understanding. Even with a broad comprehension of the SoS, achieving the
right level of mission granularity was still a challenging task.

5.2.2. Clarity and Understanding (S9)

All participants strongly agreed that ReViTA’s purposes and activities were
clear and understandable. However, they faced some challenges in familiarizing
themselves with the specific terminology used within the framework. Despite
these challenges, the participants expressed that this was a minor issue.

While sharing personal experience, P17 expressed an initial confusion with
the terms used in the framework. This participant acknowledged the need to
spend more time familiarizing with this specific terminology. If asked about a
term, this participant would need a moment to reflect on its meaning. However,
this participant affirmed that the choice of terms was fitting and appropriate
for the framework. As pointed out by P17, the real challenge was remembering
all the terms due to their sheer number. However, P17 was optimistic that after
working with these terms for a while, sufficient familiarity would be gained to
confidently discuss the subject with others.

5.2.3. Ease of Use (S10)

All the participants partially agreed that ReViTA is easy to use, although
they noted that the mission decomposition process required significant effort.
P16 highlighted the importance of mission decomposition, stating that if it is
not done correctly, it could compromise the rest of the process. Therefore, they
invested considerable time to ensure it was done correctly. After this step, they
considered the rest of the process easier.

P15, on the other hand, spent a significant amount of time on the TAC
Description activity. Despite this, P15 considered the activity relatively simple
to perform, indicating that the task was simple but rather time-consuming.

P17 faced some difficulties in performing the activities. However, the partici-
pant believed such challenges were more related to the specific scenario they were
working with than the framework itself. One of the main challenges P17 faced
was achieving a level of detail in the SoS that could be considered adequate,
especially regarding the specification of observation points. This uncertainty
made the participant question if they had overlooked something important fre-
quently. Furthermore, 17 encountered difficulties in specifying the states of
interest due to a lack of complete knowledge of some constituent systems. This
knowledge gap necessitated consultation with another department to gain a
better understanding, which subsequently caused delays in the process.

P17 also noted that applying the framework to very large SoS could be-
come highly complex. This complexity arises from the combinations of mis-
sion requirements, states of interest, and TAC. They emphasized that while the
framework is considered easy to understand, its application in real-life situations
requires substantial work.
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Despite these challenges, P17 did not perceive these as negative aspects of
the framework. Instead, they suggested that more specific tools would be nec-
essary to support these tasks in large-scale SoS, indicating a need for additional
resources to apply the framework in more complex scenarios effectively.

5.2.4. Usefulness (S11)

All the participants strongly agreed on the utility of the framework in their
daily tasks. They acknowledged its role in supporting the design of fault-tolerant
reconfigurations but also highlighted additional benefits it brings to their op-
erations. P15, in particular, underscored the framework’s ability to facilitate
communication.

One of the ways the framework enhances communication, as pointed out
by P15, is within the SoS operations team. This team often needs to stay
vigilant and responsive to changing objectives - a situation uncommon in their
work. The framework, with its structured approach and clear guidelines, aids
in keeping the team aligned and adaptable to these changes.

Furthermore, P15 emphasized the value of the documentation provided by
the framework. This documentation is crucial in engaging with the sectors re-
sponsible for the constituent systems. These sectors often face challenges with
effective communication and alignment with the SoS objectives. The frame-
work’s documentation can help bridge this communication gap and ensure bet-
ter alignment with the SoS objectives.

P15 and P17 considered that the framework tends to produce more signifi-
cant benefits when applied continuously, suggesting that its value increases with
consistent use over time. They highlighted that the framework’s true potential
is realized when applied continuously, allowing for ongoing information addition
and constant evaluation of operations. Furthermore, this continuous applica-
tion enables more effective monitoring and adjustment of the SoS, enhancing its
overall usefulness.

5.2.5. Impact on Job Performance (S12)

Two participants strongly agreed that utilizing the framework would enhance
their job efficiency. P17 and P18, who expressed partial agreement, emphasized
that the initial application of the framework requires significant effort. However,
they also highlighted that the effort tends to decrease over time as the framework
is applied and refined, leading to an overall increase in work efficiency.

P16 focused on the positive impact of the framework on daily operations.
Given the need for the SoS team to maintain reliability in the face of poten-
tial disruptions in the constituent systems, the framework’s emphasis on fault
tolerance was a key benefit.

P18 pointed out an additional benefit of the framework: its capacity to
identify areas for infrastructure improvement. According to P18, the framework
offers a comprehensive scenario view. It provides a complete understanding of
the functioning of the constituent systems, which aids in avoiding failures in the
SoS. Beyond focusing on fault tolerance, the framework also provides valuable
information that can enhance the overall infrastructure. Analyzing the proposed
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scenario makes it possible to identify areas that need improvement, irrespective
of the implementation of fault tolerance. This approach assists in pinpointing
weaknesses, particularly the most vulnerable links, which can then be improved
to ensure efficiency and robustness in the SoS. Thus, while the framework’s
primary goal is to work on fault-tolerant reconfiguration, it rather contributes
to the broader objective of infrastructure enhancement.

5.2.6. Is ReViTA Feasible From a Practical Perspective? (RQ2)

Drawing from the findings of Study #2, we gathered insightful perspectives
on the practical feasibility of ReViTA. A notable point of consideration that
emerged was the necessity of dedicated tools to carry out the framework ac-
tivities. The significance of these tools becomes paramount, particularly when
dealing with large-scale SoS encompassing multiple missions and constituent
systems.

Participants appreciated ReViTA and acknowledged its potential to improve
their work. They further emphasized the scope for progressive enhancement and
refining of results through consistent framework application. This endorsement
suggests that with continuous use, ReViTA can pave the way for more effective
outcomes over time. Thus, ReViTA shows promise in handling immediate SoS
reliability issues and potentially fosters long-term improvements in SoS fault
tolerance management.

6. Discussion

In this section, we discuss the main findings and the implications of our
research and propose how ReViTA can be used by researchers and practitioners.

6.1. Main Findings and Lessons Learned

Along the process to design and evaluate ReViTA, we gathered insights and
reflections about the framework as in the following:

SoS fault tolerance requires the involvement of domain experts.
Both evaluation studies highlighted the importance of a deep understanding
of the SoS domain while dealing with fault tolerance. The participants stated
that this is fundamental for adequately applying ReViTA and ensuring accu-
racy in performing its activities since each SoS operates under a distinct set of
conditions that may be technical, environmental, and operational. Hence, solid
and comprehensive domain knowledge improves efficiency and accuracy when
implementing ReViTA.

The value of ReViTA increases with continuous use. The continuous
application of ReViTA is necessary not only to allow fault tolerance mechanisms
to accommodate the evolution of the SoS missions over time. From the partici-
pants’ comments, it becomes apparent that the framework’s value increases with
continual use. As the professionals gain more experience with the framework,
they can more effectively manage the complexities of SoS, leading to improved
system performance and mission fulfillment. The continuous application of the
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framework enables the constant addition of information and ongoing evaluation
of operations, which could result in improved effectiveness of fault tolerance
oriented reconfigurations.

The use of ReViTA produces valuable documentation. ReViTA pro-
vides a comprehensive outlook on SoS fault tolerance, highlighting the responsi-
bilities of constituent systems, potential disturbances, expected behaviors, and
related countermeasures. Participants stated that teams working on SoS often
must deal with complex scenarios involving multiple interconnected constituent
systems, which could lead to misunderstandings or miscommunications. Using
ReViTA produces valuable outcomes, helping to maintain team members on the
same page and enabling a more seamless integration of efforts.

The use of ReViTA increases with the scale of SoS. Applying Re-
ViTA to large-scale SoS introduces a high level of complexity due to the multi-
tude of interconnected elements such as mission requirements, states of interest,
and TAC, each with their specific characteristics and interactions. The situ-
ation becomes more complicated when dealing with a large-scale SoS, as the
quantity of these elements and interactions can multiply exponentially. Such
circumstances create a highly complex scenario requiring careful attention.

ReViTA requires the involvement of decision-makers. During Study
#2, some participants reported that the decision to employ specific constituent
systems in TAC would require approval from higher management, as it would
entail extra costs for the institution. Hence, we recognize that the active in-
volvement of decision-makers is critical, as they have the authority to establish
strategies and define priorities. As observed by the participants, describing TAC
can encompass financial considerations, such as constituent systems’ acquisition
and maintenance costs. However, other factors, such as privacy and security,
may influence TAC Description. In this context, it falls to the decision-makers
to assess associated risks and direct the allocation of resources to improve SoS
fault tolerance. Consequently, they play an essential role in reinforcing reliabil-
ity.

Regarding lessons learned, during the conduction of the evaluation studies,
we recognized the importance of including domain experts in the evaluation
process. While professionals with a background in Information Technology (IT)
bring valuable technical expertise, they may lack a comprehensive understanding
of domain-specific particularities, which could be important in evaluating the
adaptability of the framework. Moreover, the perspectives that IT professionals
consider may overlook crucial domain-specific aspects. Domain experts, with
their specialized knowledge, could provide additional insights. They can ensure
the framework does not overlook non-IT technical aspects crucial for adequate
fault tolerance.

Another lesson learned is regarding the need for the development of a tool
that participants would be able to use. Creating a too-specific tool could limit
our participant selection, requiring specific knowledge of particular approaches.
On the other hand, the tool, although simplified, should be capable of encom-
passing all the framework’s activities clearly so that participants can express
their opinions on ReViTA without being limited by the tool.
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6.2. Implications for Practitioners and Researchers

This study presents implications for practictioners, as follows:
Improvement of SoS reliability. Using ReViTA can lead to an improve-

ment in SoS reliability. By following the activities prescribed by the framework,
professionals can identify and implement fault tolerance oriented reconfigura-
tions as effective countermeasures, reducing the probability of disturbances and
interruptions in SoS operations.

Improvement of stakeholders communication. ReViTA was perceived
as a facilitator of effective communication among varied stakeholders. It can help
promote a shared understanding regarding fault tolerance, clear communication
of objectives, collaboration and coordination, improved decision-making, and
stakeholder engagement.

Improvement of resource utilization. By offering a comprehensive view
of SoS fault tolerance elements, professionals can make well-informed decisions,
prioritize actions more efficiently, and coordinate their efforts more effectively.
The outcomes of ReViTA activities can help professionals optimize resources
(e.g., acquisition and maintenance of constituent systems) and minimize op-
erational costs related to fault tolerance. By identifying high-risk areas and
implementing appropriate reconfiguration strategies, professionals can avoid un-
necessary expenses and maximize the operational efficiency of the SoS. More-
over, by using ReViTA, professionals can plan TAC, allowing professionals to
anticipate and pre-authorize any additional costs incurred during critical and
time-sensitive situations. By clearly understanding the potential extra costs
associated with reconfiguration, professionals can make informed decisions and
allocate resources accordingly, ensuring faster recovery when it is essential.

During the conduction of this study, we also identified implications for re-
searchers, as in the following:

Mission-oriented perspective for future research. The use of ReViTA
provides a comprehensive view of the SoS, focusing on its mission. This com-
prehensive perspective can also facilitate in-depth analysis of other attributes
such as security, performance, and scalability, among others. Additionally, it
illustrates how these attributes contribute to achieving the SoS overall mission.

Adaptability to diverse SoS contexts. ReViTA can serve as a founda-
tion for future research on adaptability in different SoS contexts. Researchers
can explore how the framework can be tailored and customized to specific do-
mains. This research can lead to developing domain-specific extensions or vari-
ations of the framework, enabling its effective application in a more significant
range of SoS environments.

7. Threats and Limitations

7.1. Threats to Credibility and Reliability

Unlike quantitative studies, qualitative ones are typically more susceptible
to threats to credibility rather than threats to validity [48, 49]. The matters
of validity and reliability in qualitative research rely on the meticulousness,
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thoroughness, and honesty employed by the researchers throughout the data
collection and analysis processes [50]. Thus, we outline the potential threats to
external and internal credibility in the following.

Internal credibility refers to the credibility of interpretations and conclu-
sions within the underlying setting or group [51]. In this study, interpretive
validity is a potential threat to internal credibility, which describes the risk of
researchers imposing their interpretations rather than understanding the par-
ticipants’ perspectives. We mitigated this threat by asking clear questions to
participants and encouraging them to reflect deeply on their answers so that we
could obtain a realistic interpretation of the collected information. Moreover,
the interviews were performed face-to-face since this approach makes the par-
ticipants more spontaneous in their answers [52]. Moreover, the interviews were
conducted in Portuguese, which is the native language of the participants.

Regarding the analysis, we applied coding to the interview transcriptions.
Coding is a systematic approach to interpreting and analyzing interview data,
ensuring that all responses are evaluated consistently and reducing the risk of
bias or interpretive errors.

The participants’ lack of experience regarding SoS Engineering and the fact
that all of them worked with a single scenario of SoS are threats to exter-
nal credibility, which refers to the degree that the findings of a study can
be generalized across different contexts [51]. Moreover, we understand that the
number of participants in the studies is not representative enough to generalize
the results. We selected professionals with different backgrounds and experience
implementing or operating an SoS to mitigate this. This contributed to a more
significant variety of information with different perspectives. We also carried
out studies from distinct perspectives. The first study focused on participants’
perceptions of the framework through demonstration and explanation. In con-
trast, the second one took a more practical approach, with participants using
the framework and offering their opinions based on a practical experience.

We acknowledge that how we framed our interviews could potentially influ-
ence participant responses, thereby affecting the reliability of our study. To
mitigate this effect, we engaged in extensive discussions about the interview
guide among the authors of this article and refined it further after conduct-
ing pilot interviews. During the interviews, the researcher paid close attention
to aspects such as voice intonation and body language to guide the interview,
posing additional questions to ensure a comprehensive collection of participants’
perceptions. In addition, the composition of objective questions (using a 5-point
Likert scale) and open-ended questions allowed for more accurate verification of
responses. For instance, if there were contradictions between the two responses,
the researcher sought to investigate and clarify further.

We provided a confidentiality agreement to the participants to ensure they
felt comfortable expressing their opinions without worrying about repercussions,
given that they provided opinions on a scenario related to their place of employ-
ment. The interviews were automatically transcribed and individually reviewed
to correct transcription errors.
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7.2. Limitations

It is essential to acknowledge that our evaluation is limited to only one
specific scenario. While our findings and conclusions provide valuable insights
into that particular context, validating the results in other contexts is crucial.
By conducting studies in multiple contexts, we can assess the robustness and
applicability of our findings across various scenarios. This helps establish a
broader understanding of the framework’s effectiveness and potential limitations
in different real-world situations.

Furthermore, exploring different contexts can uncover additional insights and
nuances that our studies might not capture. It can shed light on new challenges
and contextual factors that may influence the implementation and outcomes of
the framework. Hence, such additional validation can provide a more compre-
hensive understanding of the framework’s capabilities and limitations.

Another limitation is that ReViTA does not apply to virtual SoS. Given their
inherent lack of defined goals [1], the execution of the framework’s activities
becomes impracticable as ReViTA’s applicability depends on clearly defined
objectives, thus leaving virtual SoS outside its scope of applicability.

8. Conclusion

Concerns on SoS fault tolerance are not limited to failures in constituent
systems. It also encompasses undesirable behaviors resulting from their inde-
pendence. Moreover, as the design of SoS is inherently opportunistic, fault
tolerance mechanisms for SoS should follow suit.

Current literature partially addresses the SoS dynamism and the use hetero-
geneous redundancies for fault tolerance in SoS. While some studies advocate
for it, they overlook that the primary architectural configuration is often the
best fit for its specific needs, considering factors such as costs, security, and
performance, to mention a few. Moreover, using heterogeneous redundancies
demands precise information that feeds the monitoring and reconfiguration pro-
cesses, and there is a lack of solutions to support this effectively. ReViTA seeks
to address this issue by providing structured activities that provides effective in-
formation to these processes aiming at fault tolerance, considering the dynamic
and opportunistic nature of SoS design.

By using ReViTA, professionals can better understand SoS critical points,
and the fault tolerance countermeasures. This enables them to design fault-
tolerant reconfigurations in a more informed and effective manner. Furthermore,
our framework facilitates more effective communication among the SoS team
regarding fault tolerance, ensuring everyone is on the same page. It also supports
decision-making regarding the utilization of resources.

As future work, we plan to conduct further evaluation studies across differ-
ent scenarios to identify potential refinements for ReViTA. By extending our
research into diverse contexts, we can refine ReViTA so that it can handle a
wide range of SoS fault tolerance challenges and continues to evolve. Moreover,
we can investigate how the framework might be adapted or extended to meet
specific domain requirements.
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Moreover, future work should consider additional investigations for collab-
orative SoS. Unlike directed and acknowledged SoS, these types of SoS lack
central management that coordinates and influences constituent systems. This
could limit the availability of observation points within constituent systems,
potentially restricting the application of ReViTA in such contexts. Finally,
developing tools to support ReViTA activities is crucial, particularly for large-
scale SoS, due to the exponential nature of potential combinations of missions,
requirements, states of interest, and TAC.
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