%%%x ﬁ@rﬁ?". { J@iﬁ‘{‘“@f@ fm

A Study for Inter-Node Communication in 2¥5-22
Functionally Distributed Systems

A. Fantechi, S. Gnesi, N. Lijtmaer

Istituto di Elaborazione dell'informazione
Via 5. Maria 46
Pisa - ltaly

ABSTRACT

This work has been developed on the basis of a previous work made
inside a project for a functionally distributed system (Cnet), in which an
inter-node communication mechanisms was defined in terms of Ada™
packages. This paper gives a more general framework of properties for
desired cormunication schemes.

Some design issues such as the use of formal verification techniques
and the integration of the communication mechanism in an high level
language are then discussed.

™ Ada is a registered trademark of the U. S. Government, Ada Joint
Program Office.

This work has been supported by the Consiglio Nazionale delle
Ricerche (Italian National Reserch Council).

i. INTRODUCTION

Functionally distributed systems can be viewed as a collection of
heterogeneous computer nodes, providing several capabilities and sizes,
that are connected by means of & communication network [Liskov 85 1.

Key aspects of this approach are node autonomy and inter node
cooperation. The main consequence of the assumption of autonomy is that
the programmer, not the system, must control where programs and data
reside.

The system may not breach the autonomy of a node by moving
processing to it for purposes of load sharing.

Although the system provides the maximum autonomy, this approach
does not coincide with the protocol based network systems (layered)
approach because coherence and cooperation among nodes give still a unique
but distributed view of an operating system.

The operating system must provide to the user mechanisms for
inter-node communication, configuration and fauit-tolerance.

A natural way to provide these mechanisms to the user is to include
them in a system language.

A project based on this approach is the Cnet project (inside the
Computer Science Program of the CNR, the Italian National Research
Council), aimed at implementing a distributed system on a high bandwidth
local network along with its distributed operating system and software
development environment [Cnet 851 The hosts are heterogeneous computers,
while logical homogeinity is obtained through the unigue high level language
acting as the system language as well as the application language. Ada has
been chosen as the system language, and linguistic extensions have been
proposed using the abstraction faciiities of Ada to cope with inter-node
communication, configuration and fault-tolerance.

in this paper, we want to extend the principles behind the definition
of the Cnet Inter-Node Communication Mechanism to a wider framework in
which the properties of more general mechanisms are given as an aid for
their design and implementation, and other design issues are discussed.

The environment in which the communication mechanisms are defined
remains adnerent to the one of the Cnet Distributed System.

Hence, the following basic characteristics remain fixed:

1} the distributed system is seen at the high language level as a
collection of (virtual) nodes. The following communication
mechanisms abstract the physical network;

2) asynchronous communications with decentralized control, are
used, in which no single entity can have complete knowledge of the
entire state of the system, asynchronous communications are
typical of a local network;

3) an indirect message passing scheme is adopted, which uses ports in
order to achieve modularity and a reduced run-time overhead on the
passing of a single value. The ports are passive objects of two
kinds:

i) input ports: a node can create an input port, through which it
can receive messages. The visibility of the input port in the network
is given by a unique port name. The establishment of such unique
name must be made in agreement with the visibility naming rules of
the high level language chosen;

i1) output ports: an output port can be considered as an interface
towards an input port belonging to another node; this interfacing is
achieved by connecting an output port on a node to an inpul port on
another node via the unigue name of the latier;

4) the ports can have an associated type, so allowing the exchange of
typed messages, and extending the type checking rules of the high
level language chosen to the communication over the network.

The next section gives some formal properties of four communication
schemes defined according to the previous characteristics. Such properties
are shown to be useful as an aid to the design and implementation of the
communication mechanisms.

The third section discusses some other important issues on the
design of the communication mechanisms in an existing high level
programming language.

2. COMMUNICATION PROPERTIES

In this chapter we give some basic communication schemes,
characterizing them with formally defined properties. It is then shown that
such properties are useful in the design of the communication mechanisms.

2.1 Communication Schemes

As we have said in the previous section the distributed system is seen
as a collection of (virtual) nodes. We consider four possible primitive
communication schemes for the communication between virtual nodes.
communication mechanisms follow the basic characteristics skeiched in the
previous section.

i) point to point scheme allows the exchange of messages of the
same type through typed ports. The scheme must be open to cover
either the case of two cooperating nodes or the client-server case.
Message types might exhibit a complex user defined structure;

ii) broadcast scheme allows the rapid dissemination of information
and guarantees delivery of a message to all nodes faced on the
network. The broadcast facility is an abstraction of the underlying
network. The broadcast scheme is used for several reasons: control
messages, initialization channels and messages, network fault
messages, mailing messages elc. Messages are to be sent to all
nodes and there must be minimum assumption about the type of the
message;

iii) multicast scheme, sawn as point to multipoint communication,
permits a subset of the virtual nodes {o receive messages of the
same type. The multicast service is an abstraction of a
multi-channel communication. As in point to point scheme, message
types might exhibit a complex user defined structure;

iv) typed broadcast scheme allows the exchange of messages of the
same type but using a broadcast scheme: the message is spread to
all virtual nodes accepting messages of that type. The sender needs
not to have any knowledge about the receiver nodes.

2.2 Sets of destinations

in the following we give formally the properties of the
communication schemes above using some of the concepts presented in
[Schneider 82].

First, we give for each communication scheme the set-of nodes that
receive a certain message. The sets are denoted by M, where x is in

{p,b,m,t} and denctes the communication scheme, with the parameters
needed for the definition of the set.

Nodes are seen as sets of input ports; the nodes have two possible
states: aclive and failed. A node is active when it has a normal activity
in the nefwork. A node is failed if this interrupts its execution and all
belonging information to the node are lost. A predicate FAILED is defined to
say whether a node is active or not.

Notice that in the following we are concerned only about the very
communication, without boring of the preliminary actions needed as the
connection between input and output ports (mentioned previously in the
basic characteristics). Such connection merely introduces a level of
indirectness in the denctation of an input port of another node.

i) Point to Point
My (mp)={jlp € A~ FAILED ()]

where:

i = name of the sender node

m = message

p = name of the input port to which the message is sent.
Note that the cardinality of this set is one.

ii) Broadcast

My (m)=(j1] €RV-{i}A-~FAILED(])}

and

i = name of the sender node
m = message
RV = set of all nodes in the virtual network.

iti) Multicast
A muiticast message is received by the nodes on which the input

ports specified in the message reside.
Now we can define My, (i,m,P) as:

My (mP)=(j1] eRV-[1}A-FAILED(j)A 3 p €eP,p €]}
where

i = name of the sender node
m = message

P = set of ports to which the message is sent.

iv) Typed Broadcast
To define this communication scheme we need a function T that

returns the type associated to a port.
We can define My {i,m,t)as;

M mt)={jl]j e RV-{i}A-FAILED(j)AT p €], T(p)=t]

where

i = name of the sender node
m = message
t = type of the message

2.3 Reliability Properties
in a distributed system for each communication scheme it is

important to define which is the level of the reliability of the
communication.

in general, we can observe three different levels of reliability in
communication:

iy reliable communication:
i1) reliable communication with acknowledgement;
i11) unreliable communication.

i) Each active node can always communicate, directly or indirectly
with every other active node;

i) it is the same of i) but an acknowledgement message is also sent
from the receiver to the sender, to guarantee the sender itself that
the message has been received;

ii1) there is no guarantee that a message is received by an active node.

The reliability properties can be given formally by temporal logic
formulas [Lamport 83].

Such formulas use the predicates: sent, which is true if a node has
sent a message; received, which is true if a node has received a message; ack
which is true if a node has been acknowledged a message by another node.

The formulas are given in a generic form, good for any communication
scheme; in the formulas we use m, to denote the message of the

communication scheme x (plus some possible information on the destination
of the message), and Mx is one of the sets defined previously.

i) sent {i,m,) 2V jeM, (i,m,): & received (),m,)
received (j,m,) 2 3 i: sent (,my) A je M, G,m)

The first formula means that, when sent, 2 message is eventually
received by the destinations; the second means that If a message has
Deen recelved, it has been sent by a sender.

i) sent (i,m,) 2V jeM, (im,): O received (j,m,)
received (j,m,) 2 3 i:sent (i,m) A jeM, (i,m)
v jeM, (i,m,): received (j,m,) D (ack (i,j,m,) A -~ FAILED (i)
The first and second formulas are as before; the third one means

that,if a message has been received, its sender will be eventually
acknowledged, if it is not failed in the meanwhile.

i) received (j,m,) 2 3 i:sent (i,m,) A €M, (i,m)

In the case of unreliable communication, there is no guarantee that a
message is received by the destination: so we can only say that, if a
message has been received, it has been sent by some node.

Of the three properties listed before, any can apply to any of the
communication schemes; however, we want to underiine that some are more
natural for some of the communication schemes. in particular, point-to-point
scheme, being a direct communication between nodes, should have the
reliable communication property, with or without acknowledge, while
broadcast, being closer to the underlying phisic network, should have the
reliable communication property (without acknowledge) or the unreliable
communication property. The same is for typed broadcast: in fact, as we can
see from the expression of the reliability properties, for the
acknowledgement a knowledge of all the destination nodes is needed at the
sender node, and this is not always achievable for broadcast and typed
broadcast.

2.4 Use of the Properties

The definition of the properties given before can be used in several
ways to aid the design and impiementation of the communication mechanism.
They can be useful in defining the primitives that provide the communication
facilities, expecially for deriving their parameters, and to derive the
information that need to be exchanged among nodes.

Moreover, they can be used to verify some implemeniation; the
following is an example in which a multicast communication mechanism,
with acknowledge, is implemented using the low-level communication
facilities offered by an (Ethernet-like) broadcast mechanisms.

Suppose that the low-level mechanism obeys the following properties
{broadcast, reliable communication without acknowledge):.

Mo (im)={jlJj€RV~{i] A-FAILED(})]
sentg (1,m) 2 & (received, (J,m) A jeMg (i,m))

receiveds (),m) 2 3 i senty, (1i,m) A j €M, (i,m)

Now, to implement a multicast with acknowledge, we need to give 2
sending algorithm, a receiving algorithm and a message structure based on
the tow-level facilities.

The message structure needed at the low-level to transmit a
multicast message m is the tripie <P,m,i> where P is the list of destination
ports and i is the sender node.

The receiving algorithm employs a low-level receiving, a test that a
port in the destination list is existing on that node, and the sending of an
acknowledge message; the algorithm is given in terms of relations among
predicates:

receivedy, (J,m) =313 P received, (j,<P,m,i>) A3pe€ P,pej
receivedg (J,<P,m,i>) 2 & senty, (j,<ack,i,j>)

The sending algorithm is a simple sending, plus the possibility to be
acknowledged by the destination nodes:

senty, (i,P,m) = sent,, (1,<P,m,>)

ackpy (1,],P,m) = j &My (1,P,m) A received, (i, <ack,i,j>).

what is fo show is that the predicates received,,, sent,,, and ackyy, so

defined give a correct implementation of a multicast with acknowledge, ie.
they respect the following properties:

(1) senty, (,R,M) DV &My, (1,P,m): O received,, (j,m)
(2) received,, (j;m D33P sent, (LPm) A j¢ My (,P,m)

(3) ¥ jeMy ,Pm): receivedy, (j,m) 2 < acky, (1,1,P,m) A ~ FAILED ().

The proof is the following:

senty, (1,P,m) =
= senty (1,<P,m,>)
-- for the sending algorithm
2V jeM (1,P,m,) O received, (1,¢P,m,i>)
-- for the broadcast property
DV j &My, (,P,m): & receivedy, (j,m)

-- for the receiving algorithm and
-- since My, (i,P,m) CM, (1,<P,m,1>)
Hence, (1) is proved.

receivedy, (j,m)

=31 3P received, (J,<Pm>IAIpe P,pe]
-- for the receiving algorithm
D3idPsent, (L,PmpIAdpe Ppe]

-- for the broadcast property;
=313 P:sent,, (1,P,m) A j &My, (,P,m)

-- for the sending algorithm and
-- for the definition of M., (i,P,m)

Hence, (2) is proved.

¥ j €My, (i,P,m) : O receivedy, {j,m)

DV jeMy (,P,m): & senty(j,<ack,i,j>)
-~ for the receiving algorithm

DV eMy (,P,m) vk € M(j,<ack,i,>) : O receivedg(k,<ack,i,j>)
~-- for the broadcast property

2V jeMy (1,P,m): O received, (i,<ack,i,j>) A -~ FAILED (1)
-- since 1, if not failed, befongs to My(],<ack,i,j>)

= O acky, (1,},P,m) A~ FAILED (i).

-= for the sending algorithm
Hence, (3) is proved.

The three properties are verified and the implementation scheme given
previously can be said to be correct.

summarising, the method adopted is constituted by the following
definitions: -

a) properties of the underlying communication mechanism;

b) properties of the desired communication mechanisms;

c) message structure;

d) sending algorithm;

&) receiving algorithm.

Then, a verification is made that the algorithms effectively implement
a communication scheme respecting the properties defined in b).

Note that this method can be applied for any type of communication
mechanism and any other kind of low-level communication facilities (e.g. a
ring).

3. SPECIFICATION DESIGN IN HLL

As we have said, a natural way to provide the user of a functionally
distributed system with a unique view of the distributed system is through
the use of a system high level language; this language should express
features typical of an operating system, including the communication
mechanisms themselives.

To integrate the design of the communication mechanisms in the
framework of existing programming languages, we have, as a first step, to
individuate the main components that have to be expressed in language
terms.

Whichever the linguistic constructs or linguistic abstraction
mechanisms are, the following functionalities, grouped in components, can
be identified:

1) components for communication primitives: there will be components
for input and output ports for each of the communication schemes.
in particular, these components will contain: i) send/receive
primitives, i) creation/deletion of ports (for the communication
schemes for which is needed), iii) connection of ocutput ports with

remote input ports (if needed). Due to the use of typed ports
{referring to the basic characteristics given previously), it can be
the case that some or all of the primitives will be parametrized in
some way to the type of the message.

2) components for the creation of unique port identifiers: as we have
said, port identifiers should be unique, hence a network-wide unique
name service must be provided.

Moreover, rules for mapping virtual nedes to linguistic constructs
should be settled: this could involve both the use of further primitives, and
the use of particular structures, or linguistic constructs, in defining the
distributed programs.

Obviously, the richer the language is from the point of view of
abstraction mechanisms and modularization concepts, the easier will be to
integrate in it the communication mechanisms.

Let us take as an example the definition of the Inter-Node
communication mechanisms of the Cnet project [Fantechi 85] The language
chosen was Ada [Ada 83], and the communication mechanism had to be
expressed at the Ada level by means of the Ada abstraction mechanism. The
components mentioned before has been mapped in the following way in Ada
terms:

1) the communication schemes provided are the point to point and the
broadcast one: three Ada packages has been defined to group the
broadcast primitives, the point to point input facilities and the
point to point output facilities respectively. The broadcast package
provides send and receive procedures for an unstructured message.
The input port package provides procedures to create/delete input
ports (making use of the name serving facilities), and to receive &
message of any Ada type. The output port package provides
procedures to create/delete ouput ports, to connect them to remote
output ports (of the same type) and to send a message of any Ada
type. The parametrization on the type of the message has been
achieved by the use of generic packages.

2) the name serving facilities has been realized by a structured set of
Ada packages exporting functions that :

i) give a "unigue-on-the-node" name and
1) compose this with a node name to give a “unigue-on-the-net”
name.

The mapping of the nodes in Ada entities has been achieved by means
of a phitosophy of configuration of the virtual network that uses constraints
on the structure of the Ada program (in particular, the constraints are on
the program library that constitute the Ada program itself).

Such philosophy, fully described in [Iinverardi 85], has impact on both
the two previous points: it imposes a further level of generic packages
surrounding the communication packages and impose a more complex
structure (here also with much use of generics) to the name serving
packages.

4 CONCLUSIONS

Starting from the principles behind the definition of the Cnet
inter-node communication mechanisms, more general properties have been
developed in a formal style for four communication schemes: point to point,
broadcast, multicast, typed broadcast.

it has been presented and discussed how these properties can
constitute an aid to the design and implementation of the communication
mechanisms.

Then other general issues on the use of an high level language in the
definition of the communication mechanisms have been discussed.

The work can be considered as a first step in the direction of
identifying a uniform framework in which the design of communication
mechanisms in functionally distributed systems can be carried out. Future
work will be developed in this direction.

REFERENCES

[Ada 83] "Reference Manual for the Ada Programming Language”, Military
Standard, United States Department of Defence,
ANSI/MIL-STD-18-15A, January 1983.

[Cnet 85] “ Distributed Systems on Local Networks”, Cnet Project, ETS, Pisa
June 1985,

[Fantechi 85] A. Fantechi, P. Inverardi, N. Lijtmaer, "Using High Level
Languages for Computer Network Communication™ a Case Study in
Ada”, to appear in Software Practice and Experience.

[inverardi 85] P.Inverardi, F. Mazzanti, C. Montangero, " The Use of Ada in the
Design of Distributed Systems”, ADA in use - Proceedings of the Ada
international Conference 1985, Cambridge University Press, 85-96,
May 1985.

[Liskov 85} B. Liskov, "The Argus Language and System” in Distributed
Systems - Methods and Tools for Specification - An Advanced Course,
Lecture Notes on Computer Science, vol. 190, Springer-Veriag New
York 1985.

{Lamport 83} L. Lamport, "What Good is Temporal Logic?", Information
Processing 83, R E. A Mason. ed., North Holland, Amsterdam 1983.

[Schneider 82] F.B. Schneider, D. Gries, RD.Schlichting, "Fast Reliable
Broadcast”, Cornell University Technical Report TR 82-519,5eptember
1982.

