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Abstract—1In this paper we propose a Nonlinear Model
Predictive Control (NMPC) scheme for the optimization of the
start-up procedure of a nonlinear boiler model. The proposed
formulation of the MPC problem allows for a significant
reduction of the optimization horizon with respect to state
of the art - often open loop - optimization approaches (that
commonly solve the nonlinear program for a long horizon that
includes the whole start-up time), while guaranteeing the re-
cursive feasibility and remarkable performances. A numerically
efficient implementation of NMPC is obtained by subsequent
linearisation of the system along the predicted trajectory.
Simulation results show the advantages of the proposed method
with respect to standard manual procedures and to open-loop
optimization approaches.

I. INTRODUCTION

Steam plays a central role in production in many
sectors, among the others food, textile, chemical, medical,
power, heating, and transport industries. In the past,
steam production plants were used to provide base load
power. Start-up operations were performed a few times a
year, therefore they were seldom optimized and typically
performed manually.

Nowadays, steam generation is often integrated with
electricity production in cogenerative systems or in
combined cycle plants. For a greater integration of such
utility plants with the power grid, to exploit price volatility,
and to respond to varying steam and electricity demand,
in many cases, these production facilities must be operated
in a flexible way. The demands imposed by the liberalized
electricity market, as well as the intermittent usage and
request of steam in other industrial applications, as e.g. in
batch production, require start-up procedures to be possibly
operated frequently, see e.g., [14]. During the start-up,
the system experiences a large temperature and pressure
transient, which can be very harmful to the system itself if
not opportunely controlled: specifically, the thermal stress
on boiler elements, e.g. tubes and shell, has to be limited,
as it can reduce the lifetime of the system components.

In the industrial practice, start-up procedures are typically
performed manually, while automatic regulation is activated
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only as the boiler reaches a nominal operating point. On
the other hand, model-based automatic start-up optimization
approaches are indeed considered strongly necessary to
pursue to manifold objective of reducing the start-up time,
of limiting the thermal stress, of minimizing the operative
cost and the environmental footprint of the boiler, e.g., by
limiting the fuel consumption and the emissions.

Many efforts have been recently dedicated to study the
optimization of the start-up procedures, while keeping the
stressed components under control, with a special focus on
Combined Cycle Power Plants (CCPP). In particular, offline
optimization approaches have been proposed to manage the
entire procedure by defining the - open loop - optimal input
trajectories to be implemented on the system: in the paper [1]
the authors propose a model-based start-up optimization for
a coal-fired power plant; in [2], the start-up optimization
on Heat Recovery Steam Generators (HRSG) is discussed,
while the papers [3] and [4] focus on the turbine side of
the plant. In [5] and [6], the authors solve a Nonlinear
Programming (NLP) problem for the open-loop optimization
for a CCPP drum boiler, considering the thermal stress
model. Similarly, in [7], a Modelica model of the drum
boiler is also presented for the start-up optimization. An
off-line optimization of the firing curves is also described
in [8] and [9], considering an extremely detailed model of
the thermal stresses for critical components. As mentioned,
all the previously-discussed research works propose open
loop optimization approaches. This is primarily due to
the fact that the computation of the reference trajectory
for the entire procedure for the nonlinear system can be
time-consuming and too computationally expensive to
be implemented online. On the other hand, closed-loop
optimization can allow operating start-up procedures
more safely and reliably, and to control the operation in the
presence of disturbances or compensate for modelling errors.
The closed-loop approach is indeed explored in [10], where
the authors propose a Nonlinear Model Predictive Control
(NMPC) scheme selecting a prediction horizon that includes
the whole start-up. In view of this, although this approach
is very promising, computational complexity is still an
issue. The choice of the MPC prediction horizon, as a time
interval that includes the whole start-up procedure, is mainly
due to a twofold reason. Firstly, it allows obtaining globally
optimal performances; secondly, methodologically sound
implementations of MPC require to define the prediction
horizon in such a way that, in the end, the state lies in a
suitably-defined invariant set around the steady-state point,
and so, in practice, commonly very close to a stationary one.
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In this paper, we investigate the application of nonlinear
MPC for tracking, inspired by the methodology presented
in [11], for control of the start-up procedure. The advantage
of this approach is the possibility of selecting an N-steps
optimization horizon possibly significantly shorter than the
time required to complete the whole start-up procedure. This
is due to the fact an additional optimization variable can be
included in the MPC problem, representing the “temporary”
target steady state, reachable in N discrete-time steps, as the
closest one with respect to the desired final state. Such a
new steady state is used as a terminal constraint and as a
reference value in the cost function. This allows to greatly
reduce the optimization horizon - and the corresponding nu-
merical complexity - and, as a byproduct, to avoid the (often
complex) computation of a terminal positively invariant set
and of a suitable terminal cost and to guarantee recursive
feasibility of the MPC optimization problem. Also, in this
way, the actual - minimal - duration of the start-up phase is
not required to be known a priori.

The proposed approach, clearly, compromises the global
optimality of the solution. However, the use of a suitable
additional cost penalizing the displacement of the temporary
final target state with respect to the final nominal operation
point can partially mitigate for such suboptimality, in view of
the dynamic programming paradigm. In this paper, we will
evaluate numerically this performance loss in the selected
case study.

A numerically efficient implementation of NMPC is obtained
by resorting to a parameter-varying linearisation of the
nonlinear system along the state/input trajectory computed at
the previous optimization instant, reducing the optimization
program to a Constrained Quadratic one. This approach, re-
ferred here to as Linear Parameter-Varying Model Predictive
Control (LPV-MPC), is similar to the one proposed in [12].
The main difference with [12] consists of how the trajectory
around which the system is linearised is computed. As it
will be discussed more in details later in the paper, a strong
connection with the Real-Time iteration scheme proposed in
[13] also exists.

This work can be regarded as a follow-up of the pa-
per [14]: in the previous work, indeed, a hierarchical control
scheme has been proposed to manage and control a co-
generation system, possibly imposing fitful activations of a
Fire Tube Boiler (FTB) during the daily horizon, for the
unit commitment problem. However, in [14] we discarded
the control of the FTB during the start-up phase, which
is our goal here. As in [14], a combined heat and power
(CHP) Internal Combustion Engines (ICE) is operated for
the electrical generation and, in the studied configuration, it
can provide an additional source of heat to the boiler.

The paper is structured as follows: Section II describes in
detail the model of the FTB system and the thermal stress
model, Section III presents the optimal predictive control
method, while in Section IV simulation results are reported.
Finally, in Section V some conclusions are drawn.

II. MODELLING
A. The Boiler dynamic model

Fire-tube boilers, also known as shell-tube boilers, are

essentially composed of a vessel, filled up with water, where
hot combustion gasses run in several submerged tubes.
The mathematical model of the fire-tube boiler is inspired
by [15] and [16]. Differently from [15], two sources of heat
are here considered, i.e., the gas burner and the exhaust gases
diverted from the CHP. The set of equations describing the
system dynamics is
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where p, V, q, T, h, and e denote the density, volume, mass
flow rate, temperature, and specific enthalpy and energy, re-
spectively of steam (s), water (w), and feedwater (f). m" <48
denotes the mass of the tubes heated by the gas burner, while
TS24 denotes their temperature. The term Q" " represents
the heat flux provided by the gasses diverted into the boiler
from the CHP and is considered as a known disturbance
during the start-up. Since the system works at saturated
conditions, the water and steam pressures satisfy the equality
Py = p. = p(T.,). Also,
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gAs = nCLqugAs )

where C'yy is the lower heating value and ¢g,, is the
combustion gas flow rate. The heat transmitted from the
metal walls to the water can be modelled as

QAN = BT~ T,) ©)

where B(T,,) is the heat transfer coefficient depending on
the boiling two phase mixture of steam and water, close to
the tube walls, that induces a natural recirculation and the
interaction of numerous tubes in the bundle, based on Cooper
correlation [17].

The mass equation in (1) can be further manipulated, consid-
ering in the FTB two separated regions for water and steam,
by splitting the equation for the two regions:
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with ¢’ 7* representing the steam released from the water
sector into the steam region.

We simplify the system of equations by neglecting steam
accumulation in the steam zone ¢ 7° = ¢, and by writing
the water mass balance as:

d d d V. dL.,
PV =g Ve Ve = —pe g

The above approximation can be done assuming the second
term negligible and recalling that V,, +V, = V,, is constant.




It is possible to express the volume of the steam zone V as
a function of the water level, [, by considering the FTB
geometry.

An analogous separation between water and steam zones
can be considered also for the energy balance in eq. (1).
It is assumed a saturated liquid and a thermal equilibrium
between the two zones, T, = T, therefore it is not necessary
to consider the energy equation for the steam region, but just
for the water region.

The nonlinear dynamic model of the FTB boiler can be recast
in the following form:
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The reader is referred to [15] for the details.

The state vector z = [T+*% [ T )" includes the tube tem-
perature, the water level, and the water temperature, while
the manipulable input vector u = [g;, g2 s, ¢.)’ includes the
feedwater flowrate, the combustible gas flowrate, and the
steam output flowrate. The exhaust gas heat flux QU°HF
is regarded as an exogenous disturbance variable d, e.g.
imposed by a higher control layer, as described in [14].
The parameters of the model are analytically computed based
on the physical and geometric properties of the system. A
fine tuning has been conducted based on available data.
The general continuous-time nonlinear boiler model is rep-
resented by the dynamical system:

& =f(z,u,d) (6)

For later use, the model (6) is discretized using a forth-order
Runge-Kutta method, i.e.,

:E(k' + 1) = fRK4(I(k)a u(k)vd(k)) (7

where k represents the discrete time step.

The input and state variables are subject to the following
constraints: ¢; € [0, ¢r max)s Goas € [G0ims Cousls

4. € [0, @urmax)s T € [T mmins Towmmax] @0d Ly € [Linins Linax)-
These are written in compact form (considering discrete-
time state and input variables z(k) and wu(k), respectively)
as h(z(k),u(k)) <0.

Note that function A is affine.

B. Thermal stress model and constraint

In boiler start-up, one of the main limitations to the
maximum firing of the boiler is related to the thermal stress
of the shell and the internal tubes. A high thermal stress,
due to a too steep increment of the temperatures, leads to
a reduction of components’ life-cycle, increasing the costs
for inspections and maintenance. The thermal stress o is
modelled as follows.
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o=k,(T°) o

®)

where T is the temperature of the metal component and
k. is a property of the material that can be either constant
or temperature dependent. Specifically, for the pressurized
components, as the boiler shell, the maximum temperature
rate 7 is computed following the European standard EN
12952-3 [18]:
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where P and P, are the nominal and initial pressure, d,, is
the internal diameter, s the wall thickness, the mechanical
and thermal material properties -F, v, a, p, k and c,- are,
respectively, Young’s modulus, Poisson’s ratio, thermal ex-
pansion coefficient, density, thermal conductivity and specific
heat - and ¢, is the cylindrical shape factor, which is a
function of the ratio of internal and external diameters, see
[8] and reference therein for details.

The coefficient k., which can be recovered by inspection
from eq. (9), is proportional to the Young’s modulus and the
thermal expansion coefficient, that are in general temperature
dependent. However for the temperature range considered
in this specific application, £ = 1.82ebMPa and a =
1.35e—5m? /s and k, can be considered constant.

The thermal stress limit can be therefore formulated as a con-
straint on the rate of change of the component temperature,
with r1'®* computed from eq. (9) by imposing the maximum
allowable stress.

The rate limitation is applied to the temperatures of the
submerged tubes and the shell wall. While the tube tempera-
ture corresponds to the state 7" %4%, the shell temperature is
assumed to be in equilibrium with the water temperature and
to be equal to T,,. Therefore, the thermal constraint reads as:

z;(k41) —x,;(k) <rpt™ (10)

where j = {1, 3} is the index of the state vector correspond-
ing to the involved temperatures.

III. OPTIMAL START-UP PROCEDURE

A. The nonlinear MPC problem

The NMPC algorithm used in this paper is inspired
by [11] and is formulated as a tracking problem towards the
target operating point x. and where additional objectives are
included, in particular the minimization of the operating cost.
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In the optimization problem (11), NNV, is the optimiza-
tion/prediction horizon Awu(i) = u(i) — u(i — 1), and xy, is
the measure of the state of the system at time k. The supple-
mentary decision variable Ty, has a twofold role: it is indeed
both the set point for the state vector in the cost function and
the terminal state condition. As such, it must be reachable
in N, steps from the initial condition z(0) = zj. Also, to
guarantee recursive feasibility of the optimization problem, it
is defined as an admissible steady state condition: letting 1y,
be the corresponding input such that Ty, = fax.(Zk, Ur, dy)
(where dj, is the forecasted disturbance value), the constraint
h(Zy, ur) < 0 is enforced to guarantee that, from time step
k + 1 on, an admissible solution to the NMPC problem
exists. To enforce the asymptotic convergence of Ty, to the
target state x, in line with [11], the term ||Z; — xTHZQT is
included in the cost function to minimize, at each time step,
the distance of the temporary target zj from the final one.
This additional cost plays the role of the cost-to-go under a
dynamic programming viewpoint.

Note that, also, this strategy allows to converge to an optimal
solution also in case the target state is non-admissible,
pushing the system automatically to the best (closest) feasible
point with respect to the target.

B. Linear Parameter-Varying implementation

In this paper, we propose to use a numerical solution
based on the reformulation of model (7) with its Linear
Parameter-Varying (LPV) approximation, obtained perform-
ing a sequential linearisation. The reference input-output
trajectory (z7(i),u"(4)) used to linearise the model (7) for
the implementation of the MPC algorithm at time instant &
is obtained as follows:

e Forall i =0,...,Np — 2, w(i) = u(i + 1|k — 1),
being u(0|k—1),...,u(Np—1]k—1) the optimal input
trajectory obtained as a result to the MPC optimization
problem at time instant k£ — 1.

e u'(Np — 1) = g1, ie., the steady-state admissible
input such that Zp 1 = frwa(Th_1, Up_1,dp_1)-

e Set 27(0) = x.

o Recursively compute, for all i =0,...,Np — 1, z"(i +
1) = faxa(z™(2),u"(4),d(7)), being d(i) the forecasted
value of the disturbance - which is known in advance.

Then, by defining

A,L‘ :agRK4 B,L _ a.gR,K4 (12)
T ler (o)) R ORAO)
Ci =frxa(z™(2),u"(i),d(7)) — Aga' (i) — Bru'(i) (13)
the required time-varying linearised model
§(i+1) = Ai£(i) + Biu(i) + G (14)

is obtained, to be used in place of the nonlinear one in
the optimization problem (11). The approach is sketched in
Figure 1.

Future work will be devoted to the address the approxi-
mation error between (14) and (7). As this may theoretically
compromise the admissibility and the recursive feasibility

properties of the solution, the activity will characterize the
modelling approximation error and propose a rigorous robust
implementation based, e.g., on [19]. Also, it is worth pointing
out that the LPV-MPC implementation is basically equivalent
to the first iteration of a sequencial quadratic programming
(SQP) scheme for NMPC: this approach, in the control-
oriented optimization context, is also known as Real-Time
Iteration (RTI), see [13] and [20]. Future work will be
also devoted to establish a sound connection with the RTI
approach.

IV. SIMULATION RESULTS

In this section we validate the proposed approach through
simulation, using the nonlinear model of the GU presented
in Section II.

The FTB is a three-pass 10 bar steam generator with maxi-
mum steam flowrate g; = 12000 kg/h and the CHP is a 12
valve natural gas ICE producing up to PSP = 1200 kW.
The boiler start-up must be optimized, minimizing contextu-
ally the time to reach the target operating point and the fuel
consumption, satisfying the permitted ranges summarized
in Table I, where the variables are adimensionalized with
nominal values, identified with the circumflex diacritic.

In particular, the thermal stress is constrained in the pre-
scribed range.

The continuous-time model (5) is discretized with a Runke-
Kutta method of the fourth order, with a sampling time of
Ts = 6s.

In the discretized approach, the thermal stress constraint,
given by the model (8) and described in II-B, is recast as a
limit on the temperature rate of change, scaled on the discrete
grid, T¢(k+ 1) — T°(k) < Gymas> Where the superscript ¢ is
the component of interest.

The start-up optimization is obtained by solving the QP
problem (11), with a prediction horizon N,, = 50 and the
following weighting matrices: @ = diag(0.1,5,20) o wy,
R = diag(0.01,0.01,0) ow,, and Q7 = diag(0.1, 5, 30) ow,,

flay, U*)-,E' Compute A s Biky G
- Jacobian
. >
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System
T,
| —

Fig. 1. Linear Parameter-Varying MPC scheme of the FTB system
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Fig. 2. FTB start-up manual procedure - output variables. Top panel:

temperatures of fire tubes (solid line) and of the water (dashed line).
Middle panel: thermal stress on tubes (solid line), on the shell (dashed
line) and upper bound (dotted line). Bottom panel: water level. All graphs
are adimensionalized with nominal values, for confidentiality.
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Fig. 3. FTB start-up manual procedure - input variables. Top panel:

steam flow-rate (solid line), feedwater flow-rate (dashed line). Bottom panel:
gas flow-rate. All graphs are adimensionalized with nominal values, for
confidentiality.

where o denotes the Hadamard product, while w,, w,
contain the inverse of the square of the maximum values
of state and input components.

As explained in Section III, the LPV-MPC is implemented
in a receding horizon fashion, where only the first input
u(0|k) of the optimal control sequence is held constant for
the sampling period T and applied to the system at each
control instant. For simulation purposes, the nonlinear model
(5) is used.

The typical manual procedure is first described for com-
pleteness, as extracted by an historical dataset: the output
variables are shown in Figure 2, with the thermal stress
shown in addition in the central panel, while the given
inputs are displayed in Figure 3. The standard manual
procedure imposes three gradual steps on the gas input, in

order to reduce the thermal stress on the components. This
conservative approach conduces to relatively long start-up
phases and does not ensure the fulfillment of the thermal
stress constraints, which are slightly violated, as it can be
seen in the middle panel of Figure 2. At the same time, the
water level loop is loosely controlled, as the level is allowed
to drift away from the nominal level: this is moderated by
several discontinuous inputs of feed-water inflows.

The optimal solution based on LPV-MPC control overcomes
the limitations of the manual procedure, by addressing di-
rectly the process constraints. The LPV-MPC solution is
presented in Figures 4 and 5, respectively for the output
trajectories and optimal inputs. With respect to manual
operation, the approach provides better performances in
terms of start-up duration without incurring in thermal stress
constraint violation. The overall time required to reach the
nominal operating condition is reduced by more than 30%
with respect to the conservative manual procedure. This time
reduction is attained by driving quickly the natural gas input
closer to the maximum value, while guaranteeing the respect
of the constraints. As typical of MPC approaches, the im-
proved performance is obtained by pushing the system closer
to the prescribed operating limits, forcing their compliance
throughout the time. Moreover, in the optimal start-up both
the water temperature and level are controlled towards their
nominal values.

Also, in Figures 4 and 5, the LPV-MPC is compared with the
open-loop nonlinear optimization of the overall procedure,
showing the solution optimality of the proposed method. The
LPV-MPC approach not only reduces the NLP to a Quadratic
Program by the linearisation along the predicted trajectory,
but it is solved in receding horizon on an optimization
window much smaller than the whole start-up duration, e.g.
which would require a prediction horizon of at least 172
steps. By letting the terminal state of the LTV-MPC iteration
an optimization variable, as described in III, the proposed
formulation can drive the system to an optimal solution
very close to the nonlinear overall optimization. A small
difference is present in the management of the water level
loop in the LPV-MPC and in the full nonlinear optimization.

V. CONCLUSIONS

In this paper, we have proposed a Nonlinear Model Pre-
dictive Control approach for the optimization of the start-up
procedure of a nonlinear boiler model.

TABLE I
LOWER AND UPPER BOUNDS ON THE FTB VARIABLES

Variable Minimum Maximum
QCB;AS 0.125 quS qus

s 0 1.667 ¢,
q, 0 2.223 g,
T 0.25 T 1.05 Ty
Ly I —05% | I +05%
g 0 6
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Fig. 4. Optimal FTB start-up - output variables. The graphs show the

comparison of the LTV-MPC approach (thin black lines) and the nonlinear
open-loop optimization (thick grey lines). Top panel: temperature of fire
tubes (solid line) and of the water (dashed line). Middle panel: thermal
stress on tubes (solid line), on the shell (dashed line) and upper bound
(dotted line). Bottom panel: water level. All graphs are adimensionalized
with nominal values, for confidentiality.
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Fig. 5. Optimal FTB start-up - input variables. The graphs show the

comparison of the LTV-MPC approach (thin black lines) and the nonlinear
open-loop optimization (thick grey lines). Top panel: steam flow-rate (solid
line), feedwater flow-rate (dashed line). Bottom panel: gas flow-rate. All
graphs are adimensionalized with nominal values, for confidentiality.

The adopted approach consists of the introduction of an inter-
mediate admissible steady-state as a supplementary decision
variable to guarantee recursive feasibility of optimization
problem, even considering a prediction horizon much smaller
than the time window required to reach the terminal target.
The adopted numerical method exploits the linearisation of
the system along the predicted trajectory.

The simulations show the remarkable performances of the
proposed scheme, especially in comparison with the standard
manual approach and state-of-the-art open-loop optimization
methods.

Future work will be devoted to the characterization of the

modelling approximation and of the proposal of a rigorous
robust implementation based on tube-based MPC or similar
approaches. A theoretically sound analysis of the connections
of the adopted numerical approach with the Real-Time
Iteration (RTI) method will also be conducted.
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