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A B S T R A C T

We study the implementation of a Chebyshev spectral method with forward Euler integrator
proposed in Berardi et al.(2023) to investigate a peridynamic nonlocal formulation of Richards’
equation. We prove the convergence of the fully-discretization of the model showing the
existence and uniqueness of a solution to the weak formulation of the method by using
the compactness properties of the approximated solution and exploiting the stability of the
numerical scheme. We further support our results through numerical simulations, using initial
conditions with different order of smoothness, showing reliability and robustness of the
theoretical findings presented in the paper.

1. Introduction

Richards’ equation is a prominent tool in the description of porous media phenomena, specifically dealing with water movement
in unsaturated soils. It is derived by applying Darcy–Buckingham law to the law of mass conservation for an incompressible porous
medium and constant liquid density. Existence and uniqueness of the original formulation of Richards’ equation are due to [39]
(see also [30] and references therein). However, determining analytical solutions to Richards’ equation is prohibitive under general
setting on the constitutive relations typically used in the local formulation of the equation, and so numerical procedures are needed
to provide explicitly computed solutions. As is well known, Richards’ equation is a highly nonlinear, and possibly degenerate,
parabolic equation, for which standard numerical schemes for parabolic equations fail to return reliable solutions. In fact, several
approaches have been investigated according to the nature of soil through which water movement occurs: for homogeneous soils
we refer to, among others, [10,15,24]; for heterogeneous media several different approaches have been proposed, using piecewise
smooth dynamical system tools (see [5,8]); linear domain decomposition (see [2,36]); Kirchhoff transform (see [4,38]); finite element
methods (see [3,29]); formal asymptotics (see [23]). As a general reference for the numerical features in Richards’ equation, the
interested reader is referred to the survey [14], whereas [33] frames Richards’ equation into the context of hydrological modeling.

However, as common in diffusion phenomena through porous media, a nonlocal approach carries features and properties possibly
useful for further analysis. This idea traces back to the ’60s (see [35]), and since then there has been an increasing interest, involving
nonlocal behaviors in the hydraulic conductivity (see [16]); fractional terms in the time derivative of water content (see [22,32]);
or, also, using memory component in modeling water stress in the root water uptake (see [9,12,40]).

In the context of nonlocal formulations of Richards’ equation, [13] extended the equation to incorporate nonlocal effects,
providing a foundation for studying capillary flows. Later, in [20], the peridynamic paradigm has been applied to better describe
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the porous media and the dynamics of water therein, paving the way for a powerful approach to deal with the nonlinear terms in
Richards’ equation.

However, these nonlocal variants introduce challenges and opportunities, requiring specialized numerical schemes. In [7] authors
ropose an explicit Euler numerical scheme, based on Chebyshev spectral method, to solve a nonlocal formulation of Richards’
quation. Therein several examples have been provided supporting the properties that the proposed numerical scheme should retain
rder 2 in space and order 1 in time, under mild smoothness assumptions on the initial conditions.

Spectral methods seem to be very efficient and accurate when applied to nonlocal peridynamic models. Indeed, they can benefit
f the convolution-based definition of the integral operator and as a consequence they can exploit the properties of the Fast Fourier
ransform (FFT) algorithm. However, trigonometric polynomials need to require periodic boundary conditions, so they cannot be
pplied alone to more general models. A way to overcome the issue is to make a volume penalization at the boundaries as in [21,28]
r to replace Fourier polynomials by Chebyshev polynomials, as in [26,27].

Spectral spatial discretization based on the approximation of the solution by means of a finite series of Chebyshev polynomials
s suitable to incorporate Dirichlet boundary conditions and allows to get a high-order accuracy when applied to the nonlocal
eridynamic formulation of Richards’ equation (see, for instance, [7]).

The convergence analysis of a specific numerical scheme tailored for the nonlocal variant is the focus of this paper, building
pon state-of-the-art techniques in numerical analysis, mesh-free methods, and adaptive discretization strategies (see also [1]).

The aim of the paper is to complete the analysis provided in [7]. Indeed, the authors propose a numerical scheme which combine
pectral methods with the explicit Euler time integrator, but a convergence result for the scheme is just conjectured. Therefore, in
hat follows we establish the well-posedness and the stability of the fully-discretized scheme.

The remaining of the paper is structured as follows. In Section 2 we present the model, its spatial discretization and we recall
he convergence result for the semi-discrete scheme. Section 3 is devoted to the deduction of the fully spectral discretization of
he model and provide a rigorous proof of its convergence to a weak solution to the proposed nonlocal Richards’ model. Section 4
rovides some numerical simulations and finally Section 5 concludes the paper.

. A nonlocal formulation of Richards’ equation based on peridynamics

We consider the following peridynamic formulation of Richards’ equation with Dirichlet boundary conditions proposed in [20]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜃
𝜕𝑡 (𝑧, 𝑡) = ∫𝐵𝛿 (𝑧)

𝜑(𝑧′−𝑧)
|𝑧′−𝑧|

𝐾(𝑧)+𝐾(𝑧′)
2 [𝐻(𝑧′) −𝐻(𝑧)] d𝑧′ + 𝑆(𝑧), 𝑧 ∈ (−1, 1), 𝑡 ∈ (0, 𝑇 )

𝜃(𝑧, 0) = 𝜃0(𝑧), 𝑧 ∈ (−1, 1),
𝜃(−1, 𝑡) = 𝜃0(𝑡), 𝑡 ∈ (0, 𝑇 ),
𝜃(1, 𝑡) = 𝜃𝑍 (𝑡), 𝑡 ∈ (0, 𝑇 ),

(2.1)

where 𝜃 represents the water content, 𝐾 is the hydraulic conductivity function, 𝐻 is the hydraulic potential, which is related to the
matric head ℎ𝑚 by 𝐻(𝑧, 𝑡) = ℎ𝑚(𝑧, 𝑡) + 𝑧, and, finally, 𝑆 is the root uptake term.

Let also

 (𝜃(𝑧, 𝑡)) = ∫𝐵𝛿 (𝑧)
𝜑(𝑧′ − 𝑧)
|𝑧′ − 𝑧|

𝐾(𝑧) +𝐾(𝑧′)
2

[𝐻(𝑧′) −𝐻(𝑧)] d𝑧′ (2.2)

denote the peridynamic integral operator in (2.1). It represents the nonlocal counterpart of the diffusivity term, as it takes into
account long-range interactions between water particles (see [31,37]). The length of such interactions is parameterized by the
positive scalar value 𝛿 called horizon. Due to the absence of partial spatial derivatives, the model is able to remain consistent even
in presence of singularities and, therefore, it can incorporate desiccation cracks. Additionally, the function 𝜑 is the so-called influence
function and represents the convolution kernel of the model, which operates as the weight of the discrete mean value of the spatial
interactions.

The behavior of this function strongly defines the profile of the solution and its dispersive effects. In particular, in [7], in order
to allow the boundary conditions to be effective in the model, the authors define a distributed influence function in the following way
(see Fig. 1)

𝜑𝛿(𝑧) ∶=

{

|𝑧|−1+𝛿
𝛿 , |𝑧| ≥ 1 − 𝛿,

0, |𝑧| < 1 − 𝛿.
(2.3)

Due to the nonlinearity of the model, a numerical approach is needed in order to study the properties of the solution. In particular,
n [7] the model is discretized by using Chebyshev spectral collocation scheme for spatial discretization with forward Euler method
or the time marching. Moreover, the authors prove the convergence of the semi-discrete method by projecting the approximated
olution into the space of Chebyshev polynomials and exploiting the Lipschitz continuity of the peridynamic operator  in (2.2).

Additionally, the authors show numerically the convergence of the fully-discrete scheme without providing a rigorous proof.
he aim of this work is to complete the analysis adding the proof of the convergence of the fully-discrete scheme showing the
ompactness and stability properties of the approximated solution.

In what follows, we recall the construction of the spectral method for the spatial discretization and its convergence. We refer
he reader to [7] for more details. Moreover, we provide a brief review of the functional spaces and of the projection operator we
ill use in the next section to prove the convergence of the fully-discrete method.

Let 𝑁 > 0, and 𝑧ℎ ∶= cos(ℎ𝜋∕𝑁), for ℎ = 0,… , 𝑁 be a partition of the spatial domain [−1, 1] obtained by using the non-uniform
Chebyshev–Gauss–Lobatto (CGL) collocation points.
220
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Fig. 1. The distributed influence function 𝜑𝛿 (𝑧).

emark 2.1. The choice to take [−1, 1] as spatial domain is to simplify the computations; however, more general intervals can be
onsidered by applying an affine transformation.

We look for an approximation of the solution to (2.1) in the following form

𝜃𝑁 (𝑧, 𝑡) =
𝑁
∑

𝑘=0
�̄�𝑘(𝑡)𝑇𝑘(𝑧), (2.4)

where 𝑇𝑘(𝑧) is the 𝑘th Chebyshev polynomial of the first kind, defined as 𝑇𝑘(𝑧) ∶= cos(𝑘 arccos 𝑧), which is an orthogonal polynomial
ith respect to the weight 𝑤(𝑧) =

(
√

1 − 𝑧2
)−1

, and �̄�𝑘(𝑡) is the 𝑘th discrete Chebyshev coefficient given by

�̄�𝑘(𝑡) ∶=
1
𝛾𝑘

𝑁
∑

ℎ=0
𝜃(𝑧ℎ, 𝑡)𝑇𝑘(𝑧ℎ)𝑤ℎ, (2.5)

where

𝛾𝑘 ∶=

{

𝜋, 𝑘 = 0, 𝑁,
𝜋
2 , 𝑘 = 1,… , 𝑁 − 1,

(2.6)

nd

𝑤ℎ ∶=

{

𝜋
2𝑁 , ℎ = 0, 𝑁,
𝜋
𝑁 , ℎ = 1,… , 𝑁 − 1.

(2.7)

We set

𝛬(𝑧) ∶= 𝐾(𝑧)𝐻(𝑧),

𝜑𝛿(𝑧) ∶=
𝜑𝛿(𝑧)
|𝑧|

,

nd

𝛽 = ∫

1

−1
𝜑𝛿(𝑧) d𝑧 = 2

(

1 + 1 − 𝛿
𝛿

ln(1 − 𝛿)
)

.

If we replace 𝜃 by 𝜃𝑁 into Eq. (2.1), thanks to the Convolution Theorem, we obtain the semi-discretization of the model at each
collocation point 𝑧ℎ as follows

𝜕𝜃𝑁

𝜕𝑡
(𝑧ℎ, 𝑡) =

1
2
(

−1 (
(

𝜑𝛿
)

 (𝛬)
)

(𝑧ℎ) +𝐾(𝑧ℎ) −1 (
(

𝜑𝛿
)

 (𝐻)
)

(𝑧ℎ)
)

− 1
2
(

𝐻(𝑧ℎ) −1 (
(

𝜑𝛿
)

 (𝐾)
)

(𝑧ℎ) + 𝛽𝛬(𝑧ℎ)
)

+ 𝑆(𝑧ℎ),
(2.8)

with initial condition

𝜃𝑁 (𝑧ℎ, 0) = 𝜃0,𝑁 (𝑧ℎ), ℎ = 0,… , 𝑁, (2.9)

and boundary conditions

𝜃𝑁 (𝑧0, 𝑡) = 𝜃𝑁0 (𝑡), 𝑡 ∈ [0, 𝑇 ],
𝑁 𝑁 (2.10)
221
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where  and −1 denote the discrete Chebyshev transform and the discrete inverse Chebyshev transform defined in (2.5) and (2.4),
respectively.

In [7], the authors prove the convergence of the semi-discrete scheme (2.8)–(2.9)–(2.10) in the space of all continuous functions
n the weighted Sobolev space 𝐻𝑠

𝑤 ([−1, 1]), with 𝑤(𝑧) =
(
√

1 − 𝑧2
)−1

and for any 𝑠 ≥ 1. The proof makes use of the projector
perator into the orthogonal space of Chebyshev polynomials and exploits the Lipschitz boundedness of 𝐻 and 𝐾.

We introduce the space of Chebyshev polynomials of degree 𝑁 , defined as

𝑆𝑁 = span
{

𝑇𝑘(𝑧) | 0 ≤ 𝑘 ≤ 𝑁
}

⊂ 𝐿2
𝑤([−1, 1]),

nd the orthogonal projection operator 𝑃𝑁 ∶ 𝐿2
𝑤([−1, 1]) → 𝑆𝑁 given by

𝑃𝑁𝑢(𝑧) =
𝑁
∑

𝑘=0
�̄�𝑘𝑇𝑘(𝑥)𝑤𝑘,

here the weight 𝑤𝑘 is defined in (2.7) and is such that for any 𝑢 ∈ 𝐿2
𝑤([−1, 1]), the following equality holds

(𝑢 − 𝑃𝑁𝑢, 𝜑)𝑤 = ∫

1

−1

(

𝑢 − 𝑃𝑁𝑢
)

𝜑 𝑤 d𝑧 = 0, for every 𝜑 ∈ 𝑆𝑁 . (2.11)

Then, using (2.2), the semi-discrete scheme for (2.8)–(2.9)–(2.10) can be reformulated in terms of 𝑃𝑁 as follows

𝜕𝜃𝑁

𝜕𝑡
(𝑧, 𝑡) = 𝑃𝑁

(

𝜃𝑁 (𝑧, 𝑡)
)

+ 𝑃𝑁𝑆(𝑧), (2.12)

𝜃𝑁 (𝑧, 0) = 𝑃𝑁𝜃
0(𝑧), (2.13)

with boundary conditions

𝜃𝑁 (−1, 𝑡) = 𝑃𝑁𝜃0(𝑡), 𝑡 ∈ [0, 𝑇 ]

𝜃𝑁 (1, 𝑡) = 𝑃𝑁𝜃𝑍 (𝑡), 𝑡 ∈ [0, 𝑇 ],
(2.14)

where 𝜃𝑁 (𝑧, 𝑡) ∈ 𝑆𝑁 for every 0 ≤ 𝑡 ≤ 𝑇 .
We fix 𝑠 ≥ 1 and define by 𝑋𝑠 ∶= 0 (0, 𝑇 ;𝐻𝑠

𝑤 ([−1, 1])
)

the space of all continuous functions in the weighted Sobolev space
𝐻𝑠
𝑤 ([−1, 1]), with norm

‖𝑢‖2𝑋𝑠 = max
𝑡∈[0,𝑇 ]

‖𝑢(⋅, 𝑡)‖2𝑠,𝑤 ,

for any 𝑇 > 0.
From now on, we denote by 𝐶 a generic positive constant independent on 𝑁 . There hold the following results.

Lemma 2.2 ([11, Theorem 3.1]). For any real 0 ≤ 𝜇 ≤ 𝑠, there exists a positive constant 𝐶 such that

‖

‖

𝜃 − 𝑃𝑁𝜃‖‖𝐻𝜇
𝑤([−1,1])

≤ 𝐶
𝑁𝑠−𝜇 ‖𝜃‖𝐻𝑠

𝑤([−1,1]) , for every 𝜃 ∈ 𝐻𝑠
𝑤([−1, 1]). (2.15)

heorem 2.3 ([7, Theorem 4]). Let 𝑠 ≥ 1 and 𝜃(𝑧, 𝑡) ∈ 𝑋𝑠 be the solution to the initial–boundary-valued problem (2.1) and 𝜃𝑁 (𝑧, 𝑡) be
he solution to the semi-discrete scheme (2.12)–(2.13)–(2.14). Then, there exists a positive constant 𝐶, independent on 𝑁 , such that

‖

‖

‖

𝜃 − 𝜃𝑁‖

‖

‖𝑋1
≤ 𝐶(𝑇 )

( 1
𝑁

)𝑠−1
‖𝜃‖𝑋𝑠 , (2.16)

or any initial data 𝜃0 ∈ 𝐻𝑠
𝑤([−1, 1]) and for any 𝑇 > 0.

. Fully spectral discretization of the model

Let 𝑁𝑇 > 0 be a positive integer and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁𝑇 = 𝑇 be a uniform partition of [0, 𝑇 ], namely, if we set 𝛥𝑡 = 𝑇 ∕𝑁𝑇 ,
then 𝑡𝑛 = 𝑛𝛥𝑡, for 𝑛 = 0, 1,… , 𝑁𝑇 . The assumption on the time partition to be uniform is not necessary, indeed, the results can be
extended to the case of a non-uniform mesh by considering different time step on each time sub-interval. However, to simplify the
notation, we develop the treatment in the simplest case. Given an arbitrary function 𝜓(𝑡), we write 𝜓𝑛 as the value of 𝜓 at 𝑡 = 𝑛𝛥𝑡.
The backward difference form is 𝑑𝑡𝜓𝑛 =

(

𝜓𝑛 − 𝜓𝑛−1
)

∕𝛥𝑡 for any sequence {𝜓𝑛}.
We assume that 𝑆 ∈ 𝐿2

𝑤 ([−1, 1]) and that the initial condition 𝜃𝑁0 ∈ 𝐻1
𝑤 ([−1, 1]) is such that

‖

‖

‖

𝜃0 − 𝜃𝑁0
‖

‖

‖𝐿2
𝑤([−1,1])

≤ 𝐶
𝑁2−𝜇

‖

‖

‖

𝜃0‖‖
‖𝐿2

𝑤([−1,1])
, for any 0 ≤ 𝜇 ≤ 2. (3.1)

hus, the fully-discrete spectral scheme for the model can be written as
{

𝜃𝑁𝑛 = 𝜃𝑁𝑛−1 + 𝛥𝑡
(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

+ 𝑃𝑁𝑆
)

,
𝜃𝑁0 = 𝑃𝑁𝜃00 .

(3.2)

In this section, we prove the existence and uniqueness of the solution to (3.2) and that such solution converges to the solution
f the continuous model (2.1) as 𝛥𝑡 → 0 and 𝑁 → ∞. To do so, we prove some preliminary Lemmas.
222
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Lemma 3.1 (See [19]). Let 𝜃 be a strong solution to (2.1) for 𝑡 ∈ [0, 𝑇 ]. Then

𝜃(𝑧, 𝑡) ≤ 𝑒𝑡∕2 ‖𝑆‖𝐿2
𝑤([−1,1])

+ max

{

sup
𝑧∈(−1,1)

𝜃0, sup
𝑡∈(0,𝑇 ]

𝜃0(𝑡), sup
𝑡∈(0,𝑇 ]

𝜃𝑍 (𝑡)

}

, (3.3)

or any 𝑧 ∈ [−1, 1] and 𝑡 ∈ [0, 𝑇 ].

As a consequence of Lemma 3.1 we can assume that the water content 𝜃 in (2.1) is uniformly bounded.

Lemma 3.2. Let 𝜃𝑁𝑚 (𝑧) be the solution to the fully-discrete scheme (3.2). Then, (𝜃𝑁𝑚 ) ∈ 𝐿2
𝑤([−1, 1]).

Proof. Due to the definition of 𝜑𝛿 in (2.3) and since 𝐻 and 𝐾 are locally Lipschitz, using the Cauchy-Schwartz inequality, we find

∫

1

−1

(

(𝜃𝑁𝑚 )
)2 d𝑧 = ∫𝐵1(𝑧)

(

𝜑𝛿(𝑧′ − 𝑧)
)2

‖𝑧′ − 𝑧‖2

(

𝐾(𝑧) +𝐾(𝑧′)
)2

4
(

𝐻(𝑧′) −𝐻(𝑧)
)2 d𝑉𝑧′ < ∞,

nd this proves the claim. □

We prove the following stability property.

emma 3.3. Let 𝜃𝑁𝑚 be the numerical solution of (3.2) for every 1 ≤ 𝑚 ≤ 𝑁𝑇 , then 𝜃𝑁𝑚 satisfies the following stability estimate
𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ ‖

‖

‖

𝜃𝑁𝑚
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ 𝛥𝑡
𝑚
∑

𝑛=1

‖

‖

‖


(

𝜃𝑁𝑛−1
)

‖

‖

‖

2

𝐿2
𝑤([−1,1])

≤ 𝐶0, (3.4)

here 𝐶0 is a generic positive constant depending on 𝜃0 and 𝑆.

roof. Let 𝜑𝑁𝑛 = 2𝜃𝑁𝑛 . We consider the inner product with 𝜑𝑁𝑛 in (3.2):

2
𝛥𝑡

(

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1, 𝜃
𝑁
𝑛
)

= 2
(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

, 𝜃𝑁𝑛
)

+ 2
(

𝑃𝑁𝑆, 𝜃
𝑁
𝑛
)

. (3.5)

ince 2 (𝑎 − 𝑏, 𝑎) = 𝑎2 − 𝑏2 + (𝑎 − 𝑏)2, we have
‖

‖

‖

𝜃𝑁𝑛
‖

‖

‖

2

𝐿2
𝑤([−1,1])

− ‖

‖

‖

𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ ‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

= 2𝛥𝑡
(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

, 𝜃𝑁𝑛
)

+ 2𝛥𝑡
(

𝑃𝑁𝑆, 𝜃
𝑁
𝑛
)

.

dding over 𝑛 = 1… , 𝑚, and using Cauchy inequality, Lemmas 3.2 and 2.2, we find

‖

‖

‖

𝜃𝑁𝑚
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+
𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

= ‖

‖

‖

𝜃𝑁0
‖

‖

‖𝐿2
𝑤([−1,1])

+ 2𝛥𝑡
𝑚
∑

𝑛=1

(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

, 𝜃𝑁𝑛
)

+ 2𝛥𝑡
𝑚
∑

𝑛=1

(

𝑃𝑁𝑆, 𝜃
𝑁
𝑛
)

≤ ‖

‖

‖

𝜃𝑁0
‖

‖

‖𝐿2
𝑤([−1,1])

+ 2𝛥𝑡 ‖
‖

𝑃𝑁𝑆‖‖
2
𝐿2
𝑤([−1,1])

𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ 2𝛥𝑡
𝑚
∑

𝑛=1

‖

‖

‖

𝑃𝑁
(

𝜃𝑁𝑛−1
)

− 
(

𝜃𝑁𝑛−1
)

‖

‖

‖

2

𝐿2
𝑤([−1,1])

‖

‖

‖

𝜃𝑁𝑛
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ 2𝛥𝑡
𝑚
∑

𝑛=1

‖

‖

‖


(

𝜃𝑁𝑛−1
)

‖

‖

‖

2

𝐿2
𝑤([−1,1])

‖

‖

‖

𝜃𝑁𝑛
‖

‖

‖

2

𝐿2
𝑤([−1,1])

≤ ‖

‖

‖

𝜃𝑁0
‖

‖

‖

2

𝐿2
𝑤([−1,1])

+ 2𝛥𝑡
( 𝐶
𝑁

+ 1
)

≤ 𝐶0,

(3.6)

hat proves the claim. □

emma 3.4. If 𝜃𝑁𝑛 satisfies the stability condition of Lemma 3.3, then it is the unique solution to the weak formulation (3.2).

roof. For any 𝜑𝑁 ∈ 𝑆𝑁 , considering the inner product with 𝜑𝑁 in (3.2), we have
1
𝛥𝑡

(

𝜃𝑁𝑛 , 𝜑
𝑁)

=
(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

, 𝜑𝑁
)

+
(

𝑃𝑁𝑆,𝜑
𝑁)

+ 1
𝛥𝑡

(

𝜃𝑁𝑛−1, 𝜑
𝑁)

. (3.7)

et us define the bilinear form

𝐺
(

𝜃𝑁𝑛 , 𝜑
𝑁)

∶= 1
𝛥𝑡

(

𝜃𝑁𝑛 , 𝜑
𝑁)

−
(

𝑃𝑁
(

𝜃𝑁𝑛−1
)

, 𝜑𝑁
)

. (3.8)

t is continuous and coercive thanks to the orthogonality of 𝑃𝑁 and Lemma 3.2. Therefore, the solution attained for problem (3.7)
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We introduce now some interpolated functions. Let 𝜃𝑁𝛥𝑡 (⋅, 𝑡) be the piecewise linear continuous interpolation of the solution 𝜃𝑁𝑛 ,
𝑛 = 1,… , 𝑁 on the time interval (𝑡𝑛−1, 𝑡𝑛], namely

𝜃𝑁𝑛 (⋅, 𝑡) =
𝑡 − 𝑡𝑛−1
𝛥𝑡

𝜃𝑁𝑛 (⋅, 𝑡) +
𝑡𝑛 − 𝑡
𝛥𝑡

𝜃𝑁𝑛−1. (3.9)

oreover, we define the piecewise constant extensions of 𝜃𝑁𝑛 and 𝜃𝑁𝑛−1 respectively as follows

𝜃𝑁𝛥𝑡 (⋅, 𝑡) = 𝜃𝑁𝑛 ,

�̂�𝑁𝛥𝑡 (⋅, 𝑡) = 𝜃𝑁𝑛−1,
(3.10)

or any 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛].
The next result is an a-priori stability estimate on 𝜃𝑁𝛥𝑡 , independent on 𝑁 and 𝛥𝑡.

emma 3.5. Given the sequence {𝜃𝑁𝛥𝑡}, there exists a positive constant 𝐶 > 0 independent on 𝑁 and 𝛥𝑡 such that

‖

‖

‖

𝜕𝑡𝜃
𝑁
𝛥𝑡
‖

‖

‖𝐿2
(

0,𝑇 ;𝐿2
𝑤([−1,1])

) ≤ 𝐶. (3.11)

roof. Cauchy inequality gives us

∫

𝑇

0 ∫

1

−1

|

|

|

𝜕𝑡𝜃
𝑁
𝛥𝑡𝜑

𝑁 |

|

|

d𝑧 d𝑡 = ∫

𝑇

0 ∫

1

−1

|

|

|

𝑃𝑁
(

𝜃𝑁𝛥𝑡
)

+ 𝑃𝑁𝑆
|

|

|

|

|

|

𝜑𝑁 |

|

|

d𝑧 d𝑡

≤ 1
2 ∫

𝑇

0 ∫ −11
(

𝑃𝑁
(

𝜃𝑁𝛥𝑡
))2 (𝜑𝑁

)2 d𝑧 d𝑡

+ 1
2 ∫

𝑇

0 ∫

1

−1

(

𝑃𝑁𝑆
)2 (𝜑𝑁

)2 .

he claim is proved. □

Now we can prove the convergence result for the fully-discrete solution.

heorem 3.6. There exists a function 𝜃 ∈ 𝐿2 (0, 𝑇 ;𝐿2
𝑤 ([−1, 1])

)

such that, as 𝑁 → ∞ and 𝛥𝑡 → 0, there hold

𝜃𝑁𝛥𝑡 , �̂�
𝑁
𝛥𝑡 , 𝜃

𝑁
𝛥𝑡 ⇀ 𝜃 weakly in 𝐿2 (0, 𝑇 ;𝐿2

𝑤 ([−1, 1])
)

,

𝜕𝑡𝜃
𝑁
𝛥𝑡 ⇀ 𝜕𝑡𝜃 weakly in 𝐿2 (0, 𝑇 ;𝐿2

𝑤 ([−1, 1])
)

,

𝜃𝑁𝛥𝑡 , �̂�
𝑁
𝛥𝑡 , 𝜃

𝑁
𝛥𝑡 → 𝜃 in 𝐿2 (0, 𝑇 ;𝐿𝑞𝑤 ([−1, 1])

)

,

(3.12)

with 1 ≤ 𝑞 ≤ 2.

Proof. Lemma 3.3 ensures that the sequences {𝜃𝑁𝛥𝑡}, {�̂�
𝑁
𝛥𝑡} and {𝜃𝑁𝛥𝑡} are bounded and, as a consequence, each of them admits a

weak convergent subsequence.
We prove now that these sequences (still denoted by the same way to lighten the notation) converge to the same limit 𝜃. Indeed,

using the interpolation inequality, Cauchy inequality and Lemma 3.3 we obtain

‖

‖

‖

𝜃𝑁𝛥𝑡 − 𝜃
𝑁
𝛥𝑡
‖

‖

‖

2

𝐿2(0,𝑇 ;𝐿𝑞𝑤([−1,1]))
≤ 𝛥𝑡

𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿𝑞𝑤([−1,1])

≤ 𝛥𝑡
𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2𝛼

𝐿1
𝑤([−1,1])

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2−2𝛼

𝐿2
𝑤([−1,1])

≤ 𝐶 (𝛥𝑡)𝛼
( 𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

)𝛼

(

𝛥𝑡
𝑚
∑

𝑛=1

‖

‖

‖

𝜃𝑁𝑛 − 𝜃𝑁𝑛−1
‖

‖

‖

2

𝐿2
𝑤([−1,1])

)1−𝛼

𝛥𝑡→0
⟶ 0,

here 𝛼 = 2−𝑞
𝑞 . Similarly, we find

‖

‖

‖

𝜃𝑁𝛥𝑡 − �̂�
𝑁
𝛥𝑡
‖

‖

‖

2

𝐿2(0,𝑇 ;𝐿𝑞𝑤([−1,1]))
𝛥𝑡→0
⟶ 0.

2 ( 𝑞 [−1, 1]
)

thanks to Aubin–Lions Lemma and Lemma 3.5. □
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Finally, these convergences are strong in 𝐿 0, 𝑇 ;𝐿𝑤 ( )
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Fig. 2. With reference to Example 4.1, the profile of the soil moisture for different time values. The parameters of the simulations are 𝑁 = 100, 𝛥𝑡 = 0.06 s and
𝛿 = 0.15.

4. Numerical simulations

In this section we test our proposed method on different soils with different initial conditions: in Example 4.1 we use a function
with a discontinuity in its first derivative; in Example 4.2 we use a periodic function. Moreover, in both cases a sink forcing term
𝑆(𝑧) is active as in (2.1), representing the water uptake due to root systems.

Also, we consider the classical Van Genuchten–Mualem constitutive relations in the unsaturated zone, given by

𝜃
(

ℎ𝑚
)

= 𝜃𝑟 +
𝜃𝑆 − 𝜃𝑟

(

1 + |𝛼ℎ𝑚|
𝑛)𝑚

, 𝑚 ∶= 1 − 1
𝑛
,

𝐾(ℎ𝑚) = 𝐾𝑆

[

1
1 + |𝛼ℎ𝑚|

𝑛

]
𝑚
2
[

1 −
(

1 − 1
1 + |𝛼ℎ𝑚|

𝑛

)𝑚]2

,

where 𝜃𝑟 and 𝜃𝑆 represent the residual and the saturated water content, respectively, 𝐾𝑆 the saturated hydraulic conductivity, and
𝛼, 𝑛 are fitting parameters. Moreover, according to Remark 2.1, we perform our simulations in the spatial domain [0, 𝑍].

In the next example, we show the convergence rates, both spatial and temporal, to support our theoretical results. As for spatial
convergence rates, we vary the total number of collocation points used for spatial discretization and the time steps. We fix the
evaluation time and collocation points, and calculate the discrete relative 𝐿2-error as

𝐸𝑡
𝐿2 =

∑𝑁
ℎ=0

|

|

𝜃𝑁 (𝑧ℎ, 𝑡) − 𝜃∗(𝑧ℎ, 𝑡)||
2

∑𝑁
ℎ=0

|

|

𝜃𝑁 (𝑧ℎ, 𝑡)||
2

, (4.1)

where 𝜃∗(𝑥, 𝑡) denotes the reference solution obtained by our method using a finer spatial mesh. Analogously, and with a similar
corresponding notation, for the temporal convergence rates we fix the total depth and collocation times, and then calculate the
discrete relative 𝐿2-error as

𝐸𝑧
𝐿2 =

∑𝑁𝑇
𝑘=0

|

|

𝜃𝑁 (𝑧, 𝑡𝑘) − 𝜃∗(𝑧, 𝑡𝑘)||
2

∑𝑁𝑇
𝑘=0

|

|

𝜃𝑁 (𝑧, 𝑡𝑘)||
2

. (4.2)

Example 4.1.
As in [6,17], we consider a sand with parameters

𝜃𝑟 = 0.075, 𝜃𝑆 = 0.287, 𝛼 = 0.036, 𝑛 = 1.56, 𝐾𝑆 = 0.00094 cm/s.

We added a sink term 𝑆 = −700 s−1 and parameter 𝛿 = 0.15 in (2.3). We set our initial and boundary conditions as follows

𝜃(0, 𝑡) = 0.2234
(

1 − 𝑡
𝑇

)

+ 0.1810 𝑡
𝑇
, 𝑡 ∈ [0, 𝑇 ],

𝜃(𝑍, 𝑡) = 0.1386
(

1 − 𝑡
𝑇

)

+ 0.1174 𝑡
𝑇
, 𝑡 ∈ [0, 𝑇 ],
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Table 1
Numerical orders of spatial convergence of the scheme with
respect to the total number of collocation points relative to
Example 4.1. The parameters for the simulation are 𝑡 = 60 s
and 𝛥𝑡 = 0.06 s.
𝑁 𝐸𝑡

𝐿2 Convergence rate

100 9.688 × 10−5 –
200 2.2514 × 10−5 2.1024
400 4.8904 × 10−6 2.1526
800 8.9711 × 10−7 2.2458

1600 9.9614 × 10−8 2.4495

Table 2
Numerical orders of temporal convergence of the scheme with
respect to the total number of collocation points relative to
Example 4.1. The parameters for the simulation are 𝑍 = 30 cm
and 𝛥𝑧 = 0.15 cm.
𝛥𝑡 𝐸𝑧

𝐿2 Convergence rate

0.2 5.7108 × 10−5 –
0.1 2.8565 × 10−5 0.99946
0.05 1.4285 × 10−5 0.99961
0.025 7.1422 × 10−6 0.99975
0.0125 3.5701 × 10−6 0.99991

while initial condition is defined as

𝜃(𝑧, 0) =

{

0.1386 + 0.0594(𝑥 + 1), 𝑥 ∈ [−1, 0],
0.2234 + 0.0254(𝑥 − 1), 𝑥 ∈ [0, 1],

𝑥 ∶= 𝑍 − 2𝑧
𝑍

, 𝑧 ∈ [0, 𝑍],

showing a discontinuity in the first derivative at 𝑧 = 𝑍
2 .

We select 𝑍 = 30 cm, 𝑇 = 60 s; moreover, we used 𝛥𝑡 = 0.06 s and 𝑁 = 100. Results are shown in Fig. 2. We can observe that
the nonlocal formulation of the model is able to capture the classical profile of the solution to Richards model.

In Table 1, we list the discrete relative 𝐿2-errors and the convergence rates, evaluated according to (4.1), with respect to the
total number of meshpoints used to discretize in space and by fixing the time step. While, Table 2 depicts the convergence analysis
made with respect to the time variable. In both cases, the results are in agreement with our theoretical results.

Example 4.2.
As in [18], we consider a Hills Berino loamy fine sand with parameters

𝜃𝑟 = 0.0286, 𝜃𝑆 = 0.3658, 𝛼 = 0.028, 𝑛 = 2.2390, 𝐾𝑆 = 0.0063 cm/s.

We added a sink term 𝑆 = −1000 s−1 and parameter 𝛿 = 0.15 in (2.3). We set our initial and boundary conditions as follows

𝜃(0, 𝑡) = 0.2646
(

1 − 𝑡
𝑇

)

+ 0.1972 𝑡
𝑇
, 𝑡 ∈ [0, 𝑇 ],

𝜃(𝑍, 𝑡) = 0.1298
(

1 − 𝑡
𝑇

)

+ 0.0960 𝑡
𝑇
, 𝑡 ∈ [0, 𝑇 ],

while initial condition is defined as the periodic function

𝜃(𝑧, 0) = −0.0674 cos
(𝑥 + 1

2
𝜋
)

+ 0.1972, 𝑥 ∶= 𝑍 − 2𝑧
𝑍

, 𝑧 ∈ [0, 𝑍],

We select 𝑍 = 30 cm, 𝑇 = 60 s; moreover, we used 𝛥𝑡 = 0.06 s and 𝑁 = 100. Results are shown in Fig. 3. Even in this case we can
observe the typical profile of the solutions to Richards model.

5. Conclusions

We have studied a fully-discrete spectral scheme for a nonlocal formulation of Richards’ equation based on the peridynamic
theory. We prove the convergence of the method to the unique weak solution to the problem as the timestep size tends to zero and
the total number of collocation points used for the discretization of the spatial domain goes to infinity. The proof is based on the
fact that the numerical approximation of the solution satisfies the stability and the compactness properties. Finally, we have given
some simulations to show a numerical verification of the existence of weak solution to our model.

The present work suggests several possible directions for future and already ongoing research studies. In particular, it would
be of interest study the convergence of the scheme when we reduce the regularity of the initial conditions to a Radon measure
(see for instance [25]). Moreover, we plan to construct a generalization of the model to 2D in order to represent and to study the
evolution of desiccation cracks implicitly incorporated into the model. To do this, in order to avoid the Gibbs’ phenomenon near
discontinuities, we would investigate the implementation of a filtering strategy coupled with the Chebyshev spectral discretization
226
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Fig. 3. With reference to Example 4.2, the profile of the soil moisture for different time values. The parameters of the simulations are 𝑁 = 100, 𝛥𝑡 = 0.06 s and
𝛿 = 0.15.
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